The fate of acylated anthocyanins in mildly heated neutral solution

In neutral solution, anthocyanins acylated by hydroxycinnamic acids typically exhibit attractive blue colors and a higher resistance to color loss compared to their nonacylated homologs. However, they remain vulnerable to a poorly understood combination of oxidative and hydrolytic reactions that str...

Full description

Saved in:
Bibliographic Details
Published inDyes and pigments Vol. 178; p. 108326
Main Authors Fenger, Julie-Anne, Robbins, Rebecca J., Collins, Thomas M., Dangles, Olivier
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2020
Elsevier
Subjects
Online AccessGet full text
ISSN0143-7208
1873-3743
DOI10.1016/j.dyepig.2020.108326

Cover

Abstract In neutral solution, anthocyanins acylated by hydroxycinnamic acids typically exhibit attractive blue colors and a higher resistance to color loss compared to their nonacylated homologs. However, they remain vulnerable to a poorly understood combination of oxidative and hydrolytic reactions that strongly contribute to color loss and limits their industrial applications. In this work, the thermal degradation of isolated red cabbage anthocyanins (0, 1 or 2 acyl groups) at pH 7 was investigated by UPLC-DAD-MS (low- and high-resolution). Non-oxidative alterations, including deacylation and intramolecular acyl transfer, were observed and found very dependent on the number and position of the acyl group(s) as well as on the presence of iron ions. At intermediate and advanced thermal degradation, several oxidative mechanisms were evidenced that lead to protocatechuic acid, phloroglucinaldehyde 2-O-glucoside, acylglycosides and derivatives of 2,4,6-trihydroxyphenylacetic acid and 3,5,7-trihydroxycoumarin. Based on the product distribution observed and on the impact of added Fe2+ ions and H2O2, possible degradation mechanisms are discussed. They likely start with a one- or two-electron transfer from the anionic base (a major colored form in neutral solution) to O2. The hydrogen peroxide produced could then further react as an electrophile with the anionic base and/or the hemiketal (major colorless hydrated form). This contribution to understanding the degradation mechanisms of anthocyanins around neutrality can open up new stabilization strategies to extend the range of their food applications to neutral media. •The thermal degradation of red cabbage anthocyanins was investigated at pH 7, 50 °C.•Main non-oxidative routes: hydration, intramolecular acyl transfer, deacylation.•Main oxidative routes: C-ring cleavage, sugar elimination at C3, B-ring elimination.•Initiation: one- or two-electron transfer from the anionic base to O2.•H2O2 (produced upon initiation) probably sustains the oxidation.
AbstractList In neutral solution, anthocyanins acylated by hydroxycinnamic acids typically exhibit attractive blue colors and a higher resistance to color loss compared to their nonacylated homologs. However, they remain vulnerable to a poorly understood combination of oxidative and hydrolytic reactions that strongly contribute to color loss and limits their industrial applications. In this work, the thermal degradation of isolated red cabbage anthocyanins (0, 1 or 2 acyl groups) at pH 7 was investigated by UPLC-DAD-MS (low- and high-resolution). Non-oxidative alterations, including deacylation and intramolecular acyl transfer, were observed and found very dependent on the number and position of the acyl group(s) as well as on the presence of iron ions. At intermediate and advanced thermal degradation, several oxidative mechanisms were evidenced that lead to protocatechuic acid, phloroglucinaldehyde 2-O-glucoside, acylglycosides and derivatives of 2,4,6-trihydroxyphenylacetic acid and 3,5,7-trihydroxycoumarin. Based on the product distribution observed and on the impact of added Fe2+ ions and H2O2, possible degradation mechanisms are discussed. They likely start with a one- or two-electron transfer from the anionic base (a major colored form in neutral solution) to O2. The hydrogen peroxide produced could then further react as an electrophile with the anionic base and/or the hemiketal (major colorless hydrated form). This contribution to understanding the degradation mechanisms of anthocyanins around neutrality can open up new stabilization strategies to extend the range of their food applications to neutral media. •The thermal degradation of red cabbage anthocyanins was investigated at pH 7, 50 °C.•Main non-oxidative routes: hydration, intramolecular acyl transfer, deacylation.•Main oxidative routes: C-ring cleavage, sugar elimination at C3, B-ring elimination.•Initiation: one- or two-electron transfer from the anionic base to O2.•H2O2 (produced upon initiation) probably sustains the oxidation.
