The fate of acylated anthocyanins in mildly heated neutral solution
In neutral solution, anthocyanins acylated by hydroxycinnamic acids typically exhibit attractive blue colors and a higher resistance to color loss compared to their nonacylated homologs. However, they remain vulnerable to a poorly understood combination of oxidative and hydrolytic reactions that str...
Saved in:
Published in | Dyes and pigments Vol. 178; p. 108326 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2020
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0143-7208 1873-3743 |
DOI | 10.1016/j.dyepig.2020.108326 |
Cover
Abstract | In neutral solution, anthocyanins acylated by hydroxycinnamic acids typically exhibit attractive blue colors and a higher resistance to color loss compared to their nonacylated homologs. However, they remain vulnerable to a poorly understood combination of oxidative and hydrolytic reactions that strongly contribute to color loss and limits their industrial applications. In this work, the thermal degradation of isolated red cabbage anthocyanins (0, 1 or 2 acyl groups) at pH 7 was investigated by UPLC-DAD-MS (low- and high-resolution). Non-oxidative alterations, including deacylation and intramolecular acyl transfer, were observed and found very dependent on the number and position of the acyl group(s) as well as on the presence of iron ions. At intermediate and advanced thermal degradation, several oxidative mechanisms were evidenced that lead to protocatechuic acid, phloroglucinaldehyde 2-O-glucoside, acylglycosides and derivatives of 2,4,6-trihydroxyphenylacetic acid and 3,5,7-trihydroxycoumarin. Based on the product distribution observed and on the impact of added Fe2+ ions and H2O2, possible degradation mechanisms are discussed. They likely start with a one- or two-electron transfer from the anionic base (a major colored form in neutral solution) to O2. The hydrogen peroxide produced could then further react as an electrophile with the anionic base and/or the hemiketal (major colorless hydrated form).
This contribution to understanding the degradation mechanisms of anthocyanins around neutrality can open up new stabilization strategies to extend the range of their food applications to neutral media.
•The thermal degradation of red cabbage anthocyanins was investigated at pH 7, 50 °C.•Main non-oxidative routes: hydration, intramolecular acyl transfer, deacylation.•Main oxidative routes: C-ring cleavage, sugar elimination at C3, B-ring elimination.•Initiation: one- or two-electron transfer from the anionic base to O2.•H2O2 (produced upon initiation) probably sustains the oxidation. |
---|---|
AbstractList | In neutral solution, anthocyanins acylated by hydroxycinnamic acids typically exhibit attractive blue colors and a higher resistance to color loss compared to their nonacylated homologs. However, they remain vulnerable to a poorly understood combination of oxidative and hydrolytic reactions that strongly contribute to color loss and limits their industrial applications. In this work, the thermal degradation of isolated red cabbage anthocyanins (0, 1 or 2 acyl groups) at pH 7 was investigated by UPLC-DAD-MS (low- and high-resolution). Non-oxidative alterations, including deacylation and intramolecular acyl transfer, were observed and found very dependent on the number and position of the acyl group(s) as well as on the presence of iron ions. At intermediate and advanced thermal degradation, several oxidative mechanisms were evidenced that lead to protocatechuic acid, phloroglucinaldehyde 2-O-glucoside, acylglycosides and derivatives of 2,4,6-trihydroxyphenylacetic acid and 3,5,7-trihydroxycoumarin. Based on the product distribution observed and on the impact of added Fe2+ ions and H2O2, possible degradation mechanisms are discussed. They likely start with a one- or two-electron transfer from the anionic base (a major colored form in neutral solution) to O2. The hydrogen peroxide produced could then further react as an electrophile with the anionic base and/or the hemiketal (major colorless hydrated form).
This contribution to understanding the degradation mechanisms of anthocyanins around neutrality can open up new stabilization strategies to extend the range of their food applications to neutral media.
