Affine symmetries and neural network identifiability
We address the following question of neural network identifiability: Suppose we are given a function f:Rm→Rn and a nonlinearity ρ. Can we specify the architecture, weights, and biases of all feed-forward neural networks with respect to ρ giving rise to f? Existing literature on the subject suggests...
Saved in:
Published in | Advances in mathematics (New York. 1965) Vol. 376; p. 107485 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
06.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0001-8708 1090-2082 1090-2082 |
DOI | 10.1016/j.aim.2020.107485 |
Cover
Abstract | We address the following question of neural network identifiability: Suppose we are given a function f:Rm→Rn and a nonlinearity ρ. Can we specify the architecture, weights, and biases of all feed-forward neural networks with respect to ρ giving rise to f? Existing literature on the subject suggests that the answer should be yes, provided we are only concerned with finding networks that satisfy certain “genericity conditions”. Moreover, the identified networks are mutually related by symmetries of the nonlinearity. For instance, the tanh function is odd, and so flipping the signs of the incoming and outgoing weights of a neuron does not change the output map of the network. The results known hitherto, however, apply either to single-layer networks, or to networks satisfying specific structural assumptions (such as full connectivity), as well as to specific nonlinearities. In an effort to answer the identifiability question in greater generality, we consider arbitrary nonlinearities with potentially complicated affine symmetries, and we show that the symmetries can be used to find a rich set of networks giving rise to the same function f. The set obtained in this manner is, in fact, exhaustive (i.e., it contains all networks giving rise to f) unless there exists a network A “with no internal symmetries” giving rise to the identically zero function. This result can thus be interpreted as an analog of the rank-nullity theorem for linear operators. We furthermore exhibit a class of “tanh-type” nonlinearities (including the tanh function itself) for which such a network A does not exist, thereby solving the identifiability question for these nonlinearities in full generality and settling an open problem posed by Fefferman in [6]. Finally, we show that this class contains nonlinearities with arbitrarily complicated symmetries. |
---|---|
AbstractList | We address the following question of neural network identifiability: Suppose we are given a function f:Rm→Rn and a nonlinearity ρ. Can we specify the architecture, weights, and biases of all feed-forward neural networks with respect to ρ giving rise to f? Existing literature on the subject suggests that the answer should be yes, provided we are only concerned with finding networks that satisfy certain “genericity conditions”. Moreover, the identified networks are mutually related by symmetries of the nonlinearity. For instance, the tanh function is odd, and so flipping the signs of the incoming and outgoing weights of a neuron does not change the output map of the network. The results known hitherto, however, apply either to single-layer networks, or to networks satisfying specific structural assumptions (such as full connectivity), as well as to specific nonlinearities. In an effort to answer the identifiability question in greater generality, we consider