In neutral solution, anthocyanins acylated by hydroxycinnamic acids typically exhibit attractive blue colors and a higher resistance to color loss compared to their nonacylated homologs. However, they remain vulnerable to a poorly understood combination of oxidative and hydrolytic reactions that strongly contribute to color loss and limits their industrial applications. In this work, the thermal degradation of isolated red cabbage anthocyanins (0, 1 or 2 acyl groups) at pH 7 was investigated by UPLC-DAD-MS (low- and high-resolution). Non-oxidative alterations, including deacylation and intramolecular acyl transfer, were observed and found very dependent on the number and position of the acyl group(s) as well as on the presence of iron ions. At intermediate and advanced thermal degradation, several oxidative mechanisms were evidenced that lead to protocatechuic acid, phloroglucinaldehyde 2-O-glucoside, acylglycosides and derivatives of 2,4,6-trihydroxyphenylacetic acid and 3,5,7-trihydroxycoumarin. Based on the product distribution observed and on the impact of added Fe2þ ions and H2O2, possible degradation mechanisms are discussed. They likely start with a one- or two-electron transfer from the anionic base (a major colored form in neutral solution) to O2. The hydrogen peroxide produced could then further react as an electrophile with the anionic base and/or the hemiketal (major colorless hydrated form). This contribution to understanding the degradation mechanisms of anthocyanins around neutrality can open up new stabilization strategies to extend the range of their food applications to neutral media.
ArticleNumber 108326
Author Robbins, Rebecca J.
Fenger, Julie-Anne
Collins, Thomas M.
Dangles, Olivier
Author_xml – sequence: 1
  givenname: Julie-Anne
  surname: Fenger
  fullname: Fenger, Julie-Anne
  email: julie-anne.fenger@univ-avignon.fr
  organization: Avignon University, INRAE, UMR408, 84000, Avignon, France
– sequence: 2
  givenname: Rebecca J.
  surname: Robbins
  fullname: Robbins, Rebecca J.
  organization: Mars Wrigley, 1132 W Blackhawk Street, Chicago, IL, 60642, USA
– sequence: 3
  givenname: Thomas M.
  surname: Collins
  fullname: Collins, Thomas M.
– sequence: 4
  givenname: Olivier
  surname: Dangles
  fullname: Dangles, Olivier
  email: olivier.dangles@univ-avignon.fr
  organization: Avignon University, INRAE, UMR408, 84000, Avignon, France
BackLink https://hal.inrae.fr/hal-03111200$$DView record in HAL
BookMark eNqFkE1LAzEQhoNUsK3-Aw-5etg6-eh-eBBKUSsUvNRzyCZZNyVNymZb2H_vrisePOhphpn3GZhnhiY-eIPQLYEFAZLe7xe6M0f7saBAh1HOaHqBpiTPWMIyziZoCoSzJKOQX6FZjHuAIUSmaL2rDa5ka3CosFSd61uNpW_roDrprY_YenywTrsO1-Zr682pbaTDMbhTa4O_RpeVdNHcfNc5en9-2q03yfbt5XW92iaKcWiT1FQ0zWQhWaGXUpUqK2nOaW600kpJChlPS-CcFFDkABUxpc6ZrpacaZDLjM3R3Xi3lk4cG3uQTSeCtGKz2ophBowQQgHOpM_yMauaEGNjqh-AgBikib0YpYlBmhil9djDL0zZVg5P9h9b9x_8OMKml3C2phFRWeOV0bYxqhU62L8PfAL8FIwX
CitedBy_id crossref_primary_10_1016_j_fochx_2024_101883
crossref_primary_10_1007_s11694_023_02230_x
crossref_primary_10_1007_s13197_021_05054_z
crossref_primary_10_1016_j_dyepig_2024_112367
crossref_primary_10_1080_10408398_2023_2238063
crossref_primary_10_3390_ijms22094551
crossref_primary_10_1016_j_foodchem_2024_142242
crossref_primary_10_1021_acs_jafc_1c05880
crossref_primary_10_1111_1541_4337_12970
crossref_primary_10_1021_acs_chemrev_1c00399
crossref_primary_10_1016_j_foodchem_2024_140964
crossref_primary_10_1016_j_lwt_2020_110178
crossref_primary_10_1016_j_foodhyd_2023_108649
crossref_primary_10_1021_acs_jafc_1c02378
crossref_primary_10_1016_j_foodchem_2020_128995
