Predictive modelling and optimization of HVAC systems using neural network and particle swarm optimization algorithm

The concept of maintaining indoor environmental quality comprising building indoor temperature, relative humidity, CO2, and volatile organic compound (VOC) level poses new challenges to the optimal operation of heating, ventilation and air-conditioning (HVAC) systems. While existing case studies dem...

Full description

Saved in:
Bibliographic Details
Published inBuilding and environment Vol. 209; p. 108681
Main Authors Afroz, Zakia, Shafiullah, G.M., Urmee, Tania, Shoeb, M.A., Higgins, Gary
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.02.2022
Elsevier BV
Subjects
Online AccessGet full text
ISSN0360-1323
1873-684X
DOI10.1016/j.buildenv.2021.108681

Cover

Abstract The concept of maintaining indoor environmental quality comprising building indoor temperature, relative humidity, CO2, and volatile organic compound (VOC) level poses new challenges to the optimal operation of heating, ventilation and air-conditioning (HVAC) systems. While existing case studies demonstrate the energy-saving potentials for efficient HVAC operation, there is a lack of studies quantifying energy savings whilst considering indoor environmental conditions. This study proposes a state-of-the-art modelling and optimization approach to minimize the energy consumption of the HVAC systems without compromising indoor environmental quality. While the primary objective of ensuring optimal operation of HVAC systems is to minimize energy consumption, controlling indoor environmental parameters to remain within the acceptable range imposes excess energy use. These two conflicting objectives constitute a multi-variable constrained optimization problem that has been solved using a particle swarm optimization (PSO) algorithm. Real-time predictive models are developed for the individual indoor environmental parameters and HVAC energy consumption using a Nonlinear Autoregressive Exogenous (NARX) neural network (NN). During model development, models' performance is optimized in terms of complexity, predictive accuracy, and ease of application to a real system. The proposed predictive models are then optimized to provide an optimal control setting for the HVAC systems considering seasonal variations. The results indicate that it is possible to reduce 7.8% of total energy, without negotiating indoor environmental conditions, e.g., air temperature 19.60–28.20°C and relative humidity 30–65% as per ASHRAE Standard 55, and CO2 ≤ 800 ppm and VOC ≤1000 ppm as per AS 1668.2. •A state-of-the-art modelling and optimization approach is proposed.•Real-time predictive models are developed for indoor environmental parameters.•The optimization algorithm provides an optimal control setting for the AHUs.•The results indicate 7.8% energy saving of the HVAC systems.•The proposed method offers energy-saving without negotiating the indoor condition.
AbstractList The concept of maintaining indoor environmental quality comprising building indoor temperature, relative humidity, CO2, and volatile organic compound (VOC) level poses new challenges to the optimal operation of heating, ventilation and air-conditioning (HVAC) systems. While existing case studies demonstrate the energy-saving potentials for efficient HVAC operation, there is a lack of studies quantifying energy savings whilst considering indoor environmental conditions. This study proposes a state-of-the-art modelling and optimization approach to minimize the energy consumption of the HVAC systems without compromising indoor environmental quality. While the primary objective of ensuring optimal operation of HVAC systems is to minimize energy consumption, controlling indoor environmental parameters to remain within the acceptable range imposes excess energy use. These two conflicting objectives constitute a multi-variable constrained optimization problem that has been solved using a particle swarm optimization (PSO) algorithm. Real-time predictive models are developed for the individual indoor environmental parameters and HVAC energy consumption using a Nonlinear Autoregressive Exogenous (NARX) neural network (NN). During model development, models' performance is optimized in terms of complexity, predictive accuracy, and ease of application to a real system. The proposed predictive models are then optimized to provide an optimal control setting for the HVAC systems considering seasonal variations. The results indicate that it is possible to reduce 7.8% of total energy, without negotiating indoor environmental conditions, e.g., air temperature 19.60–28.20°C and relative humidity 30–65% as per ASHRAE Standard 55, and CO2 ≤ 800 ppm and VOC ≤1000 ppm as per AS 1668.2.
The concept of maintaining indoor environmental quality comprising building indoor temperature, relative humidity, CO2, and volatile organic compound (VOC) level poses new challenges to the optimal operation of heating, ventilation and air-conditioning (HVAC) systems. While existing case studies demonstrate the energy-saving potentials for efficient HVAC operation, there is a lack of studies quantifying energy savings whilst considering indoor environmental conditions. This study proposes a state-of-the-art modelling and optimization approach to minimize the energy consumption of the HVAC systems without compromising indoor environmental quality. While the primary objective of ensuring optimal operation of HVAC systems is to minimize energy consumption, controlling indoor environmental parameters to remain within the acceptable range imposes excess energy use. These two conflicting objectives constitute a multi-variable constrained optimization problem that has been solved using a particle swarm optimization (PSO) algorithm. Real-time predictive models are developed for the individual indoor environmental parameters and HVAC energy consumption using a Nonlinear Autoregressive Exogenous (NARX) neural network (NN). During model development, models' performance is optimized in terms of complexity, predictive accuracy, and ease of application to a real system. The proposed predictive models are then optimized to provide an optimal control setting for the HVAC systems considering seasonal variations. The results indicate that it is possible to reduce 7.8% of total energy, without negotiating indoor environmental conditions, e.g., air temperature 19.60–28.20°C and relative humidity 30–65% as per ASHRAE Standard 55, and CO2 ≤ 800 ppm and VOC ≤1000 ppm as per AS 1668.2. •A state-of-the-art modelling and optimization approach is proposed.•Real-time predictive models are developed for indoor environmental parameters.•The optimization algorithm provides an optimal control setting for the AHUs.•The results indicate 7.8% energy saving of the HVAC systems.•The proposed method offers energy-saving without negotiating the indoor condition.
