Affine symmetries and neural network identifiability

We address the following question of neural network identifiability: Suppose we are given a function f:Rm→Rn and a nonlinearity ρ. Can we specify the architecture, weights, and biases of all feed-forward neural networks with respect to ρ giving rise to f? Existing literature on the subject suggests...

Full description

Saved in:
Bibliographic Details
Published inAdvances in mathematics (New York. 1965) Vol. 376; p. 107485
Main Authors Vlačić, Verner, Bölcskei, Helmut
Format Journal Article
LanguageEnglish
Published Elsevier Inc 06.01.2021
Subjects
Online AccessGet full text
ISSN0001-8708
1090-2082
1090-2082
DOI10.1016/j.aim.2020.107485

Cover

Abstract We address the following question of neural network identifiability: Suppose we are given a function f:Rm→Rn and a nonlinearity ρ. Can we specify the architecture, weights, and biases of all feed-forward neural networks with respect to ρ giving rise to f? Existing literature on the subject suggests that the answer should be yes, provided we are only concerned with finding networks that satisfy certain “genericity conditions”. Moreover, the identified networks are mutually related by symmetries of the nonlinearity. For instance, the tanh function is odd, and so flipping the signs of the incoming and outgoing weights of a neuron does not change the output map of the network. The results known hitherto, however, apply either to single-layer networks, or to networks satisfying specific structural assumptions (such as full connectivity), as well as to specific nonlinearities. In an effort to answer the identifiability question in greater generality, we consider arbitrary nonlinearities with potentially complicated affine symmetries, and we show that the symmetries can be used to find a rich set of networks giving rise to the same function f. The set obtained in this manner is, in fact, exhaustive (i.e., it contains all networks giving rise to f) unless there exists a network A “with no internal symmetries” giving rise to the identically zero function. This result can thus be interpreted as an analog of the rank-nullity theorem for linear operators. We furthermore exhibit a class of “tanh-type” nonlinearities (including the tanh function itself) for which such a network A does not exist, thereby solving the identifiability question for these nonlinearities in full generality and settling an open problem posed by Fefferman in [6]. Finally, we show that this class contains nonlinearities with arbitrarily complicated symmetries.
AbstractList We address the following question of neural network identifiability: Suppose we are given a function f:Rm→Rn and a nonlinearity ρ. Can we specify the architecture, weights, and biases of all feed-forward neural networks with respect to ρ giving rise to f? Existing literature on the subject suggests that the answer should be yes, provided we are only concerned with finding networks that satisfy certain “genericity conditions”. Moreover, the identified networks are mutually related by symmetries of the nonlinearity. For instance, the tanh function is odd, and so flipping the signs of the incoming and outgoing weights of a neuron does not change the output map of the network. The results known hitherto, however, apply either to single-layer networks, or to networks satisfying specific structural assumptions (such as full connectivity), as well as to specific nonlinearities. In an effort to answer the identifiability question in greater generality, we consider arbitrary nonlinearities with potentially complicated affine symmetries, and we show that the symmetries can be used to find a rich set of networks giving rise to the same function f. The set obtained in this manner is, in fact, exhaustive (i.e., it contains all networks giving rise to f) unless there exists a network A “with no internal symmetries” giving rise to the identically zero function. This result can thus be interpreted as an analog of the rank-nullity theorem for linear operators. We furthermore exhibit a class of “tanh-type” nonlinearities (including the tanh function itself) for which such a network A does not exist, thereby solving the identifiability question for these nonlinearities in full generality and settling an open problem posed by Fefferman in [6]. Finally, we show that this class contains nonlinearities with arbitrarily complicated symmetries.
