Open source Matrix Product States: Opening ways to simulate entangled many-body quantum systems in one dimension

Numerical simulations are a powerful tool to study quantum systems beyond exactly solvable systems lacking an analytic expression. For one-dimensional entangled quantum systems, tensor network methods, amongst them Matrix Product States (MPSs), have attracted interest from different fields of quantu...

Full description

Saved in:
Bibliographic Details
Published inComputer physics communications Vol. 225; pp. 59 - 91
Main Authors Jaschke, Daniel, Wall, Michael L., Carr, Lincoln D.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2018
Subjects
Online AccessGet full text
ISSN0010-4655
1879-2944
1879-2944
DOI10.1016/j.cpc.2017.12.015

Cover

Abstract Numerical simulations are a powerful tool to study quantum systems beyond exactly solvable systems lacking an analytic expression. For one-dimensional entangled quantum systems, tensor network methods, amongst them Matrix Product States (MPSs), have attracted interest from different fields of quantum physics ranging from solid state systems to quantum simulators and quantum computing. Our open source MPS code provides the community with a toolset to analyze the statics and dynamics of one-dimensional quantum systems. Here, we present our open source library, Open Source Matrix Product States (OSMPS), of MPS methods implemented in Python and Fortran2003. The library includes tools for ground state calculation and excited states via the variational ansatz. We also support ground states for infinite systems with translational invariance. Dynamics are simulated with different algorithms, including three algorithms with support for long-range interactions. Convenient features include built-in support for fermionic systems and number conservation with rotational U(1) and discrete Z2 symmetries for finite systems, as well as data parallelism with MPI. We explain the principles and techniques used in this library along with examples of how to efficiently use the general interfaces to analyze the Ising and Bose–Hubbard models. This description includes the preparation of simulations as well as dispatching and post-processing of them. Program title: Open Source Matrix Product States (OSMPS), v2.0 Program Files doi:http://dx.doi.org/10.17632/vxm2mcmk4v.1 Licensing provisions: GNU GPL v3 Programming language: Python, Fortran2003, MPI for parallel computing Compilers (Fortran): gfortran, ifort, g95 Dependencies: The minimal requirements in addition to the Fortran compiler are BLAS, LAPACK, ARPACK, python, numpy, scipy. Additional packages for plotting include matplotlib, dvipng, and LATEX packages. The Expokit package, available at the homepage http://www.maths.uq.edu.au/expokit/, is required to use the Local Runge–Kutta time evolution. Supplementary material: We provide programs to reproduce selected figures in the Appendices. Nature of problem: Solving the ground state and dynamics of a many-body entangled quantum system is a challenging problem; the Hilbert space grows exponentially with system size. Complete diagonalization of the Hilbert space to floating point precision is limited to less than forty qubits. Solution method: Matrix Product States in one spatial dimension overcome the exponentially growing Hilbert space by truncating the least important parts of it. The error can be well controlled. Local neighboring sites are variationally optimized in order to minimize the energy of the complete system. We can target the ground state and low lying excited states. Moreover, we offer various methods to solve the time evolution following the many-body Schrödinger equation. These methods include e.g. theSuzuki–Trotter decompositions using local propagators or the Krylov method, both approximating the propagator on the complete Hilbert space.
AbstractList Numerical simulations are a powerful tool to study quantum systems beyond exactly solvable systems lacking an analytic expression. For one-dimensional entangled quantum systems, tensor network methods, amongst them Matrix Product States (MPSs), have attracted interest from different fields of quantum physics ranging from solid state systems to quantum simulators and quantum computing. Our open source MPS code provides the community with a toolset to analyze the statics and dynamics of one-dimensional quantum systems. Here, we present our open source library, Open Source Matrix Product States (OSMPS), of MPS methods implemented in Python and Fortran2003. The library includes tools for ground state calculation and excited states via the variational ansatz. We also support ground states for infinite systems with translational invariance. Dynamics are simulated with different algorithms, including three algorithms with support for long-range interactions. Convenient features include built-in support for fermionic systems and number conservation with rotational U(1) and discrete Z2 symmetries for finite systems, as well as data parallelism with MPI. We explain the principles and techniques used in this library along with examples of how to efficiently use the general interfaces to analyze the Ising and Bose–Hubbard models. This description includes the preparation of simulations as well as dispatching and post-processing of them. Program title: Open Source Matrix Product States (OSMPS), v2.0 Program Files doi:http://dx.doi.org/10.17632/vxm2mcmk4v.1 Licensing provisions: GNU GPL v3 Programming language: Python, Fortran2003, MPI for parallel computing Compilers (Fortran): gfortran, ifort, g95 Dependencies: The minimal requirements in addition to the Fortran compiler are BLAS, LAPACK, ARPACK, python, numpy, scipy. Additional packages for plotting include matplotlib, dvipng, and LATEX packages. The Expokit package, available at the homepage http://www.maths.uq.edu.au/expokit/, is required to use the Local Runge–Kutta time evolution. Supplementary material: We provide programs to reproduce selected figures in the Appendices. Nature of problem: Solving the ground state and dynamics of a many-body entangled quantum system is a challenging problem; the Hilbert space grows exponentially with system size. Complete diagonalization of the Hilbert space to floating point precision is limited to less than forty qubits. Solution method: Matrix Product States in one spatial dimension overcome the exponentially growing Hilbert space by truncating the least important parts of it. The error can be well controlled. Local neighboring sites are variationally optimized in order to minimize the energy of the complete system. We can target the ground state and low lying excited states. Moreover, we offer various methods to solve the time evolution following the many-body Schrödinger equation. These methods include e.g. theSuzuki–Trotter decompositions using local propagators or the Krylov method, both approximating the propagator on the complete Hilbert space.
Author Jaschke, Daniel
Wall, Michael L.
Carr, Lincoln D.
Author_xml – sequence: 1
  givenname: Daniel
  orcidid: 0000-0001-7658-3546
  surname: Jaschke
  fullname: Jaschke, Daniel
  email: djaschke@mines.edu
  organization: Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
– sequence: 2
  givenname: Michael L.
  surname: Wall
  fullname: Wall, Michael L.
  organization: Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
– sequence: 3
  givenname: Lincoln D.
  surname: Carr
  fullname: Carr, Lincoln D.