crossref_primary_10_1016_j_cpb_2022_100238
crossref_primary_10_1155_2023_6534117
crossref_primary_10_1002_efd2_21
crossref_primary_10_3390_polym13121966
crossref_primary_10_1021_acs_jafc_4c01050
crossref_primary_10_3390_nu14235133
crossref_primary_10_1016_j_dyepig_2020_108792
crossref_primary_10_3389_fpls_2022_885176
crossref_primary_10_1111_ijfs_16132
crossref_primary_10_1021_acs_jafc_4c06847
crossref_primary_10_1080_10408398_2024_2328176
crossref_primary_10_3390_cimb45090458
crossref_primary_10_1016_j_dyepig_2023_111187
crossref_primary_10_1016_j_fpsl_2022_100872
crossref_primary_10_1039_D1CP03034E
crossref_primary_10_1021_acs_jafc_1c06521
crossref_primary_10_3390_antiox10091337
Cites_doi 10.1007/s00394-005-0557-8
10.1016/S0021-9673(00)98528-5
10.1016/j.foodchem.2012.10.090
10.1016/S0031-9422(00)91300-1
10.1021/jf062875o
10.1016/j.foodchem.2014.08.123
10.1021/jf0107508
10.1021/jf901809p
10.1016/j.foodchem.2015.11.032
10.1016/j.dyepig.2018.05.057
10.1016/j.foodchem.2014.06.087
10.1016/0308-8146(94)90106-6
10.3233/JBR-160132
10.1021/acs.chemrev.5b00507
10.1021/jf8001872
10.1021/acs.jpcb.8b01136
10.1021/jf404869m
10.1016/j.tet.2018.09.012
10.1016/j.foodchem.2014.01.077
10.1016/j.foodchem.2017.04.127
10.1002/qua.25834
10.1039/C3RA47809B
10.3390/molecules23081970
10.1039/C9FO01884K
10.1002/mnfr.200700179
10.1016/j.foodchem.2016.07.071
10.1016/S0008-6215(99)00079-8
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Attribution - NonCommercial
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Attribution - NonCommercial
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.dyepig.2020.108326
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
EISSN 1873-3743
ExternalDocumentID oai_HAL_hal_03111200v1
10_1016_j_dyepig_2020_108326
S0143720820302734
GroupedDBID --K
--M
.-4
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX7
M24
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SSZ
T5K
UHS
WH7
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
1XC
EFKBS
VOOES
ID FETCH-LOGICAL-c340t-6ef267a9a39d5acbc7b28428edcdcca20746b0441909800f1ebd83df543d0a573
IEDL.DBID .~1
ISSN 0143-7208
IngestDate Fri Sep 12 12:36:38 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
Tue Jul 01 02:46:14 EDT 2025
Fri Feb 23 02:47:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-6ef267a9a39d5acbc7b28428edcdcca20746b0441909800f1ebd83df543d0a573
ORCID 0000-0002-3905-5629
0000-0002-9501-0644
OpenAccessLink https://hal.inrae.fr/hal-03111200
ParticipantIDs hal_primary_oai_HAL_hal_03111200v1
crossref_primary_10_1016_j_dyepig_2020_108326
crossref_citationtrail_10_1016_j_dyepig_2020_108326
elsevier_sciencedirect_doi_10_1016_j_dyepig_2020_108326
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
2020-07
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationTitle Dyes and pigments
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Stebbins (bib12) 2016; 6
Buchweitz, Brauch, Carle, Kammerer (bib16) 2013; 138
Kamiya, Yanase, Nakatsuka (bib22) 2014; 155
Dangles, Fenger (bib2) 2018; 23
Fleschhut, Kratzer, Rechkemmer, Kulling (bib8) 2006; 45
Fenger, Moloney, Robbins, Collins, Dangles (bib4) 2019; 10
Pina (bib14) 2014; 62
Es-Safi, Meudec, Bouchut, Fulcrand, Ducrot, Herbette (bib7) 2008; 56
Cabrita, Petrov, Pina (bib6) 2014; 4
Preston, Timberlake (bib18) 1981
Estévez, Sánchez‐Lozano, Mosquera (bib26) 2019; 119
Ahmadiani, Robbins, Collins, Giusti (bib17) 2016; 197
Lopes, Richard, Saucier, Teissedre, Monti, Glories (bib23) 2007; 55
Wiczkowski, Szawara-Nowak, Topolska (bib20) 2015; 167
Xu, Su, Lim, Griffin, Carey, Katz (bib27) 2015; 186