ArticleNumber 108681
Author Afroz, Zakia
Higgins, Gary
Shoeb, M.A.
Urmee, Tania
Shafiullah, G.M.
Author_xml – sequence: 1
  givenname: Zakia
  orcidid: 0000-0002-4053-108X
  surname: Afroz
  fullname: Afroz, Zakia
  email: Z.Afroz@murdoch.edu.au
  organization: Discipline of Engineering and Energy, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, WA, 6150, Australia
– sequence: 2
  givenname: G.M.
  surname: Shafiullah
  fullname: Shafiullah, G.M.
  organization: Discipline of Engineering and Energy, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, WA, 6150, Australia
– sequence: 3
  givenname: Tania
  surname: Urmee
  fullname: Urmee, Tania
  organization: Discipline of Engineering and Energy, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, WA, 6150, Australia
– sequence: 4
  givenname: M.A.
  surname: Shoeb
  fullname: Shoeb, M.A.
  organization: Discipline of Engineering and Energy, College of Science, Health, Engineering and Education, Murdoch University, 90 South Street, WA, 6150, Australia
– sequence: 5
  givenname: Gary
  surname: Higgins
  fullname: Higgins, Gary
  organization: Facilities & Infrastructure, PathWest Laboratory Medicine, WA, Australia
BookMark eNqFkU9LwzAYh4MouKlfQQqeO5Mmpil4cAz_gaAHFW8hTd9pZpvMJJ3MT29m9aAXL3kh_J5feJ-M0bZ1FhA6JHhCMOHHi0ndm7YBu5oUuCDpUnBBttCIiJLmXLCnbTTClOOc0ILuonEIC5zAirIRinceGqOjWUHWuQba1tjnTNkmc8toOvOhonE2c_Ps6nE6y8I6ROhC1odNzELvVZtGfHf-9YtaKh-NbiEL78p3v0tU--y8iS_dPtqZqzbAwffcQw8X5_ezq_zm9vJ6Nr3JNWU45oJBQbBWTBRQ6xOsqGCclTXnqi5B8AafYFwJghUrNZSUQAVF1TRMsKpOB91DR0Pv0ru3HkKUC9d7m56UBaeiLDEtRErxIaW9C8HDXC696ZRfS4LlxrBcyB_DcmNYDoYTePoH1CZ-rRq9Mu3_-NmAQ1KwMuBl0AasTv_hQUfZOPNfxSeqdqAD
CitedBy_id crossref_primary_10_1016_j_buildenv_2024_112092
crossref_primary_10_1016_j_rser_2024_114682
crossref_primary_10_1016_j_buildenv_2023_110113
crossref_primary_10_1016_j_enbuild_2024_115257
crossref_primary_10_1016_j_buildenv_2023_110676
crossref_primary_10_1186_s42162_024_00327_1
crossref_primary_10_1109_ACCESS_2023_3278261
crossref_primary_10_3390_en16072988
crossref_primary_10_1016_j_buildenv_2023_110595
crossref_primary_10_1016_j_jobe_2023_107757
crossref_primary_10_3390_pr11061633
crossref_primary_10_1007_s00521_023_09372_5
crossref_primary_10_3390_buildings13010074
crossref_primary_10_1016_j_conbuildmat_2024_134907
crossref_primary_10_1016_j_scs_2023_104942
crossref_primary_10_1051_e3sconf_202451201017
crossref_primary_10_3390_en17071562
crossref_primary_10_1016_j_eswa_2024_123767
crossref_primary_10_1049_rpg2_12819
crossref_primary_10_3390_en17030570
crossref_primary_10_1016_j_energy_2024_130925
crossref_primary_10_1007_s42107_023_00747_6
crossref_primary_10_1016_j_applthermaleng_2024_123132
crossref_primary_10_1016_j_enbuild_2025_115565
crossref_primary_10_3390_app14020610
crossref_primary_10_1016_j_buildenv_2023_110467
crossref_primary_10_1016_j_enbuild_2023_112893
crossref_primary_10_1016_j_energy_2022_126159
crossref_primary_10_1016_j_heliyon_2023_e16827
crossref_primary_10_32604_cmc_2025_060765
crossref_primary_10_36680_j_itcon_2024_039
crossref_primary_10_1016_j_csite_2024_105185
crossref_primary_10_1016_j_energy_2024_131841
crossref_primary_10_1016_j_energy_2023_129883
crossref_primary_10_1016_j_enconman_2022_116573
crossref_primary_10_3390_s22155797
crossref_primary_10_1109_ACCESS_2024_3452416
crossref_primary_10_1016_j_apenergy_2024_124788
crossref_primary_10_3390_buildings14092842
crossref_primary_10_1016_j_egyr_2024_08_029
crossref_primary_10_1016_j_eswa_2024_124485
crossref_primary_10_1007_s11760_024_03638_8
crossref_primary_10_1016_j_jobe_2024_109019
crossref_primary_10_1063_5_0242299
crossref_primary_10_3390_su151612219
crossref_primary_10_1016_j_apenergy_2022_120622
crossref_primary_10_1016_j_apenergy_2022_120621
crossref_primary_10_1016_j_enbuild_2024_114912
crossref_primary_10_1186_s40517_024_00325_2
crossref_primary_10_1016_j_rineng_2024_103765
crossref_primary_10_1016_j_buildenv_2024_111478
crossref_primary_10_1016_j_buildenv_2022_109237
crossref_primary_10_1016_j_jclepro_2023_137632
crossref_primary_10_1016_j_enbuild_2024_115086
Cites_doi 10.1016/j.energy.2012.03.063
10.1186/s40327-018-0064-7
10.1016/j.enbuild.2020.110018