arbitrary nonlinearities with potentially complicated affine symmetries, and we show that the symmetries can be used to find a rich set of networks giving rise to the same function f. The set obtained in this manner is, in fact, exhaustive (i.e., it contains all networks giving rise to f) unless there exists a network A “with no internal symmetries” giving rise to the identically zero function. This result can thus be interpreted as an analog of the rank-nullity theorem for linear operators. We furthermore exhibit a class of “tanh-type” nonlinearities (including the tanh function itself) for which such a network A does not exist, thereby solving the identifiability question for these nonlinearities in full generality and settling an open problem posed by Fefferman in [6]. Finally, we show that this class contains nonlinearities with arbitrarily complicated symmetries. |
ArticleNumber | 107485 |
Author | Bölcskei, Helmut Vlačić, Verner |
Author_xml | – sequence: 1 givenname: Verner surname: Vlačić fullname: Vlačić, Verner email: vlacicv@mins.ee.ethz.ch – sequence: 2 givenname: Helmut surname: Bölcskei fullname: Bölcskei, Helmut email: hboelcskei@ethz.ch |
BookMark | eNqNkL1qwzAUhUVJoUnaB-jmF7AryXIs0ymE_kGgSzsL2bqCm9pykJQGv31t3KlD6HQ4w3e4312RhesdEHLPaMYo2zwcMo1dximfeilkcUWWjFY05VTyBVlSSlkqSypvyCqEw1grwaolEVtr0UEShq6D6BFCop1JHJy8bseI595_JWjARbSoa2wxDrfk2uo2wN1vrsnn89PH7jXdv7-87bb7tMkFjWldAOdAK2MpL3IjCsvqUuSmlqwQttB1aXkt7IaVDIDDRk-XGyakNDVIA_ma8Hn35I56OOu2VUePnfaDYlRN3uqgRm81eavZe4TYDDW-D8GD_RdT_mEajDpi76LX2F4kH2cSxj98I3gVGgTXgEEPTVSmxwv0D4C1hIw |
CitedBy_id | crossref_primary_10_1016_j_acha_2021_12_004 |
Cites_doi | 10.1016/S0893-6080(09)80007-5 10.1002/cpa.21413 10.1038/nature14539 10.1016/j.neunet.2018.08.019 10.1016/S0893-6080(05)80037-1 10.1137/18M118709X 10.1007/BF01475864 10.4171/rmi/160 10.1109/TIT.2017.2776228 10.1109/MSP.2012.2205597 |
ContentType | Journal Article |
Copyright | 2020 The Author(s) |
Copyright_xml | – notice: 2020 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
DOI | 10.1016/j.aim.2020.107485 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1090-2082 |
ExternalDocumentID | 10.1016/j.aim.2020.107485 10_1016_j_aim_2020_107485 S0001870820305132 |
GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 6I. 6TJ 7-5 71M 8P~ 9JN AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AASFE AAXUO ABAOU ABCQX ABJNI ABLJU ABMAC ABYKQ ACAZW ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 D0L DM4 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG5 M25 M41 MCRUF MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSW SSZ T5K UPT WH7 ZMT ~G- 1RT 5VS AAEDT AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO ADVLN ADXHL AEIPS AETEA AEUPX AEXQZ AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF EFKBS EJD FGOYB G-2 HX~ HZ~ MVM OHT R2- SEW XOL XPP ZCG ZKB ~HD ADTOC AGCQF UNPAY |
ID | FETCH-LOGICAL-c340t-b5e22e09df0253d45f1b743db8154f5ab7f2b4f6171ee2e6a1074d1488dbe8de3 |
IEDL.DBID | IXB |
ISSN | 0001-8708 1090-2082 |
IngestDate | Tue Aug 19 23:33:47 EDT 2025 Thu Apr 24 23:08:51 EDT 2025 Wed Oct 01 05:22:22 EDT 2025 Fri Feb 23 02:46:17 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Neural network parametrization tanh Neural network identifiability Analytic continuation Affine symmetries |
Language | English |
License | This is an open access article under the CC BY license. cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-b5e22e09df0253d45f1b743db8154f5ab7f2b4f6171ee2e6a1074d1488dbe8de3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0001870820305132 |