  organization: Department of Physics, Colorado School of Mines, Golden, Colorado 80401, USA
BookMark eNqNkMtOwzAQRS0EEqXwAez8Awl24sQJrFDFSyoqErC2XHtSuUqcYDtA_h5XZcWiYjWLmXPn6pyhY9tbQOiSkpQSWl5tUzWoNCOUpzRLCS2O0IxWvE6ymrFjNCOEkoSVRXGKzrzfEkI4r_MZGlYDWOz70SnAzzI4841fXK9HFfBrkAH8Nd6dGLvBX3LyOPTYm25s4wqDDdJuWtC4k3ZK1r2e8McobRg77CcfoPPYWBybYm06sN709hydNLL1cPE75-j9_u5t8ZgsVw9Pi9tlonJGQrKmNZSs1lozleeUKdYUmlRrqSoteZaXVJG6kFzqqqxoDlSThtS8yiPXZFWRz1G2zx3tIKcv2bZicKaTbhKUiJ0zsRXRmdg5EzQT0VmE-B5SrvfeQSOUiRJi7eCkaQ-S9A_5n283ewaih08DTnhlwCrQxoEKQvfmAP0DjVyazA
CitedBy_id crossref_primary_10_1088_1367_2630_ada84f
crossref_primary_10_1103_PhysRevA_104_L041301
crossref_primary_10_1103_PhysRevA_98_013611
crossref_primary_10_1088_2058_9565_ac1c41
crossref_primary_10_1038_s41586_023_06656_7
crossref_primary_10_1103_PhysRevLett_129_050601
crossref_primary_10_1134_S1995080220080120
crossref_primary_10_1103_PhysRevA_97_043624
crossref_primary_10_1103_PhysRevA_105_012429
crossref_primary_10_1103_PhysRevA_97_052320
crossref_primary_10_21468_SciPostPhys_9_1_005
crossref_primary_10_1103_PhysRevE_103_052127
crossref_primary_10_1364_OPTICA_423044
crossref_primary_10_1103_PhysRevLett_125_155701
crossref_primary_10_1063_5_0153870
crossref_primary_10_1103_PhysRevB_100_134207
crossref_primary_10_1103_PhysRevA_101_063626
crossref_primary_10_1103_PhysRevB_98_184304
crossref_primary_10_1103_PhysRevResearch_4_013002
crossref_primary_10_1103_PhysRevB_101_235123
crossref_primary_10_1103_PhysRevA_101_052341
crossref_primary_10_1103_PhysRevB_103_014118
crossref_primary_10_1088_2058_9565_aae724
crossref_primary_10_55544_jrasb_3_2_17
crossref_primary_10_1038_s41567_021_01277_1
crossref_primary_10_1088_2058_9565_aad399
crossref_primary_10_1103_RevModPhys_94_045006
crossref_primary_10_1103_PhysRevB_99_054403
crossref_primary_10_1103_PhysRevA_99_013624
crossref_primary_10_1103_PhysRevB_110_L020302
crossref_primary_10_1103_PhysRevLett_123_133603
crossref_primary_10_1016_j_cpc_2020_107728
crossref_primary_10_1103_PhysRevA_105_012416
crossref_primary_10_1103_PhysRevB_100_104203
crossref_primary_10_1364_AOP_445496
crossref_primary_10_1103_PhysRevB_105_094309
crossref_primary_10_1103_PhysRevB_103_205107
crossref_primary_10_1073_pnas_2006373117
crossref_primary_10_1103_PhysRevB_98_174202
crossref_primary_10_1088_1367_2630_ac43ed
crossref_primary_10_1088_1751_8121_aae4d1
crossref_primary_10_1103_PhysRevA_98_033607
crossref_primary_10_1088_2058_9565_aac731
crossref_primary_10_1103_PhysRevB_110_014302
Cites_doi 10.1088/1367-2630/16/10/103008
10.1016/j.aop.2010.09.012
10.1103/PhysRevLett.99.127004
10.1103/PhysRevLett.116.237201
10.1088/1742-5468/2011/05/P05001
10.1016/j.aop.2010.02.006
10.1007/BF02980577
10.1103/PhysRevB.93.205115
10.1007/BF01647331
10.1016/j.aop.2014.06.013
10.1145/285861.285868
10.1103/PhysRevLett.93.207204
10.1103/PhysRevA.88.023605
10.1080/14789940801912366
10.1088/1367-2630/12/5/055026
10.1103/PhysRevLett.101.110501
10.1016/j.jcp.2011.04.006
10.1103/PhysRevB.43.5950
10.1016/0024-3795(84)90117-4
10.1103/PhysRevLett.52.997
10.1103/PhysRevB.91.165112
10.1103/PhysRevLett.117.195302
10.1016/j.cpc.2014.01.019
10.1063/1.2080353
10.1137/S00361445024180
10.1137/0729014
10.1103/RevModPhys.77.259
10.1103/PhysRevB.83.115125
10.1016/j.cpc.2015.10.016
10.1088/1367-2630/8/12/305
10.1209/0295-5075/115/30006
10.1103/PhysRevA.74.022320
10.1103/PhysRevLett.93.227205
10.1103/PhysRevLett.91.147902
10.1103/PhysRevB.64.184106
10.1140/epjd/e2017-70650-8
10.1103/PhysRevA.60.1956
10.1103/RevModPhys.82.277
10.1007/BF01331938
10.1103/PhysRevA.78.012356
10.1103/PhysRevLett.68.580
10.1088/1367-2630/15/12/123005
10.1088/1742-5468/2007/10/P10014
10.1103/PhysRevB.94.165116
10.1103/PhysRevB.94.075116
10.1088/1367-2630/14/12/125015
10.1103/PhysRevA.82.050301
10.1016/j.cpc.2014.08.019
10.1103/PhysRevLett.93.207205
10.1088/1367-2630/16/9/093040
10.1103/PhysRevB.93.041102
10.1134/1.558661
10.1103/PhysRevA.45.4879
10.1103/PhysRevA.94.063632
10.1103/PhysRevB.48.10345
10.1166/jctn.2008.2564
10.1103/PhysRevE.71.036102
10.1103/PhysRevLett.69.2863
10.1137/0913071
10.1103/RevModPhys.68.13
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.cpc.2017.12.015
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2944
EndPage 91
ExternalDocumentID 10.1016/j.cpc.2017.12.015
10_1016_j_cpc_2017_12_015
S0010465517304204
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABNEU
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADECG
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LZ4
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCB
SDF
SDG
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSE
SSK
SSQ
SSV
SSZ
T5K
TN5
UPT
VH1
WUQ
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c340t-b19e649ddd4c3314c4f5d08bac8da72361c095a7ad86813e1d0f0978319ef2853
IEDL.DBID UNPAY
ISSN 0010-4655
1879-2944
IngestDate Wed Aug 20 00:07:03 EDT 2025
Thu Apr 24 23:12:06 EDT 2025
Wed Oct 01 05:20:18 EDT 2025
Fri Feb 23 02:47:20 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Tensor network method
Quantum simulator
Matrix Product State (MPS)
Density Matrix Renormalization Group (DMRG)
Entangled quantum dynamics
Many-body quantum system
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-b19e649ddd4c3314c4f5d08bac8da72361c095a7ad86813e1d0f0978319ef2853
ORCID 0000-0001-7658-3546
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.cpc.2017.12.015
PageCount 33
ParticipantIDs unpaywall_primary_10_1016_j_cpc_2017_12_015
crossref_citationtrail_10_1016_j_cpc_2017_12_015
crossref_primary_10_1016_j_cpc_2017_12_015
elsevier_sciencedirect_doi_10_1016_j_cpc_2017_12_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2018
2018-04-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationTitle Computer physics communications
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References GNU General Public License, last visited Feb 27, 2017.