Seeram, Bourquin, Nair (bib10) 2001; 49
Thévenet, Wernicke, Belniak, Descotes, Bouchu, Queneau (bib19) 1999; 318
Hrazdina, Franzese (bib21) 1974; 13
Piffaut, Kader, Girardin, Metche (bib25) 1994; 50
Moloney, Robbins, Collins, Kondo, Yoshida, Dangles (bib3) 2018; 158
Sigurdson, Robbins, Collins, Giusti (bib5) 2017; 234
Sadilova, Carle, Stintzing (bib9) 2007; 51
Satake, Yanase (bib13) 2018; 74
Sinela, Rawat, Mertz, Achir, Fulcrand, Dornier (bib11) 2017; 214
Terahara, Matsui, Minoda, Nasu, Kikuchi, Fukui (bib24) 2009; 57
Mendoza, Basílio, Pina, Kondo, Yoshida (bib15) 2018; 122
Trouillas, Sancho-García, De Freitas, Gierschner, Otyepka, Dangles (bib1) 2016; 116
Kamiya (10.1016/j.dyepig.2020.108326_bib22) 2014; 155
Trouillas (10.1016/j.dyepig.2020.108326_bib1) 2016; 116
Wiczkowski (10.1016/j.dyepig.2020.108326_bib20) 2015; 167
Fleschhut (10.1016/j.dyepig.2020.108326_bib8) 2006; 45
Hrazdina (10.1016/j.dyepig.2020.108326_bib21) 1974; 13
Sinela (10.1016/j.dyepig.2020.108326_bib11) 2017; 214
Xu (10.1016/j.dyepig.2020.108326_bib27) 2015; 186
Estévez (10.1016/j.dyepig.2020.108326_bib26) 2019; 119
Sigurdson (10.1016/j.dyepig.2020.108326_bib5) 2017; 234
Mendoza (10.1016/j.dyepig.2020.108326_bib15) 2018; 122
Cabrita (10.1016/j.dyepig.2020.108326_bib6) 2014; 4
Dangles (10.1016/j.dyepig.2020.108326_bib2) 2018; 23
Preston (10.1016/j.dyepig.2020.108326_bib18) 1981
Fenger (10.1016/j.dyepig.2020.108326_bib4) 2019; 10
Pina (10.1016/j.dyepig.2020.108326_bib14) 2014; 62
Seeram (10.1016/j.dyepig.2020.108326_bib10) 2001; 49
Moloney (10.1016/j.dyepig.2020.108326_bib3) 2018; 158
Piffaut (10.1016/j.dyepig.2020.108326_bib25) 1994; 50
Satake (10.1016/j.dyepig.2020.108326_bib13) 2018; 74
Terahara (10.1016/j.dyepig.2020.108326_bib24) 2009; 57
Sadilova (10.1016/j.dyepig.2020.108326_bib9) 2007; 51
Stebbins (10.1016/j.dyepig.2020.108326_bib12) 2016; 6
Lopes (10.1016/j.dyepig.2020.108326_bib23) 2007; 55
Ahmadiani (10.1016/j.dyepig.2020.108326_bib17) 2016; 197
Thévenet (10.1016/j.dyepig.2020.108326_bib19) 1999; 318
Es-Safi (10.1016/j.dyepig.2020.108326_bib7) 2008; 56
Buchweitz (10.1016/j.dyepig.2020.108326_bib16) 2013; 138
References_xml – volume: 51
  start-page: 1461
  year: 2007
  end-page: 1471
  ident: bib9
  article-title: Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity
  publication-title: Mol Nutr Food Res
– volume: 116
  start-page: 4937
  year: 2016
  end-page: 4982
  ident: bib1
  article-title: Stabilizing and modulating color by copigmentation: insights from theory and experiment
  publication-title: Chem Rev
– volume: 6
  start-page: 175
  year: 2016
  end-page: 187
  ident: bib12
  article-title: Ascorbic acid-catalyzed degradation of cyanidin-3- O-β-glucoside: proposed mechanism and identification of a novel hydroxylated product
  publication-title: J Berry Res
– volume: 10
  start-page: 6740
  year: 2019
  end-page: 6751
  ident: bib4
  article-title: The influence of acylation, metal binding and natural antioxidants on the thermal stability of red cabbage anthocyanins in neutral solution
  publication-title: Food Funct
– volume: 74
  start-page: 6187
  year: 2018
  end-page: 6191
  ident: bib13
  article-title: Mechanistic studies of hydrogen-peroxide-mediated anthocyanin oxidation
  publication-title: Tetrahedron
– volume: 214
  start-page: 234
  year: 2017
  end-page: 241
  ident: bib11
  article-title: Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products
  publication-title: Food Chem
– volume: 138
  start-page: 2026
  year: 2013
  end-page: 2035
  ident: bib16