ParticipantIDs | unpaywall_primary_10_1016_j_aim_2020_107485 crossref_primary_10_1016_j_aim_2020_107485 crossref_citationtrail_10_1016_j_aim_2020_107485 elsevier_sciencedirect_doi_10_1016_j_aim_2020_107485 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-06 |
PublicationDateYYYYMMDD | 2021-01-06 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-06 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | Advances in mathematics (New York. 1965) |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Mallat (br0070) 2012; 65 Petersen, Voigtländer (br0080) 2018; 108 Weyl (br0220) September 1916; 77 Rudin (br0200) 1987 Wiatowski, Bölcskei (br0090) Mar. 2018; 64 LeCun, Bengio, Hinton (br0130) 2015; 521 Rolnick, Kording (br0190) 2020 Fornasier, Klock, Rauchensteiner (br0180) 2019 Vlačić, Bölcskei (br0160) 2020 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (br0050) 2014 Albertini, Sontag (br0110) 1993 Fornasier, Vybíral, Daubechies (br0170) 2018 Fefferman (br0010) 1994; 10 Titchmarsh (br0210) 1939 Albertini, Sontag (br0100) 1993; 6 Albertini, Sontag, Maillot (br0150) 1993 Krizhevsky, Sutskever, Hinton (br0030) 2012 Hinton, Deng, Yu, Dahl, Mohamed, Jaitly, Senior, Vanhoucke, Nguyen, Sainath, Kingsbury (br0040) 2012; 29 Goodfellow, Bengio, Courville (br0120) 2016 Beck (br0230) 2017 LeCun, Jackel, Bottou, Brunot, Cortes, Denker, Drucker, Guyon, Müller, Säckinger, Simard, Vapnik (br0020) 1995 Sussman (br0140) July 1992; 5 Bölcskei, Grohs, Kutyniok, Petersen (br0060) 2019; 1 Vlačić (10.1016/j.aim.2020.107485_br0160) 2020 Fornasier (10.1016/j.aim.2020.107485_br0180) Mallat (10.1016/j.aim.2020.107485_br0070) 2012; 65 Fornasier (10.1016/j.aim.2020.107485_br0170) Rolnick (10.1016/j.aim.2020.107485_br0190) Beck (10.1016/j.aim.2020.107485_br0230) 2017 Hinton (10.1016/j.aim.2020.107485_br0040) 2012; 29 LeCun (10.1016/j.aim.2020.107485_br0130) 2015; 521 Albertini (10.1016/j.aim.2020.107485_br0100) 1993; 6 Titchmarsh (10.1016/j.aim.2020.107485_br0210) 1939 Weyl (10.1016/j.aim.2020.107485_br0220) 1916; 77 Albertini (10.1016/j.aim.2020.107485_br0150) 1993 Krizhevsky (10.1016/j.aim.2020.107485_br0030) 2012 Goodfellow (10.1016/j.aim.2020.107485_br0050) 2014 Petersen (10.1016/j.aim.2020.107485_br0080) 2018; 108 Goodfellow (10.1016/j.aim.2020.107485_br0120) 2016 Albertini (10.1016/j.aim.2020.107485_br0110) 1993 Rudin (10.1016/j.aim.2020.107485_br0200) 1987 Fefferman (10.1016/j.aim.2020.107485_br0010) 1994; 10 Sussman (10.1016/j.aim.2020.107485_br0140) 1992; 5 LeCun (10.1016/j.aim.2020.107485_br0020) 1995 Bölcskei (10.1016/j.aim.2020.107485_br0060) 2019; 1 Wiatowski (10.1016/j.aim.2020.107485_br0090) 2018; 64 |
References_xml | – volume: 1 start-page: 8 year: 2019 end-page: 45 ident: br0060 article-title: Optimal approximation with sparsely connected deep neural networks publication-title: SIAM J. Math. Data Sci. – year: 2017 ident: br0230 article-title: Strong Uniformity and Large Dynamical Systems – start-page: 2672 year: 2014 end-page: 2680 ident: br0050 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems 27 – start-page: 53 year: 1995 end-page: 60 ident: br0020 article-title: Comparison of learning algorithms for handwritten digit recognition publication-title: International Conference on Artificial Neural Networks – volume: 10 start-page: 507 year: 1994 end-page: 555 ident: br0010 article-title: Reconstructing a neural net from its output publication-title: Rev. Mat. Iberoam. – volume: 65 start-page: 1331 year: 2012 end-page: 1398 ident: br0070 article-title: Group invariant scattering publication-title: Commun. Pure Appl. Math. – volume: 77 start-page: 313 year: September 1916 end-page: 352 ident: br0220 article-title: Über die Gleichverteilung von Zahlen mod. Eins publication-title: Math. Ann. – volume: 108 start-page: 296 year: 2018 end-page: 330 ident: br0080 article-title: Optimal approximation of piecewise smooth functions using deep ReLU neural networks publication-title: Neural Netw. – volume: 5 start-page: 589 year: July 1992 end-page: 593 ident: br0140 article-title: Uniqueness of the weights for minimal feedforward nets with a given input-output map publication-title: Neural Netw. – start-page: 113 year: 1993 end-page: 125 ident: br0150 article-title: Uniqueness of weights for neural networks publication-title: Artif. Neural Netw. Speech Vis. – year: 2020 ident: br0190 article-title: Identifying weights and architectures of unknown ReLU networks – start-page: 1097 year: 2012 end-page: 1105 ident: br0030 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems 25 – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: br0130 article-title: Deep learning publication-title: Nature – volume: 6 start-page: 975 year: 1993 end-page: 990 ident: br0100 article-title: For neural networks, function determines form publication-title: Neural Netw. – volume: 64 start-page: 1845 year: Mar. 2018 end-page: 1866 ident: br0090 article-title: A mathematical theory of deep convolutional neural networks for feature extraction publication-title: IEEE Trans. Inf. Theory – year: 2020 ident: br0160 article-title: Neural network identifiability for a family of sigmoidal nonlinearities publication-title: Constr. Approx. – year: 2016 ident: br0120 article-title: Deep Learning – volume: 29 start-page: 82 year: 2012 end-page: 97 ident: br0040 article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups publication-title: IEEE Signal Process. Mag. – year: 2018 ident: br0170 article-title: Robust and resource efficient identification of shallow neural networks by fewest samples – year: 1987 ident: br0200 article-title: Real and Complex Analysis publication-title: Higher Mathematics Series – year: 2019 ident: br0180 article-title: Robust and resource efficient identification of two hidden layer neural networks – year: 1939 ident: br0210 article-title: The Theory of Functions – start-page: 599 year: 1993 end-page: 602 ident: br0110 article-title: Uniqueness of Weights for Recurrent Networks, Vol. 2 – volume: 6 start-page: 975 year: 1993 ident: 10.1016/j.aim.2020.107485_br0100 article-title: For neural networks, function determines form publication-title: Neural Netw. doi: 10.1016/S0893-6080(09)80007-5 – volume: 65 start-page: 1331 issue: 10 year: 2012 ident: 10.1016/j.aim.2020.107485_br0070 article-title: Group invariant scattering publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.21413 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.aim.2020.107485_br0130 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: 10.1016/j.aim.2020.107485_br0180 – ident: 10.1016/j.aim.2020.107485_br0190 – year: 2017 ident: 10.1016/j.aim.2020.107485_br0230 – start-page: 53 year: 1995 ident: 10.1016/j.aim.2020.107485_br0020 article-title: Comparison of learning algorithms for handwritten digit recognition – year: 1987 ident: 10.1016/j.aim.2020.107485_br0200 article-title: Real and Complex Analysis – start-page: 2672 year: 2014 ident: 10.1016/j.aim.2020.107485_br0050 article-title: Generative adversarial nets – volume: 108 start-page: 296 year: 2018 ident: 10.1016/j.aim.2020.107485_br0080 article-title: Optimal approximation of piecewise smooth functions using deep ReLU neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.08.019 – volume: 5 start-page: 589 issue: 4 year: 1992 ident: 10.1016/j.aim.2020.107485_br0140 article-title: Uniqueness of the weights for minimal feedforward nets with a given input-output map publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80037-1 – start-page: 599 year: 1993 ident: 10.1016/j.aim.2020.107485_br0110 – volume: 1 start-page: 8 issue: 1 year: 2019 ident: 10.1016/j.aim.2020.107485_br0060 article-title: Optimal approximation with sparsely connected deep neural networks publication-title: SIAM J. Math. Data Sci. doi: 10.1137/18M118709X – year: 1939 ident: 10.1016/j.aim.2020.107485_br0210 – volume: 77 start-page: 313 issue: 3 year: 1916 ident: 10.1016/j.aim.2020.107485_br0220 article-title: Über die Gleichverteilung von Zahlen mod. Eins publication-title: Math. Ann. doi: 10.1007/BF01475864 – year: 2016 ident: 10.1016/j.aim.2020.107485_br0120 – year: 2020 ident: 10.1016/j.aim.2020.107485_br0160 article-title: Neural network identifiability for a family of sigmoidal nonlinearities publication-title: Constr. Approx. – volume: 10 start-page: 507 issue: 3 year: 1994 ident: 10.1016/j.aim.2020.107485_br0010 article-title: Reconstructing a neural net from its output publication-title: Rev. Mat. Iberoam. doi: 10.4171/rmi/160 – start-page: 1097 year: 2012 ident: 10.1016/j.aim.2020.107485_br0030 article-title: Imagenet classification with deep convolutional neural networks – volume: 64 start-page: 1845 issue: 3 year: 2018 ident: 10.1016/j.aim.2020.107485_br0090 article-title: A mathematical theory of deep convolutional neural networks for feature extraction publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2017.2776228 – ident: 10.1016/j.aim.2020.107485_br0170 – volume: 29 start-page: 82 issue: 6 year: 2012 ident: 10.1016/j.aim.2020.107485_br0040 article-title: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2205597 – start-page: 113 year: 1993 ident: 10.1016/j.aim.2020.107485_br0150 article-title: Uniqueness of weights for neural networks publication-title: Artif. Neural Netw. Speech Vis. |
SSID | ssj0009419 |
Score | 2.4093719 |
Snippet | We address the following question of neural network identifiability: Suppose we are given a function f:Rm→Rn and a nonlinearity ρ. Can we specify the... |
SourceID | unpaywall crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 107485 |
SubjectTerms | Affine symmetries Analytic continuation Neural network identifiability Neural network parametrization tanh |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66HdSDv8X5ix48KR1plmbpcYhjCBseHMxTSZoE1K0O2yHzr_elaYeKTj2WJm14L-V96fve9xA65xrCpGDUj4TEvpV88yMWCh_TwBBws-BFO5_-gPWG9GYUjkqxaFsL8yl_X_CwxIMtGCf2uk15uIrqzOaSaqg-HNx27h28DeCrxq7sLcLgeU6qDOZ3z_gpBq3N0qmYv4rx-EOM6W45dlZWSBNaaslTc5bLZvL2RbjxT8vfRpsl0vQ6bmvsoBWd7qKN_kKmNdtDtGMMoEwvm08mRWetzBOp8qzGJcxMHUPce1COUeQUvef7aNi9vrvq-WUbBT9pUZz7MtSEaBwpA_impWhoAgm4QUkO8MmEQrbBK9QAlAm0JpoJu1IFxySupOZKtw5QLX1O9SHypNCYiEQzSduUBYB1lIETViCVhhtcNBCuDBsnpca4bXUxjisy2WMMBomtQWJnkAa6WEyZOoGNZYNp5a24RAgu8sdg-GXTLhee_f0lR_8afYzWiaW52L8y7ATV8peZPgWcksuzcoe-A5DQ3ks priority: 102 providerName: Unpaywall |
Title | Affine symmetries and neural network identifiability |