Wall, Bekaroglu, Carr (b54) 2013; 88
White (b1) 1992; 69
Gong, Maghrebi, Hu, Wall, Foss-Feig, Gorshkov (b47) 2016; 93
Uni10
Zaletel, Mong, Karrasch, Moore, Pollmann (b68) 2015; 91
Sidje (b76) 1998; 24
Vidal (b20) 2008; 101
Schollwöck (b8) 2011; 326
Gong, Maghrebi, Hu, Foss-Feig, Richerme, Monroe, Gorshkov (b46) 2016; 93
I.P. McCulloch, Infinite size density matrix renormalization group, revisited, ArXiv e-prints
Dhar, Kinnunen, Törmä (b43) 2016; 94
Prokof’ev, Svistunov, Tupitsyn (b3) 1998; 87
This algorithm is not appropriate for capturing entanglement dynamics and strong correlations.
G. Kin-Lic Chan, A. Keselman, N. Nakatani, Z. Li, S.R. White, Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms, ArXiv e-prints
Snake DMRG, last visited Feb 27, 2017.
Bauer, Carr, Evertz, Feiguin, Freire, Fuchs, Gamper, Gukelberger, Gull, Guertler, Hehn, Igarashi, Isakov, Koop, Ma, Mates, Matsuo, Parcollet, Pawłowski, Picon, Pollet, Santos, Scarola, Schollwöck, Silva, Surer, Todo, Trebst, Troyer, Wall, Werner, Wessel (b81) 2011; 2011
.
Hubbard (b84) 1963; 276
L. Michel, I.P. McCulloch, Schur forms of matrix product operators in the infinite limit, ArXiv e-prints
Shi, Duan, Vidal (b14) 2006; 74
Runge, Gross (b23) 1984; 52
Sandvik, Kurkijärvi (b4) 1991; 43
Georges, Kotliar, Krauth, Rozenberg (b22) 1996; 68
Werner, Jaschke, Silvi, Kliesch, Calarco, Eisert, Montangero (b78) 2016; 116
M.F. Maghrebi, Z.-X. Gong, A.V. Gorshkov, Continuous symmetry breaking and a new universality class in 1D long-range interacting quantum systems, ArXiv e-prints
The request were made in the questions on fermionic systems and MPS simulations.
D.L. Vargas, L.D. Carr, Detecting quantum phase transitions via mutual information complex networks, ArXiv e-prints
Jordan, Wigner (b82) 1928; 47
Haegeman, Lubich, Oseledets, Vandereycken, Verstraete (b67) 2016; 94
P. Dargel, T. Köhler, MPS-DMRG Applet, last visited Feb 27, 2017.
Orús (b9) 2014; 349
Open Source Matrix Product States (OpenMPS), last visited Feb 27, 2017.
DMRG for quantum chemistry, last visited Feb 27, 2017.
White, Chernyshev (b87) 2007; 99
McCulloch (b65) 2007; 2007
A. Milsted, evoMPS, last visited Feb 27, 2017.
Algorithms and Libraries for Physics Simulations (ALPS), last visited Feb 27, 2017.
Urbanek, Soldán (b38) 2016; 199
White (b2) 1993; 48
García-Ripoll (b72) 2006; 8
Wouters, Poelmans, Ayers, Neck (b27) 2014; 185
B. Gardas, J. Dziarmaga, W.H. Zurek, Quench in the 1D Bose-Hubbard model, ArXiv e-prints
J.R. Garrison, R.V. Mishmash, Simple DMRG, last visited Feb 27, 2017.
Dalibard, Castin, Mølmer (b15) 1992; 68
D. Jaschke, L.D. Carr, Open source Matrix Product States: Exact diagonalization and other entanglement-accurate methods revisited in quantum systems, in preparation.
Zwolak, Vidal (b18) 2004; 93
J. García-Ripoll, Matrix product states, last visited Feb 27, 2017.
OpenTEBD: Open source time-evolving block decimation, last visited Feb 27, 2017.
Singh, Pfeifer, Vidal (b12) 2011; 83
Saad (b66) 1992; 29
Schachenmayer, Pikovski, Rey (b6) 2015; 5
Geršgorin (b91) 1931
DMRG++, last visited Feb 27, 2017.
Sornborger, Stewart (b69) 1999; 60
Verstraete, Murg, Cirac (b13) 2008; 57
Anisimovas, Račiūnas, Sträter, Eckardt, Spielman, Juzeliūnas (b41) 2016; 94
Expokit, last visited Feb 27, 2017.
Intelligent Tensor, last visited Feb 27, 2017.
Dolfi, Bauer, Keller, Kosenkov, Ewart, Kantian, Giamarchi, Troyer (b44) 2014; 185
Supplemental material for this manuscript via SourceForge forum, last visited Aug 14, 2017.
Koller, Wall, Mundinger, Rey (b49) 2016; 117
Golub, Van Loan (b64) 1996
Dum, Zoller, Ritsch (b16) 1992; 45
Weimer (b56) 2014; 16
Carr (b19) 2010
Wall, Carr (b53) 2012; 14
Russomanno, Torre (b51) 2016; 115
BLOCK
Verstraete, Porras, Cirac (b60) 2004; 93
Gallopoulos, Saad (b73) 1992; 13
Stoudenmire, White (b21) 2010; 12
Dutta, Bhattacharjee (b62) 2001; 64
Moler, Loan (b74) 2003; 45
Bellotti, Dehkharghani, Zinner (b42) 2017; 71
ITensor
Singh, Pfeifer, Vidal (b11) 2010; 82
Eisert, Cramer, Plenio (b59) 2010; 82
Wang, Corboz, Troyer (b85) 2014; 16
Vidal (b7) 2003; 91
Crosswhite, Bacon (b63) 2008; 78
Wall, Carr (b55) 2013; 15
MPS Toolkit, last visited Mar 7, 2017.
Universal Tensor Network Library, last visited Feb 27, 2017.