ArticleNumber 107485
Author Bölcskei, Helmut
Vlačić, Verner
Author_xml – sequence: 1
  givenname: Verner
  surname: Vlačić
  fullname: Vlačić, Verner
  email: vlacicv@mins.ee.ethz.ch
– sequence: 2
  givenname: Helmut
  surname: Bölcskei
  fullname: Bölcskei, Helmut
  email: hboelcskei@ethz.ch
BookMark eNqNkL1qwzAUhUVJoUnaB-jmF7AryXIs0ymE_kGgSzsL2bqCm9pykJQGv31t3KlD6HQ4w3e4312RhesdEHLPaMYo2zwcMo1dximfeilkcUWWjFY05VTyBVlSSlkqSypvyCqEw1grwaolEVtr0UEShq6D6BFCop1JHJy8bseI595_JWjARbSoa2wxDrfk2uo2wN1vrsnn89PH7jXdv7-87bb7tMkFjWldAOdAK2MpL3IjCsvqUuSmlqwQttB1aXkt7IaVDIDDRk-XGyakNDVIA_ma8Hn35I56OOu2VUePnfaDYlRN3uqgRm81eavZe4TYDDW-D8GD_RdT_mEajDpi76LX2F4kH2cSxj98I3gVGgTXgEEPTVSmxwv0D4C1hIw
CitedBy_id crossref_primary_10_1016_j_acha_2021_12_004
Cites_doi 10.1016/S0893-6080(09)80007-5
10.1002/cpa.21413
10.1038/nature14539
10.1016/j.neunet.2018.08.019
10.1016/S0893-6080(05)80037-1
10.1137/18M118709X
10.1007/BF01475864
10.4171/rmi/160
10.1109/TIT.2017.2776228
10.1109/MSP.2012.2205597
ContentType Journal Article
Copyright 2020 The Author(s)
Copyright_xml – notice: 2020 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.aim.2020.107485
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1090-2082
ExternalDocumentID 10.1016/j.aim.2020.107485
10_1016_j_aim_2020_107485
S0001870820305132
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AASFE
AAXUO
ABAOU
ABCQX
ABJNI
ABLJU
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
D0L
DM4
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
UPT
WH7
ZMT
~G-
1RT
5VS
AAEDT
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
ADVLN
ADXHL
AEIPS
AETEA
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EJD
FGOYB
G-2
HX~
HZ~
MVM
OHT
R2-
SEW
XOL
XPP
ZCG
ZKB
~HD
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c340t-b5e22e09df0253d45f1b743db8154f5ab7f2b4f6171ee2e6a1074d1488dbe8de3
IEDL.DBID IXB
ISSN 0001-8708
1090-2082
IngestDate Tue Aug 19 23:33:47 EDT 2025
Thu Apr 24 23:08:51 EDT 2025
Wed Oct 01 05:22:22 EDT 2025
Fri Feb 23 02:46:17 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Neural network parametrization
tanh
Neural network identifiability
Analytic continuation
Affine symmetries
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-b5e22e09df0253d45f1b743db8154f5ab7f2b4f6171ee2e6a1074d1488dbe8de3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0001870820305132
ParticipantIDs unpaywall_primary_10_1016_j_aim_2020_107485
crossref_primary_10_1016_j_aim_2020_107485
crossref_citationtrail_10_1016_j_aim_2020_107485
elsevier_sciencedirect_doi_10_1016_j_aim_2020_107485
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-06
PublicationDateYYYYMMDD 2021-01-06
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-06
  day: 06
PublicationDecade 2020
PublicationTitle Advances in mathematics (New York. 1965)
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Mallat (br0070) 2012; 65
Petersen, Voigtländer (br0080) 2018; 108
Weyl (br0220) September 1916; 77
Rudin (br0200) 1987
Wiatowski, Bölcskei (br0090) Mar. 2018; 64
LeCun, Bengio, Hinton (br0130) 2015; 521
Rolnick, Kording (br0190) 2020
Fornasier, Klock, Rauchensteiner (br0180) 2019
Vlačić, Bölcskei (br0160) 2020
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (br0050) 2014
Albertini, Sontag (br0110) 1993
Fornasier, Vybíral, Daubechies (br0170) 2018
Fefferman (br0010) 1994; 10
Titchmarsh (br0210) 1939