10.1016/j.energy.2015.02.024
10.1016/j.apenergy.2009.06.010
10.1016/j.enbuild.2021.111054
10.1088/1757-899X/609/6/062029
10.1016/j.enbuild.2016.07.036
10.1016/j.energy.2018.03.113
10.1016/j.apenergy.2016.02.141
10.3390/en12112177
10.1016/0005-1098(89)90002-2
10.1016/j.seta.2019.06.002
10.1016/j.conengprac.2006.10.010
10.1016/j.compeleceng.2013.11.024
10.1289/ehp.1510037
10.1016/j.enbuild.2017.05.019
10.1016/j.buildenv.2019.03.062
10.1016/j.rser.2017.10.044
10.1016/j.apenergy.2015.12.115
10.1145/2379776.2379786
10.1016/j.buildenv.2018.01.023
10.1111/j.1600-0668.2007.00478.x
10.1016/j.apenergy.2018.09.052
10.1016/j.apenergy.2010.04.008
10.1016/j.buildenv.2011.11.008
10.1016/j.enbuild.2014.06.021
10.1016/j.buildenv.2019.03.038
10.1016/j.jmp.2018.03.001
10.1016/j.apenergy.2019.01.187
10.1016/j.apenergy.2017.03.076
10.1016/j.enconman.2004.06.011
10.1016/j.apenergy.2018.02.156
10.1016/j.ins.2014.09.053
10.1037/a0016973
10.1016/j.egypro.2017.12.449
10.1016/j.buildenv.2009.08.016
10.1016/j.rser.2015.09.084
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Feb 1, 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 1, 2022
DBID AAYXX
CITATION
7ST
8FD
C1K
F28
FR3
KR7
SOI
DOI 10.1016/j.buildenv.2021.108681
DatabaseName CrossRef
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
ANTE: Abstracts in New Technology & Engineering
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-684X
ExternalDocumentID 10_1016_j_buildenv_2021_108681
S0360132321010714
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SAC
SET
SEW
VH1
WUQ
ZMT
~HD
7ST
8FD
AGCQF
C1K
F28
FR3
KR7
SOI
ID FETCH-LOGICAL-c340t-84e210ca482ebc50a384647b66ab7e86d05009810a47ce731e9e29dd4849b4843
IEDL.DBID .~1
ISSN 0360-1323
IngestDate Wed Aug 13 09:13:39 EDT 2025
Thu Apr 24 23:07:50 EDT 2025
Thu Oct 09 00:32:17 EDT 2025
Fri Feb 23 02:40:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Indoor environment
HVAC operational setpoint
Energy saving
NARX
Predictive control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-84e210ca482ebc50a384647b66ab7e86d05009810a47ce731e9e29dd4849b4843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4053-108X
PQID 2638770328
PQPubID 2045275
ParticipantIDs proquest_journals_2638770328
crossref_primary_10_1016_j_buildenv_2021_108681
crossref_citationtrail_10_1016_j_buildenv_2021_108681
elsevier_sciencedirect_doi_10_1016_j_buildenv_2021_108681
PublicationCentury 2000
PublicationDate 2022-02-01
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Building and environment
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References IPCC (bib1) 2014; vol. 9
Strobl, Malley, Tutz (bib45) 2009; 14
Yu, Xie, Huang, Jiang, Zou (bib26) 2018
Afroz, Shafiullah, Urmee, Higgins (bib40) 2019; 609
Garcia, Prett, Morari (bib6) 1989; 25
Mendell (bib31) 2007; 17
Mirakhorli, Dong (bib4) 2016/10/01/2016; 129
Allen, MacNaughton, Satish, Santanam, Vallarino, Spengler (bib2) 2015; 124
Kusiak, Xu (bib15) 2012; 42
Magnier, Haghighat (bib12) 2010; 45
Camacho, Alba (bib5) 2013
Ruparathna, Hewage, Sadiq (bib3) 2016; 53
Afroz, Shafiullah, Urmee, Higgins (bib13) 2018; 83
Delgarm, Sajadi, Kowsary, Delgarm (bib16) 2016; 170
Zhai, Soh (bib19) 2017/08/15/2017; 149
James, Witten, Hastie, Tibshirani (bib44) 2013
Afroz, Urmee, Shafiullah, Higgins (bib34) 2018/12/01/2018; 231
Lukovic, Congradac, Kulic (bib33) 2010
Chandrashekar, Sahin (bib36) 2014; 40
Engelbrecht (bib39) 2007
Kusiak, Li, Tang (bib38) 2010; 87
Papadopoulos, Kontokosta, Vlachokostas, Azar (bib20) 2019/05/15/2019; 155
Standard (bib30) 2017
Yao, Shekhar (bib10) 2021
Xi, Poo, Chou (bib8) 2007; 15
Lu, Cai, Soh, Xie (bib21) 2005/05/01/2005; 46
He, Zhang, Kusiak (bib18) 2014; 81
Satrio, Mahlia, Giannetti, Saito (bib23) 2019; 35
Anguita, Ghelardoni, Ghio, Oneto, Ridella (bib35) 2012
Valladares (bib27) 2019/05/15/2019; 155
Kampelis (bib17) 2019; 12
Hazyuk, Ghiaus, Penhouet (bib7) 2012; 51
Kim, Schiavon, Brager (bib11) 2018/03/15/2018; 132
Seyedzadeh, Rahimian, Glesk, Roper (bib48) 2018; 6
Mendes-Moreira, Soares, Jorge, Sousa (bib46) 2012; 45
Bianchini, Casini, Pepe, Vicino, Zanvettor (bib9) 2019/04/15/2019; 240
Ghahramani, Zhang, Dutta, Yang, Becerik-Gerber (bib22) 2016/03/01/2016; 165