URI | https://dx.doi.org/10.1016/j.aim.2020.107485 https://doi.org/10.1016/j.aim.2020.107485 |
UnpaywallVersion | publishedVersion |
Volume | 376 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1090-2082 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009419 issn: 0001-8708 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1090-2082 dateEnd: 20210917 omitProxy: true ssIdentifier: ssj0009419 issn: 0001-8708 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1090-2082 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009419 issn: 0001-8708 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1090-2082 dateEnd: 20210416 omitProxy: true ssIdentifier: ssj0009419 issn: 0001-8708 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1090-2082 dateEnd: 20211003 omitProxy: true ssIdentifier: ssj0009419 issn: 0001-8708 databaseCode: IXB dateStart: 19610101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1090-2082 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009419 issn: 0001-8708 databaseCode: AKRWK dateStart: 19610101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_MeVAP4ifOj9GDJyWuadOPHetwTGXDg4N5KsmSQMdWh9uQXfzbfenHVJAJHtMmpP0lvPdL-97vAVyGCt0k9xlpcmETI_lGmr7Hic2odnCZeZiV8-n2_E6fPQy8QQVaZS6MCassbH9u0zNrXVxpFGg2pklicnxNQTnjwnDP4qEK7bDLgiyJb3D7JbzLaEGBKTG9yz-bWYwXT0wyumPaATPllH_3TVuLdMqX73w8_uZ72nuwW5BGK8qfax8qKj2Ane5KcXV2CCzSGgmjNVtOJlmRrJnFU2kZuUocmebB3lYi8-CgXJx7eQT99t1zq0OKighk6DJ7ToSnHEfZTamRqriSeZoKpABShMiEtMdFgAAzjayEKuUon5v3knjiCaVQoVTuMVTT11SdgCW4sh0-VL5gAfMp0hap8bBEhVR4I-Q1sEss4mEhF26qVozjMi5sFCN8sYEvzuGrwdVqyDTXyljXmZUAxz8WPEZbvm7Y9Wox_p7k9H-TnMG2Y0JXzJcW_xyq87eFukDuMRd12Lj5oHXYjO4fO716ttWw1e89RS-fRvfYjg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8JAEB6sHmwPpU9qnzn01LKYxE2MRymVWB8nBW_LrrsLKZpKVYr_vrPJxrZQLPSYx7DJt8vMt8nMNwD3kcIwyUNKWly4xEi-kVYYcOJST_s4zTzK2vkMhmE8pi-TYFKCp6IWxqRVWt-f-_TMW9szdYtmfZEkpsbXNJQzIQzXLG6q9qBCA_TJZai0u714-KW9Sz3Lgj1iDIqfm1maF09MPbpvjpvUdFT-PTxV1-mCbz74bPYt_HSO4NDyRqedP9oxlFR6AgeDrejq8hRoW2vkjM5yM59nfbKWDk-lYxQr0TLN872dROb5Qbk-9-YMxp3n0VNMbFMEMm1Qd0VEoHxfuS2pka00JA20J5AFSBEhGdIBF03EmGokJp5Svgq5eS-Jm55IChVJ1TiHcvqWqgtwBFeuz6cqFLRJQw-Zi9S4X_KEVHgh4jVwCyzY1CqGm8YVM1akhr0yhI8Z-FgOXw0etiaLXC5j1820AJj9mHOG7nyX2eN2Mv4e5PJ_g9xBNR4N-qzfHfauYN83mSzmw0t4DeXV-1rdIBVZiVu71D4B0hvYgQ |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA66HdSDv8X5ix48KR1plmbpcYhjCBseHMxTSZoE1K0O2yHzr_elaYeKTj2WJm14L-V96fve9xA65xrCpGDUj4TEvpV88yMWCh_TwBBws-BFO5_-gPWG9GYUjkqxaFsL8yl_X_CwxIMtGCf2uk15uIrqzOaSaqg-HNx27h28DeCrxq7sLcLgeU6qDOZ3z_gpBq3N0qmYv4rx-EOM6W45dlZWSBNaaslTc5bLZvL2RbjxT8vfRpsl0vQ6bmvsoBWd7qKN_kKmNdtDtGMMoEwvm08mRWetzBOp8qzGJcxMHUPce1COUeQUvef7aNi9vrvq-WUbBT9pUZz7MtSEaBwpA_impWhoAgm4QUkO8MmEQrbBK9QAlAm0JpoJu1IFxySupOZKtw5QLX1O9SHypNCYiEQzSduUBYB1lIETViCVhhtcNBCuDBsnpca4bXUxjisy2WMMBomtQWJnkAa6WEyZOoGNZYNp5a24RAgu8sdg-GXTLhee_f0lR_8afYzWiaW52L8y7ATV8peZPgWcksuzcoe-A5DQ3ks |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Affine+symmetries+and+neural+network+identifiability&rft.jtitle=Advances+in+mathematics+%28New+York.+1965%29&rft.au=Vla%C4%8Di%C4%87%2C+Verner&rft.au=B%C3%B6lcskei%2C+Helmut&rft.date=2021-01-06&rft.issn=0001-8708&rft.volume=376&rft.spage=107485&rft_id=info:doi/10.1016%2Fj.aim.2020.107485&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aim_2020_107485 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-8708&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-8708&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-8708&client=summon |