  article-title: Colour and stability assessment of blue ferric anthocyanin chelates in liquid pectin-stabilised model systems
  publication-title: Food Chem
– volume: 23
  start-page: 1970
  year: 2018
  ident: bib2
  article-title: The chemical reactivity of anthocyanins and its consequences in food science and nutrition
  publication-title: Molecules
– volume: 45
  start-page: 7
  year: 2006
  end-page: 18
  ident: bib8
  article-title: Stability and biotransformation of various dietary anthocyanins in vitro
  publication-title: Eur J Nutr
– volume: 13
  start-page: 231
  year: 1974
  end-page: 234
  ident: bib21
  article-title: Oxidation products of acylated anthocyanins under acidic and neutral conditions
  publication-title: Phytochemistry
– volume: 158
  start-page: 342
  year: 2018
  end-page: 352
  ident: bib3
  article-title: Red cabbage anthocyanins: the influence of d-glucose acylation by hydroxycinnamic acids on their structural transformations in acidic to mildly alkaline conditions and on the resulting color
  publication-title: Dyes Pigments
– start-page: 222
  year: 1981
  end-page: 228
  ident: bib18
  article-title: Separation of anthocyanin by high-performance liquid chromatography
  publication-title: J Chromatogr
– volume: 318
  start-page: 52
  year: 1999
  end-page: 66
  ident: bib19
  article-title: Esterification of unprotected sucrose with acid chlorides in aqueous medium: kinetic reactivity versus acyl- or alkyloxycarbonyl-group migrations
  publication-title: Carbohydr Res
– volume: 155
  start-page: 221
  year: 2014
  end-page: 226
  ident: bib22
  article-title: Novel oxidation products of cyanidin 3-O-glucoside with 2,2′-azobis-(2,4-dimethyl)valeronitrile and evaluation of anthocyanin content and its oxidation in black rice
  publication-title: Food Chem
– volume: 57
  start-page: 8331
  year: 2009
  end-page: 8338
  ident: bib24
  article-title: Functional new acylated sophoroses and deglucosylated anthocyanins in a fermented red vinegar
  publication-title: J Agric Food Chem
– volume: 4
  start-page: 18939
  year: 2014
  end-page: 18944
  ident: bib6
  article-title: On the thermal degradation of anthocyanidins: cyanidin
  publication-title: RSC Adv
– volume: 122
  start-page: 4982
  year: 2018
  end-page: 4992
  ident: bib15
  article-title: Rationalizing the color in heavenly blue anthocyanin. A complete kinetic and thermodynamic study
  publication-title: J Phys Chem B
– volume: 167
  start-page: 115
  year: 2015
  end-page: 123
  ident: bib20
  article-title: Changes in the content and composition of anthocyanins in red cabbage and its antioxidant capacity during fermentation, storage and stewing
  publication-title: Food Chem
– volume: 50
  start-page: 115
  year: 1994
  end-page: 120
  ident: bib25
  article-title: Comparative degradation pathways of malvidin 3,5-diglucoside after enzymatic and thermal treatments
  publication-title: Food Chem
– volume: 119
  start-page: 1
  year: 2019
  end-page: 11
  ident: bib26
  article-title: Complexation of common metal cations by cyanins: binding affinity and molecular structure
  publication-title: Int J Quant Chem
– volume: 197
  start-page: 900
  year: 2016
  end-page: 906
  ident: bib17
  article-title: Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage
  publication-title: Food Chem
– volume: 186
  start-page: 90
  year: 2015
  end-page: 96
  ident: bib27
  article-title: Characterisation and stability of anthocyanins in purple-fleshed sweet potato P40
  publication-title: Food Chem
– volume: 56
  start-page: 4584
  year: 2008
  end-page: 4591