Schulz, Speekenbrink, Krause (bib49) 2018; 85
Mei, Xia (bib28) 2017/06/01/2017; 195
Kusiak, Li (bib14) 2010; 87
Afroz, Gunay, O'Brien, Newsham, Wilton (bib47) 2021; 244
Drgoňa, Picard, Kvasnica, Helsen (bib24) 2018/05/15/2018; 218
Wei, Kusiak, Li, Tang, Zeng (bib29) 2015; 83
(bib42) 2016
Reynolds, Rezgui, Kwan, Piriou (bib25) 2018/05/15/2018; 151
LLC (bib32)
Tanweer, Tanweer, Suresh, Sundararajan (bib37) 02/2015; 294
Afroz, Higgins, Urmee, Shafiullah (bib41) 2017/12/01/2017; 142
Afroz, Higgins, Shafiullah, Urmee (bib43) 2020; 219
Ghahramani (10.1016/j.buildenv.2021.108681_bib22) 2016; 165
Mirakhorli (10.1016/j.buildenv.2021.108681_bib4) 2016; 129
Kampelis (10.1016/j.buildenv.2021.108681_bib17) 2019; 12
Mendell (10.1016/j.buildenv.2021.108681_bib31) 2007; 17
Yu (10.1016/j.buildenv.2021.108681_bib26) 2018
Afroz (10.1016/j.buildenv.2021.108681_bib34) 2018; 231
Bianchini (10.1016/j.buildenv.2021.108681_bib9) 2019; 240
(10.1016/j.buildenv.2021.108681_bib42) 2016
Kusiak (10.1016/j.buildenv.2021.108681_bib14) 2010; 87
Mei (10.1016/j.buildenv.2021.108681_bib28) 2017; 195
IPCC (10.1016/j.buildenv.2021.108681_bib1) 2014; vol. 9
Papadopoulos (10.1016/j.buildenv.2021.108681_bib20) 2019; 155
Reynolds (10.1016/j.buildenv.2021.108681_bib25) 2018; 151
Strobl (10.1016/j.buildenv.2021.108681_bib45) 2009; 14
Camacho (10.1016/j.buildenv.2021.108681_bib5) 2013
Garcia (10.1016/j.buildenv.2021.108681_bib6) 1989; 25
Mendes-Moreira (10.1016/j.buildenv.2021.108681_bib46) 2012; 45
Standard (10.1016/j.buildenv.2021.108681_bib30) 2017
Allen (10.1016/j.buildenv.2021.108681_bib2) 2015; 124
Lu (10.1016/j.buildenv.2021.108681_bib21) 2005; 46
Zhai (10.1016/j.buildenv.2021.108681_bib19) 2017; 149
Engelbrecht (10.1016/j.buildenv.2021.108681_bib39) 2007
Ruparathna (10.1016/j.buildenv.2021.108681_bib3) 2016; 53
James (10.1016/j.buildenv.2021.108681_bib44) 2013
Seyedzadeh (10.1016/j.buildenv.2021.108681_bib48) 2018; 6
Schulz (10.1016/j.buildenv.2021.108681_bib49) 2018; 85
Satrio (10.1016/j.buildenv.2021.108681_bib23) 2019; 35
Anguita (10.1016/j.buildenv.2021.108681_bib35) 2012
He (10.1016/j.buildenv.2021.108681_bib18) 2014; 81
Kusiak (10.1016/j.buildenv.2021.108681_bib38) 2010; 87
Drgoňa (10.1016/j.buildenv.2021.108681_bib24) 2018; 218
Xi (10.1016/j.buildenv.2021.108681_bib8) 2007; 15
Magnier (10.1016/j.buildenv.2021.108681_bib12) 2010; 45
Afroz (10.1016/j.buildenv.2021.108681_bib13) 2018; 83
Kusiak (10.1016/j.buildenv.2021.108681_bib15) 2012; 42
Chandrashekar (10.1016/j.buildenv.2021.108681_bib36) 2014; 40
Kim (10.1016/j.buildenv.2021.108681_bib11) 2018; 132
Tanweer (10.1016/j.buildenv.2021.108681_bib37) 2015; 294
Afroz (10.1016/j.buildenv.2021.108681_bib47) 2021; 244
Hazyuk (10.1016/j.buildenv.2021.108681_bib7) 2012; 51
Yao (10.1016/j.buildenv.2021.108681_bib10) 2021
LLC (10.1016/j.buildenv.2021.108681_bib32)
Afroz (10.1016/j.buildenv.2021.108681_bib43) 2020; 219
Afroz (10.1016/j.buildenv.2021.108681_bib40) 2019; 609
Wei (10.1016/j.buildenv.2021.108681_bib29) 2015; 83
Afroz (10.1016/j.buildenv.2021.108681_bib41) 2017; 142
Delgarm (10.1016/j.buildenv.2021.108681_bib16) 2016; 170
Valladares (10.1016/j.buildenv.2021.108681_bib27) 2019; 155
Lukovic (10.1016/j.buildenv.2021.108681_bib33) 2010
References_xml – volume: 81
  start-page: 371
  year: 2014
  end-page: 380
  ident: bib18
  article-title: Performance optimization of HVAC systems with computational intelligence algorithms
  publication-title: Energy Build.
– volume: 124
  start-page: 805
  year: 2015
  end-page: 812
  ident: bib2
  article-title: Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: a controlled exposure study of green and conventional office environments
  publication-title: Environ. Health Perspect.
– volume: 53
  start-page: 1032
  year: 2016
  end-page: 1045
  ident: bib3
  article-title: Improving the energy efficiency of the existing building stock: a critical review of commercial and institutional buildings
  publication-title: Renew. Sustain. Energy Rev.
– volume: 85
  start-page: 1
  year: 2018
  end-page: 16
  ident: bib49
  article-title: A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions
  publication-title: J. Math. Psychol.