Ising (b61) 1925; 31
Mirsky (b90) 1975; 79
Schollwöck (b88) 2005; 77
Alvermann, Fehske (b70) 2011; 230
Qi (b92) 1984; 56
Polkovnikov (b5) 2010; 325
Nielsen, Chuang (b58) 2007
D. Jaschke, K. Maeda, J.D. Whalen, M.L. Wall, L.D. Carr, Critical phenomena and Kibble–Zurek scaling in the long-range quantum ising chain, ArXiv e-prints
Gobert, Kollath, Schollwöck, Schütz (b86) 2005; 71
Manmana, Muramatsu, Noack (b71) 2005; 789
Sachdev (b83) 2011
Verstraete, García-Ripoll, Cirac (b17) 2004; 93
De Chiara, Rizzi, Rossini, Montangero (b37) 2008; 5
Nielsen (10.1016/j.cpc.2017.12.015_b58) 2007
10.1016/j.cpc.2017.12.015_b50
10.1016/j.cpc.2017.12.015_b93
Orús (10.1016/j.cpc.2017.12.015_b9) 2014; 349
Georges (10.1016/j.cpc.2017.12.015_b22) 1996; 68
Wall (10.1016/j.cpc.2017.12.015_b54) 2013; 88
Hubbard (10.1016/j.cpc.2017.12.015_b84) 1963; 276
10.1016/j.cpc.2017.12.015_b57
Gobert (10.1016/j.cpc.2017.12.015_b86) 2005; 71
Prokof’ev (10.1016/j.cpc.2017.12.015_b3) 1998; 87
10.1016/j.cpc.2017.12.015_b52
10.1016/j.cpc.2017.12.015_b10
Gallopoulos (10.1016/j.cpc.2017.12.015_b73) 1992; 13
Gong (10.1016/j.cpc.2017.12.015_b47) 2016; 93
10.1016/j.cpc.2017.12.015_b48
Shi (10.1016/j.cpc.2017.12.015_b14) 2006; 74
Wouters (10.1016/j.cpc.2017.12.015_b27) 2014; 185
Moler (10.1016/j.cpc.2017.12.015_b74) 2003; 45
Schollwöck (10.1016/j.cpc.2017.12.015_b8) 2011; 326
Wall (10.1016/j.cpc.2017.12.015_b55) 2013; 15
Dum (10.1016/j.cpc.2017.12.015_b16) 1992; 45
McCulloch (10.1016/j.cpc.2017.12.015_b65) 2007; 2007
Dolfi (10.1016/j.cpc.2017.12.015_b44) 2014; 185
Saad (10.1016/j.cpc.2017.12.015_b66) 1992; 29
Schollwöck (10.1016/j.cpc.2017.12.015_b88) 2005; 77
Zaletel (10.1016/j.cpc.2017.12.015_b68) 2015; 91
Polkovnikov (10.1016/j.cpc.2017.12.015_b5) 2010; 325
White (10.1016/j.cpc.2017.12.015_b87) 2007; 99
Dutta (10.1016/j.cpc.2017.12.015_b62) 2001; 64
Werner (10.1016/j.cpc.2017.12.015_b78) 2016; 116
Mirsky (10.1016/j.cpc.2017.12.015_b90) 1975; 79
10.1016/j.cpc.2017.12.015_b25
10.1016/j.cpc.2017.12.015_b24
Ising (10.1016/j.cpc.2017.12.015_b61) 1925; 31
Wang (10.1016/j.cpc.2017.12.015_b85) 2014; 16
Weimer (10.1016/j.cpc.2017.12.015_b56) 2014; 16
Crosswhite (10.1016/j.cpc.2017.12.015_b63) 2008; 78
Jordan (10.1016/j.cpc.2017.12.015_b82) 1928; 47
Verstraete (10.1016/j.cpc.2017.12.015_b17) 2004; 93
Russomanno (10.1016/j.cpc.2017.12.015_b51) 2016; 115
Gong (10.1016/j.cpc.2017.12.015_b46) 2016; 93
Alvermann (10.1016/j.cpc.2017.12.015_b70) 2011; 230
Wall (10.1016/j.cpc.2017.12.015_b53) 2012; 14
Dhar (10.1016/j.cpc.2017.12.015_b43) 2016; 94
Schachenmayer (10.1016/j.cpc.2017.12.015_b6) 2015; 5
Urbanek (10.1016/j.cpc.2017.12.015_b38) 2016; 199
Anisimovas (10.1016/j.cpc.2017.12.015_b41) 2016; 94
10.1016/j.cpc.2017.12.015_b34
García-Ripoll (10.1016/j.cpc.2017.12.015_b72) 2006; 8
10.1016/j.cpc.2017.12.015_b33
10.1016/j.cpc.2017.12.015_b77
10.1016/j.cpc.2017.12.015_b36
Koller (10.1016/j.cpc.2017.12.015_b49) 2016; 117
Dalibard (10.1016/j.cpc.2017.12.015_b15) 1992; 68
10.1016/j.cpc.2017.12.015_b35
10.1016/j.cpc.2017.12.015_b79
Vidal (10.1016/j.cpc.2017.12.015_b7) 2003; 91
10.1016/j.cpc.2017.12.015_b30
Singh (10.1016/j.cpc.2017.12.015_b11) 2010; 82
De Chiara (10.1016/j.cpc.2017.12.015_b37) 2008; 5
10.1016/j.cpc.2017.12.015_b32
Bauer (10.1016/j.cpc.2017.12.015_b81) 2011; 2011
10.1016/j.cpc.2017.12.015_b31
10.1016/j.cpc.2017.12.015_b75
Sandvik (10.1016/j.cpc.2017.12.015_b4) 1991; 43
Verstraete (10.1016/j.cpc.2017.12.015_b60) 2004; 93
10.1016/j.cpc.2017.12.015_b26
Carr (10.1016/j.cpc.2017.12.015_b19) 2010
10.1016/j.cpc.2017.12.015_b29
10.1016/j.cpc.2017.12.015_b28
Golub (10.1016/j.cpc.2017.12.015_b64) 1996
Eisert (10.1016/j.cpc.2017.12.015_b59) 2010; 82
Sachdev (10.1016/j.cpc.2017.12.015_b83) 2011
Vidal (10.1016/j.cpc.2017.12.015_b20) 2008; 101
Geršgorin (10.1016/j.cpc.2017.12.015_b91) 1931
10.1016/j.cpc.2017.12.015_b80
Qi (10.1016/j.cpc.2017.12.015_b92) 1984; 56
Sidje (10.1016/j.cpc.2017.12.015_b76) 1998; 24
Singh (10.1016/j.cpc.2017.12.015_b12) 2011; 83
Runge (10.1016/j.cpc.2017.12.015_b23) 1984; 52
Bellotti (10.1016/j.cpc.2017.12.015_b42) 2017; 71
10.1016/j.cpc.2017.12.015_b45
10.1016/j.cpc.2017.12.015_b89
Haegeman (10.1016/j.cpc.2017.12.015_b67) 2016; 94
10.1016/j.cpc.2017.12.015_b40
Zwolak (10.1016/j.cpc.2017.12.015_b18) 2004; 93
Verstraete (10.1016/j.cpc.2017.12.015_b13) 2008; 57
10.1016/j.cpc.2017.12.015_b39
Manmana (10.1016/j.cpc.2017.12.015_b71) 2005; 789
White (10.1016/j.cpc.2017.12.015_b2) 1993; 48
Sornborger (10.1016/j.cpc.2017.12.015_b69) 1999; 60
White (10.1016/j.cpc.2017.12.015_b1) 1992; 69
Stoudenmire (10.1016/j.cpc.2017.12.015_b21) 2010; 12
References_xml – reference: A. Milsted, evoMPS, last visited Feb 27, 2017.
– volume: 325
  start-page: 1790
  year: 2010
  end-page: 1852
  ident: b5
  publication-title: Ann. Physics
– volume: 57
  start-page: 143
  year: 2008
  end-page: 224
  ident: b13
  publication-title: Adv. Phys.
– volume: 60
  start-page: 1956
  year: 1999
  end-page: 1965
  ident: b69
  publication-title: Phys. Rev. A
– volume: 64
  start-page: 184106
  year: 2001
  ident: b62
  publication-title: Phys. Rev. B
– volume: 78
  start-page: 012356
  year: 2008
  ident: b63
  publication-title: Phys. Rev. A
– reference: J. García-Ripoll, Matrix product states, last visited Feb 27, 2017.
– reference: ITensor
– volume: 79
  start-page: 303
  year: 1975
  end-page: 306
  ident: b90
  publication-title: Monatsh. Math.
– volume: 93
  start-page: 227205
  year: 2004
  ident: b60
  publication-title: Phys. Rev. Lett.
– volume: 45
  start-page: 4879
  year: 1992
  end-page: 4887
  ident: b16
  publication-title: Phys. Rev. A
– volume: 185
  start-page: 1501
  year: 2014
  end-page: 1514
  ident: b27
  publication-title: Comput. Phys. Comm.