Albertini, Sontag (br0100) 1993; 6
Albertini, Sontag, Maillot (br0150) 1993
Krizhevsky, Sutskever, Hinton (br0030) 2012
Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath, Kingsbury (br0040) 2012; 29
Goodfellow, Bengio, Courville (br0120) 2016
Beck (br0230) 2017
LeCun, Jackel, Bottou, Brunot, Cortes, Denker, Drucker, Guyon, Müller, Säckinger, Simard, Vapnik (br0020) 1995
Sussman (br0140) July 1992; 5
Bölcskei, Grohs, Kutyniok, Petersen (br0060) 2019; 1
Vlačić (10.1016/j.aim.2020.107485_br0160) 2020
Fornasier (10.1016/j.aim.2020.107485_br0180)
Mallat (10.1016/j.aim.2020.107485_br0070) 2012; 65
Fornasier (10.1016/j.aim.2020.107485_br0170)
Rolnick (10.1016/j.aim.2020.107485_br0190)
Beck (10.1016/j.aim.2020.107485_br0230) 2017
Hinton (10.1016/j.aim.2020.107485_br0040) 2012; 29
LeCun (10.1016/j.aim.2020.107485_br0130) 2015; 521
Albertini (10.1016/j.aim.2020.107485_br0100) 1993; 6
Titchmarsh (10.1016/j.aim.2020.107485_br0210) 1939
Weyl (10.1016/j.aim.2020.107485_br0220) 1916; 77
Albertini (10.1016/j.aim.2020.107485_br0150) 1993
Krizhevsky (10.1016/j.aim.2020.107485_br0030) 2012
Goodfellow (10.1016/j.aim.2020.107485_br0050) 2014
Petersen (10.1016/j.aim.2020.107485_br0080) 2018; 108
Goodfellow (10.1016/j.aim.2020.107485_br0120) 2016
Albertini (10.1016/j.aim.2020.107485_br0110) 1993
Rudin (10.1016/j.aim.2020.107485_br0200) 1987
Fefferman (10.1016/j.aim.2020.107485_br0010) 1994; 10
Sussman (10.1016/j.aim.2020.107485_br0140) 1992; 5
LeCun (10.1016/j.aim.2020.107485_br0020) 1995
Bölcskei (10.1016/j.aim.2020.107485_br0060) 2019; 1
Wiatowski (10.1016/j.aim.2020.107485_br0090) 2018; 64
References_xml – volume: 1
  start-page: 8
  year: 2019
  end-page: 45
  ident: br0060
  article-title: Optimal approximation with sparsely connected deep neural networks
  publication-title: SIAM J. Math. Data Sci.
– year: 2017
  ident: br0230
  article-title: Strong Uniformity and Large Dynamical Systems
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: br0050
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems 27
– start-page: 53
  year: 1995
  end-page: 60
  ident: br0020
  article-title: Comparison of learning algorithms for handwritten digit recognition
  publication-title: International Conference on Artificial Neural Networks
– volume: 10
  start-page: 507
  year: 1994
  end-page: 555
  ident: br0010
  article-title: Reconstructing a neural net from its output
  publication-title: Rev. Mat. Iberoam.
– volume: 65
  start-page: 1331
  year: 2012
  end-page: 1398
  ident: br0070
  article-title: Group invariant scattering
  publication-title: Commun. Pure Appl. Math.
– volume: 77
  start-page: 313
  year: September 1916
  end-page: 352
  ident: br0220
  article-title: Über die Gleichverteilung von Zahlen mod. Eins
  publication-title: Math. Ann.
– volume: 108
  start-page: 296
  year: 2018
  end-page: 330
  ident: br0080
  article-title: Optimal approximation of piecewise smooth functions using deep ReLU neural networks
  publication-title: Neural Netw.
– volume: 5
  start-page: 589
  year: July 1992
  end-page: 593
  ident: br0140
  article-title: Uniqueness of the weights for minimal feedforward nets with a given input-output map
  publication-title: Neural Netw.
– start-page: 113
  year: 1993
  end-page: 125
  ident: br0150
  article-title: Uniqueness of weights for neural networks
  publication-title: Artif. Neural Netw. Speech Vis.