– volume: 609
  start-page: 62029
  year: 2019
  ident: bib40
  article-title: Tuning approach of dynamic control strategy of temperature set-point for existing commercial buildings
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
– year: 2017
  ident: bib30
  article-title: ANSI/ASHRAE standard 55–2017
  publication-title: Thermal environmental conditions for human occupancy
– year: 2013
  ident: bib5
  article-title: Model Predictive Control
– volume: 15
  start-page: 897
  year: 2007
  end-page: 908
  ident: bib8
  article-title: Support vector regression model predictive control on a HVAC plant
  publication-title: Control Eng. Pract.
– volume: 294
  start-page: 182
  year: 02/2015
  end-page: 202
  ident: bib37
  article-title: Self regulating particle swarm optimization algorithm
  publication-title: Inf. Sci.
– volume: 51
  start-page: 388
  year: 2012
  end-page: 394
  ident: bib7
  article-title: Optimal temperature control of intermittently heated buildings using Model Predictive Control: Part II–Control algorithm
  publication-title: Build. Environ.
– volume: 240
  start-page: 327
  year: 2019/04/15/2019
  end-page: 340
  ident: bib9
  article-title: An integrated model predictive control approach for optimal HVAC and energy storage operation in large-scale buildings
  publication-title: Appl. Energy
– start-page: 58
  year: 2010
  end-page: 60
  ident: bib33
  article-title: A system level model of possible integration of building management system in smartgrid
  publication-title: 2010 Complexity in Engineering
– volume: 87
  start-page: 3092
  year: 2010
  end-page: 3102
  ident: bib38
  article-title: Modeling and optimization of HVAC energy consumption
  publication-title: Appl. Energy
– ident: bib32
  article-title: StruxureWare building operation WebHelp, 11/11/17
– volume: 231
  start-page: 29
  year: 2018/12/01/2018
  end-page: 53
  ident: bib34
  article-title: Real-time prediction model for indoor temperature in a commercial building
  publication-title: Appl. Energy
– start-page: 441
  year: 2012
  end-page: 446
  ident: bib35
  article-title: The'K'in K-fold Cross Validation
– volume: 132
  start-page: 114
  year: 2018/03/15/2018
  end-page: 124
  ident: bib11
  article-title: Personal comfort models – a new paradigm in thermal comfort for occupant-centric environmental control
  publication-title: Build. Environ.
– year: 2013
  ident: bib44
  article-title: An Introduction to Statistical Learning
– year: 2016
  ident: bib42
  article-title: A
– volume: 219
  start-page: 110018
  year: 2020
  ident: bib43
  article-title: Evaluation of real-life demand-controlled ventilation from the perception of indoor air quality with probable implications
  publication-title: Energy Build.
– volume: 170
  start-page: 293
  year: 2016
  end-page: 303
  ident: bib16
  article-title: Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO)
  publication-title: Appl. Energy
– volume: 35
  start-page: 48
  year: 2019
  end-page: 57
  ident: bib23
  article-title: Optimization of HVAC system energy consumption in a building using artificial neural network and multi-objective genetic algorithm
  publication-title: Sustain. Energy Technol. Assessments
– volume: 40
  start-page: 16
  year: 2014
  end-page: 28
  ident: bib36
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
– volume: 14
  start-page: 323
  year: 2009
  ident: bib45
  article-title: An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests
  publication-title: Psychol. Methods
– volume: 42
  start-page: 241
  year: 2012
  end-page: 250
  ident: bib15
  article-title: Modeling and optimization of HVAC systems using a dynamic neural network
  publication-title: Energy
– volume: 6
  start-page: 1
  year: 2018
  end-page: 20
  ident: bib48
  article-title: Machine learning for estimation of building energy consumption and performance: a review
  publication-title: Visualization in Engineering
– volume: 149
  start-page: 1
  year: 2017/08/15/2017
  end-page: 15
  ident: bib19
  article-title: Balancing indoor thermal comfort and energy consumption of ACMV systems via sparse swarm algorithms in optimizations
  publication-title: Energy Build.
– volume: 17
  start-page: 259
  year: 2007
  end-page: 277
  ident: bib31
  article-title: Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: a review
  publication-title: Indoor Air
– volume: 155
  start-page: 350
  year: 2019/05/15/2019
  end-page: 359
  ident: bib20
  article-title: Rethinking HVAC temperature setpoints in commercial buildings: the potential for zero-cost energy savings and comfort improvement in different climates
  publication-title: Build. Environ.
– volume: 87
  start-page: 901
  year: 2010
  end-page: 909
  ident: bib14
  article-title: Cooling output optimization of an air handling unit
  publication-title: Appl. Energy
– volume: 46
  start-page: 1015
  year: 2005/05/01/2005
  end-page: 1028
  ident: bib21
  article-title: Global optimization for overall HVAC systems––Part II problem solution and simulations
  publication-title: Energy Convers. Manag.
– volume: 142
  start-page: 3088
  year: 2017/12/01/2017
  end-page: 3095
  ident: bib41
  article-title: Technological advancement of energy management facility of institutional buildings: a case study
  publication-title: Energy Proc.
– volume: 218
  start-page: 199
  year: 2018/05/15/2018
  end-page: 216
  ident: bib24
  article-title: Approximate model predictive building control via machine learning
  publication-title: Appl. Energy
– volume: vol. 9
  year: 2014
  ident: bib1
  publication-title: Intergovernmental Panel on Climate Change: Mitigation of Climate Change
– volume: 129
  start-page: 499
  year: 2016/10/01/2016
  end-page: 513
  ident: bib4
  article-title: Occupancy behavior based model predictive control for building indoor climate—a critical review
  publication-title: Energy Build.
– year: 2018
  ident: bib26
  article-title: Energy Optimization of HVAC Systems in Commercial Buildings Considering Indoor Air Quality Management
– volume: 45
  start-page: 739
  year: 2010
  end-page: 746
  ident: bib12
  article-title: Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network
  publication-title: Build. Environ.