– reference: D. Jaschke, L.D. Carr, Open source Matrix Product States: Exact diagonalization and other entanglement-accurate methods revisited in quantum systems, in preparation.
– reference: D. Jaschke, K. Maeda, J.D. Whalen, M.L. Wall, L.D. Carr, Critical phenomena and Kibble–Zurek scaling in the long-range quantum ising chain, ArXiv e-prints
– volume: 116
  start-page: 237201
  year: 2016
  ident: b78
  publication-title: Phys. Rev. Lett.
– reference: This algorithm is not appropriate for capturing entanglement dynamics and strong correlations.
– reference: GNU General Public License, last visited Feb 27, 2017.
– volume: 48
  start-page: 10345
  year: 1993
  end-page: 10356
  ident: b2
  publication-title: Phys. Rev. B
– volume: 13
  start-page: 1236
  year: 1992
  end-page: 1264
  ident: b73
  publication-title: SIAM J. Sci. Stat. Comput.
– volume: 91
  start-page: 147902
  year: 2003
  ident: b7
  publication-title: Phys. Rev. Lett.
– start-page: 749
  year: 1931
  end-page: 754
  ident: b91
  publication-title: Bull. Acad. Sci. URSS Classe des sciences mathématiques et naturelles
– volume: 74
  start-page: 022320
  year: 2006
  ident: b14
  publication-title: Phys. Rev. A
– reference: G. Kin-Lic Chan, A. Keselman, N. Nakatani, Z. Li, S.R. White, Matrix product operators, matrix product states, and ab initio density matrix renormalization group algorithms, ArXiv e-prints
– volume: 115
  start-page: 30006
  year: 2016
  ident: b51
  publication-title: Europhys. Lett.
– volume: 77
  start-page: 259
  year: 2005
  end-page: 315
  ident: b88
  publication-title: Rev. Modern Phys.
– reference: BLOCK
– volume: 29
  start-page: 209
  year: 1992
  end-page: 228
  ident: b66
  publication-title: SIAM J. Numer. Anal.
– reference: Algorithms and Libraries for Physics Simulations (ALPS), last visited Feb 27, 2017.
– year: 1996
  ident: b64
  publication-title: Matrix Computations
– volume: 349
  start-page: 117
  year: 2014
  end-page: 158
  ident: b9
  publication-title: Ann. Physics
– volume: 5
  start-page: 1277
  year: 2008
  end-page: 1288
  ident: b37
  publication-title: J. Comput. Theoret. Nanosci.
– reference: I.P. McCulloch, Infinite size density matrix renormalization group, revisited, ArXiv e-prints
– volume: 68
  start-page: 580
  year: 1992
  end-page: 583
  ident: b15
  publication-title: Phys. Rev. Lett.
– volume: 68
  start-page: 13
  year: 1996
  end-page: 125
  ident: b22
  publication-title: Rev. Modern Phys.
– volume: 93
  start-page: 205115
  year: 2016
  ident: b46
  publication-title: Phys. Rev. B
– volume: 52
  start-page: 997
  year: 1984
  end-page: 1000
  ident: b23
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 125015
  year: 2012
  ident: b53
  publication-title: New J. Phys.
– volume: 69
  start-page: 2863
  year: 1992
  end-page: 2866
  ident: b1
  publication-title: Phys. Rev. Lett.
– volume: 99
  start-page: 127004
  year: 2007
  ident: b87
  publication-title: Phys. Rev. Lett.
– volume: 24
  start-page: 130
  year: 1998
  end-page: 156
  ident: b76
  publication-title: ACM Trans. Math. Software
– year: 2007
  ident: b58
  publication-title: Quantum Computation and Quantum Information
– reference: P. Dargel, T. Köhler, MPS-DMRG Applet, last visited Feb 27, 2017.
– volume: 16
  start-page: 093040
  year: 2014
  ident: b56
  publication-title: New J. Phys.
– volume: 45
  start-page: 3
  year: 2003
  end-page: 49
  ident: b74
  publication-title: SIAM Rev.
– volume: 87
  start-page: 310
  year: 1998
  end-page: 321
  ident: b3
  publication-title: J. Exp. Theor. Phys.
– volume: 16
  start-page: 103008
  year: 2014
  ident: b85
  publication-title: New J. Phys.
– reference: L. Michel, I.P. McCulloch, Schur forms of matrix product operators in the infinite limit, ArXiv e-prints
– reference: Open Source Matrix Product States (OpenMPS), last visited Feb 27, 2017.
– volume: 93
  start-page: 041102
  year: 2016
  ident: b47
  publication-title: Phys. Rev. B
– reference: Uni10
– reference: Intelligent Tensor, last visited Feb 27, 2017.
– volume: 101
  start-page: 110501
  year: 2008
  ident: b20
  publication-title: Phys. Rev. Lett.
– year: 2011
  ident: b83
  publication-title: Quantum Phase Transitions
– volume: 94
  start-page: 075116
  year: 2016
  ident: b43
  publication-title: Phys. Rev. B
– reference: D.L. Vargas, L.D. Carr, Detecting quantum phase transitions via mutual information complex networks, ArXiv e-prints
– volume: 5
  start-page: 011022
  year: 2015
  ident: b6
  publication-title: Phys. Rev. X
– reference: J.R. Garrison, R.V. Mishmash, Simple DMRG, last visited Feb 27, 2017.
– reference: M.F. Maghrebi, Z.-X. Gong, A.V. Gorshkov, Continuous symmetry breaking and a new universality class in 1D long-range interacting quantum systems, ArXiv e-prints
– volume: 185
  start-page: 3430
  year: 2014
  end-page: 3440
  ident: b44
  publication-title: Comput. Phys. Comm.
– reference: DMRG++, last visited Feb 27, 2017.
– volume: 15
  start-page: 123005
  year: 2013
  ident: b55
  publication-title: New J. Phys.
– volume: 2007
  start-page: P10014
  year: 2007
  ident: b65
  publication-title: J. Stat. Mech. Theory Exp.
– reference: Expokit, last visited Feb 27, 2017.
– volume: 8
  start-page: 305
  year: 2006
  ident: b72
  publication-title: New J. Phys.
– volume: 93
  start-page: 207205
  year: 2004
  ident: b18
  publication-title: Phys. Rev. Lett.
– reference: OpenTEBD: Open source time-evolving block decimation, last visited Feb 27, 2017.
– volume: 199
  start-page: 170
  year: 2016
  end-page: 177
  ident: b38
  publication-title: Comput. Phys. Comm.
– volume: 91
  start-page: 165112
  year: 2015
  ident: b68
  publication-title: Phys. Rev. B
– volume: 94
  start-page: 165116
  year: 2016
  ident: b67
  publication-title: Phys. Rev. B
– reference: The request were made in the questions on fermionic systems and MPS simulations.
– volume: 276
  start-page: 238
  year: 1963
  end-page: 257
  ident: b84
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– reference: Universal Tensor Network Library, last visited Feb 27, 2017.
– volume: 12
  start-page: 055026
  year: 2010
  ident: b21
  publication-title: New J. Phys.
