Predictive modelling and optimization of HVAC systems using neural network and particle swarm optimization algorithm
The concept of maintaining indoor environmental quality comprising building indoor temperature, relative humidity, CO2, and volatile organic compound (VOC) level poses new challenges to the optimal operation of heating, ventilation and air-conditioning (HVAC) systems. While existing case studies dem...
        Saved in:
      
    
          | Published in | Building and environment Vol. 209; p. 108681 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Elsevier Ltd
    
        01.02.2022
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0360-1323 1873-684X  | 
| DOI | 10.1016/j.buildenv.2021.108681 | 
Cover
| Abstract | The concept of maintaining indoor environmental quality comprising building indoor temperature, relative humidity, CO2, and volatile organic compound (VOC) level poses new challenges to the optimal operation of heating, ventilation and air-conditioning (HVAC) systems. While existing case studies demonstrate the energy-saving potentials for efficient HVAC operation, there is a lack of studies quantifying energy savings whilst considering indoor environmental conditions. This study proposes a state-of-the-art modelling and optimization approach to minimize the energy consumption of the HVAC systems without compromising indoor environmental quality. While the primary objective of ensuring optimal operation of HVAC systems is to minimize energy consumption, controlling indoor environmental parameters to remain within the acceptable range imposes excess energy use. These two conflicting objectives constitute a multi-variable constrained optimization problem that has been solved using a particle swarm optimization (PSO) algorithm. Real-time predictive models are developed for the individual indoor environmental parameters and HVAC energy consumption using a Nonlinear Autoregressive Exogenous (NARX) neural network (NN). During model development, models' performance is optimized in terms of complexity, predictive accuracy, and ease of application to a real system. The proposed predictive models are then optimized to provide an optimal control setting for the HVAC systems considering seasonal variations. The results indicate that it is possible to reduce 7.8% of total energy, without negotiating indoor environmental conditions, e.g., air temperature 19.60–28.20°C and relative humidity 30–65% as per ASHRAE Standard 55, and CO2 ≤ 800 ppm and VOC ≤1000 ppm as per AS 1668.2.
•A state-of-the-art modelling and optimization approach is proposed.•Real-time predictive models are developed for indoor environmental parameters.•The optimization algorithm provides an optimal control setting for the AHUs.•The results indicate 7.8% energy saving of the HVAC systems.•The proposed method offers energy-saving without negotiating the indoor condition. | 
    
|---|---|
| AbstractList | The concept of maintaining indoor environmental quality comprising building indoor temperature, relative humidity, CO2, and volatile organic compound (VOC) level poses new challenges to the optimal operation of heating, ventilation and air-conditioning (HVAC) systems. While existing case studies demonstrate the energy-saving potentials for efficient HVAC operation, there is a lack of studies quantifying energy savings whilst considering indoor environmental conditions. This study proposes a state-of-the-art modelling and optimization approach to minimize the energy consumption of the HVAC systems without compromising indoor environmental quality. While the primary objective of ensuring optimal operation of HVAC systems is to minimize energy consumption, controlling indoor environmental parameters to remain within the acceptable range imposes excess energy use. These two conflicting objectives constitute a multi-variable constrained optimization problem that has been solved using a particle swarm optimization (PSO) algorithm. Real-time predictive models are developed for the individual indoor environmental parameters and HVAC energy consumption using a Nonlinear Autoregressive Exogenous (NARX) neural network (NN). During model development, models' performance is optimized in terms of complexity, predictive accuracy, and ease of application to a real system. The proposed predictive models are then optimized to provide an optimal control setting for the HVAC systems considering seasonal variations. The results indicate that it is possible to reduce 7.8% of total energy, without negotiating indoor environmental conditions, e.g., air temperature 19.60–28.20°C and relative humidity 30–65% as per ASHRAE Standard 55, and CO2 ≤ 800 ppm and VOC ≤1000 ppm as per AS 1668.2. The concept of maintaining indoor environmental quality comprising building indoor temperature, relative humidity, CO2, and volatile organic compound (VOC) level poses new challenges to the optimal operation of heating, ventilation and air-conditioning (HVAC) systems. While existing case studies demonstrate the energy-saving potentials for efficient HVAC operation, there is a lack of studies quantifying energy savings whilst considering indoor environmental conditions. This study proposes a state-of-the-art modelling and optimization approach to minimize the energy consumption of the HVAC systems without compromising indoor environmental quality. While the primary objective of ensuring optimal operation of HVAC systems is to minimize energy consumption, controlling indoor environmental parameters to remain within the acceptable range imposes excess energy use. These two conflicting objectives constitute a multi-variable constrained optimization problem that has been solved using a particle swarm optimization (PSO) algorithm. Real-time predictive models are developed for the individual indoor environmental parameters and HVAC energy consumption using a Nonlinear Autoregressive Exogenous (NARX) neural network (NN). During model development, models' performance is optimized in terms of complexity, predictive accuracy, and ease of application to a real system. The proposed predictive models are then optimized to provide an optimal control setting for the HVAC systems considering seasonal variations. The results indicate that it is possible to reduce 7.8% of total energy, without negotiating indoor environmental conditions, e.g., air temperature 19.60–28.20°C and relative humidity 30–65% as per ASHRAE Standard 55, and CO2 ≤ 800 ppm and VOC ≤1000 ppm as per AS 1668.2. •A state-of-the-art modelling and optimization approach is proposed.•Real-time predictive models are developed for indoor environmental parameters.•The optimization algorithm provides an optimal control setting for the AHUs.•The results indicate 7.8% energy saving of the HVAC systems.•The proposed method offers energy-saving without negotiating the indoor condition.  | 
    