– volume: 25
  start-page: 335
  year: 1989
  end-page: 348
  ident: bib6
  article-title: Model predictive control: theory and practice—a survey
  publication-title: Automatica
– volume: 195
  start-page: 439
  year: 2017/06/01/2017
  end-page: 452
  ident: bib28
  article-title: Energy-efficient predictive control of indoor thermal comfort and air quality in a direct expansion air conditioning system
  publication-title: Appl. Energy
– volume: 151
  start-page: 729
  year: 2018/05/15/2018
  end-page: 739
  ident: bib25
  article-title: A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control
  publication-title: Energy
– volume: 155
  start-page: 105
  year: 2019/05/15/2019
  end-page: 117
  ident: bib27
  article-title: Energy optimization associated with thermal comfort and indoor air control via a deep reinforcement learning algorithm
  publication-title: Build. Environ.
– volume: 12
  start-page: 2177
  year: 2019
  ident: bib17
  article-title: HVAC optimization genetic algorithm for industrial near-zero-energy building demand response
  publication-title: Energies
– volume: 83
  start-page: 64
  year: 2018
  end-page: 84
  ident: bib13
  article-title: Modeling techniques used in building HVAC control systems: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 244
  start-page: 111054
  year: 2021
  ident: bib47
  article-title: An inquiry into the capabilities of baseline building energy modelling approaches to estimate energy savings
  publication-title: Energy Build.
– start-page: 107952
  year: 2021
  ident: bib10
  article-title: State of the Art Review on Model Predictive Control (MPC) in Heating Ventilation and Air-Conditioning (HVAC) Field
– volume: 83
  start-page: 294
  year: 2015
  end-page: 306
  ident: bib29
  article-title: Multi-objective optimization of the HVAC (heating, ventilation, and air conditioning) system performance
  publication-title: Energy
– volume: 165
  start-page: 930
  year: 2016/03/01/2016
  end-page: 942
  ident: bib22
  article-title: Energy savings from temperature setpoints and deadband: quantifying the influence of building and system properties on savings
  publication-title: Appl. Energy
– year: 2007
  ident: bib39
  article-title: Computational Intelligence: an Introduction
– volume: 45
  start-page: 1
  year: 2012
  end-page: 40
  ident: bib46
  article-title: Ensemble approaches for regression: a survey
  publication-title: ACM Comput. Surv.
– volume: 42
  start-page: 241
  issue: 1
  year: 2012
  ident: 10.1016/j.buildenv.2021.108681_bib15
  article-title: Modeling and optimization of HVAC systems using a dynamic neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2012.03.063
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.buildenv.2021.108681_bib48
  article-title: Machine learning for estimation of building energy consumption and performance: a review
  publication-title: Visualization in Engineering
  doi: 10.1186/s40327-018-0064-7
– volume: 219
  start-page: 110018
  year: 2020
  ident: 10.1016/j.buildenv.2021.108681_bib43
  article-title: Evaluation of real-life demand-controlled ventilation from the perception of indoor air quality with probable implications
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110018
– year: 2017
  ident: 10.1016/j.buildenv.2021.108681_bib30
  article-title: ANSI/ASHRAE standard 55–2017
  publication-title: Thermal environmental conditions for human occupancy
– volume: 83
  start-page: 294
  year: 2015
  ident: 10.1016/j.buildenv.2021.108681_bib29
  article-title: Multi-objective optimization of the HVAC (heating, ventilation, and air conditioning) system performance
  publication-title: Energy
  doi: 10.1016/j.energy.2015.02.024
– volume: vol. 9
  year: 2014
  ident: 10.1016/j.buildenv.2021.108681_bib1
– volume: 87
  start-page: 901
  issue: 3
  year: 2010
  ident: 10.1016/j.buildenv.2021.108681_bib14
  article-title: Cooling output optimization of an air handling unit
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.06.010
– volume: 244
  start-page: 111054
  year: 2021
  ident: 10.1016/j.buildenv.2021.108681_bib47
  article-title: An inquiry into the capabilities of baseline building energy modelling approaches to estimate energy savings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2021.111054
– volume: 609
  start-page: 62029
  issue: 6
  year: 2019
  ident: 10.1016/j.buildenv.2021.108681_bib40
  article-title: Tuning approach of dynamic control strategy of temperature set-point for existing commercial buildings
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
  doi: 10.1088/1757-899X/609/6/062029
– volume: 129
  start-page: 499
  year: 2016
  ident: 10.1016/j.buildenv.2021.108681_bib4
  article-title: Occupancy behavior based model predictive control for building indoor climate—a critical review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.07.036
– volume: 151
  start-page: 729
  year: 2018
  ident: 10.1016/j.buildenv.2021.108681_bib25
  article-title: A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control
  publication-title: Energy
  doi: 10.1016/j.energy.2018.03.113
– volume: 170
  start-page: 293
  year: 2016
  ident: 10.1016/j.buildenv.2021.108681_bib16
  article-title: Multi-objective optimization of the building energy performance: a simulation-based approach by means of particle swarm optimization (PSO)
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.02.141
– volume: 12
  start-page: 2177
  issue: 11
  year: 2019
  ident: 10.1016/j.buildenv.2021.108681_bib17
  article-title: HVAC optimization genetic algorithm for industrial near-zero-energy building demand response
  publication-title: Energies
  doi: 10.3390/en12112177
– volume: 25
  start-page: 335
  issue: 3
  year: 1989
  ident: 10.1016/j.buildenv.2021.108681_bib6
  article-title: Model predictive control: theory and practice—a survey
  publication-title: Automatica
  doi: 10.1016/0005-1098(89)90002-2
– volume: 35
  start-page: 48
  year: 2019
  ident: 10.1016/j.buildenv.2021.108681_bib23
  article-title: Optimization of HVAC system energy consumption in a building using artificial neural network and multi-objective genetic algorithm
  publication-title: Sustain. Energy Technol. Assessments
  doi: 10.1016/j.seta.2019.06.002
– ident: 10.1016/j.buildenv.2021.108681_bib32
– volume: 15
  start-page: 897
  issue: 8
  year: 2007
  ident: 10.1016/j.buildenv.2021.108681_bib8
  article-title: Support vector regression model predictive control on a HVAC plant
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2006.10.010
– volume: 40
  start-page: 16
  issue: 1
  year: 2014
  ident: 10.1016/j.buildenv.2021.108681_bib36
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2013.11.024
– year: 2013
  ident: 10.1016/j.buildenv.2021.108681_bib44
– volume: 124
  start-page: 805
  issue: 6
  year: 2015
  ident: 10.1016/j.buildenv.2021.108681_bib2
  article-title: Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: a controlled exposure study of green and conventional office environments
  publication-title: Environ. Health Perspect.