  ident: bib7
  article-title: New compounds obtained by evolution and oxidation of malvidin 3-
  publication-title: J Agric Food Chem
– volume: 49
  start-page: 4924
  year: 2001
  end-page: 4929
  ident: bib10
  article-title: Degradation products of cyanidin glycosides from Tart Cherries and their bioactivities
  publication-title: J Agric Food Chem
– volume: 234
  start-page: 131
  year: 2017
  end-page: 138
  ident: bib5
  article-title: Effects of hydroxycinnamic acids on blue color expression of cyanidin derivatives and their metal chelates
  publication-title: Food Chem
– volume: 55
  start-page: 2698
  year: 2007
  end-page: 2704
  ident: bib23
  article-title: Anthocyanone A: A quinone methide derivative resulting from malvidin 3-O-glucoside degradation
  publication-title: J Agric Food Chem
– volume: 62
  start-page: 6885
  year: 2014
  end-page: 6897
  ident: bib14
  article-title: Chemical applications of anthocyanins and related compounds. A source of bioinspiration
  publication-title: J Agric Food Chem
– volume: 45
  start-page: 7
  year: 2006
  ident: 10.1016/j.dyepig.2020.108326_bib8
  article-title: Stability and biotransformation of various dietary anthocyanins in vitro
  publication-title: Eur J Nutr
  doi: 10.1007/s00394-005-0557-8
– start-page: 222
  year: 1981
  ident: 10.1016/j.dyepig.2020.108326_bib18
  article-title: Separation of anthocyanin by high-performance liquid chromatography
  publication-title: J Chromatogr
  doi: 10.1016/S0021-9673(00)98528-5
– volume: 138
  start-page: 2026
  year: 2013
  ident: 10.1016/j.dyepig.2020.108326_bib16
  article-title: Colour and stability assessment of blue ferric anthocyanin chelates in liquid pectin-stabilised model systems
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2012.10.090
– volume: 13
  start-page: 231
  year: 1974
  ident: 10.1016/j.dyepig.2020.108326_bib21
  article-title: Oxidation products of acylated anthocyanins under acidic and neutral conditions
  publication-title: Phytochemistry
  doi: 10.1016/S0031-9422(00)91300-1
– volume: 55
  start-page: 2698
  year: 2007
  ident: 10.1016/j.dyepig.2020.108326_bib23
  article-title: Anthocyanone A: A quinone methide derivative resulting from malvidin 3-O-glucoside degradation
  publication-title: J Agric Food Chem
  doi: 10.1021/jf062875o
– volume: 186
  start-page: 90
  year: 2015
  ident: 10.1016/j.dyepig.2020.108326_bib27
  article-title: Characterisation and stability of anthocyanins in purple-fleshed sweet potato P40
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2014.08.123
– volume: 49
  start-page: 4924
  year: 2001
  ident: 10.1016/j.dyepig.2020.108326_bib10
  article-title: Degradation products of cyanidin glycosides from Tart Cherries and their bioactivities
  publication-title: J Agric Food Chem
  doi: 10.1021/jf0107508
– volume: 57
  start-page: 8331
  year: 2009
  ident: 10.1016/j.dyepig.2020.108326_bib24
  article-title: Functional new acylated sophoroses and deglucosylated anthocyanins in a fermented red vinegar
  publication-title: J Agric Food Chem
  doi: 10.1021/jf901809p
– volume: 197
  start-page: 900
  year: 2016
  ident: 10.1016/j.dyepig.2020.108326_bib17
  article-title: Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2015.11.032
– volume: 158
  start-page: 342
  year: 2018
  ident: 10.1016/j.dyepig.2020.108326_bib3
  article-title: Red cabbage anthocyanins: the influence of d-glucose acylation by hydroxycinnamic acids on their structural transformations in acidic to mildly alkaline conditions and on the resulting color
  publication-title: Dyes Pigments