– reference: B. Gardas, J. Dziarmaga, W.H. Zurek, Quench in the 1D Bose-Hubbard model, ArXiv e-prints
– volume: 2011
  year: 2011
  ident: b81
  publication-title: J. Stat. Mech. Theory Exp.
– reference: Supplemental material for this manuscript via SourceForge forum, last visited Aug 14, 2017.
– volume: 71
  start-page: 37
  year: 2017
  ident: b42
  publication-title: Eur. Phys. J. D
– volume: 230
  start-page: 5930
  year: 2011
  end-page: 5956
  ident: b70
  publication-title: J. Comput. Phys.
– volume: 82
  start-page: 277
  year: 2010
  end-page: 306
  ident: b59
  publication-title: Rev. Modern Phys.
– volume: 56
  start-page: 105
  year: 1984
  end-page: 119
  ident: b92
  publication-title: Linear Algebra Appl.
– reference: DMRG for quantum chemistry, last visited Feb 27, 2017.
– volume: 31
  start-page: 253
  year: 1925
  end-page: 258
  ident: b61
  publication-title: Z. Phys.
– volume: 83
  start-page: 115125
  year: 2011
  ident: b12
  publication-title: Phys. Rev. B
– volume: 71
  start-page: 036102
  year: 2005
  ident: b86
  publication-title: Phys. Rev. E
– volume: 117
  start-page: 195302
  year: 2016
  ident: b49
  publication-title: Phys. Rev. Lett.
– volume: 93
  start-page: 207204
  year: 2004
  ident: b17
  publication-title: Phys. Rev. Lett.
– reference: Snake DMRG, last visited Feb 27, 2017.
– volume: 789
  start-page: 269
  year: 2005
  end-page: 278
  ident: b71
  publication-title: AIP Conf. Proc.
– volume: 47
  start-page: 631
  year: 1928
  end-page: 651
  ident: b82
  publication-title: Z. Phys.
– reference: MPS Toolkit, last visited Mar 7, 2017.
– reference: .
– volume: 326
  start-page: 96
  year: 2011
  end-page: 192
  ident: b8
  publication-title: Ann. Physics
– volume: 94
  start-page: 063632
  year: 2016
  ident: b41
  publication-title: Phys. Rev. A
– volume: 43
  start-page: 5950
  year: 1991
  end-page: 5961
  ident: b4
  publication-title: Phys. Rev. B
– volume: 82
  start-page: 050301
  year: 2010
  ident: b11
  publication-title: Phys. Rev. A
– year: 2010
  ident: b19
  publication-title: Understanding Quantum Phase Transitions, Condensed Matter Physics
– volume: 88
  start-page: 023605
  year: 2013
  ident: b54
  publication-title: Phys. Rev. A
– volume: 16
  start-page: 103008
  issue: 10
  year: 2014
  ident: 10.1016/j.cpc.2017.12.015_b85
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/10/103008
– volume: 326
  start-page: 96
  issue: 1
  year: 2011
  ident: 10.1016/j.cpc.2017.12.015_b8
  publication-title: Ann. Physics
  doi: 10.1016/j.aop.2010.09.012
– volume: 99
  start-page: 127004
  year: 2007
  ident: 10.1016/j.cpc.2017.12.015_b87
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.127004
– volume: 116
  start-page: 237201
  year: 2016
  ident: 10.1016/j.cpc.2017.12.015_b78
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.237201
– volume: 2011
  issue: 05
  year: 2011
  ident: 10.1016/j.cpc.2017.12.015_b81
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2011/05/P05001
– volume: 325
  start-page: 1790
  issue: 8
  year: 2010
  ident: 10.1016/j.cpc.2017.12.015_b5
  publication-title: Ann. Physics
  doi: 10.1016/j.aop.2010.02.006
– ident: 10.1016/j.cpc.2017.12.015_b24
– ident: 10.1016/j.cpc.2017.12.015_b89
– volume: 31
  start-page: 253
  issue: 1
  year: 1925
  ident: 10.1016/j.cpc.2017.12.015_b61
  publication-title: Z. Phys.
  doi: 10.1007/BF02980577
– ident: 10.1016/j.cpc.2017.12.015_b28
– ident: 10.1016/j.cpc.2017.12.015_b79
– ident: 10.1016/j.cpc.2017.12.015_b33
– volume: 93
  start-page: 205115
  year: 2016
  ident: 10.1016/j.cpc.2017.12.015_b46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.205115
– volume: 79
  start-page: 303
  issue: 4
  year: 1975
  ident: 10.1016/j.cpc.2017.12.015_b90
  publication-title: Monatsh. Math.
  doi: 10.1007/BF01647331
– ident: 10.1016/j.cpc.2017.12.015_b10
– volume: 349
  start-page: 117
  year: 2014
  ident: 10.1016/j.cpc.2017.12.015_b9
  publication-title: Ann. Physics
  doi: 10.1016/j.aop.2014.06.013
– ident: 10.1016/j.cpc.2017.12.015_b75
– volume: 24
  start-page: 130
  issue: 1
  year: 1998
  ident: 10.1016/j.cpc.2017.12.015_b76
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/285861.285868
– volume: 93
  start-page: 207204
  year: 2004
  ident: 10.1016/j.cpc.2017.12.015_b17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.207204
– ident: 10.1016/j.cpc.2017.12.015_b52
– volume: 88
  start-page: 023605
  year: 2013
  ident: 10.1016/j.cpc.2017.12.015_b54
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.88.023605
– volume: 57
  start-page: 143
  issue: 2
  year: 2008
  ident: 10.1016/j.cpc.2017.12.015_b13
  publication-title: Adv. Phys.
  doi: 10.1080/14789940801912366
– volume: 12
  start-page: 055026
  issue: 5
  year: 2010
  ident: 10.1016/j.cpc.2017.12.015_b21
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/12/5/055026
– volume: 101
  start-page: 110501
  year: 2008
  ident: 10.1016/j.cpc.2017.12.015_b20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.110501
– volume: 230
  start-page: 5930
  issue: 15
  year: 2011
  ident: 10.1016/j.cpc.2017.12.015_b70
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.04.006
– volume: 43
  start-page: 5950
  year: 1991
  ident: 10.1016/j.cpc.2017.12.015_b4
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.43.5950
– volume: 56
  start-page: 105
  year: 1984
  ident: 10.1016/j.cpc.2017.12.015_b92
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(84)90117-4
– volume: 52
  start-page: 997
  year: 1984
  ident: 10.1016/j.cpc.2017.12.015_b23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.52.997
– ident: 10.1016/j.cpc.2017.12.015_b25
– volume: 91
  start-page: 165112
  year: 2015
  ident: 10.1016/j.cpc.2017.12.015_b68
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.165112
– ident: 10.1016/j.cpc.2017.12.015_b29
– year: 2011
  ident: 10.1016/j.cpc.2017.12.015_b83
– volume: 117
  start-page: 195302
  year: 2016
  ident: 10.1016/j.cpc.2017.12.015_b49
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.195302
– volume: 185
  start-page: 1501
  issue: 6
  year: 2014
  ident: 10.1016/j.cpc.2017.12.015_b27
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2014.01.019
– year: 2007
  ident: 10.1016/j.cpc.2017.12.015_b58
– ident: 10.1016/j.cpc.2017.12.015_b32
– volume: 789
  start-page: 269
  issue: 1
  year: 2005
  ident: 10.1016/j.cpc.2017.12.015_b71
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.2080353
– volume: 45
  start-page: 3
  issue: 1
  year: 2003
  ident: 10.1016/j.cpc.2017.12.015_b74
  publication-title: SIAM Rev.
  doi: 10.1137/S00361445024180
– start-page: 749
  year: 1931
  ident: 10.1016/j.cpc.2017.12.015_b91
  publication-title: Bull. Acad. Sci. URSS Classe des sciences mathématiques et naturelles
– ident: 10.1016/j.cpc.2017.12.015_b36
– volume: 29
  start-page: 209
  issue: 1
  year: 1992
  ident: 10.1016/j.cpc.2017.12.015_b66
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0729014
– volume: 77
  start-page: 259
  year: 2005
  ident: 10.1016/j.cpc.2017.12.015_b88
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.77.259
– volume: 83
  start-page: 115125
  year: 2011
  ident: 10.1016/j.cpc.2017.12.015_b12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.83.115125
– volume: 199
  start-page: 170
  year: 2016
  ident: 10.1016/j.cpc.2017.12.015_b38
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2015.10.016
– ident: 10.1016/j.cpc.2017.12.015_b57
– volume: 8
  start-page: 305
  issue: 12
  year: 2006
  ident: 10.1016/j.cpc.2017.12.015_b72
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/8/12/305
– ident: 10.1016/j.cpc.2017.12.015_b45
– ident: 10.1016/j.cpc.2017.12.015_b93
– volume: 115
  start-page: 30006
  issue: 3
  year: 2016
  ident: 10.1016/j.cpc.2017.12.015_b51
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/115/30006
– year: 1996
  ident: 10.1016/j.cpc.2017.12.015_b64
– volume: 74
  start-page: 022320
  year: 2006
  ident: 10.1016/j.cpc.2017.12.015_b14
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.74.022320
– volume: 93
  start-page: 227205
  year: 2004
  ident: 10.1016/j.cpc.2017.12.015_b60
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.227205
– ident: 10.1016/j.cpc.2017.12.015_b26
– volume: 91
  start-page: 147902
  year: 2003
  ident: 10.1016/j.cpc.2017.12.015_b7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.147902
– ident: 10.1016/j.cpc.2017.12.015_b80
– volume: 64
  start-page: 184106
  year: 2001
  ident: 10.1016/j.cpc.2017.12.015_b62
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.184106
– ident: 10.1016/j.cpc.2017.12.015_b31
– volume: 71
  start-page: 37
  issue: 2
  year: 2017
  ident: 10.1016/j.cpc.2017.12.015_b42
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2017-70650-8
– volume: 60
  start-page: 1956
  year: 1999
  ident: 10.1016/j.cpc.2017.12.015_b69
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.60.1956
– volume: 82
  start-page: 277
  year: 2010
  ident: 10.1016/j.cpc.2017.12.015_b59
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.82.277
– volume: 47
  start-page: 631
  issue: 9
  year: 1928
  ident: 10.1016/j.cpc.2017.12.015_b82
  publication-title: Z. Phys.
  doi: 10.1007/BF01331938
– volume: 276
  start-page: 238
  issue: 1365
  year: 1963
  ident: 10.1016/j.cpc.2017.12.015_b84
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– volume: 78
  start-page: 012356
  year: 2008
  ident: 10.1016/j.cpc.2017.12.015_b63
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.78.012356
– volume: 68
  start-page: 580
  year: 1992
  ident: 10.1016/j.cpc.2017.12.015_b15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.68.580
– ident: 10.1016/j.cpc.2017.12.015_b50
– ident: 10.1016/j.cpc.2017.12.015_b35
– ident: 10.1016/j.cpc.2017.12.015_b77
– ident: 10.1016/j.cpc.2017.12.015_b39
– volume: 15
  start-page: 123005
  issue: 12
  year: 2013
  ident: 10.1016/j.cpc.2017.12.015_b55
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/15/12/123005
– volume: 2007
  start-page: P10014
  issue: 10
  year: 2007
  ident: 10.1016/j.cpc.2017.12.015_b65
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2007/10/P10014
– volume: 94
  start-page: 165116
  year: 2016
  ident: 10.1016/j.cpc.2017.12.015_b67
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.165116
– volume: 5
  start-page: 011022
  year: 2015
  ident: 10.1016/j.cpc.2017.12.015_b6
  publication-title: Phys. Rev. X
– volume: 94
  start-page: 075116
  year: 2016
  ident: 10.1016/j.cpc.2017.12.015_b43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.075116
– volume: 14
  start-page: 125015
  issue: 12
  year: 2012
  ident: 10.1016/j.cpc.2017.12.015_b53
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/12/125015
– ident: 10.1016/j.cpc.2017.12.015_b40
– volume: 82
  start-page: 050301
  year: 2010
  ident: 10.1016/j.cpc.2017.12.015_b11
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.82.050301
– year: 2010
  ident: 10.1016/j.cpc.2017.12.015_b19
– volume: 185
  start-page: 3430
  issue: 12
  year: 2014
  ident: 10.1016/j.cpc.2017.12.015_b44
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2014.08.019
– ident: 10.1016/j.cpc.2017.12.015_b48
– volume: 93
  start-page: 207205
  year: 2004
  ident: 10.1016/j.cpc.2017.12.015_b18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.207205
– ident: 10.1016/j.cpc.2017.12.015_b34
– volume: 16
  start-page: 093040
  issue: 9
  year: 2014
  ident: 10.1016/j.cpc.2017.12.015_b56
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/16/9/093040
– volume: 93
  start-page: 041102
  year: 2016
  ident: 10.1016/j.cpc.2017.12.015_b47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.041102
– volume: 87
  start-page: 310
  issue: 2
  year: 1998
  ident: 10.1016/j.cpc.2017.12.015_b3
  publication-title: J. Exp. Theor. Phys.
  doi: 10.1134/1.558661
– ident: 10.1016/j.cpc.2017.12.015_b30
– volume: 45
  start-page: 4879
  year: 1992
  ident: 10.1016/j.cpc.2017.12.015_b16
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.45.4879
– volume: 94
  start-page: 063632
  year: 2016
  ident: 10.1016/j.cpc.2017.12.015_b41
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.94.063632
– volume: 48
  start-page: 10345
  year: 1993
  ident: 10.1016/j.cpc.2017.12.015_b2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.10345
– volume: 5
  start-page: 1277
  issue: 7
  year: 2008
  ident: 10.1016/j.cpc.2017.12.015_b37
  publication-title: J. Comput. Theoret. Nanosci.
  doi: 10.1166/jctn.2008.2564
– volume: 71
  start-page: 036102
  year: 2005
  ident: 10.1016/j.cpc.2017.12.015_b86
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.036102
– volume: 69
  start-page: 2863
  year: 1992
  ident: 10.1016/j.cpc.2017.12.015_b1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.2863
– volume: 13
  start-page: 1236
  issue: 5
  year: 1992
  ident: 10.1016/j.cpc.2017.12.015_b73
  publication-title: SIAM J. Sci. Stat. Comput.