– year: 2020
  ident: br0190
  article-title: Identifying weights and architectures of unknown ReLU networks
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: br0030
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems 25
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: br0130
  article-title: Deep learning
  publication-title: Nature
– volume: 6
  start-page: 975
  year: 1993
  end-page: 990
  ident: br0100
  article-title: For neural networks, function determines form
  publication-title: Neural Netw.
– volume: 64
  start-page: 1845
  year: Mar. 2018
  end-page: 1866
  ident: br0090
  article-title: A mathematical theory of deep convolutional neural networks for feature extraction
  publication-title: IEEE Trans. Inf. Theory
– year: 2020
  ident: br0160
  article-title: Neural network identifiability for a family of sigmoidal nonlinearities
  publication-title: Constr. Approx.
– year: 2016
  ident: br0120
  article-title: Deep Learning
– volume: 29
  start-page: 82
  year: 2012
  end-page: 97
  ident: br0040
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
– year: 2018
  ident: br0170
  article-title: Robust and resource efficient identification of shallow neural networks by fewest samples
– year: 1987
  ident: br0200
  article-title: Real and Complex Analysis
  publication-title: Higher Mathematics Series
– year: 2019
  ident: br0180
  article-title: Robust and resource efficient identification of two hidden layer neural networks
– year: 1939
  ident: br0210
  article-title: The Theory of Functions
– start-page: 599
  year: 1993
  end-page: 602
  ident: br0110
  article-title: Uniqueness of Weights for Recurrent Networks, Vol. 2
– volume: 6
  start-page: 975
  year: 1993
  ident: 10.1016/j.aim.2020.107485_br0100
  article-title: For neural networks, function determines form
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(09)80007-5
– volume: 65
  start-page: 1331
  issue: 10
  year: 2012
  ident: 10.1016/j.aim.2020.107485_br0070
  article-title: Group invariant scattering
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.21413
– volume: 521
  start-page: 436
  year: 2015
  ident: 10.1016/j.aim.2020.107485_br0130
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 10.1016/j.aim.2020.107485_br0180
– ident: 10.1016/j.aim.2020.107485_br0190
– year: 2017
  ident: 10.1016/j.aim.2020.107485_br0230
– start-page: 53
  year: 1995
  ident: 10.1016/j.aim.2020.107485_br0020
  article-title: Comparison of learning algorithms for handwritten digit recognition
– year: 1987
  ident: 10.1016/j.aim.2020.107485_br0200
  article-title: Real and Complex Analysis
– start-page: 2672
  year: 2014
  ident: 10.1016/j.aim.2020.107485_br0050
  article-title: Generative adversarial nets
– volume: 108
  start-page: 296
  year: 2018
  ident: 10.1016/j.aim.2020.107485_br0080
  article-title: Optimal approximation of piecewise smooth functions using deep ReLU neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.08.019
– volume: 5
  start-page: 589
  issue: 4
  year: 1992
  ident: 10.1016/j.aim.2020.107485_br0140
  article-title: Uniqueness of the weights for minimal feedforward nets with a given input-output map
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80037-1
– start-page: 599
  year: 1993
  ident: 10.1016/j.aim.2020.107485_br0110
– volume: 1
  start-page: 8
  issue: 1
  year: 2019
  ident: 10.1016/j.aim.2020.107485_br0060
  article-title: Optimal approximation with sparsely connected deep neural networks
  publication-title: SIAM J. Math. Data Sci.
  doi: 10.1137/18M118709X
– year: 1939
  ident: 10.1016/j.aim.2020.107485_br0210
– volume: 77
  start-page: 313
  issue: 3
  year: 1916
  ident: 10.1016/j.aim.2020.107485_br0220
  article-title: Über die Gleichverteilung von Zahlen mod. Eins
  publication-title: Math. Ann.
  doi: 10.1007/BF01475864
– year: 2016
  ident: 10.1016/j.aim.2020.107485_br0120
– year: 2020
  ident: 10.1016/j.aim.2020.107485_br0160
  article-title: Neural network identifiability for a family of sigmoidal nonlinearities
  publication-title: Constr. Approx.