  doi: 10.1016/j.dyepig.2018.05.057
– volume: 167
  start-page: 115
  year: 2015
  ident: 10.1016/j.dyepig.2020.108326_bib20
  article-title: Changes in the content and composition of anthocyanins in red cabbage and its antioxidant capacity during fermentation, storage and stewing
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2014.06.087
– volume: 50
  start-page: 115
  year: 1994
  ident: 10.1016/j.dyepig.2020.108326_bib25
  article-title: Comparative degradation pathways of malvidin 3,5-diglucoside after enzymatic and thermal treatments
  publication-title: Food Chem
  doi: 10.1016/0308-8146(94)90106-6
– volume: 6
  start-page: 175
  year: 2016
  ident: 10.1016/j.dyepig.2020.108326_bib12
  article-title: Ascorbic acid-catalyzed degradation of cyanidin-3- O-β-glucoside: proposed mechanism and identification of a novel hydroxylated product
  publication-title: J Berry Res
  doi: 10.3233/JBR-160132
– volume: 116
  start-page: 4937
  year: 2016
  ident: 10.1016/j.dyepig.2020.108326_bib1
  article-title: Stabilizing and modulating color by copigmentation: insights from theory and experiment
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.5b00507
– volume: 56
  start-page: 4584
  year: 2008
  ident: 10.1016/j.dyepig.2020.108326_bib7
  article-title: New compounds obtained by evolution and oxidation of malvidin 3- O -glucoside in ethanolic medium
  publication-title: J Agric Food Chem
  doi: 10.1021/jf8001872
– volume: 122
  start-page: 4982
  year: 2018
  ident: 10.1016/j.dyepig.2020.108326_bib15
  article-title: Rationalizing the color in heavenly blue anthocyanin. A complete kinetic and thermodynamic study
  publication-title: J Phys Chem B
  doi: 10.1021/acs.jpcb.8b01136
– volume: 62
  start-page: 6885
  year: 2014
  ident: 10.1016/j.dyepig.2020.108326_bib14
  article-title: Chemical applications of anthocyanins and related compounds. A source of bioinspiration
  publication-title: J Agric Food Chem
  doi: 10.1021/jf404869m
– volume: 74
  start-page: 6187
  year: 2018
  ident: 10.1016/j.dyepig.2020.108326_bib13
  article-title: Mechanistic studies of hydrogen-peroxide-mediated anthocyanin oxidation
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2018.09.012
– volume: 155
  start-page: 221
  year: 2014
  ident: 10.1016/j.dyepig.2020.108326_bib22
  article-title: Novel oxidation products of cyanidin 3-O-glucoside with 2,2′-azobis-(2,4-dimethyl)valeronitrile and evaluation of anthocyanin content and its oxidation in black rice
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2014.01.077
– volume: 234
  start-page: 131
  year: 2017
  ident: 10.1016/j.dyepig.2020.108326_bib5
  article-title: Effects of hydroxycinnamic acids on blue color expression of cyanidin derivatives and their metal chelates
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2017.04.127
– volume: 119
  start-page: 1
  year: 2019
  ident: 10.1016/j.dyepig.2020.108326_bib26
  article-title: Complexation of common metal cations by cyanins: binding affinity and molecular structure
  publication-title: Int J Quant Chem
  doi: 10.1002/qua.25834
– volume: 4
  start-page: 18939
  year: 2014
  ident: 10.1016/j.dyepig.2020.108326_bib6
  article-title: On the thermal degradation of anthocyanidins: cyanidin
  publication-title: RSC Adv
  doi: 10.1039/C3RA47809B
– volume: 23
  start-page: 1970
  year: 2018
  ident: 10.1016/j.dyepig.2020.108326_bib2
  article-title: The chemical reactivity of anthocyanins and its consequences in food science and nutrition
  publication-title: Molecules
  doi: 10.3390/molecules23081970