  doi: 10.1289/ehp.1510037
– volume: 149
  start-page: 1
  year: 2017
  ident: 10.1016/j.buildenv.2021.108681_bib19
  article-title: Balancing indoor thermal comfort and energy consumption of ACMV systems via sparse swarm algorithms in optimizations
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.05.019
– year: 2016
  ident: 10.1016/j.buildenv.2021.108681_bib42
– volume: 155
  start-page: 350
  year: 2019
  ident: 10.1016/j.buildenv.2021.108681_bib20
  article-title: Rethinking HVAC temperature setpoints in commercial buildings: the potential for zero-cost energy savings and comfort improvement in different climates
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.03.062
– volume: 83
  start-page: 64
  year: 2018
  ident: 10.1016/j.buildenv.2021.108681_bib13
  article-title: Modeling techniques used in building HVAC control systems: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.10.044
– volume: 165
  start-page: 930
  year: 2016
  ident: 10.1016/j.buildenv.2021.108681_bib22
  article-title: Energy savings from temperature setpoints and deadband: quantifying the influence of building and system properties on savings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.12.115
– volume: 45
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.buildenv.2021.108681_bib46
  article-title: Ensemble approaches for regression: a survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2379776.2379786
– year: 2007
  ident: 10.1016/j.buildenv.2021.108681_bib39
– volume: 132
  start-page: 114
  year: 2018
  ident: 10.1016/j.buildenv.2021.108681_bib11
  article-title: Personal comfort models – a new paradigm in thermal comfort for occupant-centric environmental control
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.01.023
– volume: 17
  start-page: 259
  issue: 4
  year: 2007
  ident: 10.1016/j.buildenv.2021.108681_bib31
  article-title: Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: a review
  publication-title: Indoor Air
  doi: 10.1111/j.1600-0668.2007.00478.x
– start-page: 58
  year: 2010
  ident: 10.1016/j.buildenv.2021.108681_bib33
  article-title: A system level model of possible integration of building management system in smartgrid
– volume: 231
  start-page: 29
  year: 2018
  ident: 10.1016/j.buildenv.2021.108681_bib34
  article-title: Real-time prediction model for indoor temperature in a commercial building
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.052
– volume: 87
  start-page: 3092
  issue: 10
  year: 2010
  ident: 10.1016/j.buildenv.2021.108681_bib38
  article-title: Modeling and optimization of HVAC energy consumption
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.04.008
– volume: 51
  start-page: 388
  year: 2012
  ident: 10.1016/j.buildenv.2021.108681_bib7
  article-title: Optimal temperature control of intermittently heated buildings using Model Predictive Control: Part II–Control algorithm
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2011.11.008
– year: 2013
  ident: 10.1016/j.buildenv.2021.108681_bib5
– volume: 81
  start-page: 371
  year: 2014
  ident: 10.1016/j.buildenv.2021.108681_bib18
  article-title: Performance optimization of HVAC systems with computational intelligence algorithms
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.06.021
– volume: 155
  start-page: 105
  year: 2019
  ident: 10.1016/j.buildenv.2021.108681_bib27
  article-title: Energy optimization associated with thermal comfort and indoor air control via a deep reinforcement learning algorithm
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.03.038
– start-page: 107952
  year: 2021
  ident: 10.1016/j.buildenv.2021.108681_bib10
– volume: 85
  start-page: 1
  year: 2018
  ident: 10.1016/j.buildenv.2021.108681_bib49
  article-title: A tutorial on Gaussian process regression: modelling, exploring, and exploiting functions
  publication-title: J. Math. Psychol.
  doi: 10.1016/j.jmp.2018.03.001
– volume: 240
  start-page: 327
  year: 2019
  ident: 10.1016/j.buildenv.2021.108681_bib9
  article-title: An integrated model predictive control approach for optimal HVAC and energy storage operation in large-scale buildings
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.187
– volume: 195
  start-page: 439
  year: 2017
  ident: 10.1016/j.buildenv.2021.108681_bib28
  article-title: Energy-efficient predictive control of indoor thermal comfort and air quality in a direct expansion air conditioning system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.03.076
– volume: 46
  start-page: 1015
  issue: 7
  year: 2005
  ident: 10.1016/j.buildenv.2021.108681_bib21
  article-title: Global optimization for overall HVAC systems––Part II problem solution and simulations
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2004.06.011
– volume: 218
  start-page: 199
  year: 2018
  ident: 10.1016/j.buildenv.2021.108681_bib24
  article-title: Approximate model predictive building control via machine learning
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.156
– volume: 294
  start-page: 182
  year: 2015
  ident: 10.1016/j.buildenv.2021.108681_bib37
  article-title: Self regulating particle swarm optimization algorithm
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.09.053
– volume: 14
  start-page: 323
  issue: 4
  year: 2009
  ident: 10.1016/j.buildenv.2021.108681_bib45
  article-title: An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests
  publication-title: Psychol. Methods
  doi: 10.1037/a0016973
– volume: 142
  start-page: 3088
  year: 2017
  ident: 10.1016/j.buildenv.2021.108681_bib41
  article-title: Technological advancement of energy management facility of institutional buildings: a case study
  publication-title: Energy Proc.