– volume: 10
  start-page: 507
  issue: 3
  year: 1994
  ident: 10.1016/j.aim.2020.107485_br0010
  article-title: Reconstructing a neural net from its output
  publication-title: Rev. Mat. Iberoam.
  doi: 10.4171/rmi/160
– start-page: 1097
  year: 2012
  ident: 10.1016/j.aim.2020.107485_br0030
  article-title: Imagenet classification with deep convolutional neural networks
– volume: 64
  start-page: 1845
  issue: 3
  year: 2018
  ident: 10.1016/j.aim.2020.107485_br0090
  article-title: A mathematical theory of deep convolutional neural networks for feature extraction
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2017.2776228
– ident: 10.1016/j.aim.2020.107485_br0170
– volume: 29
  start-page: 82
  issue: 6
  year: 2012
  ident: 10.1016/j.aim.2020.107485_br0040
  article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2205597
– start-page: 113
  year: 1993
  ident: 10.1016/j.aim.2020.107485_br0150
  article-title: Uniqueness of weights for neural networks
  publication-title: Artif. Neural Netw. Speech Vis.
SSID ssj0009419
Score 2.4093719
Snippet We address the following question of neural network identifiability: Suppose we are given a function f:Rm→Rn and a nonlinearity ρ. Can we specify the...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 107485
SubjectTerms Affine symmetries
Analytic continuation
Neural network identifiability
Neural network parametrization
tanh
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66HdSDv8X5ix48KR1plmbpcYhjCBseHMxTSZoE1K0O2yHzr_elaYeKTj2WJm14L-V96fve9xA65xrCpGDUj4TEvpV88yMWCh_TwBBws-BFO5_-gPWG9GYUjkqxaFsL8yl_X_CwxIMtGCf2uk15uIrqzOaSaqg-HNx27h28DeCrxq7sLcLgeU6qDOZ3z_gpBq3N0qmYv4rx-EOM6W45dlZWSBNaaslTc5bLZvL2RbjxT8vfRpsl0vQ6bmvsoBWd7qKN_kKmNdtDtGMMoEwvm08mRWetzBOp8qzGJcxMHUPce1COUeQUvef7aNi9vrvq-WUbBT9pUZz7MtSEaBwpA_impWhoAgm4QUkO8MmEQrbBK9QAlAm0JpoJu1IFxySupOZKtw5QLX1O9SHypNCYiEQzSduUBYB1lIETViCVhhtcNBCuDBsnpca4bXUxjisy2WMMBomtQWJnkAa6WEyZOoGNZYNp5a24RAgu8sdg-GXTLhee_f0lR_8afYzWiaW52L8y7ATV8peZPgWcksuzcoe-A5DQ3ks
  priority: 102
  providerName: Unpaywall
Title Affine symmetries and neural network identifiability
URI https://dx.doi.org/10.1016/j.aim.2020.107485
https://doi.org/10.1016/j.aim.2020.107485
UnpaywallVersion publishedVersion
Volume 376
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1090-2082
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009419
  issn: 0001-8708
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1090-2082
  dateEnd: 20210917
  omitProxy: true
  ssIdentifier: ssj0009419
  issn: 0001-8708
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1090-2082
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009419
  issn: 0001-8708
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1090-2082
  dateEnd: 20210416
  omitProxy: true
  ssIdentifier: ssj0009419
  issn: 0001-8708
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1090-2082
  dateEnd: 20211003
  omitProxy: true
  ssIdentifier: ssj0009419
  issn: 0001-8708
  databaseCode: IXB
  dateStart: 19610101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-2082
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009419
  issn: 0001-8708
  databaseCode: AKRWK
  dateStart: 19610101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_MeVAP4ifOj9GDJyWuadOPHetwTGXDg4N5KsmSQMdWh9uQXfzbfenHVJAJHtMmpP0lvPdL-97vAVyGCt0k9xlpcmETI_lGmr7Hic2odnCZeZiV8-n2_E6fPQy8QQVaZS6MCassbH9u0zNrXVxpFGg2pklicnxNQTnjwnDP4qEK7bDLgiyJb3D7JbzLaEGBKTG9yz-bWYwXT0wyumPaATPllH_3TVuLdMqX73w8_uZ72nuwW5BGK8qfax8qKj2Ane5KcXV2CCzSGgmjNVtOJlmRrJnFU2kZuUocmebB3lYi8-CgXJx7eQT99t1zq0OKighk6DJ7ToSnHEfZTamRqriSeZoKpABShMiEtMdFgAAzjayEKuUon5v3knjiCaVQoVTuMVTT11SdgCW4sh0-VL5gAfMp0hap8bBEhVR4I-Q1sEss4mEhF26qVozjMi5sFCN8sYEvzuGrwdVqyDTXyljXmZUAxz8WPEZbvm7Y9Wox_p7k9H-TnMG2Y0JXzJcW_xyq87eFukDuMRd12Lj5oHXYjO4fO716ttWw1e89RS-fRvfYjg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB6sHmwPpU9qnzn01LKYxE2MRymVWB8nBW_LrrsLKZpKVYr_vrPJxrZQLPSYx7DJt8vMt8nMNwD3kcIwyUNKWly4xEi-kVYYcOJST_s4zTzK2vkMhmE8pi-TYFKCp6IWxqRVWt-f-_TMW9szdYtmfZEkpsbXNJQzIQzXLG6q9qBCA_TJZai0u714-KW9Sz3Lgj1iDIqfm1maF09MPbpvjpvUdFT-PTxV1-mCbz74bPYt_HSO4NDyRqedP9oxlFR6AgeDrejq8hRoW2vkjM5yM59nfbKWDk-lYxQr0TLN872dROb5Qbk-9-YMxp3n0VNMbFMEMm1Qd0VEoHxfuS2pka00JA20J5AFSBEhGdIBF03EmGokJp5Svgq5eS-Jm55IChVJ1TiHcvqWqgtwBFeuz6cqFLRJQw-Zi9S4X_KEVHgh4jVwCyzY1CqGm8YVM1akhr0yhI8Z-FgOXw0etiaLXC5j1820AJj9mHOG7nyX2eN2Mv4e5PJ_g9xBNR4N-qzfHfauYN83mSzmw0t4DeXV-1rdIBVZiVu71D4B0hvYgQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66HdSDv8X5ix48KR1plmbpcYhjCBseHMxTSZoE1K0O2yHzr_elaYeKTj2WJm14L-V96fve9xA65xrCpGDUj4TEvpV88yMWCh_TwBBws-BFO5_-gPWG9GYUjkqxaFsL8yl_X_CwxIMtGCf2uk15uIrqzOaSaqg-HNx27h28DeCrxq7sLcLgeU6qDOZ3z_gpBq3N0qmYv4rx-EOM6W45dlZWSBNaaslTc5bLZvL2RbjxT8vfRpsl0vQ6bmvsoBWd7qKN_kKmNdtDtGMMoEwvm08mRWetzBOp8qzGJcxMHUPce1COUeQUvef7aNi9vrvq-WUbBT9pUZz7MtSEaBwpA_impWhoAgm4QUkO8MmEQrbBK9QAlAm0JpoJu1IFxySupOZKtw5QLX1O9SHypNCYiEQzSduUBYB1lIETViCVhhtcNBCuDBsnpca4bXUxjisy2WMMBomtQWJnkAa6WEyZOoGNZYNp5a24RAgu8sdg-GXTLhee_f0lR_8afYzWiaW52L8y7ATV8peZPgWcksuzcoe-A5DQ3ks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Affine+symmetries+and+neural+network+identifiability&rft.jtitle=Advances+in+mathematics+%28New+York.+1965%29&rft.au=Vla%C4%8Di%C4%87%2C+Verner&rft.au=B%C3%B6lcskei%2C+Helmut&rft.date=2021-01-06&rft.issn=0001-8708&rft.volume=376&rft.spage=107485&rft_id=info:doi/10.1016%2Fj.aim.2020.107485&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aim_2020_107485
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8708&client=summon