– volume: 10
  start-page: 6740
  year: 2019
  ident: 10.1016/j.dyepig.2020.108326_bib4
  article-title: The influence of acylation, metal binding and natural antioxidants on the thermal stability of red cabbage anthocyanins in neutral solution
  publication-title: Food Funct
  doi: 10.1039/C9FO01884K
– volume: 51
  start-page: 1461
  year: 2007
  ident: 10.1016/j.dyepig.2020.108326_bib9
  article-title: Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity
  publication-title: Mol Nutr Food Res
  doi: 10.1002/mnfr.200700179
– volume: 214
  start-page: 234
  year: 2017
  ident: 10.1016/j.dyepig.2020.108326_bib11
  article-title: Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products
  publication-title: Food Chem
  doi: 10.1016/j.foodchem.2016.07.071
– volume: 318
  start-page: 52
  year: 1999
  ident: 10.1016/j.dyepig.2020.108326_bib19
  article-title: Esterification of unprotected sucrose with acid chlorides in aqueous medium: kinetic reactivity versus acyl- or alkyloxycarbonyl-group migrations
  publication-title: Carbohydr Res
  doi: 10.1016/S0008-6215(99)00079-8
SSID ssj0008321
Score 2.470994
Snippet In neutral solution, anthocyanins acylated by hydroxycinnamic acids typically exhibit attractive blue colors and a higher resistance to color loss compared to...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 108326
SubjectTerms Analytical chemistry
Biochemistry
Biochemistry, Molecular Biology
Chemical Sciences
Life Sciences
Vegetal Biology
Title The fate of acylated anthocyanins in mildly heated neutral solution
URI https://dx.doi.org/10.1016/j.dyepig.2020.108326
https://hal.inrae.fr/hal-03111200
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC58IOpB3FHxTbN4bSd2d17HYVBGx_WwKOst9CsaGeOgozAXf7tVeegKguApSafzoLpS9aX5-iuAAyGCJEWgypVQEVexC7gWkeRKGRtam_rE0dTAn4tocKXOrsPrGei3a2GIVtnE_jqmV9G6aek21uyOi6JLtCQqsYIpTFYiLbSCXcXk64evHzQPqsRT0xglp97t8rmK4-Wmflzc4F-iqMh2kiQWvk5Ps7ftRGuVeE5WYaVBjKxXv9QvmPFlBxb7baG2Diz_pynYgYWK02mf1qCPLsByxJLsIWfaTke465gmtQA71WVRPrGiZPfFyI2mjGIyni39M019sNYj1-Hq5PiyP-BNzQRupQomPPK5iGKdapm6UFtjY4MJSCTeWYeDJai8iAkQA6VBilgxP_LGJdLloZIu0GEsN2CufCj9JjClHH7MJreRyJXxcYJgyyjttTeJi1K7BbI1VWYbQXGqazHKWubYXVYbOCMDZ7WBt4C_XzWuBTW-6R-3o5B9cowMY_43V_7GQXt_COloD3rnGbVhJEOcGQQvR9s_vv0OLNFRTd3dhbnJ47PfQ4AyMfuVB-7DfO90OLig7fDvv-EbPf_kvg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC58IOpBdFXiK2lCru3Odve8jrIoa7J6UvDW9Gt0ZB2XuAp7yW9P1Tw0AUHwNvRjZqiuqfqm-forgB9CRFmOQJUroRKuUh9xIxLJlbIudi4PmaetgYvLZHStft7ENwsw7M7CEK2yjf1NTK-jddvSb63Zn5Zln2hJVGIFU5isRVoWYVmRR6FTH_9543lQKZ6Gxyg5De_Oz9UkLz8P0_IWfxNFzbaTpLHwfn5avOt2WuvMc7YJGy1kZCfNW23BQqh6sDrsKrX1YP0fUcEerNSkTve0DUP0AVYgmGSPBTNuPsFLzwzJBbi5qcrqiZUVeygnfjJnFJSxtwrPtPfBOpfcgeuz06vhiLdFE7iTKprxJBQiSU1uZO5j46xLLWYgkQXvPK6WoPoiNkIQlEc5gsViEKzPpC9iJX1k4lTuwlL1WIUvwJTy-DXbwiWiUDakGaItq0wwwWY-yd0eyM5U2rWK4lTYYqI76ti9bgysycC6MfAe8NdZ00ZR44PxabcK-j_P0Bj0P5j5HRft9SEkpD06GWtqw1CGQDOKXgb7n779N1gdXV2M9fj88tcBrFFPw-M9hKXZ7-dwhGhlZr_W3vgXbZHkrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fate+of+acylated+anthocyanins+in+mildly+heated+neutral+solution&rft.jtitle=Dyes+and+pigments&rft.au=Fenger%2C+Julie-Anne&rft.au=Robbins%2C+Rebecca&rft.au=Collins%2C+Thomas&rft.au=Dangles%2C+Olivier&rft.date=2020-07-01&rft.pub=Elsevier&rft.issn=0143-7208&rft.volume=178&rft_id=info:doi/10.1016%2Fj.dyepig.2020.108326&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03111200v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-7208&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-7208&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-7208&client=summon