  doi: 10.1137/0913071
– volume: 68
  start-page: 13
  year: 1996
  ident: 10.1016/j.cpc.2017.12.015_b22
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.68.13
SSID ssj0007793
Score 2.5438316
Snippet Numerical simulations are a powerful tool to study quantum systems beyond exactly solvable systems lacking an analytic expression. For one-dimensional...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 59
SubjectTerms Density Matrix Renormalization Group (DMRG)
Entangled quantum dynamics
Many-body quantum system
Matrix Product State (MPS)
Quantum simulator
Tensor network method
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4iiF7EJ76ZgyelmrbpputNRFkExYMLeytpkkplt1vdlnUv_nZn-lgVRMFjS0LKJJmZTr58H2PHnlRceonrKKqDCc_ilkoS7lgTBCrmidSVSsTdfafXF7eDYLDArtq7MASrbHx_7dMrb928OW-seZ6nKd3xpfNJjPiSfskrTlAhJKkYnL1_wjykbIh30d9Q6_Zks8J46ZxYDF1ZVQRJGffn2LRcZrmaTdVw-CX23Kyx1SZphMv6u9bZgs022FIF3tSTTZYTKgTqMjzcEef-GzzUTK5QJ5MXQE0wSsFUzSZQjGGSjki4ywJhx7OnoTUwQr_gxGMzg5cS7V2OoKZ5nkCawTizYEgJgKprW6x_c_141XMaJQVH-4IXTux2bUd0jTFC-74rtEgCw8NY6dAoSfwrGlMtJZUJO6HrW9fwpLrggf0SDyP6NlvMcKAdBjoMutzHnFwHnrBxN-aYkIhYKJ5oIay7y3hrw0g3NOOkdjGMWjzZc4Rmj8jsketFaPZddjLvktccG781Fu3ERN8WSoQx4Ldup_NJ_HuQvf8Nss9W8CmsgT0HbLF4Le0h5ixFfFQtyg8GnukQ
  priority: 102
  providerName: Elsevier
Title Open source Matrix Product States: Opening ways to simulate entangled many-body quantum systems in one dimension
URI https://dx.doi.org/10.1016/j.cpc.2017.12.015
https://doi.org/10.1016/j.cpc.2017.12.015
UnpaywallVersion publishedVersion
Volume 225
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 1879-2944
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 1879-2944
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 1879-2944
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 1879-2944
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007793
  issn: 1879-2944
  databaseCode: AKRWK
  dateStart: 19690701
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFLZYK7TT2AZoTKx6h52YUtmJ0yS7VWhVt4oKISrgFPlXEKxNuyVRVw787fjFKdrQBuyUy7Md-Tl-X54_f4-Qj34kaORnzBOYB-O-sZ9UllHP6DAUkmaRqqtEHI17wwn_dh6eN2LReBfmj_P7moelFqg0yKI6a4fXydu90MLuFmlPxsf9C7fTUg91wPDnKo4Sz084X59g_q2Pf8Wgl1W-EKulmE5_izGDLcfOKmppQqSWfO9WpeyqmwfCjc96_dfkVYM0oe-WxhuyYfK3ZLNmfKpimyyQSgIudw9HKNT_C46d_Cs4BPoZ0MSGNliKVQHlHIqrGVb7MoCE8_xyajTM7GbiyblewY_KOqmagdOGLuAqh3luQGP5AEzJ7ZDJ4Mvp4dBryi94KuC09CRLTI8nWmuugoBxxbNQ01gKFWsRoWiLsvhMRELHvZgFhmma1bdCbLvMtzBgl7RyO9A7AioOExpYIK9CnxuZSGpRDJdc0ExxbtgeoWuHpKrRJscSGdN0TUK7Tu1EpjiRKfNTO5F75OC-ycIJczxmzNdeThtk4RBDah32WLNP9yvi6UHe_5f1PmmVPyvzwUKaUnbIi-4t65B2_-toOMbn6ORs1GmW-B3kCfU4
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iiF7EJ76dgyelmrbpputNRFkfKx4UvIU0SWVlt1vdXXQv_nZn-vABouC1nTBlks5MJl--YWw3kJrLIPU9TXUwETj8pdKUe85GkU54Kk3RJaJ93WjdiYv76H6CndR3YQhWWfn-0qcX3rp6clhZ8zDvdOiOL51PYsSXtCUnTtApEQWSdmAHb584Dykr5l10OCReH20WIC-TE42hL4uSILXG_Tk4zYyyXI9fdLf7JficzbO5KmuE4_LDFtiEyxbZdIHeNIMllhMsBMo6PLSJdP8VbkoqVyizySMgEQxT8KLHAxj2YdDpUecuBwQezx66zkIPHYOX9O0YnkZo8FEPSp7nAXQy6GcOLLUCoPLaMrs7O709aXlVKwXPhIIPvcRvuoZoWmuFCUNfGJFGlseJNrHVkghYDOZaWmobN2I_dL7laXHDA8elAYb0FTaZoaJVBiaOmjzEpNxEgXBJM-GYkYhEaJ4aIZy_xnhtQ2UqnnFqd9FVNaDsUaHZFZld-YFCs6-xvY8heUmy8ZuwqCdGfVspCoPAb8P2PybxbyXr_1Oyw2Zat-0rdXV-fbnBZvFNXKJ8Ntnk8HnktjCBGSbbxQJ9B9AW7DM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kRTz5Fisqc_CkRDbJpkm8FbGIYPFgQU9hX5Fqm1aTUOuvdyebiorP-242zEx2vsx--w0hB17IaeilrsOxDsY8bT6pNKWOVkHABU1DWXWJuOy1z_vs4ia4qcWi8S7Mh_P7ioclJ6g06IZV1Q6vkzfbgYHdDdLs9646t3anpQ7qgOHPVRTGjhczNj_B_OoZ3-WgpTKb8NmUD4fvckx3xbKz8kqaEKklD8dlIY7lyyfhxj-9_ipZrpEmdGxorJEFna2TxYrxKfMNMkEqCdjaPVyiUP8zXFn5V7AI9ARwiEltMOWzHIox5IMRdvvSgITz7G6oFYzMZuKIsZrBY2mcVI7AakPnMMhgnGlQ2D4AS3KbpN89uz49d-r2C470GS0c4ca6zWKlFJO-7zLJ0kDRSHAZKR6iaIs0-IyHXEXtyPW1q2ha3Qox81LPwIAt0sjMQtsEZBTE1DdAXgYe0yIW1KAYJhinqWRMuy1C5w5JZK1Nji0yhsmchHafGEMmaMjE9RJjyBY5fJsyscIcPw1mcy8nNbKwiCExDvtp2tFbRPy-yM6_Ru-SRvFU6j0DaQqxXwfzKwZU8Qk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Open+source+Matrix+Product+States%3A+Opening+ways+to+simulate+entangled+many-body+quantum+systems+in+one+dimension&rft.jtitle=Computer+physics+communications&rft.au=Jaschke%2C+Daniel&rft.au=Wall%2C+Michael+L.&rft.au=Carr%2C+Lincoln+D.&rft.date=2018-04-01&rft.issn=0010-4655&rft.volume=225&rft.spage=59&rft.epage=91&rft_id=info:doi/10.1016%2Fj.cpc.2017.12.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cpc_2017_12_015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4655&client=summon