•The thermal degradation of red cabbage anthocyanins was investigated at pH 7, 50 °C.•Main non-oxidative routes: hydration, intramolecular acyl transfer, deacylation.•Main oxidative routes: C-ring cleavage, sugar elimination at C3, B-ring elimination.•Initiation: one- or two-electron transfer from the anionic base to O2.•H2O2 (produced upon initiation) probably sustains the oxidation. In neutral solution, anthocyanins acylated by hydroxycinnamic acids typically exhibit attractive blue colors and a higher resistance to color loss compared to their nonacylated homologs. However, they remain vulnerable to a poorly understood combination of oxidative and hydrolytic reactions that strongly contribute to color loss and limits their industrial applications. In this work, the thermal degradation of isolated red cabbage anthocyanins (0, 1 or 2 acyl groups) at pH 7 was investigated by UPLC-DAD-MS (low- and high-resolution). Non-oxidative alterations, including deacylation and intramolecular acyl transfer, were observed and found very dependent on the number and position of the acyl group(s) as well as on the presence of iron ions. At intermediate and advanced thermal degradation, several oxidative mechanisms were evidenced that lead to protocatechuic acid, phloroglucinaldehyde 2-O-glucoside, acylglycosides and derivatives of 2,4,6-trihydroxyphenylacetic acid and 3,5,7-trihydroxycoumarin. Based on the product distribution observed and on the impact of added Fe2þ ions and H2O2, possible degradation mechanisms are discussed. They likely start with a one- or two-electron transfer from the anionic base (a major colored form in neutral solution) to O2. The hydrogen peroxide produced could then further react as an electrophile with the anionic base and/or the hemiketal (major colorless hydrated form). This contribution to understanding the degradation mechanisms of anthocyanins around neutrality can open up new stabilization strategies to extend the range of their food applications to neutral media. |
ArticleNumber | 108326 |
Author | Robbins, Rebecca J. Fenger, Julie-Anne Collins, Thomas M. Dangles, Olivier |
Author_xml | – sequence: 1 givenname: Julie-Anne surname: Fenger fullname: Fenger, Julie-Anne email: julie-anne.fenger@univ-avignon.fr organization: Avignon University, INRAE, UMR408, 84000, Avignon, France – sequence: 2 givenname: Rebecca J. surname: Robbins fullname: Robbins, Rebecca J. organization: Mars Wrigley, 1132 W Blackhawk Street, Chicago, IL, 60642, USA – sequence: 3 givenname: Thomas M. surname: Collins fullname: Collins, Thomas M. – sequence: 4 givenname: Olivier surname: Dangles fullname: Dangles, Olivier email: olivier.dangles@univ-avignon.fr organization: Avignon University, INRAE, UMR408, 84000, Avignon, France |
BackLink | https://hal.inrae.fr/hal-03111200$$DView record in HAL |
BookMark | eNqFkE1LAzEQhoNUsK3-Aw-5etg6-eh-eBBKUSsUvNRzyCZZNyVNymZb2H_vrisePOhphpn3GZhnhiY-eIPQLYEFAZLe7xe6M0f7saBAh1HOaHqBpiTPWMIyziZoCoSzJKOQX6FZjHuAIUSmaL2rDa5ka3CosFSd61uNpW_roDrprY_YenywTrsO1-Zr682pbaTDMbhTa4O_RpeVdNHcfNc5en9-2q03yfbt5XW92iaKcWiT1FQ0zWQhWaGXUpUqK2nOaW600kpJChlPS-CcFFDkABUxpc6ZrpacaZDLjM3R3Xi3lk4cG3uQTSeCtGKz2ophBowQQgHOpM_yMauaEGNjqh-AgBikib0YpYlBmhil9djDL0zZVg5P9h9b9x_8OMKml3C2phFRWeOV0bYxqhU62L8PfAL8FIwX |
CitedBy_id | crossref_primary_10_1016_j_fochx_2024_101883 crossref_primary_10_1007_s11694_023_02230_x crossref_primary_10_1007_s13197_021_05054_z crossref_primary_10_1016_j_dyepig_2024_112367 crossref_primary_10_1080_10408398_2023_2238063 crossref_primary_10_3390_ijms22094551 crossref_primary_10_1016_j_foodchem_2024_142242 crossref_primary_10_1021_acs_jafc_1c05880 crossref_primary_10_1111_1541_4337_12970 crossref_primary_10_1021_acs_chemrev_1c00399 crossref_primary_10_1016_j_foodchem_2024_140964 crossref_primary_10_1016_j_lwt_2020_110178 crossref_primary_10_1016_j_foodhyd_2023_108649 crossref_primary_10_1021_acs_jafc_1c02378 crossref_primary_10_1016_j_foodchem_2020_128995 crossref_primary_10_1016_j_cpb_2022_100238 crossref_primary_10_1155_2023_6534117 crossref_primary_10_1002_efd2_21 crossref_primary_10_3390_polym13121966 crossref_primary_10_1021_acs_jafc_4c01050 crossref_primary_10_3390_nu14235133 crossref_primary_10_1016_j_dyepig_2020_108792 crossref_primary_10_3389_fpls_2022_885176 crossref_primary_10_1111_ijfs_16132 crossref_primary_10_1021_acs_jafc_4c06847 crossref_primary_10_1080_10408398_2024_2328176 crossref_primary_10_3390_cimb45090458 crossref_primary_10_1016_j_dyepig_2023_111187 crossref_primary_10_1016_j_fpsl_2022_100872 crossref_primary_10_1039_D1CP03034E crossref_primary_10_1021_acs_jafc_1c06521 crossref_primary_10_3390_antiox10091337 |
Cites_doi | 10.1007/s00394-005-0557-8 10.1016/S0021-9673(00)98528-5 10.1016/j.foodchem.2012.10.090 10.1016/S0031-9422(00)91300-1 10.1021/jf062875o 10.1016/j.foodchem.2014.08.123 10.1021/jf0107508 10.1021/jf901809p 10.1016/j.foodchem.2015.11.032 10.1016/j.dyepig.2018.05.057 10.1016/j.foodchem.2014.06.087 10.1016/0308-8146(94)90106-6 10.3233/JBR-160132 10.1021/acs.chemrev.5b00507 10.1021/jf8001872 10.1021/acs.jpcb.8b01136 10.1021/jf404869m 10.1016/j.tet.2018.09.012 10.1016/j.foodchem.2014.01.077 10.1016/j.foodchem.2017.04.127 10.1002/qua.25834 10.1039/C3RA47809B 10.3390/molecules23081970 10.1039/C9FO01884K 10.1002/mnfr.200700179 10.1016/j.foodchem.2016.07.071 10.1016/S0008-6215(99)00079-8 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Attribution - NonCommercial |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Attribution - NonCommercial |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.dyepig.2020.108326 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
EISSN | 1873-3743 |
ExternalDocumentID | oai_HAL_hal_03111200v1 10_1016_j_dyepig_2020_108326 S0143720820302734 |
GroupedDBID | --K --M .-4 .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HLY HVGLF HZ~ IHE J1W JJJVA KOM LX7 M24 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCE SDF SDG SDP SES SEW SMS SPC SPCBC SSG SSM SSZ T5K UHS WH7 WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 1XC EFKBS VOOES |
ID | FETCH-LOGICAL-c340t-6ef267a9a39d5acbc7b28428edcdcca20746b0441909800f1ebd83df543d0a573 |
IEDL.DBID | .~1 |
ISSN | 0143-7208 |
IngestDate | Fri Sep 12 12:36:38 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 Tue Jul 01 02:46:14 EDT 2025 Fri Feb 23 02:47:09 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-6ef267a9a39d5acbc7b28428edcdcca20746b0441909800f1ebd83df543d0a573 |
ORCID | 0000-0002-3905-5629 0000-0002-9501-0644 |
OpenAccessLink | https://hal.inrae.fr/hal-03111200 |
ParticipantIDs | hal_primary_oai_HAL_hal_03111200v1 crossref_primary_10_1016_j_dyepig_2020_108326 crossref_citationtrail_10_1016_j_dyepig_2020_108326 elsevier_sciencedirect_doi_10_1016_j_dyepig_2020_108326 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 2020-07 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationTitle | Dyes and pigments |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Stebbins (bib12) 2016; 6 Buchweitz, Brauch, Carle, Kammerer (bib16) 2013; 138 Kamiya, Yanase, Nakatsuka (bib22) 2014; 155 Dangles, Fenger (bib2) 2018; 23 Fleschhut, Kratzer, Rechkemmer, Kulling (bib8) 2006; 45 Fenger, Moloney, Robbins, Collins, Dangles (bib4) 2019; 10 Pina (bib14) 2014; 62 Es-Safi, Meudec, Bouchut, Fulcrand, Ducrot, Herbette (bib7) 2008; 56 Cabrita, Petrov, Pina (bib6) 2014; 4 Preston, Timberlake (bib18) 1981 Estévez, Sánchez‐Lozano, Mosquera (bib26) 2019; 119 Ahmadiani, Robbins, Collins, Giusti (bib17) 2016; 197 Lopes, Richard, Saucier, Teissedre, Monti, Glories (bib23) 2007; 55 Wiczkowski, Szawara-Nowak, Topolska (bib20) 2015; 167 Xu, Su, Lim, Griffin, Carey, Katz (bib27) 2015; 186 Seeram, Bourquin, Nair (bib10) 2001; 49 Thévenet, Wernicke, Belniak, Descotes, Bouchu, Queneau (bib19) 1999; 318 Hrazdina, Franzese (bib21) 1974; 13 Piffaut, Kader, Girardin, Metche (bib25) 1994; 50 Moloney, Robbins, Collins, Kondo, Yoshida, Dangles (bib3) 2018; 158 Sigurdson, Robbins, Collins, Giusti (bib5) 2017; 234 Sadilova, Carle, Stintzing (bib9) 2007; 51 Satake, Yanase (bib13) 2018; 74 Sinela, Rawat, Mertz, Achir, Fulcrand, Dornier (bib11) 2017; 214 Terahara, Matsui, Minoda, Nasu, Kikuchi, Fukui (bib24) 2009; 57 Mendoza, Basílio, Pina, Kondo, Yoshida (bib15) 2018; 122 Trouillas, Sancho-García, De Freitas, Gierschner, Otyepka, Dangles (bib1) 2016; 116 Kamiya (10.1016/j.dyepig.2020.108326_bib22) 2014; 155 Trouillas (10.1016/j.dyepig.2020.108326_bib1) 2016; 116 Wiczkowski (10.1016/j.dyepig.2020.108326_bib20) 2015; 167 Fleschhut (10.1016/j.dyepig.2020.108326_bib8) 2006; 45 Hrazdina (10.1016/j.dyepig.2020.108326_bib21) 1974; 13 Sinela (10.1016/j.dyepig.2020.108326_bib11) 2017; 214 Xu (10.1016/j.dyepig.2020.108326_bib27) 2015; 186 Estévez (10.1016/j.dyepig.2020.108326_bib26) 2019; 119 Sigurdson (10.1016/j.dyepig.2020.108326_bib5) 2017; 234 Mendoza (10.1016/j.dyepig.2020.108326_bib15) 2018; 122 Cabrita (10.1016/j.dyepig.2020.108326_bib6) 2014; 4 Dangles (10.1016/j.dyepig.2020.108326_bib2) 2018; 23 Preston (10.1016/j.dyepig.2020.108326_bib18) 1981 Fenger (10.1016/j.dyepig.2020.108326_bib4) 2019; 10 Pina (10.1016/j.dyepig.2020.108326_bib14) 2014; 62 Seeram (10.1016/j.dyepig.2020.108326_bib10) 2001; 49 Moloney (10.1016/j.dyepig.2020.108326_bib3) 2018; 158 Piffaut (10.1016/j.dyepig.2020.108326_bib25) 1994; 50 Satake (10.1016/j.dyepig.2020.108326_bib13) 2018; 74 Terahara (10.1016/j.dyepig.2020.108326_bib24) 2009; 57 Sadilova (10.1016/j.dyepig.2020.108326_bib9) 2007; 51 Stebbins (10.1016/j.dyepig.2020.108326_bib12) 2016; 6 Lopes (10.1016/j.dyepig.2020.108326_bib23) 2007; 55 Ahmadiani (10.1016/j.dyepig.2020.108326_bib17) 2016; 197 Thévenet (10.1016/j.dyepig.2020.108326_bib19) 1999; 318 Es-Safi (10.1016/j.dyepig.2020.108326_bib7) 2008; 56 Buchweitz (10.1016/j.dyepig.2020.108326_bib16) 2013; 138 |
References_xml | – volume: 51 start-page: 1461 year: 2007 end-page: 1471 ident: bib9 article-title: Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity publication-title: Mol Nutr Food Res – volume: 116 start-page: 4937 year: 2016 end-page: 4982 ident: bib1 article-title: Stabilizing and modulating color by copigmentation: insights from theory and experiment publication-title: Chem Rev – volume: 6 start-page: 175 year: 2016 end-page: 187 ident: bib12 article-title: Ascorbic acid-catalyzed degradation of cyanidin-3- O-β-glucoside: proposed mechanism and identification of a novel hydroxylated product publication-title: J Berry Res – volume: 10 start-page: 6740 year: 2019 end-page: 6751 ident: bib4 article-title: The influence of acylation, metal binding and natural antioxidants on the thermal stability of red cabbage anthocyanins in neutral solution publication-title: Food Funct – volume: 74 start-page: 6187 year: 2018 end-page: 6191 ident: bib13 article-title: Mechanistic studies of hydrogen-peroxide-mediated anthocyanin oxidation publication-title: Tetrahedron – volume: 214 start-page: 234 year: 2017 end-page: 241 ident: bib11 article-title: Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products publication-title: Food Chem – volume: 138 start-page: 2026 year: 2013 end-page: 2035 ident: bib16 article-title: Colour and stability assessment of blue ferric anthocyanin chelates in liquid pectin-stabilised model systems publication-title: Food Chem – volume: 23 start-page: 1970 year: 2018 ident: bib2 article-title: The chemical reactivity of anthocyanins and its consequences in food science and nutrition publication-title: Molecules – volume: 45 start-page: 7 year: 2006 end-page: 18 ident: bib8 article-title: Stability and biotransformation of various dietary anthocyanins in vitro publication-title: Eur J Nutr – volume: 13 start-page: 231 year: 1974 end-page: 234 ident: bib21 article-title: Oxidation products of acylated anthocyanins under acidic and neutral conditions publication-title: Phytochemistry – volume: 158 start-page: 342 year: 2018 end-page: 352 ident: bib3 article-title: Red cabbage anthocyanins: the influence of d-glucose acylation by hydroxycinnamic acids on their structural transformations in acidic to mildly alkaline conditions and on the resulting color publication-title: Dyes Pigments – start-page: 222 year: 1981 end-page: 228 ident: bib18 article-title: Separation of anthocyanin by high-performance liquid chromatography publication-title: J Chromatogr – volume: 318 start-page: 52 year: 1999 end-page: 66 ident: bib19 article-title: Esterification of unprotected sucrose with acid chlorides in aqueous medium: kinetic reactivity versus acyl- or alkyloxycarbonyl-group migrations publication-title: Carbohydr Res – volume: 155 start-page: 221 year: 2014 end-page: 226 ident: bib22 article-title: Novel oxidation products of cyanidin 3-O-glucoside with 2,2′-azobis-(2,4-dimethyl)valeronitrile and evaluation of anthocyanin content and its oxidation in black rice publication-title: Food Chem – volume: 57 start-page: 8331 year: 2009 end-page: 8338 ident: bib24 article-title: Functional new acylated sophoroses and deglucosylated anthocyanins in a fermented red vinegar publication-title: J Agric Food Chem – volume: 4 start-page: 18939 year: 2014 end-page: 18944 ident: bib6 article-title: On the thermal degradation of anthocyanidins: cyanidin publication-title: RSC Adv – volume: 122 start-page: 4982 year: 2018 end-page: 4992 ident: bib15 article-title: Rationalizing the color in heavenly blue anthocyanin. A complete kinetic and thermodynamic study publication-title: J Phys Chem B – volume: 167 start-page: 115 year: 2015 end-page: 123 ident: bib20 article-title: Changes in the content and composition of anthocyanins in red cabbage and its antioxidant capacity during fermentation, storage and stewing publication-title: Food Chem – volume: 50 start-page: 115 year: 1994 end-page: 120 ident: bib25 article-title: Comparative degradation pathways of malvidin 3,5-diglucoside after enzymatic and thermal treatments publication-title: Food Chem – volume: 119 start-page: 1 year: 2019 end-page: 11 ident: bib26 article-title: Complexation of common metal cations by cyanins: binding affinity and molecular structure publication-title: Int J Quant Chem – volume: 197 start-page: 900 year: 2016 end-page: 906 ident: bib17 article-title: Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage publication-title: Food Chem – volume: 186 start-page: 90 year: 2015 end-page: 96 ident: bib27 article-title: Characterisation and stability of anthocyanins in purple-fleshed sweet potato P40 publication-title: Food Chem – volume: 56 start-page: 4584 year: 2008 end-page: 4591 ident: bib7 article-title: New compounds obtained by evolution and oxidation of malvidin 3- publication-title: J Agric Food Chem – volume: 49 start-page: 4924 year: 2001 end-page: 4929 ident: bib10 article-title: Degradation products of cyanidin glycosides from Tart Cherries and their bioactivities publication-title: J Agric Food Chem – volume: 234 start-page: 131 year: 2017 end-page: 138 ident: bib5 article-title: Effects of hydroxycinnamic acids on blue color expression of cyanidin derivatives and their metal chelates publication-title: Food Chem – volume: 55 start-page: 2698 year: 2007 end-page: 2704 ident: bib23 article-title: Anthocyanone A: A quinone methide derivative resulting from malvidin 3-O-glucoside degradation publication-title: J Agric Food Chem – volume: 62 start-page: 6885 year: 2014 end-page: 6897 ident: bib14 article-title: Chemical applications of anthocyanins and related compounds. A source of bioinspiration publication-title: J Agric Food Chem – volume: 45 start-page: 7 year: 2006 ident: 10.1016/j.dyepig.2020.108326_bib8 article-title: Stability and biotransformation of various dietary anthocyanins in vitro publication-title: Eur J Nutr doi: 10.1007/s00394-005-0557-8 – start-page: 222 year: 1981 ident: 10.1016/j.dyepig.2020.108326_bib18 article-title: Separation of anthocyanin by high-performance liquid chromatography publication-title: J Chromatogr doi: 10.1016/S0021-9673(00)98528-5 – volume: 138 start-page: 2026 year: 2013 ident: 10.1016/j.dyepig.2020.108326_bib16 article-title: Colour and stability assessment of blue ferric anthocyanin chelates in liquid pectin-stabilised model systems publication-title: Food Chem doi: 10.1016/j.foodchem.2012.10.090 – volume: 13 start-page: 231 year: 1974 ident: 10.1016/j.dyepig.2020.108326_bib21 article-title: Oxidation products of acylated anthocyanins under acidic and neutral conditions publication-title: Phytochemistry doi: 10.1016/S0031-9422(00)91300-1 – volume: 55 start-page: 2698 year: 2007 ident: 10.1016/j.dyepig.2020.108326_bib23 article-title: Anthocyanone A: A quinone methide derivative resulting from malvidin 3-O-glucoside degradation publication-title: J Agric Food Chem doi: 10.1021/jf062875o – volume: 186 start-page: 90 year: 2015 ident: 10.1016/j.dyepig.2020.108326_bib27 article-title: Characterisation and stability of anthocyanins in purple-fleshed sweet potato P40 publication-title: Food Chem doi: 10.1016/j.foodchem.2014.08.123 – volume: 49 start-page: 4924 year: 2001 ident: 10.1016/j.dyepig.2020.108326_bib10 article-title: Degradation products of cyanidin glycosides from Tart Cherries and their bioactivities publication-title: J Agric Food Chem doi: 10.1021/jf0107508 – volume: 57 start-page: 8331 year: 2009 ident: 10.1016/j.dyepig.2020.108326_bib24 article-title: Functional new acylated sophoroses and deglucosylated anthocyanins in a fermented red vinegar publication-title: J Agric Food Chem doi: 10.1021/jf901809p – volume: 197 start-page: 900 year: 2016 ident: 10.1016/j.dyepig.2020.108326_bib17 article-title: Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage publication-title: Food Chem doi: 10.1016/j.foodchem.2015.11.032 – volume: 158 start-page: 342 year: 2018 ident: 10.1016/j.dyepig.2020.108326_bib3 article-title: Red cabbage anthocyanins: the influence of d-glucose acylation by hydroxycinnamic acids on their structural transformations in acidic to mildly alkaline conditions and on the resulting color publication-title: Dyes Pigments doi: 10.1016/j.dyepig.2018.05.057 – volume: 167 start-page: 115 year: 2015 ident: 10.1016/j.dyepig.2020.108326_bib20 article-title: Changes in the content and composition of anthocyanins in red cabbage and its antioxidant capacity during fermentation, storage and stewing publication-title: Food Chem doi: 10.1016/j.foodchem.2014.06.087 – volume: 50 start-page: 115 year: 1994 ident: 10.1016/j.dyepig.2020.108326_bib25 article-title: Comparative degradation pathways of malvidin 3,5-diglucoside after enzymatic and thermal treatments publication-title: Food Chem doi: 10.1016/0308-8146(94)90106-6 – volume: 6 start-page: 175 year: 2016 ident: 10.1016/j.dyepig.2020.108326_bib12 article-title: Ascorbic acid-catalyzed degradation of cyanidin-3- O-β-glucoside: proposed mechanism and identification of a novel hydroxylated product publication-title: J Berry Res doi: 10.3233/JBR-160132 – volume: 116 start-page: 4937 year: 2016 ident: 10.1016/j.dyepig.2020.108326_bib1 article-title: Stabilizing and modulating color by copigmentation: insights from theory and experiment publication-title: Chem Rev doi: 10.1021/acs.chemrev.5b00507 – volume: 56 start-page: 4584 year: 2008 ident: 10.1016/j.dyepig.2020.108326_bib7 article-title: New compounds obtained by evolution and oxidation of malvidin 3- O -glucoside in ethanolic medium publication-title: J Agric Food Chem doi: 10.1021/jf8001872 – volume: 122 start-page: 4982 year: 2018 ident: 10.1016/j.dyepig.2020.108326_bib15 article-title: Rationalizing the color in heavenly blue anthocyanin. A complete kinetic and thermodynamic study publication-title: J Phys Chem B doi: 10.1021/acs.jpcb.8b01136 – volume: 62 start-page: 6885 year: 2014 ident: 10.1016/j.dyepig.2020.108326_bib14 article-title: Chemical applications of anthocyanins and related compounds. A source of bioinspiration publication-title: J Agric Food Chem doi: 10.1021/jf404869m – volume: 74 start-page: 6187 year: 2018 ident: 10.1016/j.dyepig.2020.108326_bib13 article-title: Mechanistic studies of hydrogen-peroxide-mediated anthocyanin oxidation publication-title: Tetrahedron doi: 10.1016/j.tet.2018.09.012 – volume: 155 start-page: 221 year: 2014 ident: 10.1016/j.dyepig.2020.108326_bib22 article-title: Novel oxidation products of cyanidin 3-O-glucoside with 2,2′-azobis-(2,4-dimethyl)valeronitrile and evaluation of anthocyanin content and its oxidation in black rice publication-title: Food Chem doi: 10.1016/j.foodchem.2014.01.077 – volume: 234 start-page: 131 year: 2017 ident: 10.1016/j.dyepig.2020.108326_bib5 article-title: Effects of hydroxycinnamic acids on blue color expression of cyanidin derivatives and their metal chelates publication-title: Food Chem doi: 10.1016/j.foodchem.2017.04.127 – volume: 119 start-page: 1 year: 2019 ident: 10.1016/j.dyepig.2020.108326_bib26 article-title: Complexation of common metal cations by cyanins: binding affinity and molecular structure publication-title: Int J Quant Chem doi: 10.1002/qua.25834 – volume: 4 start-page: 18939 year: 2014 ident: 10.1016/j.dyepig.2020.108326_bib6 article-title: On the thermal degradation of anthocyanidins: cyanidin publication-title: RSC Adv doi: 10.1039/C3RA47809B – volume: 23 start-page: 1970 year: 2018 ident: 10.1016/j.dyepig.2020.108326_bib2 article-title: The chemical reactivity of anthocyanins and its consequences in food science and nutrition publication-title: Molecules doi: 10.3390/molecules23081970 – volume: 10 start-page: 6740 year: 2019 ident: 10.1016/j.dyepig.2020.108326_bib4 article-title: The influence of acylation, metal binding and natural antioxidants on the thermal stability of red cabbage anthocyanins in neutral solution publication-title: Food Funct doi: 10.1039/C9FO01884K – volume: 51 start-page: 1461 year: 2007 ident: 10.1016/j.dyepig.2020.108326_bib9 article-title: Thermal degradation of anthocyanins and its impact on color and in vitro antioxidant capacity publication-title: Mol Nutr Food Res doi: 10.1002/mnfr.200700179 – volume: 214 start-page: 234 year: 2017 ident: 10.1016/j.dyepig.2020.108326_bib11 article-title: Anthocyanins degradation during storage of Hibiscus sabdariffa extract and evolution of its degradation products publication-title: Food Chem doi: 10.1016/j.foodchem.2016.07.071 – volume: 318 start-page: 52 year: 1999 ident: 10.1016/j.dyepig.2020.108326_bib19 article-title: Esterification of unprotected sucrose with acid chlorides in aqueous medium: kinetic reactivity versus acyl- or alkyloxycarbonyl-group migrations publication-title: Carbohydr Res doi: 10.1016/S0008-6215(99)00079-8 |
SSID | ssj0008321 |
Score | 2.470994 |
Snippet | In neutral solution, anthocyanins acylated by hydroxycinnamic acids typically exhibit attractive blue colors and a higher resistance to color loss compared to... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 108326 |
SubjectTerms | Analytical chemistry Biochemistry Biochemistry, Molecular Biology Chemical Sciences Life Sciences Vegetal Biology |
Title | The fate of acylated anthocyanins in mildly heated neutral solution |
URI | https://dx.doi.org/10.1016/j.dyepig.2020.108326 https://hal.inrae.fr/hal-03111200 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC58IOpB3FHxTbN4bSd2d17HYVBGx_WwKOst9CsaGeOgozAXf7tVeegKguApSafzoLpS9aX5-iuAAyGCJEWgypVQEVexC7gWkeRKGRtam_rE0dTAn4tocKXOrsPrGei3a2GIVtnE_jqmV9G6aek21uyOi6JLtCQqsYIpTFYiLbSCXcXk64evHzQPqsRT0xglp97t8rmK4-Wmflzc4F-iqMh2kiQWvk5Ps7ftRGuVeE5WYaVBjKxXv9QvmPFlBxb7baG2Diz_pynYgYWK02mf1qCPLsByxJLsIWfaTke465gmtQA71WVRPrGiZPfFyI2mjGIyni39M019sNYj1-Hq5PiyP-BNzQRupQomPPK5iGKdapm6UFtjY4MJSCTeWYeDJai8iAkQA6VBilgxP_LGJdLloZIu0GEsN2CufCj9JjClHH7MJreRyJXxcYJgyyjttTeJi1K7BbI1VWYbQXGqazHKWubYXVYbOCMDZ7WBt4C_XzWuBTW-6R-3o5B9cowMY_43V_7GQXt_COloD3rnGbVhJEOcGQQvR9s_vv0OLNFRTd3dhbnJ47PfQ4AyMfuVB-7DfO90OLig7fDvv-EbPf_kvg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSxxBEC58IOpBdFXiK2lCru3Odve8jrIoa7J6UvDW9Gt0ZB2XuAp7yW9P1Tw0AUHwNvRjZqiuqfqm-forgB9CRFmOQJUroRKuUh9xIxLJlbIudi4PmaetgYvLZHStft7ENwsw7M7CEK2yjf1NTK-jddvSb63Zn5Zln2hJVGIFU5isRVoWYVmRR6FTH_9543lQKZ6Gxyg5De_Oz9UkLz8P0_IWfxNFzbaTpLHwfn5avOt2WuvMc7YJGy1kZCfNW23BQqh6sDrsKrX1YP0fUcEerNSkTve0DUP0AVYgmGSPBTNuPsFLzwzJBbi5qcrqiZUVeygnfjJnFJSxtwrPtPfBOpfcgeuz06vhiLdFE7iTKprxJBQiSU1uZO5j46xLLWYgkQXvPK6WoPoiNkIQlEc5gsViEKzPpC9iJX1k4lTuwlL1WIUvwJTy-DXbwiWiUDakGaItq0wwwWY-yd0eyM5U2rWK4lTYYqI76ti9bgysycC6MfAe8NdZ00ZR44PxabcK-j_P0Bj0P5j5HRft9SEkpD06GWtqw1CGQDOKXgb7n779N1gdXV2M9fj88tcBrFFPw-M9hKXZ7-dwhGhlZr_W3vgXbZHkrA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fate+of+acylated+anthocyanins+in+mildly+heated+neutral+solution&rft.jtitle=Dyes+and+pigments&rft.au=Fenger%2C+Julie-Anne&rft.au=Robbins%2C+Rebecca&rft.au=Collins%2C+Thomas&rft.au=Dangles%2C+Olivier&rft.date=2020-07-01&rft.pub=Elsevier&rft.issn=0143-7208&rft.volume=178&rft_id=info:doi/10.1016%2Fj.dyepig.2020.108326&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_03111200v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-7208&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-7208&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-7208&client=summon |