  doi: 10.1016/j.egypro.2017.12.449
– start-page: 441
  year: 2012
  ident: 10.1016/j.buildenv.2021.108681_bib35
– volume: 45
  start-page: 739
  issue: 3
  year: 2010
  ident: 10.1016/j.buildenv.2021.108681_bib12
  article-title: Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2009.08.016
– year: 2018
  ident: 10.1016/j.buildenv.2021.108681_bib26
– volume: 53
  start-page: 1032
  year: 2016
  ident: 10.1016/j.buildenv.2021.108681_bib3
  article-title: Improving the energy efficiency of the existing building stock: a critical review of commercial and institutional buildings
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.09.084
SSID ssj0016934
Score 2.6099274
Snippet The concept of maintaining indoor environmental quality comprising building indoor temperature, relative humidity, CO2, and volatile organic compound (VOC)...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108681
SubjectTerms Air conditioning
Air temperature
Algorithms
Carbon dioxide
Energy conservation
Energy consumption
Energy saving
Environmental conditions
Environmental quality
Humidity
HVAC
HVAC equipment
HVAC operational setpoint
Indoor environment
Indoor environmental quality
Indoor environments
Mathematical models
NARX
Neural networks
Optimal control
Optimization
Organic compounds
Parameters
Particle swarm optimization
Prediction models
Predictive control
Relative humidity
Seasonal variations
State-of-the-art reviews
VOCs
Volatile organic compounds
Title Predictive modelling and optimization of HVAC systems using neural network and particle swarm optimization algorithm
URI https://dx.doi.org/10.1016/j.buildenv.2021.108681
https://www.proquest.com/docview/2638770328
Volume 209
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-684X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016934
  issn: 0360-1323
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Freedom Collection
  customDbUrl:
  eissn: 1873-684X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016934
  issn: 0360-1323
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1873-684X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016934
  issn: 0360-1323
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-684X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016934
  issn: 0360-1323
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-684X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016934
  issn: 0360-1323
  databaseCode: AKRWK
  dateStart: 19760101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4IXvRg_BlRJD14HfvVrduREAlq5KIYbk27dQiBQWDqzb_dvq4jYGI4eNlh2WuW93Vf2-x930Pozs24r6BNrDB1qEUIlxZXR2vLz1KaUZ4mmTbTeR6E_SF5HAWjGupWWhgoqzTcX3K6ZmtzxzbZtJeTif2iuBd-FIAIxQUZDijYCYUuBu3vTZkHeI0YCynHgqe3VMLTtoDW0zL_VOdEz9VNhyL3rwXqF1Xr9ad3go7NxhF3ync7RTWZn6GjLTvBcwR-TOlEExjWHW5Aao55nuKFIoa5UVziRYb7b50uLk2c1xhK38cYjC3V-HlZFq6jliYReP3FV_PdQfhsvFhNivf5BRr27l-7fct0VbASnziFFRGpMgZm5p4USeBwX21BCBVhyAWVkcIsAJNR1-GEJpL6roylF6cpiUgs1MW_RPV8kcsrhIUQMXHVszwTJFYY85AH3CeRzNS516MNFFSpZImxHIfOFzNW1ZZNWQUBAwhYCUED2Zu4ZWm6sTcirpBiO9OHqZVhb2yzgpaZD3jNPMVLlILZ4PU_hr5Bhx7IJXSVdxPVi9WHvFWbmEK09CxtoYPOw1N_8AM1HfOv
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RSFAh5YTV5OnIxVRVWg7cJDbJadOFBE06oNsPHb8TkOokiIgSVD5LOi--zPPuXuO4TOvFwEGtqURJnLCKVCEaFDaxLkGcuZyNLciOkMR1H_jl49hA8N1K1rYSCt0nJ_xemGre0bx3rTmY3Hzo3mXvhRAEUoHpThrKBVGvoMIrDzj688DxAbsRpSLoHh38qEn88l9J5WxZsOFH3PdB2Kvd9OqB9cbQ6g3hbatDdH3Kk-bhs1VLGDNr7pCe4iEGTKxobBsGlxA7XmWBQZnmpmmNiSSzzNcf--08WVivMCQ-77IwZlSz1_UeWFG6uZ9QRevIv5ZHkS8fI4nY_Lp8keuutd3Hb7xLZVIGlA3ZLEVGmXgZq5r2QauiLQdxDKZBQJyVSsQQtBZdRzBWWpYoGnEuUnWUZjmkj9CPZRs5gW6gBhKWVCPT1W5JImGmQRiVAENFa5Dnx91kJh7UqeWs1xaH3xwuvksmdeQ8ABAl5B0ELOl92sUt340yKpkeJL64fro-FP23YNLbc7eMF9TUyMgdrg4T-mPkVr_dvhgA8uR9dHaN2H2gmT8t1GzXL-qo71jaaUJ2bFfgLZNfVE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+modelling+and+optimization+of+HVAC+systems+using+neural+network+and+particle+swarm+optimization+algorithm&rft.jtitle=Building+and+environment&rft.au=Afroz%2C+Zakia&rft.au=Shafiullah%2C+G.M.&rft.au=Urmee%2C+Tania&rft.au=Shoeb%2C+M.A.&rft.date=2022-02-01&rft.issn=0360-1323&rft.volume=209&rft.spage=108681&rft_id=info:doi/10.1016%2Fj.buildenv.2021.108681&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_buildenv_2021_108681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon