Development of a deep learning-based auto-segmentation algorithm for hepatocellular carcinoma (HCC) and application to predict microvascular invasion of HCC using CT texture analysis: preliminary results

Automatic segmentation has recently been developed to yield objective data. Prediction of microvascular invasion (MVI) of hepatocellular carcinoma (HCC) using radiomics has been reported. To develop a deep learning-based auto-segmentation algorithm (DL-AS) for the detection of HCC and to predict MVI...

Full description

Saved in:
Bibliographic Details
Published inActa radiologica (1987) Vol. 64; no. 3; p. 907
Main Authors Park, Sungeun, Kim, Jung Hoon, Kim, Jieun, Joseph, Witanto, Lee, Doohee, Park, Sang Joon
Format Journal Article
LanguageEnglish
Published England 01.03.2023
Subjects
Online AccessGet more information
ISSN1600-0455
DOI10.1177/02841851221100318

Cover

Abstract Automatic segmentation has recently been developed to yield objective data. Prediction of microvascular invasion (MVI) of hepatocellular carcinoma (HCC) using radiomics has been reported. To develop a deep learning-based auto-segmentation algorithm (DL-AS) for the detection of HCC and to predict MVI using computed tomography (CT) texture analysis. We retrospectively collected training data from 249 patients with HCC and validation set from 35 patients. Lesions of the training set were manually drawn by radiologist, in the delayed phase. 2D U-Net was selected as the DL architecture. Using the validation set, one radiologist manually drew 2D and 3D regions of interest twice, and the developed DL-AS was performed twice with a one-month time interval. The reproducibility was calculated using intraclass correlation coefficients (ICC). Logistic regression was performed to predict MVI. ICC was in the range of 0.190-0.998/0.341-0.997 in the manual 3D/2D segmentation. In contrast, it was perfect in 3D/2D using DL-AS, with a success rate of 88.6% for the detection of HCC. For predicting MVI, sphericity was a significant parameter (odds ratio <0.001; 95% confidence interval <0.001-0.206;  = 0.020) for predicting MVI using 2D DL-AS. However, 3D DL-AS segmentation did not yield a predictive parameter. The auto-segmentation of HCC using DL-AS provides perfect reproducibility, although it failed to detect 11.4% (4/35). However, the extracted parameters yielded different important predictors of MVI in HCC. Sphericity was a significant predictor in 2D DL-AS and 3D manual segmentation, while discrete compactness was a significant predictor in 2D manual segmentation.
AbstractList Automatic segmentation has recently been developed to yield objective data. Prediction of microvascular invasion (MVI) of hepatocellular carcinoma (HCC) using radiomics has been reported. To develop a deep learning-based auto-segmentation algorithm (DL-AS) for the detection of HCC and to predict MVI using computed tomography (CT) texture analysis. We retrospectively collected training data from 249 patients with HCC and validation set from 35 patients. Lesions of the training set were manually drawn by radiologist, in the delayed phase. 2D U-Net was selected as the DL architecture. Using the validation set, one radiologist manually drew 2D and 3D regions of interest twice, and the developed DL-AS was performed twice with a one-month time interval. The reproducibility was calculated using intraclass correlation coefficients (ICC). Logistic regression was performed to predict MVI. ICC was in the range of 0.190-0.998/0.341-0.997 in the manual 3D/2D segmentation. In contrast, it was perfect in 3D/2D using DL-AS, with a success rate of 88.6% for the detection of HCC. For predicting MVI, sphericity was a significant parameter (odds ratio <0.001; 95% confidence interval <0.001-0.206;  = 0.020) for predicting MVI using 2D DL-AS. However, 3D DL-AS segmentation did not yield a predictive parameter. The auto-segmentation of HCC using DL-AS provides perfect reproducibility, although it failed to detect 11.4% (4/35). However, the extracted parameters yielded different important predictors of MVI in HCC. Sphericity was a significant predictor in 2D DL-AS and 3D manual segmentation, while discrete compactness was a significant predictor in 2D manual segmentation.
Author Kim, Jung Hoon
Park, Sungeun
Kim, Jieun
Joseph, Witanto
Park, Sang Joon
Lee, Doohee
Author_xml – sequence: 1
  givenname: Sungeun
  surname: Park
  fullname: Park, Sungeun
  organization: Department of Radiology, 119754Konkuk University Medical Center, Seoul, Republic of Korea
– sequence: 2
  givenname: Jung Hoon
  orcidid: 0000-0002-8090-7758
  surname: Kim
  fullname: Kim, Jung Hoon
  organization: Department of Radiology, 37990Seoul National University College of Medicine, Seoul, Republic of Korea
– sequence: 3
  givenname: Jieun
  surname: Kim
  fullname: Kim, Jieun
  organization: Department of Radiology, 58927Seoul National University Hospital, Seoul, Republic of Korea
– sequence: 4
  givenname: Witanto
  surname: Joseph
  fullname: Joseph, Witanto
  organization: Medical IP Co., Ltd, Seoul, Republic of Korea
– sequence: 5
  givenname: Doohee
  surname: Lee
  fullname: Lee, Doohee
  organization: Medical IP Co., Ltd, Seoul, Republic of Korea
– sequence: 6
  givenname: Sang Joon
  surname: Park
  fullname: Park, Sang Joon
  organization: Medical IP Co., Ltd, Seoul, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35570797$$D View this record in MEDLINE/PubMed
BookMark eNo1kMtO3jAQha0KVC7tA3RTzZIuUuw4thN2KL2AhMQG1mjiTH5cOXZkO6g8Iy_V_AVWM4vzfTo6J-wgxECMfRH8uxDGnPO6bUSrRF0LwbkU7Qd2LDTnFW-UOmInOf_hXNRGiY_sSCpluOnMMXv5QU_k4zJTKBAnQBiJFvCEKbiwqwbMNAKuJVaZdvsUFhcDoN_F5MrjDFNM8EgLlmjJ-9VjAovJuhBnhLOrvv8GGDbFsnhnX-ESYUk0OltgdjbFJ8z2P-jC9u4TW5ONhDVvHaC_g0J_y5poM6F_zi5f7AXezS5geoZEefUlf2KHE_pMn9_uKbv_9fOuv6pubn9f95c3lZUNL5WetNaj6GRnBq2k1GZop9YODbfUWKMmTbYjg_XYdnoQUnWDlUbWXYuD2satT9nXV--yDjOND0ty81bj4X3V-h-8136y
CitedBy_id crossref_primary_10_1007_s00261_024_04597_x
crossref_primary_10_3748_wjg_v29_i1_43
crossref_primary_10_1007_s00261_023_04102_w
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1177/02841851221100318
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
EISSN 1600-0455
ExternalDocumentID 35570797
Genre Journal Article
GroupedDBID ---
.55
.GJ
0R~
1OC
23M
31~
35A
36B
39C
3O-
4.4
53G
5GY
5I-
5I0
5RE
5VS
8-1
AACMV
AACTG
AAEWN
AAGMC
AAJIQ
AAJOX
AAJQC
AAKGS
AAPXX
AAQXH
AATBZ
AAUAS
AAWTL
AAXOT
AAXTJ
AAYTG
AAZBJ
ABDWY
ABHKI
ABJNI
ABLUO
ABPGX
ABUJY
ABWRX
ACARO
ACFEJ
ACFIC
ACFMA
ACFYK
ACGBL
ACGEJ
ACGFS
ACGZN
ACGZU
ACIEG
ACJOP
ACJTF
ACLFY
ACLHI
ACPTO
ACSBE
ACUAV
ACXMB
ACXQS
ADBBV
ADCVX
ADMPF
ADNBR
ADTBJ
ADWAY
ADXPE
AECGH
AECVZ
AEDTQ
AEKYL
AEMJX
AENEX
AEPTA
AEWDL
AEWLI
AEXFG
AFDWH
AFIEG
AFKRG
AFKVX
AFNTS
AFZJQ
AGHKR
AGPXR
AGWFA
AHDMH
AHOKE
AIEWD
AIGRN
AIIQI
AIOMO
AJABX
AJAOE
AJEFB
AJMMQ
AJSCY
AJUZI
AJWEG
AJXAJ
ALKWR
ALMA_UNASSIGNED_HOLDINGS
ALTZF
AMCVQ
AOSDY
ARTOV
AWYRJ
AYAKG
AZFZN
BBRGL
BFHJK
BKIIM
BPACV
BWJAD
CAG
CGR
COF
CORYS
CQQTX
CS3
CUTAK
CUY
CVF
DB0
DC.
DC0
DD-
DE-
DF0
DN0
DO-
EBS
ECM
EIF
EIHBH
EJD
ESX
EX3
F5P
FHBDP
H13
HZ~
IHE
J8X
M44
M4V
MV1
NPM
O9-
OK1
OVD
P.B
P.C
P2P
PKN
Q1R
ROL
SAUOL
SCNPE
SFC
SHG
SPQ
SPV
TDBHL
TEORI
TFW
TRM
UDS
WH7
WOW
X7M
YFH
ZGI
ZXP
ID FETCH-LOGICAL-c340t-6f666d19397b653367b8f8cb40ce4c75f6ec9e7a2d896b1359bc373298ab51102
IngestDate Wed Feb 19 02:24:50 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords computed tomography
deep learning
Liver
hepatocellular carcinoma
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c340t-6f666d19397b653367b8f8cb40ce4c75f6ec9e7a2d896b1359bc373298ab51102
ORCID 0000-0002-8090-7758
PMID 35570797
ParticipantIDs pubmed_primary_35570797
PublicationCentury 2000
PublicationDate 2023-Mar
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-Mar
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Acta radiologica (1987)
PublicationTitleAlternate Acta Radiol
PublicationYear 2023
SSID ssj0012751
Score 2.3752046
Snippet Automatic segmentation has recently been developed to yield objective data. Prediction of microvascular invasion (MVI) of hepatocellular carcinoma (HCC) using...
SourceID pubmed
SourceType Index Database
StartPage 907
SubjectTerms Algorithms
Carcinoma, Hepatocellular - diagnostic imaging
Carcinoma, Hepatocellular - pathology
Deep Learning
Humans
Liver Neoplasms - diagnostic imaging
Liver Neoplasms - pathology
Neoplasm Invasiveness - diagnostic imaging
Reproducibility of Results
Retrospective Studies
Tomography, X-Ray Computed - methods
Title Development of a deep learning-based auto-segmentation algorithm for hepatocellular carcinoma (HCC) and application to predict microvascular invasion of HCC using CT texture analysis: preliminary results
URI https://www.ncbi.nlm.nih.gov/pubmed/35570797
Volume 64
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbZFpa9lL63T-bQQ4vxEj9l91ZCSyjsUmgW9rZIspwNxHZI7UP7F_t_eu6MJCdO0tLHxRj5EZP5GM3jmxnGXhURz3I0hP00VWM_jkPp5wWeofNchGlUBomkQuHzi3R6GX-8Sq5Gox8D1lLXyjP17Zd1Jf8jVVxDuVKV7D9IdvNSXMBzlC8eUcJ4_CsZDxg_ts6x0HrVD4KY-7RDFZ7o2sb_oueVqzKqPbGcN-tFe1MZjuENbkhtQwF8w0hVNFyobipBtud0MqGwgWnous10k726WlOGp_UqIvRt6aw1njoTFJ_1OksrmHnEL7GpCtsDhQIR-IqlmSm2_uqh098tbVOpTU9c1QpvLYqFU8-mpdRu7OKTI3p_Ro2luwGfwJV-429Pm-ZgfTG412ZADNNwYQYqD8MgYbTlgZ1pq7pTqpGPbdPfXrfbDukOw9FAUed21u7hBmJS2Gh0UVOfICT3mNTe8F78h1aVQVRE_ct4zv98da-nd3_piB1xTgNHLijG5HJfIU8Cl383rcH2v-WEHffP7_lCxiaa3WV3nDMD7ywy77GRru-z43NH13jAvg8ACk0JAgigsAtQOAAobAAKCFDYBShsAAqvEWJvAMEJA3BC24ADJ-yAE3pw0pfgk2DACZMZOHBCD863MIAmOGg-ZJcf3s8mU99ND_FVFI9bPy3RMy_QP8m5TNGpSbnMykzJeKx0rHhSplrlmouwyPJUBlGSSxXxKMwzIdELGYeP2K26qfUpg0BIuiEM0NqNtShRGmgWSC2CIpCB5E_YYyuG65VtEXPdC-jpb688YydbGD9nt0vUSfoFGritfGnw8BMqaayK
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+deep+learning-based+auto-segmentation+algorithm+for+hepatocellular+carcinoma+%28HCC%29+and+application+to+predict+microvascular+invasion+of+HCC+using+CT+texture+analysis%3A+preliminary+results&rft.jtitle=Acta+radiologica+%281987%29&rft.au=Park%2C+Sungeun&rft.au=Kim%2C+Jung+Hoon&rft.au=Kim%2C+Jieun&rft.au=Joseph%2C+Witanto&rft.date=2023-03-01&rft.eissn=1600-0455&rft.volume=64&rft.issue=3&rft.spage=907&rft_id=info:doi/10.1177%2F02841851221100318&rft_id=info%3Apmid%2F35570797&rft_id=info%3Apmid%2F35570797&rft.externalDocID=35570797