| ArticleNumber | 108681 | 
    
| Author | Afroz, Zakia Higgins, Gary Shoeb, M.A. Urmee, Tania Shafiullah, G.M.  | 
    
| Author_xml | – sequence: 1 givenname: Zakia orcidid: 0000-0002-4053-108X surname: Afroz fullname: Afroz, Zakia email: Z.Afroz@murdoch.edu.au organization: Discipline of Engineering and Energy, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, WA, 6150, Australia – sequence: 2 givenname: G.M. surname: Shafiullah fullname: Shafiullah, G.M. organization: Discipline of Engineering and Energy, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, WA, 6150, Australia – sequence: 3 givenname: Tania surname: Urmee fullname: Urmee, Tania organization: Discipline of Engineering and Energy, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, WA, 6150, Australia – sequence: 4 givenname: M.A. surname: Shoeb fullname: Shoeb, M.A. organization: Discipline of Engineering and Energy, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, WA, 6150, Australia – sequence: 5 givenname: Gary surname: Higgins fullname: Higgins, Gary organization: Facilities & Infrastructure, PathWest Laboratory Medicine, WA, Australia  | 
    
| BookMark | eNqFkU9LwzAYh4MouKlfQQqeO5Mmpil4cAz_gaAHFW8hTd9pZpvMJJ3MT29m9aAXL3kh_J5feJ-M0bZ1FhA6JHhCMOHHi0ndm7YBu5oUuCDpUnBBttCIiJLmXLCnbTTClOOc0ILuonEIC5zAirIRinceGqOjWUHWuQba1tjnTNkmc8toOvOhonE2c_Ps6nE6y8I6ROhC1odNzELvVZtGfHf-9YtaKh-NbiEL78p3v0tU--y8iS_dPtqZqzbAwffcQw8X5_ezq_zm9vJ6Nr3JNWU45oJBQbBWTBRQ6xOsqGCclTXnqi5B8AafYFwJghUrNZSUQAVF1TRMsKpOB91DR0Pv0ru3HkKUC9d7m56UBaeiLDEtRErxIaW9C8HDXC696ZRfS4LlxrBcyB_DcmNYDoYTePoH1CZ-rRq9Mu3_-NmAQ1KwMuBl0AasTv_hQUfZOPNfxSeqdqAD | 
    
| CitedBy_id | crossref_primary_10_1016_j_buildenv_2024_112092 crossref_primary_10_1016_j_rser_2024_114682 crossref_primary_10_1016_j_buildenv_2023_110113 crossref_primary_10_1016_j_enbuild_2024_115257 crossref_primary_10_1016_j_buildenv_2023_110676 crossref_primary_10_1186_s42162_024_00327_1 crossref_primary_10_1109_ACCESS_2023_3278261 crossref_primary_10_3390_en16072988 crossref_primary_10_1016_j_buildenv_2023_110595 crossref_primary_10_1016_j_jobe_2023_107757 crossref_primary_10_3390_pr11061633 crossref_primary_10_1007_s00521_023_09372_5 crossref_primary_10_3390_buildings13010074 crossref_primary_10_1016_j_conbuildmat_2024_134907 crossref_primary_10_1016_j_scs_2023_104942 crossref_primary_10_1051_e3sconf_202451201017 crossref_primary_10_3390_en17071562 crossref_primary_10_1016_j_eswa_2024_123767 crossref_primary_10_1049_rpg2_12819 crossref_primary_10_3390_en17030570 crossref_primary_10_1016_j_energy_2024_130925 crossref_primary_10_1007_s42107_023_00747_6 crossref_primary_10_1016_j_applthermaleng_2024_123132 crossref_primary_10_1016_j_enbuild_2025_115565 crossref_primary_10_3390_app14020610 crossref_primary_10_1016_j_buildenv_2023_110467 crossref_primary_10_1016_j_enbuild_2023_112893 crossref_primary_10_1016_j_energy_2022_126159 crossref_primary_10_1016_j_heliyon_2023_e16827 crossref_primary_10_32604_cmc_2025_060765 crossref_primary_10_36680_j_itcon_2024_039 crossref_primary_10_1016_j_csite_2024_105185 crossref_primary_10_1016_j_energy_2024_131841 crossref_primary_10_1016_j_energy_2023_129883 crossref_primary_10_1016_j_enconman_2022_116573 crossref_primary_10_3390_s22155797 crossref_primary_10_1109_ACCESS_2024_3452416 crossref_primary_10_1016_j_apenergy_2024_124788 crossref_primary_10_3390_buildings14092842 crossref_primary_10_1016_j_egyr_2024_08_029 crossref_primary_10_1016_j_eswa_2024_124485 crossref_primary_10_1007_s11760_024_03638_8 crossref_primary_10_1016_j_jobe_2024_109019 crossref_primary_10_1063_5_0242299 crossref_primary_10_3390_su151612219 crossref_primary_10_1016_j_apenergy_2022_120622 crossref_primary_10_1016_j_apenergy_2022_120621 crossref_primary_10_1016_j_enbuild_2024_114912 crossref_primary_10_1186_s40517_024_00325_2 crossref_primary_10_1016_j_rineng_2024_103765 crossref_primary_10_1016_j_buildenv_2024_111478 crossref_primary_10_1016_j_buildenv_2022_109237 crossref_primary_10_1016_j_jclepro_2023_137632 crossref_primary_10_1016_j_enbuild_2024_115086  | 
    
| Cites_doi | 10.1016/j.energy.2012.03.063 10.1186/s40327-018-0064-7 10.1016/j.enbuild.2020.110018 10.1016/j.energy.2015.02.024 10.1016/j.apenergy.2009.06.010 10.1016/j.enbuild.2021.111054 10.1088/1757-899X/609/6/062029 10.1016/j.enbuild.2016.07.036 10.1016/j.energy.2018.03.113 10.1016/j.apenergy.2016.02.141 10.3390/en12112177 10.1016/0005-1098(89)90002-2 10.1016/j.seta.2019.06.002 10.1016/j.conengprac.2006.10.010 10.1016/j.compeleceng.2013.11.024 10.1289/ehp.1510037 10.1016/j.enbuild.2017.05.019 10.1016/j.buildenv.2019.03.062 10.1016/j.rser.2017.10.044 10.1016/j.apenergy.2015.12.115 10.1145/2379776.2379786 10.1016/j.buildenv.2018.01.023 10.1111/j.1600-0668.2007.00478.x 10.1016/j.apenergy.2018.09.052 10.1016/j.apenergy.2010.04.008 10.1016/j.buildenv.2011.11.008 10.1016/j.enbuild.2014.06.021 10.1016/j.buildenv.2019.03.038 10.1016/j.jmp.2018.03.001 10.1016/j.apenergy.2019.01.187 10.1016/j.apenergy.2017.03.076 10.1016/j.enconman.2004.06.011 10.1016/j.apenergy.2018.02.156 10.1016/j.ins.2014.09.053 10.1037/a0016973 10.1016/j.egypro.2017.12.449 10.1016/j.buildenv.2009.08.016 10.1016/j.rser.2015.09.084  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier Ltd Copyright Elsevier BV Feb 1, 2022  | 
    
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier BV Feb 1, 2022  | 
    
| DBID | AAYXX CITATION 7ST 8FD C1K F28 FR3 KR7 SOI  | 
    
| DOI | 10.1016/j.buildenv.2021.108681 | 
    
| DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management  | 
    
| DatabaseTitleList | Civil Engineering Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1873-684X | 
    
| ExternalDocumentID | 10_1016_j_buildenv_2021_108681 S0360132321010714  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SEN SES SPC SPCBC SSJ SSR SST SSZ T5K ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SAC SET SEW VH1 WUQ ZMT ~HD 7ST 8FD AGCQF C1K F28 FR3 KR7 SOI  | 
    
| ID | FETCH-LOGICAL-c340t-84e210ca482ebc50a384647b66ab7e86d05009810a47ce731e9e29dd4849b4843 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0360-1323 | 
    
| IngestDate | Wed Aug 13 09:13:39 EDT 2025 Thu Apr 24 23:07:50 EDT 2025 Thu Oct 09 00:32:17 EDT 2025 Fri Feb 23 02:40:06 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Indoor environment HVAC operational setpoint Energy saving NARX Predictive control  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c340t-84e210ca482ebc50a384647b66ab7e86d05009810a47ce731e9e29dd4849b4843 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-4053-108X | 
    
| PQID | 2638770328 | 
    
| PQPubID | 2045275 | 
    
| ParticipantIDs | proquest_journals_2638770328 crossref_primary_10_1016_j_buildenv_2021_108681 crossref_citationtrail_10_1016_j_buildenv_2021_108681 elsevier_sciencedirect_doi_10_1016_j_buildenv_2021_108681  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-02-01 2022-02-00 20220201  | 
    
| PublicationDateYYYYMMDD | 2022-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford | 
    
| PublicationTitle | Building and environment | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | IPCC (bib1) 2014; vol. 9 Strobl, Malley, Tutz (bib45) 2009; 14 Yu, Xie, Huang, Jiang, Zou (bib26) 2018 Afroz, Shafiullah, Urmee, Higgins (bib40) 2019; 609 Garcia, Prett, Morari (bib6) 1989; 25 Mendell (bib31) 2007; 17 Mirakhorli, Dong (bib4) 2016/10/01/2016; 129 Allen, MacNaughton, Satish, Santanam, Vallarino, Spengler (bib2) 2015; 124 Kusiak, Xu (bib15) 2012; 42 Magnier, Haghighat (bib12) 2010; 45 Camacho, Alba (bib5) 2013 Ruparathna, Hewage, Sadiq (bib3) 2016; 53 Afroz, Shafiullah, Urmee, Higgins (bib13) 2018; 83 Delgarm, Sajadi, Kowsary, Delgarm (bib16) 2016; 170 Zhai, Soh (bib19) 2017/08/15/2017; 149 James, Witten, Hastie, Tibshirani (bib44) 2013 Afroz, Urmee, Shafiullah, Higgins (bib34) 2018/12/01/2018; 231 Lukovic, Congradac, Kulic (bib33) 2010 Chandrashekar, Sahin (bib36) 2014; 40 Engelbrecht (bib39) 2007 Kusiak, Li, Tang (bib38) 2010; 87 Papadopoulos, Kontokosta, Vlachokostas, Azar (bib20) 2019/05/15/2019; 155 Standard (bib30) 2017 Yao, Shekhar (bib10) 2021 Xi, Poo, Chou (bib8) 2007; 15 Lu, Cai, Soh, Xie (bib21) 2005/05/01/2005; 46 He, Zhang, Kusiak (bib18) 2014; 81 Satrio, Mahlia, Giannetti, Saito (bib23) 2019; 35 Anguita, Ghelardoni, Ghio, Oneto, Ridella (bib35) 2012 Valladares (bib27) 2019/05/15/2019; 155 Kampelis (bib17) 2019; 12 Hazyuk, Ghiaus, Penhouet (bib7) 2012; 51 Kim, Schiavon, Brager (bib11) 2018/03/15/2018; 132 Seyedzadeh, Rahimian, Glesk, Roper (bib48) 2018; 6 Mendes-Moreira, Soares, Jorge, Sousa (bib46) 2012; 45 Bianchini, Casini, Pepe, Vicino, Zanvettor (bib9) 2019/04/15/2019; 240 Ghahramani, Zhang, Dutta, Yang, Becerik-Gerber (bib22) 2016/03/01/2016; 165 Schulz, Speekenbrink, Krause (bib49) 2018; 85 Mei, Xia (bib28) 2017/06/01/2017; 195 Kusiak, Li (bib14) 2010; 87 Afroz, Gunay, O'Brien, Newsham, Wilton (bib47) 2021; 244 Drgoňa, Picard, Kvasnica, Helsen (bib24) 2018/05/15/2018; 218 Wei, Kusiak, Li, Tang, Zeng (bib29) 2015; 83 (bib42) 2016 Reynolds, Rezgui, Kwan, Piriou (bib25) 2018/05/15/2018; 151 LLC (bib32) Tanweer, Tanweer, Suresh, Sundararajan (bib37) 02/2015; 294 Afroz, Higgins, Urmee, Shafiullah (bib41) 2017/12/01/2017; 142 Afroz, Higgins, Shafiullah, Urmee (bib43) 2020; 219 Ghahramani (10.1016/j.buildenv.2021.108681_bib22) 2016; 165 Mirakhorli (10.1016/j.buildenv.2021.108681_bib4) 2016; 129 Kampelis (10.1016/j.buildenv.2021.108681_bib17) 2019; 12 Mendell (10.1016/j.buildenv.2021.108681_bib31) 2007; 17 Yu (10.1016/j.buildenv.2021.108681_bib26) 2018 Afroz (10.1016/j.buildenv.2021.108681_bib34) 2018; 231 Bianchini (10.1016/j.buildenv.2021.108681_bib9) 2019; 240 (10.1016/j.buildenv.2021.108681_bib42) 2016 Kusiak (10.1016/j.buildenv.2021.108681_bib14) 2010; 87 Mei (10.1016/j.buildenv.2021.108681_bib28) 2017; 195 IPCC (10.1016/j.buildenv.2021.108681_bib1) 2014; vol. 9 Papadopoulos (10.1016/j.buildenv.2021.108681_bib20) 2019; 155 Reynolds (10.1016/j.buildenv.2021.108681_bib25) 2018; 151 Strobl (10.1016/j.buildenv.2021.108681_bib45) 2009; 14 Camacho (10.1016/j.buildenv.2021.108681_bib5) 2013 Garcia (10.1016/j.buildenv.2021.108681_bib6) 1989; 25 Mendes-Moreira (10.1016/j.buildenv.2021.108681_bib46) 2012; 45 Standard (10.1016/j.buildenv.2021.108681_bib30) 2017 Allen (10.1016/j.buildenv.2021.108681_bib2) 2015; 124 Lu (10.1016/j.buildenv.2021.108681_bib21) 2005; 46 Zhai (10.1016/j.buildenv.2021.108681_bib19) 2017; 149 Engelbrecht (10.1016/j.buildenv.2021.108681_bib39) 2007 Ruparathna (10.1016/j.buildenv.2021.108681_bib3) 2016; 53 James (10.1016/j.buildenv.2021.108681_bib44) 2013 Seyedzadeh (10.1016/j.buildenv.2021.108681_bib48) 2018; 6 Schulz (10.1016/j.buildenv.2021.108681_bib49) 2018; 85 Satrio (10.1016/j.buildenv.2021.108681_bib23) 2019; 35 Anguita (10.1016/j.buildenv.2021.108681_bib35) 2012 He (10.1016/j.buildenv.2021.108681_bib18) 2014; 81 Kusiak (10.1016/j.buildenv.2021.108681_bib38) 2010; 87 Drgoňa (10.1016/j.buildenv.2021.108681_bib24) 2018; 218 Xi (10.1016/j.buildenv.2021.108681_bib8) 2007; 15 Magnier (10.1016/j.buildenv.2021.108681_bib12) 2010; 45 Afroz (10.1016/j.buildenv.2021.108681_bib13) 2018; 83 Kusiak (10.1016/j.buildenv.2021.108681_bib15) 2012; 42 Chandrashekar (10.1016/j.buildenv.2021.108681_bib36) 2014; 40 Kim (10.1016/j.buildenv.2021.108681_bib11) 2018; 132 Tanweer (10.1016/j.buildenv.2021.108681_bib37) 2015; 294 Afroz (10.1016/j.buildenv.2021.108681_bib47) 2021; 244 Hazyuk (10.1016/j.buildenv.2021.108681_bib7) 2012; 51 Yao (10.1016/j.buildenv.2021.108681_bib10) 2021 LLC (10.1016/j.buildenv.2021.108681_bib32) Afroz (10.1016/j.buildenv.2021.108681_bib43) 2020; 219 Afroz (10.1016/j.buildenv.2021.108681_bib40) 2019; 609 Wei (10.1016/j.buildenv.2021.108681_bib29) 2015; 83 Afroz (10.1016/j.buildenv.2021.108681_bib41) 2017; 142 Delgarm (10.1016/j.buildenv.2021.108681_bib16) 2016; 170 Valladares (10.1016/j.buildenv.2021.108681_bib27) 2019; 155 Lukovic (10.1016/j.buildenv.2021.108681_bib33) 2010  | 
    
| References_xml | – volume: 81 start-page: 371 year: 2014 end-page: 380 ident: bib18 article-title: Performance optimization of HVAC systems with computational intelligence algorithms publication-title: Energy Build. – volume: 124 start-page: 805 year: 2015 end-page: 812 ident: bib2 article-title: Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: a controlled exposure study of green and conventional office environments publication-title: Environ. Health Perspect. – volume: 53 start-page: 1032 year: 2016 end-page: 1045 ident: bib3 article-title: Improving the energy efficiency of the existing building stock: a critical review of commercial and institutional buildings publication-title: Renew. Sustain. Energy Rev. – volume: 85 start-page: 1 year: 2018 end-page: 16 ident: bib49 article-title: A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions publication-title: J. Math. Psychol. – volume: 609 start-page: 62029 year: 2019 ident: bib40 article-title: Tuning approach of dynamic control strategy of temperature set-point for existing commercial buildings publication-title: IOP Conf. Ser. Mater. Sci. Eng. – year: 2017 ident: bib30 article-title: ANSI/ASHRAE standard 55–2017 publication-title: Thermal environmental conditions for human occupancy – year: 2013 ident: bib5 article-title: Model Predictive Control – volume: 15 start-page: 897 year: 2007 end-page: 908 ident: bib8 article-title: Support vector regression model predictive control on a HVAC plant publication-title: Control Eng. Pract. – volume: 294 start-page: 182 year: 02/2015 end-page: 202 ident: bib37 article-title: Self regulating particle swarm optimization algorithm publication-title: Inf. Sci. – volume: 51 start-page: 388 year: 2012 end-page: 394 ident: bib7 article-title: Optimal temperature control of intermittently heated buildings using Model Predictive Control: Part II–Control algorithm publication-title: Build. Environ. – volume: 240 start-page: 327 year: 2019/04/15/2019 end-page: 340 ident: bib9 article-title: An integrated model predictive control approach for optimal HVAC and energy storage operation in large-scale buildings publication-title: Appl. Energy – start-page: 58 year: 2010 end-page: 60 ident: bib33 article-title: A system level model of possible integration of building management system in smartgrid publication-title: 2010 Complexity in Engineering – volume: 87 start-page: 3092 year: 2010 end-page: 3102 ident: bib38 article-title: Modeling and optimization of HVAC energy consumption publication-title: Appl. Energy – ident: bib32 article-title: StruxureWare building operation WebHelp, 11/11/17 – volume: 231 start-page: 29 year: 2018/12/01/2018 end-page: 53 ident: bib34 article-title: Real-time prediction model for indoor temperature in a commercial building publication-title: Appl. Energy – start-page: 441 year: 2012 end-page: 446 ident: bib35 article-title: The'K'in K-fold Cross Validation – volume: 132 start-page: 114 year: 2018/03/15/2018 end-page: 124 ident: bib11 article-title: Personal comfort models – a new paradigm in thermal comfort for occupant-centric environmental control publication-title: Build. Environ. – year: 2013 ident: bib44 article-title: An Introduction to Statistical Learning – year: 2016 ident: bib42 article-title: A – volume: 219 start-page: 110018 year: 2020 ident: bib43 article-title: Evaluation of real-life demand-controlled ventilation from the perception of indoor air quality with probable implications publication-title: Energy Build. – volume: 170 start-page: 293 year: 2016 end-page: 303 ident: bib16 article-title: Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO) publication-title: Appl. Energy – volume: 35 start-page: 48 year: 2019 end-page: 57 ident: bib23 article-title: Optimization of HVAC system energy consumption in a building using artificial neural network and multi-objective genetic algorithm publication-title: Sustain. Energy Technol. Assessments – volume: 40 start-page: 16 year: 2014 end-page: 28 ident: bib36 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. – volume: 14 start-page: 323 year: 2009 ident: bib45 article-title: An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests publication-title: Psychol. Methods – volume: 42 start-page: 241 year: 2012 end-page: 250 ident: bib15 article-title: Modeling and optimization of HVAC systems using a dynamic neural network publication-title: Energy – volume: 6 start-page: 1 year: 2018 end-page: 20 ident: bib48 article-title: Machine learning for estimation of building energy consumption and performance: a review publication-title: Visualization in Engineering – volume: 149 start-page: 1 year: 2017/08/15/2017 end-page: 15 ident: bib19 article-title: Balancing indoor thermal comfort and energy consumption of ACMV systems via sparse swarm algorithms in optimizations publication-title: Energy Build. – volume: 17 start-page: 259 year: 2007 end-page: 277 ident: bib31 article-title: Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: a review publication-title: Indoor Air – volume: 155 start-page: 350 year: 2019/05/15/2019 end-page: 359 ident: bib20 article-title: Rethinking HVAC temperature setpoints in commercial buildings: the potential for zero-cost energy savings and comfort improvement in different climates publication-title: Build. Environ. – volume: 87 start-page: 901 year: 2010 end-page: 909 ident: bib14 article-title: Cooling output optimization of an air handling unit publication-title: Appl. Energy – volume: 46 start-page: 1015 year: 2005/05/01/2005 end-page: 1028 ident: bib21 article-title: Global optimization for overall HVAC systems––Part II problem solution and simulations publication-title: Energy Convers. Manag. – volume: 142 start-page: 3088 year: 2017/12/01/2017 end-page: 3095 ident: bib41 article-title: Technological advancement of energy management facility of institutional buildings: a case study publication-title: Energy Proc. – volume: 218 start-page: 199 year: 2018/05/15/2018 end-page: 216 ident: bib24 article-title: Approximate model predictive building control via machine learning publication-title: Appl. Energy – volume: vol. 9 year: 2014 ident: bib1 publication-title: Intergovernmental Panel on Climate Change: Mitigation of Climate Change – volume: 129 start-page: 499 year: 2016/10/01/2016 end-page: 513 ident: bib4 article-title: Occupancy behavior based model predictive control for building indoor climate—a critical review publication-title: Energy Build. – year: 2018 ident: bib26 article-title: Energy Optimization of HVAC Systems in Commercial Buildings Considering Indoor Air Quality Management – volume: 45 start-page: 739 year: 2010 end-page: 746 ident: bib12 article-title: Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network publication-title: Build. Environ. – volume: 25 start-page: 335 year: 1989 end-page: 348 ident: bib6 article-title: Model predictive control: theory and practice—a survey publication-title: Automatica – volume: 195 start-page: 439 year: 2017/06/01/2017 end-page: 452 ident: bib28 article-title: Energy-efficient predictive control of indoor thermal comfort and air quality in a direct expansion air conditioning system publication-title: Appl. Energy – volume: 151 start-page: 729 year: 2018/05/15/2018 end-page: 739 ident: bib25 article-title: A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control publication-title: Energy – volume: 155 start-page: 105 year: 2019/05/15/2019 end-page: 117 ident: bib27 article-title: Energy optimization associated with thermal comfort and indoor air control via a deep reinforcement learning algorithm publication-title: Build. Environ. – volume: 12 start-page: 2177 year: 2019 ident: bib17 article-title: HVAC optimization genetic algorithm for industrial near-zero-energy building demand response publication-title: Energies – volume: 83 start-page: 64 year: 2018 end-page: 84 ident: bib13 article-title: Modeling techniques used in building HVAC control systems: a review publication-title: Renew. Sustain. Energy Rev. – volume: 244 start-page: 111054 year: 2021 ident: bib47 article-title: An inquiry into the capabilities of baseline building energy modelling approaches to estimate energy savings publication-title: Energy Build. – start-page: 107952 year: 2021 ident: bib10 article-title: State of the Art Review on Model Predictive Control (MPC) in Heating Ventilation and Air-Conditioning (HVAC) Field – volume: 83 start-page: 294 year: 2015 end-page: 306 ident: bib29 article-title: Multi-objective optimization of the HVAC (heating, ventilation, and air conditioning) system performance publication-title: Energy – volume: 165 start-page: 930 year: 2016/03/01/2016 end-page: 942 ident: bib22 article-title: Energy savings from temperature setpoints and deadband: quantifying the influence of building and system properties on savings publication-title: Appl. Energy – year: 2007 ident: bib39 article-title: Computational Intelligence: an Introduction – volume: 45 start-page: 1 year: 2012 end-page: 40 ident: bib46 article-title: Ensemble approaches for regression: a survey publication-title: ACM Comput. Surv. – volume: 42 start-page: 241 issue: 1 year: 2012 ident: 10.1016/j.buildenv.2021.108681_bib15 article-title: Modeling and optimization of HVAC systems using a dynamic neural network publication-title: Energy doi: 10.1016/j.energy.2012.03.063 – volume: 6 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.buildenv.2021.108681_bib48 article-title: Machine learning for estimation of building energy consumption and performance: a review publication-title: Visualization in Engineering doi: 10.1186/s40327-018-0064-7 – volume: 219 start-page: 110018 year: 2020 ident: 10.1016/j.buildenv.2021.108681_bib43 article-title: Evaluation of real-life demand-controlled ventilation from the perception of indoor air quality with probable implications publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110018 – year: 2017 ident: 10.1016/j.buildenv.2021.108681_bib30 article-title: ANSI/ASHRAE standard 55–2017 publication-title: Thermal environmental conditions for human occupancy – volume: 83 start-page: 294 year: 2015 ident: 10.1016/j.buildenv.2021.108681_bib29 article-title: Multi-objective optimization of the HVAC (heating, ventilation, and air conditioning) system performance publication-title: Energy doi: 10.1016/j.energy.2015.02.024 – volume: vol. 9 year: 2014 ident: 10.1016/j.buildenv.2021.108681_bib1 – volume: 87 start-page: 901 issue: 3 year: 2010 ident: 10.1016/j.buildenv.2021.108681_bib14 article-title: Cooling output optimization of an air handling unit publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.06.010 – volume: 244 start-page: 111054 year: 2021 ident: 10.1016/j.buildenv.2021.108681_bib47 article-title: An inquiry into the capabilities of baseline building energy modelling approaches to estimate energy savings publication-title: Energy Build. doi: 10.1016/j.enbuild.2021.111054 – volume: 609 start-page: 62029 issue: 6 year: 2019 ident: 10.1016/j.buildenv.2021.108681_bib40 article-title: Tuning approach of dynamic control strategy of temperature set-point for existing commercial buildings publication-title: IOP Conf. Ser. Mater. Sci. Eng. doi: 10.1088/1757-899X/609/6/062029 – volume: 129 start-page: 499 year: 2016 ident: 10.1016/j.buildenv.2021.108681_bib4 article-title: Occupancy behavior based model predictive control for building indoor climate—a critical review publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.07.036 – volume: 151 start-page: 729 year: 2018 ident: 10.1016/j.buildenv.2021.108681_bib25 article-title: A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control publication-title: Energy doi: 10.1016/j.energy.2018.03.113 – volume: 170 start-page: 293 year: 2016 ident: 10.1016/j.buildenv.2021.108681_bib16 article-title: Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO) publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.02.141 – volume: 12 start-page: 2177 issue: 11 year: 2019 ident: 10.1016/j.buildenv.2021.108681_bib17 article-title: HVAC optimization genetic algorithm for industrial near-zero-energy building demand response publication-title: Energies doi: 10.3390/en12112177 – volume: 25 start-page: 335 issue: 3 year: 1989 ident: 10.1016/j.buildenv.2021.108681_bib6 article-title: Model predictive control: theory and practice—a survey publication-title: Automatica doi: 10.1016/0005-1098(89)90002-2 – volume: 35 start-page: 48 year: 2019 ident: 10.1016/j.buildenv.2021.108681_bib23 article-title: Optimization of HVAC system energy consumption in a building using artificial neural network and multi-objective genetic algorithm publication-title: Sustain. Energy Technol. Assessments doi: 10.1016/j.seta.2019.06.002 – ident: 10.1016/j.buildenv.2021.108681_bib32 – volume: 15 start-page: 897 issue: 8 year: 2007 ident: 10.1016/j.buildenv.2021.108681_bib8 article-title: Support vector regression model predictive control on a HVAC plant publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2006.10.010 – volume: 40 start-page: 16 issue: 1 year: 2014 ident: 10.1016/j.buildenv.2021.108681_bib36 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2013.11.024 – year: 2013 ident: 10.1016/j.buildenv.2021.108681_bib44 – volume: 124 start-page: 805 issue: 6 year: 2015 ident: 10.1016/j.buildenv.2021.108681_bib2 article-title: Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: a controlled exposure study of green and conventional office environments publication-title: Environ. Health Perspect. doi: 10.1289/ehp.1510037 – volume: 149 start-page: 1 year: 2017 ident: 10.1016/j.buildenv.2021.108681_bib19 article-title: Balancing indoor thermal comfort and energy consumption of ACMV systems via sparse swarm algorithms in optimizations publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.05.019 – year: 2016 ident: 10.1016/j.buildenv.2021.108681_bib42 – volume: 155 start-page: 350 year: 2019 ident: 10.1016/j.buildenv.2021.108681_bib20 article-title: Rethinking HVAC temperature setpoints in commercial buildings: the potential for zero-cost energy savings and comfort improvement in different climates publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.03.062 – volume: 83 start-page: 64 year: 2018 ident: 10.1016/j.buildenv.2021.108681_bib13 article-title: Modeling techniques used in building HVAC control systems: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.10.044 – volume: 165 start-page: 930 year: 2016 ident: 10.1016/j.buildenv.2021.108681_bib22 article-title: Energy savings from temperature setpoints and deadband: quantifying the influence of building and system properties on savings publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.12.115 – volume: 45 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.buildenv.2021.108681_bib46 article-title: Ensemble approaches for regression: a survey publication-title: ACM Comput. Surv. doi: 10.1145/2379776.2379786 – year: 2007 ident: 10.1016/j.buildenv.2021.108681_bib39 – volume: 132 start-page: 114 year: 2018 ident: 10.1016/j.buildenv.2021.108681_bib11 article-title: Personal comfort models – a new paradigm in thermal comfort for occupant-centric environmental control publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.01.023 – volume: 17 start-page: 259 issue: 4 year: 2007 ident: 10.1016/j.buildenv.2021.108681_bib31 article-title: Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: a review publication-title: Indoor Air doi: 10.1111/j.1600-0668.2007.00478.x – start-page: 58 year: 2010 ident: 10.1016/j.buildenv.2021.108681_bib33 article-title: A system level model of possible integration of building management system in smartgrid – volume: 231 start-page: 29 year: 2018 ident: 10.1016/j.buildenv.2021.108681_bib34 article-title: Real-time prediction model for indoor temperature in a commercial building publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.09.052 – volume: 87 start-page: 3092 issue: 10 year: 2010 ident: 10.1016/j.buildenv.2021.108681_bib38 article-title: Modeling and optimization of HVAC energy consumption publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.04.008 – volume: 51 start-page: 388 year: 2012 ident: 10.1016/j.buildenv.2021.108681_bib7 article-title: Optimal temperature control of intermittently heated buildings using Model Predictive Control: Part II–Control algorithm publication-title: Build. Environ. doi: 10.1016/j.buildenv.2011.11.008 – year: 2013 ident: 10.1016/j.buildenv.2021.108681_bib5 – volume: 81 start-page: 371 year: 2014 ident: 10.1016/j.buildenv.2021.108681_bib18 article-title: Performance optimization of HVAC systems with computational intelligence algorithms publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.06.021 – volume: 155 start-page: 105 year: 2019 ident: 10.1016/j.buildenv.2021.108681_bib27 article-title: Energy optimization associated with thermal comfort and indoor air control via a deep reinforcement learning algorithm publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.03.038 – start-page: 107952 year: 2021 ident: 10.1016/j.buildenv.2021.108681_bib10 – volume: 85 start-page: 1 year: 2018 ident: 10.1016/j.buildenv.2021.108681_bib49 article-title: A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions publication-title: J. Math. Psychol. doi: 10.1016/j.jmp.2018.03.001 – volume: 240 start-page: 327 year: 2019 ident: 10.1016/j.buildenv.2021.108681_bib9 article-title: An integrated model predictive control approach for optimal HVAC and energy storage operation in large-scale buildings publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.187 – volume: 195 start-page: 439 year: 2017 ident: 10.1016/j.buildenv.2021.108681_bib28 article-title: Energy-efficient predictive control of indoor thermal comfort and air quality in a direct expansion air conditioning system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.03.076 – volume: 46 start-page: 1015 issue: 7 year: 2005 ident: 10.1016/j.buildenv.2021.108681_bib21 article-title: Global optimization for overall HVAC systems––Part II problem solution and simulations publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2004.06.011 – volume: 218 start-page: 199 year: 2018 ident: 10.1016/j.buildenv.2021.108681_bib24 article-title: Approximate model predictive building control via machine learning publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.156 – volume: 294 start-page: 182 year: 2015 ident: 10.1016/j.buildenv.2021.108681_bib37 article-title: Self regulating particle swarm optimization algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.09.053 – volume: 14 start-page: 323 issue: 4 year: 2009 ident: 10.1016/j.buildenv.2021.108681_bib45 article-title: An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests publication-title: Psychol. Methods doi: 10.1037/a0016973 – volume: 142 start-page: 3088 year: 2017 ident: 10.1016/j.buildenv.2021.108681_bib41 article-title: Technological advancement of energy management facility of institutional buildings: a case study publication-title: Energy Proc. doi: 10.1016/j.egypro.2017.12.449 – start-page: 441 year: 2012 ident: 10.1016/j.buildenv.2021.108681_bib35 – volume: 45 start-page: 739 issue: 3 year: 2010 ident: 10.1016/j.buildenv.2021.108681_bib12 article-title: Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network publication-title: Build. Environ. doi: 10.1016/j.buildenv.2009.08.016 – year: 2018 ident: 10.1016/j.buildenv.2021.108681_bib26 – volume: 53 start-page: 1032 year: 2016 ident: 10.1016/j.buildenv.2021.108681_bib3 article-title: Improving the energy efficiency of the existing building stock: a critical review of commercial and institutional buildings publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.09.084  | 
    
| SSID | ssj0016934 | 
    
| Score | 2.6099274 | 
    
| Snippet | The concept of maintaining indoor environmental quality comprising building indoor temperature, relative humidity, CO2, and volatile organic compound (VOC)... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 108681 | 
    
| SubjectTerms | Air conditioning Air temperature Algorithms Carbon dioxide Energy conservation Energy consumption Energy saving Environmental conditions Environmental quality Humidity HVAC HVAC equipment HVAC operational setpoint Indoor environment Indoor environmental quality Indoor environments Mathematical models NARX Neural networks Optimal control Optimization Organic compounds Parameters Particle swarm optimization Prediction models Predictive control Relative humidity Seasonal variations State-of-the-art reviews VOCs Volatile organic compounds  | 
    
| Title | Predictive modelling and optimization of HVAC systems using neural network and particle swarm optimization algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.buildenv.2021.108681 https://www.proquest.com/docview/2638770328  | 
    
| Volume | 209 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-684X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016934 issn: 0360-1323 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Freedom Collection customDbUrl: eissn: 1873-684X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016934 issn: 0360-1323 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1873-684X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016934 issn: 0360-1323 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-684X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016934 issn: 0360-1323 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-684X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016934 issn: 0360-1323 databaseCode: AKRWK dateStart: 19760101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4IXvRg_BlRJD14HfvVrduREAlq5KIYbk27dQiBQWDqzb_dvq4jYGI4eNlh2WuW93Vf2-x930Pozs24r6BNrDB1qEUIlxZXR2vLz1KaUZ4mmTbTeR6E_SF5HAWjGupWWhgoqzTcX3K6ZmtzxzbZtJeTif2iuBd-FIAIxQUZDijYCYUuBu3vTZkHeI0YCynHgqe3VMLTtoDW0zL_VOdEz9VNhyL3rwXqF1Xr9ad3go7NxhF3ync7RTWZn6GjLTvBcwR-TOlEExjWHW5Aao55nuKFIoa5UVziRYb7b50uLk2c1xhK38cYjC3V-HlZFq6jliYReP3FV_PdQfhsvFhNivf5BRr27l-7fct0VbASnziFFRGpMgZm5p4USeBwX21BCBVhyAWVkcIsAJNR1-GEJpL6roylF6cpiUgs1MW_RPV8kcsrhIUQMXHVszwTJFYY85AH3CeRzNS516MNFFSpZImxHIfOFzNW1ZZNWQUBAwhYCUED2Zu4ZWm6sTcirpBiO9OHqZVhb2yzgpaZD3jNPMVLlILZ4PU_hr5Bhx7IJXSVdxPVi9WHvFWbmEK09CxtoYPOw1N_8AM1HfOv | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RSFAh5YTV5OnIxVRVWg7cJDbJadOFBE06oNsPHb8TkOokiIgSVD5LOi--zPPuXuO4TOvFwEGtqURJnLCKVCEaFDaxLkGcuZyNLciOkMR1H_jl49hA8N1K1rYSCt0nJ_xemGre0bx3rTmY3Hzo3mXvhRAEUoHpThrKBVGvoMIrDzj688DxAbsRpSLoHh38qEn88l9J5WxZsOFH3PdB2Kvd9OqB9cbQ6g3hbatDdH3Kk-bhs1VLGDNr7pCe4iEGTKxobBsGlxA7XmWBQZnmpmmNiSSzzNcf--08WVivMCQ-77IwZlSz1_UeWFG6uZ9QRevIv5ZHkS8fI4nY_Lp8keuutd3Hb7xLZVIGlA3ZLEVGmXgZq5r2QauiLQdxDKZBQJyVSsQQtBZdRzBWWpYoGnEuUnWUZjmkj9CPZRs5gW6gBhKWVCPT1W5JImGmQRiVAENFa5Dnx91kJh7UqeWs1xaH3xwuvksmdeQ8ABAl5B0ELOl92sUt340yKpkeJL64fro-FP23YNLbc7eMF9TUyMgdrg4T-mPkVr_dvhgA8uR9dHaN2H2gmT8t1GzXL-qo71jaaUJ2bFfgLZNfVE | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+modelling+and+optimization+of+HVAC+systems+using+neural+network+and+particle+swarm+optimization+algorithm&rft.jtitle=Building+and+environment&rft.au=Afroz%2C+Zakia&rft.au=Shafiullah%2C+G.M.&rft.au=Urmee%2C+Tania&rft.au=Shoeb%2C+M.A.&rft.date=2022-02-01&rft.issn=0360-1323&rft.volume=209&rft.spage=108681&rft_id=info:doi/10.1016%2Fj.buildenv.2021.108681&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_buildenv_2021_108681 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon |