Quantification of right atrial fibrosis by cardiac magnetic resonance: verification of the method to standardize thresholds

Late gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) allows noninvasive detection of left atrial fibrosis in patients with atrial fibrillation (AF). However, whether the same methodology can be used in the right atrium (RA) remains unknown. Our aim was to define a standardized threshold to...

Full description

Saved in:
Bibliographic Details
Published inRevista española de cardiología (English ed.) Vol. 76; no. 3; pp. 173 - 182
Main Authors Gunturiz-Beltrán, Clara, Borràs, Roger, Alarcón, Francisco, Garre, Paz, Figueras i Ventura, Rosa M., Benito, Eva M., Caixal, Gala, Althoff, Till F., Tolosana, José María, Arbelo, Elena, Roca-Luque, Ivo, Prat-González, Susanna, Perea, Rosario Jesús, Brugada, Josep, Sitges, Marta, Guasch, Eduard, Mont, Lluís
Format Journal Article
LanguageEnglish
Published Spain Elsevier España, S.L.U 01.03.2023
Subjects
Online AccessGet full text
ISSN1885-5857
1885-5857
DOI10.1016/j.rec.2022.06.010

Cover

Abstract Late gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) allows noninvasive detection of left atrial fibrosis in patients with atrial fibrillation (AF). However, whether the same methodology can be used in the right atrium (RA) remains unknown. Our aim was to define a standardized threshold to characterize RA fibrosis in LGE-CMR. A 3 Tesla LGE-CMR was performed in 53 individuals; the RA was segmented, and the image intensity ratio (IIR) calculated for the RA wall using 1 557 767 IIR pixels (40 994±10 693 per patient). The upper limit of normality of the IIR (mean IIR+2 standard deviations) was estimated in healthy volunteers (n=9), and patients who had undergone previous typical atrial flutter ablation (n=9) were used to establish the dense scar threshold. Paroxysmal and persistent AF patients (n=10 each) were used for validation. IIR values were correlated with a high-density bipolar voltage map in 15 patients undergoing AF ablation. The upper normality limit (total fibrosis threshold) in healthy volunteers was set at an IIR = 1.21. In the postablation group, 60% of the maximum IIR pixel (dense fibrosis threshold) was calculated as IIR = 1.29. Endocardial bipolar voltage showed a weak but significant correlation with IIR. The overall accuracy between the electroanatomical map and LGE-CMR to characterize fibrosis was 56%. An IIR > 1.21 was determined to be the threshold for the detection of right atrial fibrosis, while an IIR > 1.29 differentiates interstitial fibrosis from dense scar. Despite differences between the left and right atria, fibrosis could be assessed with LGE-CMR using similar thresholds in both chambers. La resonancia magnética cardiaca con realce tardío de gadolinio (RMC-RTG) permite la detección no invasiva de la fibrosis auricular izquierda en pacientes con fibrilación auricular (FA). Sin embargo, se desconoce si se puede utilizar la misma metodología en la aurícula derecha (AD). Nuestro objetivo fue definir un umbral estandarizado para caracterizar la fibrosis auricular derecha mediante RMC-RTG. Se realizaron RMC-RTG de 3 T en 53 personas; se segmentó la AD y se calculó la razón de intensidad de imagen (RII) para la pared de la AD utilizando 1.557.767 píxeles de RII (40.994±10.693 por paciente). El límite superior de la normalidad de la RII (RII promedio+2 desviaciones estándar) se estimó en voluntarios sanos (n = 9); para establecer el umbral de cicatriz densa, se utilizó a los pacientes que se habían sometido previamente a una ablación del flutter auricular típico (n = 9). Se incluyó a pacientes con FA paroxística y persistente (n=10 cada grupo) para la validación. Los valores de RII se correlacionaron con un mapa de voltaje bipolar de alta densidad en 15 pacientes sometidos a ablación de FA. El límite superior de la normalidad (umbral de fibrosis total) en voluntarios sanos se fijó en RII = 1,21. En el grupo postablación, el 60% del píxel de la RII máximo (umbral de fibrosis densa) se calculó como RII = 1,29. El voltaje bipolar endocárdico mostró una correlación con la RII débil pero significativa. La precisión general entre el mapa electroanatómico y la RMC-RTG para caracterizar la fibrosis fue del 56%. Se determinó una RII > 1,21 como umbral para la detección de fibrosis de la aurícula derecha, mientras que una RII > 1,29 diferencia la fibrosis intersticial de la cicatriz densa. A pesar de las diferencias entre las aurículas izquierda y derecha, se pudo evaluar la fibrosis con RMC-RTG con umbrales similares en ambas cámaras.
AbstractList Late gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) allows noninvasive detection of left atrial fibrosis in patients with atrial fibrillation (AF). However, whether the same methodology can be used in the right atrium (RA) remains unknown. Our aim was to define a standardized threshold to characterize RA fibrosis in LGE-CMR. A 3 Tesla LGE-CMR was performed in 53 individuals; the RA was segmented, and the image intensity ratio (IIR) calculated for the RA wall using 1 557 767 IIR pixels (40 994±10 693 per patient). The upper limit of normality of the IIR (mean IIR+2 standard deviations) was estimated in healthy volunteers (n=9), and patients who had undergone previous typical atrial flutter ablation (n=9) were used to establish the dense scar threshold. Paroxysmal and persistent AF patients (n=10 each) were used for validation. IIR values were correlated with a high-density bipolar voltage map in 15 patients undergoing AF ablation. The upper normality limit (total fibrosis threshold) in healthy volunteers was set at an IIR = 1.21. In the postablation group, 60% of the maximum IIR pixel (dense fibrosis threshold) was calculated as IIR = 1.29. Endocardial bipolar voltage showed a weak but significant correlation with IIR. The overall accuracy between the electroanatomical map and LGE-CMR to characterize fibrosis was 56%. An IIR > 1.21 was determined to be the threshold for the detection of right atrial fibrosis, while an IIR > 1.29 differentiates interstitial fibrosis from dense scar. Despite differences between the left and right atria, fibrosis could be assessed with LGE-CMR using similar thresholds in both chambers.
AbstractIntroduction and objectivesLate gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) allows noninvasive detection of left atrial fibrosis in patients with atrial fibrillation (AF). However, whether the same methodology can be used in the right atrium (RA) remains unknown. Our aim was to define a standardized threshold to characterize RA fibrosis in LGE-CMR. MethodsA 3 Tesla LGE-CMR was performed in 53 individuals; the RA was segmented, and the image intensity ratio (IIR) calculated for the RA wall using 1 557 767 IIR pixels (40 994 ± 10 693 per patient). The upper limit of normality of the IIR (mean IIR + 2 standard deviations) was estimated in healthy volunteers (n = 9), and patients who had undergone previous typical atrial flutter ablation (n = 9) were used to establish the dense scar threshold. Paroxysmal and persistent AF patients (n = 10 each) were used for validation. IIR values were correlated with a high-density bipolar voltage map in 15 patients undergoing AF ablation. ResultsThe upper normality limit (total fibrosis threshold) in healthy volunteers was set at an IIR  =  1.21. In the postablation group, 60% of the maximum IIR pixel (dense fibrosis threshold) was calculated as IIR  =  1.29. Endocardial bipolar voltage showed a weak but significant correlation with IIR. The overall accuracy between the electroanatomical map and LGE-CMR to characterize fibrosis was 56%. ConclusionsAn IIR  >  1.21 was determined to be the threshold for the detection of right atrial fibrosis, while an IIR  >  1.29 differentiates interstitial fibrosis from dense scar. Despite differences between the left and right atria, fibrosis could be assessed with LGE-CMR using similar thresholds in both chambers.
Late gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) allows noninvasive detection of left atrial fibrosis in patients with atrial fibrillation (AF). However, whether the same methodology can be used in the right atrium (RA) remains unknown. Our aim was to define a standardized threshold to characterize RA fibrosis in LGE-CMR. A 3 Tesla LGE-CMR was performed in 53 individuals; the RA was segmented, and the image intensity ratio (IIR) calculated for the RA wall using 1 557 767 IIR pixels (40 994±10 693 per patient). The upper limit of normality of the IIR (mean IIR+2 standard deviations) was estimated in healthy volunteers (n=9), and patients who had undergone previous typical atrial flutter ablation (n=9) were used to establish the dense scar threshold. Paroxysmal and persistent AF patients (n=10 each) were used for validation. IIR values were correlated with a high-density bipolar voltage map in 15 patients undergoing AF ablation. The upper normality limit (total fibrosis threshold) in healthy volunteers was set at an IIR = 1.21. In the postablation group, 60% of the maximum IIR pixel (dense fibrosis threshold) was calculated as IIR = 1.29. Endocardial bipolar voltage showed a weak but significant correlation with IIR. The overall accuracy between the electroanatomical map and LGE-CMR to characterize fibrosis was 56%. An IIR > 1.21 was determined to be the threshold for the detection of right atrial fibrosis, while an IIR > 1.29 differentiates interstitial fibrosis from dense scar. Despite differences between the left and right atria, fibrosis could be assessed with LGE-CMR using similar thresholds in both chambers. La resonancia magnética cardiaca con realce tardío de gadolinio (RMC-RTG) permite la detección no invasiva de la fibrosis auricular izquierda en pacientes con fibrilación auricular (FA). Sin embargo, se desconoce si se puede utilizar la misma metodología en la aurícula derecha (AD). Nuestro objetivo fue definir un umbral estandarizado para caracterizar la fibrosis auricular derecha mediante RMC-RTG. Se realizaron RMC-RTG de 3 T en 53 personas; se segmentó la AD y se calculó la razón de intensidad de imagen (RII) para la pared de la AD utilizando 1.557.767 píxeles de RII (40.994±10.693 por paciente). El límite superior de la normalidad de la RII (RII promedio+2 desviaciones estándar) se estimó en voluntarios sanos (n = 9); para establecer el umbral de cicatriz densa, se utilizó a los pacientes que se habían sometido previamente a una ablación del flutter auricular típico (n = 9). Se incluyó a pacientes con FA paroxística y persistente (n=10 cada grupo) para la validación. Los valores de RII se correlacionaron con un mapa de voltaje bipolar de alta densidad en 15 pacientes sometidos a ablación de FA. El límite superior de la normalidad (umbral de fibrosis total) en voluntarios sanos se fijó en RII = 1,21. En el grupo postablación, el 60% del píxel de la RII máximo (umbral de fibrosis densa) se calculó como RII = 1,29. El voltaje bipolar endocárdico mostró una correlación con la RII débil pero significativa. La precisión general entre el mapa electroanatómico y la RMC-RTG para caracterizar la fibrosis fue del 56%. Se determinó una RII > 1,21 como umbral para la detección de fibrosis de la aurícula derecha, mientras que una RII > 1,29 diferencia la fibrosis intersticial de la cicatriz densa. A pesar de las diferencias entre las aurículas izquierda y derecha, se pudo evaluar la fibrosis con RMC-RTG con umbrales similares en ambas cámaras.
Late gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) allows noninvasive detection of left atrial fibrosis in patients with atrial fibrillation (AF). However, whether the same methodology can be used in the right atrium (RA) remains unknown. Our aim was to define a standardized threshold to characterize RA fibrosis in LGE-CMR.INTRODUCTION AND OBJECTIVESLate gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) allows noninvasive detection of left atrial fibrosis in patients with atrial fibrillation (AF). However, whether the same methodology can be used in the right atrium (RA) remains unknown. Our aim was to define a standardized threshold to characterize RA fibrosis in LGE-CMR.A 3 Tesla LGE-CMR was performed in 53 individuals; the RA was segmented, and the image intensity ratio (IIR) calculated for the RA wall using 1 557 767 IIR pixels (40 994±10 693 per patient). The upper limit of normality of the IIR (mean IIR+2 standard deviations) was estimated in healthy volunteers (n=9), and patients who had undergone previous typical atrial flutter ablation (n=9) were used to establish the dense scar threshold. Paroxysmal and persistent AF patients (n=10 each) were used for validation. IIR values were correlated with a high-density bipolar voltage map in 15 patients undergoing AF ablation.METHODSA 3 Tesla LGE-CMR was performed in 53 individuals; the RA was segmented, and the image intensity ratio (IIR) calculated for the RA wall using 1 557 767 IIR pixels (40 994±10 693 per patient). The upper limit of normality of the IIR (mean IIR+2 standard deviations) was estimated in healthy volunteers (n=9), and patients who had undergone previous typical atrial flutter ablation (n=9) were used to establish the dense scar threshold. Paroxysmal and persistent AF patients (n=10 each) were used for validation. IIR values were correlated with a high-density bipolar voltage map in 15 patients undergoing AF ablation.The upper normality limit (total fibrosis threshold) in healthy volunteers was set at an IIR = 1.21. In the postablation group, 60% of the maximum IIR pixel (dense fibrosis threshold) was calculated as IIR = 1.29. Endocardial bipolar voltage showed a weak but significant correlation with IIR. The overall accuracy between the electroanatomical map and LGE-CMR to characterize fibrosis was 56%.RESULTSThe upper normality limit (total fibrosis threshold) in healthy volunteers was set at an IIR = 1.21. In the postablation group, 60% of the maximum IIR pixel (dense fibrosis threshold) was calculated as IIR = 1.29. Endocardial bipolar voltage showed a weak but significant correlation with IIR. The overall accuracy between the electroanatomical map and LGE-CMR to characterize fibrosis was 56%.An IIR > 1.21 was determined to be the threshold for the detection of right atrial fibrosis, while an IIR > 1.29 differentiates interstitial fibrosis from dense scar. Despite differences between the left and right atria, fibrosis could be assessed with LGE-CMR using similar thresholds in both chambers.CONCLUSIONSAn IIR > 1.21 was determined to be the threshold for the detection of right atrial fibrosis, while an IIR > 1.29 differentiates interstitial fibrosis from dense scar. Despite differences between the left and right atria, fibrosis could be assessed with LGE-CMR using similar thresholds in both chambers.
Author Roca-Luque, Ivo
Guasch, Eduard
Perea, Rosario Jesús
Borràs, Roger
Garre, Paz
Benito, Eva M.
Sitges, Marta
Prat-González, Susanna
Gunturiz-Beltrán, Clara
Tolosana, José María
Althoff, Till F.
Arbelo, Elena
Figueras i Ventura, Rosa M.
Brugada, Josep
Alarcón, Francisco
Caixal, Gala
Mont, Lluís
Author_xml – sequence: 1
  givenname: Clara
  surname: Gunturiz-Beltrán
  fullname: Gunturiz-Beltrán, Clara
  organization: Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
– sequence: 2
  givenname: Roger
  surname: Borràs
  fullname: Borràs, Roger
  organization: Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
– sequence: 3
  givenname: Francisco
  surname: Alarcón
  fullname: Alarcón, Francisco
  organization: Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
– sequence: 4
  givenname: Paz
  surname: Garre
  fullname: Garre, Paz
  organization: Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
– sequence: 5
  givenname: Rosa M.
  surname: Figueras i Ventura
  fullname: Figueras i Ventura, Rosa M.
  organization: ADAS3D Medical, S.L., Barcelona, Spain
– sequence: 6
  givenname: Eva M.
  surname: Benito
  fullname: Benito, Eva M.
  organization: Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
– sequence: 7
  givenname: Gala
  surname: Caixal
  fullname: Caixal, Gala
  organization: Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
– sequence: 8
  givenname: Till F.
  surname: Althoff
  fullname: Althoff, Till F.
  organization: Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
– sequence: 9
  givenname: José María
  surname: Tolosana
  fullname: Tolosana, José María
  organization: Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
– sequence: 10
  givenname: Elena
  surname: Arbelo
  fullname: Arbelo, Elena
  organization: Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
– sequence: 11
  givenname: Ivo
  surname: Roca-Luque
  fullname: Roca-Luque, Ivo
  organization: Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
– sequence: 12
  givenname: Susanna
  surname: Prat-González
  fullname: Prat-González, Susanna
  organization: Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
– sequence: 13
  givenname: Rosario Jesús
  surname: Perea
  fullname: Perea, Rosario Jesús
  organization: Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
– sequence: 14
  givenname: Josep
  surname: Brugada
  fullname: Brugada, Josep
  organization: Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
– sequence: 15
  givenname: Marta
  surname: Sitges
  fullname: Sitges, Marta
  organization: Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
– sequence: 16
  givenname: Eduard
  surname: Guasch
  fullname: Guasch, Eduard
  organization: Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
– sequence: 17
  givenname: Lluís
  surname: Mont
  fullname: Mont, Lluís
  email: lmont@clinic.cat
  organization: Institut Clínic Cardiovascular, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35809892$$D View this record in MEDLINE/PubMed
BookMark eNqFkU2L1TAYhYOMOB_6A9xIlm5uzUeTpgqCDM4oDIio65Amb-fm2iZjkg5c_fOm3FFUUFcN9HlOyDmn6CjEAAg9pqShhMpnuyaBbRhhrCGyIZTcQydUKbERSnRHv5yP0WnOO0IEV137AB1zoUivenaCvr1fTCh-9NYUHwOOI07-eluwKcmbCY9-SDH7jIc9tiY5byyezXWA4i1OkGMwwcJzfAvpt5CyBTxD2UaHS8S5mOBW-yvUP1Xbxsnlh-j-aKYMj-6-Z-jTxeuP5282V-8u356_utpY3pKykda5XrVAJRGOS9e3nNHWAmk5ZaLnnIz90BFHRz70kjNhOB-5k73hgjve8jP09JB7k-KXBXLRs88WpskEiEvWTKquo4orXtEnd-gyzOD0TfKzSXv9o7AK0ANgay05wfgToUSvo-idrqPodRRNpK6jVOfFwYH6yFsPSWfrodbmfEWLdtH_0375h20nH2rV02fYQ97FJYXanqY6V0d_WEdfN2eMEKqoqAH93wP-c_l3ce68wg
Cites_doi 10.1371/journal.pone.0129124
10.1007/s00392-012-0431-7
10.1111/j.1540-8167.2009.01611.x
10.1093/europace/euaa313
10.1109/TVCG.2020.2966702
10.1253/circj.CJ-11-0585
10.1016/j.jcmg.2014.01.014
10.1016/j.hrthm.2013.10.007
10.1186/s12968-018-0449-8
10.1093/europace/euw219
10.1007/s10554-019-01728-0
10.1161/CIRCULATIONAHA.108.811877
10.1161/CIRCEP.118.006659
10.1016/j.hrthm.2011.10.017
10.1093/europace/eux051
10.1016/j.hrthm.2011.12.016
10.1161/CIRCEP.120.008707
10.1161/CIRCIMAGING.110.962761
10.1093/europace/euy314
10.1001/jama.2014.3
10.1016/j.ahj.2020.05.015
10.1016/j.hrthm.2015.09.030
10.1111/j.1540-8167.2011.02140.x
10.1016/j.jacc.2008.05.062
10.1016/j.jacc.2010.09.049
10.1093/ehjci/jet116
10.1002/clc.23051
10.1111/jce.13297
ContentType Journal Article
Copyright 2023 Sociedad Española de Cardiología
Sociedad Española de Cardiología
Copyright © 2023 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Copyright_xml – notice: 2023 Sociedad Española de Cardiología
– notice: Sociedad Española de Cardiología
– notice: Copyright © 2023 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.rec.2022.06.010
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed



MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
DocumentTitleAlternate Cuantificación de la fibrosis auricular derecha mediante resonancia magnética cardiaca: verificación del método para la estandarización de umbrales
EISSN 1885-5857
EndPage 182
ExternalDocumentID 35809892
10_1016_j_rec_2022_06_010
S1885585722001815
1_s2_0_S1885585722001815
Genre Journal Article
GroupedDBID --K
--M
.1-
.FO
.~1
0R~
123
1B1
1P~
1~.
1~5
457
4G.
53G
5VS
65R
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACIEU
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
ADNMO
AEBSH
AEIPS
AEKER
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OA~
OK1
OL0
OZT
P-8
P-9
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPCBC
SSH
SSZ
T5K
Z5R
~G-
AACTN
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
EFLBG
LCYCR
AAYXX
AGRNS
CITATION
NPM
7X8
ID FETCH-LOGICAL-c340t-6cdd984e1605d36d943214ce0431259330f9b70d1f3b96325a33f3d69a353d343
IEDL.DBID AIKHN
ISSN 1885-5857
IngestDate Fri Sep 05 05:25:25 EDT 2025
Thu Apr 03 07:01:55 EDT 2025
Tue Jul 01 01:52:59 EDT 2025
Fri Feb 23 02:39:18 EST 2024
Tue Feb 25 20:09:26 EST 2025
Tue Aug 26 16:33:41 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Resonancia magnética
EAM
atrial fibrillation
magnetic resonance
IIR
AF
right atrium
Aurícula derecha
LGE-CMR
fibrosis
Fibrilación auricular
RA
electroanatomical map
late gadolinium-enhanced cardiac magnetic resonance
image intensity ratio
Fibrosis
Language English
License Copyright © 2023 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-6cdd984e1605d36d943214ce0431259330f9b70d1f3b96325a33f3d69a353d343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 35809892
PQID 2687718383
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2687718383
pubmed_primary_35809892
crossref_primary_10_1016_j_rec_2022_06_010
elsevier_sciencedirect_doi_10_1016_j_rec_2022_06_010
elsevier_clinicalkeyesjournals_1_s2_0_S1885585722001815
elsevier_clinicalkey_doi_10_1016_j_rec_2022_06_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Spain
PublicationPlace_xml – name: Spain
PublicationTitle Revista española de cardiología (English ed.)
PublicationTitleAlternate Rev Esp Cardiol (Engl Ed)
PublicationYear 2023
Publisher Elsevier España, S.L.U
Publisher_xml – name: Elsevier España, S.L.U
References Marrouche NF, Wazni OM, Greene T, et al. DECAAF II: efficacy of DE-MRI-guided fibrosis ablation vs. conventional catheter ablation of persistent atrial fibrillation In: ESC Congress 2021–The Digital Experience 2021. 2022. Available at
Caglar, Dasli, Caglar, Teber, Ugurlucan, Ozmen (bib0190) 2012; 101
Longobardo, Todaro, Zito (bib0185) 2014; 15
Sato, Tsujino, Ohira (bib0205) 2012; 76
Chubb, Aziz, Karim (bib0295) 2018; 20
Dimitri, Ng, Brooks (bib0195) 2012; 9
Vitarelli, Mangieri, Gaudio, Tanzilli, Miraldi, Capotosto (bib0255) 2018; 41
Akutsu, Kaneko, Kodama (bib0240) 2011; 4
Mrgulescu, Nuñez-Garcia, Alarcón (bib0300) 2019; 21
Houck, Lanters, Heida (bib0250) 2020; 6
Accessed 19 June 2022
Peritz, Catino, Csecs (bib0280) 2020; 226
Hasebe, Yoshida, Iida, Hatano, Muramatsu, Aonuma (bib0265) 2016; 13
Benito, Carlosena-Remirez, Guasch (bib0215) 2017; 19
Daccarett, Badger, Akoum (bib0180) 2011; 57
Prabhu, Voskoboinik, McLellan (bib0245) 2017; 28
Nunez-Garcia, Bernardino, Alarcon, Caixal, Mont, Camara (bib0285) 2020; 26
Caixal, Alarcón, Althoff (bib0235) 2021; 23
Segerson, Daccarett, Badger (bib0170) 2010; 21
Hasebe, Yoshida, Iida (bib0260) 2018; 20
Bisbal, Guiu, Cabanas-Grandío (bib0165) 2014; 7
Bertelsen, Alarcón, Andreasen (bib0290) 2020; 36
Calkins, Kuck, Cappato (bib0200) 2012; 9
Akoum, McGann, Vergara (bib0210) 2012; 23
McGann, Kholmovski, Oakes (bib0220) 2008; 52
Linhart, Alarcon, Borràs (bib0175) 2018; 11
Marrouche, Wilber, Hindricks (bib0160) 2014; 311
Khurram, Beinart, Zipunnikov (bib0225) 2014; 11
Bisbal, Benito, Teis (bib0275) 2020; 13
Oakes, Badger, Kholmovski (bib0155) 2009; 119
Smorodinova, Lantová, Bláha (bib0230) 2015; 10
Akutsu (10.1016/j.rec.2022.06.010_bib0240) 2011; 4
McGann (10.1016/j.rec.2022.06.010_bib0220) 2008; 52
Sato (10.1016/j.rec.2022.06.010_bib0205) 2012; 76
Hasebe (10.1016/j.rec.2022.06.010_bib0265) 2016; 13
Chubb (10.1016/j.rec.2022.06.010_bib0295) 2018; 20
Longobardo (10.1016/j.rec.2022.06.010_bib0185) 2014; 15
Mrgulescu (10.1016/j.rec.2022.06.010_bib0300) 2019; 21
Benito (10.1016/j.rec.2022.06.010_bib0215) 2017; 19
Linhart (10.1016/j.rec.2022.06.010_bib0175) 2018; 11
Smorodinova (10.1016/j.rec.2022.06.010_bib0230) 2015; 10
Prabhu (10.1016/j.rec.2022.06.010_bib0245) 2017; 28
Peritz (10.1016/j.rec.2022.06.010_bib0280) 2020; 226
Marrouche (10.1016/j.rec.2022.06.010_bib0160) 2014; 311
Dimitri (10.1016/j.rec.2022.06.010_bib0195) 2012; 9
Khurram (10.1016/j.rec.2022.06.010_bib0225) 2014; 11
Houck (10.1016/j.rec.2022.06.010_bib0250) 2020; 6
Bisbal (10.1016/j.rec.2022.06.010_bib0275) 2020; 13
Bertelsen (10.1016/j.rec.2022.06.010_bib0290) 2020; 36
Caixal (10.1016/j.rec.2022.06.010_bib0235) 2021; 23
Calkins (10.1016/j.rec.2022.06.010_bib0200) 2012; 9
Oakes (10.1016/j.rec.2022.06.010_bib0155) 2009; 119
Bisbal (10.1016/j.rec.2022.06.010_bib0165) 2014; 7
Segerson (10.1016/j.rec.2022.06.010_bib0170) 2010; 21
Hasebe (10.1016/j.rec.2022.06.010_bib0260) 2018; 20
Daccarett (10.1016/j.rec.2022.06.010_bib0180) 2011; 57
Akoum (10.1016/j.rec.2022.06.010_bib0210) 2012; 23
Caglar (10.1016/j.rec.2022.06.010_bib0190) 2012; 101
Vitarelli (10.1016/j.rec.2022.06.010_bib0255) 2018; 41
10.1016/j.rec.2022.06.010_bib0270
Nunez-Garcia (10.1016/j.rec.2022.06.010_bib0285) 2020; 26
References_xml – volume: 23
  start-page: 44
  year: 2012
  end-page: 50
  ident: bib0210
  article-title: Atrial fibrosis quantified using late gadolinium enhancement MRI is associated with sinus node dysfunction requiring pacemaker implant
  publication-title: J Cardiovasc Electrophysiol.
– volume: 76
  start-page: 238
  year: 2012
  end-page: 239
  ident: bib0205
  article-title: Right atrial late gadolinium enhancement on cardiac magnetic resonance imaging in pulmonary hypertension
  publication-title: Circ J.
– volume: 41
  start-page: 1341
  year: 2018
  end-page: 1347
  ident: bib0255
  article-title: Right atrial function by speckle tracking echocardiography in atrial septal defect: Prediction of atrial fibrillation
  publication-title: Clin Cardiol
– volume: 119
  start-page: 1758
  year: 2009
  end-page: 1767
  ident: bib0155
  article-title: Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation
  publication-title: Circulation
– volume: 19
  start-page: 1272
  year: 2017
  end-page: 1279
  ident: bib0215
  article-title: Left atrial fibrosis quantification by late gadolinium-enhanced magnetic resonance: a new method to standardize the thresholds for reproducibility
  publication-title: Europace
– volume: 4
  start-page: 524
  year: 2011
  end-page: 531
  ident: bib0240
  article-title: Association between left and right atrial remodeling with atrial fibrillation recurrence after pulmonary vein catheter ablation in patients with paroxysmal atrial fibrillation a pilot study
  publication-title: Circ Cardiovasc Imaging
– volume: 23
  start-page: 380
  year: 2021
  end-page: 388
  ident: bib0235
  article-title: Accuracy of left atrial fibrosis detection with cardiac magnetic resonance: correlation of late gadolinium enhancement with endocardial voltage and conduction velocity
  publication-title: Europace
– volume: 311
  start-page: 498
  year: 2014
  end-page: 506
  ident: bib0160
  article-title: Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study
  publication-title: JAMA
– volume: 20
  start-page: 435
  year: 2018
  end-page: 442
  ident: bib0260
  article-title: Differences in the structural characteristics and distribution of epicardial adipose tissue between left and right atrial fibrillation
  publication-title: Europace
– volume: 57
  start-page: 831
  year: 2011
  end-page: 838
  ident: bib0180
  article-title: Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation
  publication-title: J Am Coll Cardiol.
– volume: 13
  start-page: 354
  year: 2016
  end-page: 363
  ident: bib0265
  article-title: Right-to-left frequency gradient during atrial fibrillation initiated by right atrial ectopies and its augmentation by adenosine triphosphate: Implications of right atrial fibrillation
  publication-title: Heart Rhythm
– volume: 6
  start-page: 537
  year: 2020
  end-page: 548
  ident: bib0250
  article-title: Distribution of Conduction Disorders in Patients With Congenital Heart Disease and Right Atrial Volume Overload
  publication-title: J Am Coll Cardiol EP
– reference: Marrouche NF, Wazni OM, Greene T, et al. DECAAF II: efficacy of DE-MRI-guided fibrosis ablation vs. conventional catheter ablation of persistent atrial fibrillation In: ESC Congress 2021–The Digital Experience 2021. 2022. Available at:
– reference: . Accessed 19 June 2022
– volume: 9
  start-page: 632
  year: 2012
  end-page: 696
  ident: bib0200
  article-title: 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: Recommendations for Patient Selection, Procedural Techniques, Patient Management and Follow-up, Definitions Endpoints, and Research Trial Design
  publication-title: Heart Rhythm
– volume: 11
  start-page: 85
  year: 2014
  end-page: 92
  ident: bib0225
  article-title: Magnetic resonance image intensity ratio, a normalized measure to enable interpatient comparability of left atrial fibrosis
  publication-title: Heart Rhythm
– volume: 15
  start-page: 1
  year: 2014
  end-page: 5
  ident: bib0185
  article-title: Role of imaging in assessment of atrial fibrosis in patients with atrial fibrillation: State-of-the-art review
  publication-title: Eur Heart J Cardiovasc Imaging
– volume: 26
  start-page: 2591
  year: 2020
  end-page: 2602
  ident: bib0285
  article-title: Fast Quasi-Conformal Regional Flattening of the Left Atrium
  publication-title: IEEE Trans Vis Comput Graph
– volume: 21
  start-page: 724
  year: 2019
  end-page: 731
  ident: bib0300
  article-title: Reproducibility and accuracy of late gadolinium enhancement cardiac magnetic resonance measurements for the detection of left atrial fibrosis in patients undergoing atrial fibrillation ablation procedures
  publication-title: Europace
– volume: 101
  start-page: 599
  year: 2012
  end-page: 606
  ident: bib0190
  article-title: Evaluation of atrial conduction features with tissue doppler imaging in patients with chronic obstructive pulmonary disease
  publication-title: Clin Res Cardiol.
– volume: 226
  start-page: 206
  year: 2020
  end-page: 213
  ident: bib0280
  article-title: High-intensity endurance training is associated with left atrial fibrosis
  publication-title: Am Heart J.
– volume: 36
  start-page: 513
  year: 2020
  end-page: 520
  ident: bib0290
  article-title: Verification of threshold for image intensity ratio analyses of late gadolinium enhancement magnetic resonance imaging of left atrial fibrosis in 1.5
  publication-title: Int J Cardiovasc Imaging.
– volume: 21
  start-page: 126
  year: 2010
  end-page: 132
  ident: bib0170
  article-title: Magnetic resonance imaging-confirmed ablative debulking of the left atrial posterior wall and septum for treatment of persistent atrial fibrillation: rationale and initial experience
  publication-title: J Cardiovasc Electrophysiol.
– volume: 11
  start-page: e006659
  year: 2018
  ident: bib0175
  article-title: Delayed Gadolinium Enhancement Magnetic Resonance Imaging Detected Anatomic Gap Length in Wide Circumferential Pulmonary Vein Ablation Lesions Is Associated With Recurrence of Atrial Fibrillation
  publication-title: Circ Arrhythm Electrophysiol.
– volume: 13
  start-page: e008707
  year: 2020
  ident: bib0275
  article-title: Magnetic Resonance Imaging-Guided Fibrosis Ablation for the Treatment of Atrial Fibrillation: The ALICIA Trial
  publication-title: Circ Arrhythm Electrophysiol.
– volume: 20
  start-page: 30
  year: 2018
  ident: bib0295
  article-title: Optimization of late gadolinium enhancement cardiovascular magnetic resonance imaging of post-ablation atrial scar: a cross-over study
  publication-title: J Cardiovasc Magn Reson
– volume: 28
  start-page: 1109
  year: 2017
  end-page: 1116
  ident: bib0245
  article-title: A comparison of the electrophysiologic and electroanatomic characteristics between the right and left atrium in persistent atrial fibrillation: Is the right atrium a window into the left?
  publication-title: J Cardiovasc Electrophysiol.
– volume: 52
  start-page: 1263
  year: 2008
  end-page: 1271
  ident: bib0220
  article-title: New Magnetic Resonance Imaging-Based Method for Defining the Extent of Left Atrial Wall Injury After the Ablation of Atrial Fibrillation
  publication-title: J Am Coll Cardiol
– volume: 9
  start-page: 321
  year: 2012
  end-page: 327
  ident: bib0195
  article-title: Atrial remodeling in obstructive sleep apnea: implications for atrial fibrillation
  publication-title: Heart Rhythm
– volume: 7
  start-page: 653
  year: 2014
  end-page: 663
  ident: bib0165
  article-title: CMR-guided approach to localize and ablate gaps in repeat AF ablation procedure
  publication-title: JACC Cardiovasc Imaging.
– volume: 10
  start-page: e0129124
  year: 2015
  ident: bib0230
  article-title: Bioptic Study of Left and Right Atrial Interstitium in Cardiac Patients with and without Atrial Fibrillation: Interatrial but Not Rhythm-Based Differences
  publication-title: PLoS One
– volume: 10
  start-page: e0129124
  year: 2015
  ident: 10.1016/j.rec.2022.06.010_bib0230
  article-title: Bioptic Study of Left and Right Atrial Interstitium in Cardiac Patients with and without Atrial Fibrillation: Interatrial but Not Rhythm-Based Differences
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0129124
– volume: 101
  start-page: 599
  year: 2012
  ident: 10.1016/j.rec.2022.06.010_bib0190
  article-title: Evaluation of atrial conduction features with tissue doppler imaging in patients with chronic obstructive pulmonary disease
  publication-title: Clin Res Cardiol.
  doi: 10.1007/s00392-012-0431-7
– volume: 21
  start-page: 126
  year: 2010
  ident: 10.1016/j.rec.2022.06.010_bib0170
  article-title: Magnetic resonance imaging-confirmed ablative debulking of the left atrial posterior wall and septum for treatment of persistent atrial fibrillation: rationale and initial experience
  publication-title: J Cardiovasc Electrophysiol.
  doi: 10.1111/j.1540-8167.2009.01611.x
– volume: 23
  start-page: 380
  year: 2021
  ident: 10.1016/j.rec.2022.06.010_bib0235
  article-title: Accuracy of left atrial fibrosis detection with cardiac magnetic resonance: correlation of late gadolinium enhancement with endocardial voltage and conduction velocity
  publication-title: Europace
  doi: 10.1093/europace/euaa313
– volume: 26
  start-page: 2591
  year: 2020
  ident: 10.1016/j.rec.2022.06.010_bib0285
  article-title: Fast Quasi-Conformal Regional Flattening of the Left Atrium
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2020.2966702
– volume: 76
  start-page: 238
  year: 2012
  ident: 10.1016/j.rec.2022.06.010_bib0205
  article-title: Right atrial late gadolinium enhancement on cardiac magnetic resonance imaging in pulmonary hypertension
  publication-title: Circ J.
  doi: 10.1253/circj.CJ-11-0585
– volume: 7
  start-page: 653
  year: 2014
  ident: 10.1016/j.rec.2022.06.010_bib0165
  article-title: CMR-guided approach to localize and ablate gaps in repeat AF ablation procedure
  publication-title: JACC Cardiovasc Imaging.
  doi: 10.1016/j.jcmg.2014.01.014
– ident: 10.1016/j.rec.2022.06.010_bib0270
– volume: 11
  start-page: 85
  year: 2014
  ident: 10.1016/j.rec.2022.06.010_bib0225
  article-title: Magnetic resonance image intensity ratio, a normalized measure to enable interpatient comparability of left atrial fibrosis
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2013.10.007
– volume: 20
  start-page: 30
  year: 2018
  ident: 10.1016/j.rec.2022.06.010_bib0295
  article-title: Optimization of late gadolinium enhancement cardiovascular magnetic resonance imaging of post-ablation atrial scar: a cross-over study
  publication-title: J Cardiovasc Magn Reson
  doi: 10.1186/s12968-018-0449-8
– volume: 19
  start-page: 1272
  year: 2017
  ident: 10.1016/j.rec.2022.06.010_bib0215
  article-title: Left atrial fibrosis quantification by late gadolinium-enhanced magnetic resonance: a new method to standardize the thresholds for reproducibility
  publication-title: Europace
  doi: 10.1093/europace/euw219
– volume: 36
  start-page: 513
  year: 2020
  ident: 10.1016/j.rec.2022.06.010_bib0290
  article-title: Verification of threshold for image intensity ratio analyses of late gadolinium enhancement magnetic resonance imaging of left atrial fibrosis in 1.5T scans
  publication-title: Int J Cardiovasc Imaging.
  doi: 10.1007/s10554-019-01728-0
– volume: 119
  start-page: 1758
  year: 2009
  ident: 10.1016/j.rec.2022.06.010_bib0155
  article-title: Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.108.811877
– volume: 11
  start-page: e006659
  year: 2018
  ident: 10.1016/j.rec.2022.06.010_bib0175
  article-title: Delayed Gadolinium Enhancement Magnetic Resonance Imaging Detected Anatomic Gap Length in Wide Circumferential Pulmonary Vein Ablation Lesions Is Associated With Recurrence of Atrial Fibrillation
  publication-title: Circ Arrhythm Electrophysiol.
  doi: 10.1161/CIRCEP.118.006659
– volume: 9
  start-page: 321
  year: 2012
  ident: 10.1016/j.rec.2022.06.010_bib0195
  article-title: Atrial remodeling in obstructive sleep apnea: implications for atrial fibrillation
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2011.10.017
– volume: 20
  start-page: 435
  year: 2018
  ident: 10.1016/j.rec.2022.06.010_bib0260
  article-title: Differences in the structural characteristics and distribution of epicardial adipose tissue between left and right atrial fibrillation
  publication-title: Europace
  doi: 10.1093/europace/eux051
– volume: 9
  start-page: 632
  year: 2012
  ident: 10.1016/j.rec.2022.06.010_bib0200
  article-title: 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: Recommendations for Patient Selection, Procedural Techniques, Patient Management and Follow-up, Definitions Endpoints, and Research Trial Design
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2011.12.016
– volume: 13
  start-page: e008707
  year: 2020
  ident: 10.1016/j.rec.2022.06.010_bib0275
  article-title: Magnetic Resonance Imaging-Guided Fibrosis Ablation for the Treatment of Atrial Fibrillation: The ALICIA Trial
  publication-title: Circ Arrhythm Electrophysiol.
  doi: 10.1161/CIRCEP.120.008707
– volume: 4
  start-page: 524
  year: 2011
  ident: 10.1016/j.rec.2022.06.010_bib0240
  article-title: Association between left and right atrial remodeling with atrial fibrillation recurrence after pulmonary vein catheter ablation in patients with paroxysmal atrial fibrillation a pilot study
  publication-title: Circ Cardiovasc Imaging
  doi: 10.1161/CIRCIMAGING.110.962761
– volume: 21
  start-page: 724
  year: 2019
  ident: 10.1016/j.rec.2022.06.010_bib0300
  article-title: Reproducibility and accuracy of late gadolinium enhancement cardiac magnetic resonance measurements for the detection of left atrial fibrosis in patients undergoing atrial fibrillation ablation procedures
  publication-title: Europace
  doi: 10.1093/europace/euy314
– volume: 311
  start-page: 498
  year: 2014
  ident: 10.1016/j.rec.2022.06.010_bib0160
  article-title: Association of atrial tissue fibrosis identified by delayed enhancement MRI and atrial fibrillation catheter ablation: the DECAAF study
  publication-title: JAMA
  doi: 10.1001/jama.2014.3
– volume: 226
  start-page: 206
  year: 2020
  ident: 10.1016/j.rec.2022.06.010_bib0280
  article-title: High-intensity endurance training is associated with left atrial fibrosis
  publication-title: Am Heart J.
  doi: 10.1016/j.ahj.2020.05.015
– volume: 13
  start-page: 354
  year: 2016
  ident: 10.1016/j.rec.2022.06.010_bib0265
  article-title: Right-to-left frequency gradient during atrial fibrillation initiated by right atrial ectopies and its augmentation by adenosine triphosphate: Implications of right atrial fibrillation
  publication-title: Heart Rhythm
  doi: 10.1016/j.hrthm.2015.09.030
– volume: 23
  start-page: 44
  year: 2012
  ident: 10.1016/j.rec.2022.06.010_bib0210
  article-title: Atrial fibrosis quantified using late gadolinium enhancement MRI is associated with sinus node dysfunction requiring pacemaker implant
  publication-title: J Cardiovasc Electrophysiol.
  doi: 10.1111/j.1540-8167.2011.02140.x
– volume: 52
  start-page: 1263
  year: 2008
  ident: 10.1016/j.rec.2022.06.010_bib0220
  article-title: New Magnetic Resonance Imaging-Based Method for Defining the Extent of Left Atrial Wall Injury After the Ablation of Atrial Fibrillation
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2008.05.062
– volume: 57
  start-page: 831
  year: 2011
  ident: 10.1016/j.rec.2022.06.010_bib0180
  article-title: Association of left atrial fibrosis detected by delayed-enhancement magnetic resonance imaging and the risk of stroke in patients with atrial fibrillation
  publication-title: J Am Coll Cardiol.
  doi: 10.1016/j.jacc.2010.09.049
– volume: 15
  start-page: 1
  year: 2014
  ident: 10.1016/j.rec.2022.06.010_bib0185
  article-title: Role of imaging in assessment of atrial fibrosis in patients with atrial fibrillation: State-of-the-art review
  publication-title: Eur Heart J Cardiovasc Imaging
  doi: 10.1093/ehjci/jet116
– volume: 41
  start-page: 1341
  year: 2018
  ident: 10.1016/j.rec.2022.06.010_bib0255
  article-title: Right atrial function by speckle tracking echocardiography in atrial septal defect: Prediction of atrial fibrillation
  publication-title: Clin Cardiol
  doi: 10.1002/clc.23051
– volume: 28
  start-page: 1109
  year: 2017
  ident: 10.1016/j.rec.2022.06.010_bib0245
  article-title: A comparison of the electrophysiologic and electroanatomic characteristics between the right and left atrium in persistent atrial fibrillation: Is the right atrium a window into the left?
  publication-title: J Cardiovasc Electrophysiol.
  doi: 10.1111/jce.13297
– volume: 6
  start-page: 537
  year: 2020
  ident: 10.1016/j.rec.2022.06.010_bib0250
  article-title: Distribution of Conduction Disorders in Patients With Congenital Heart Disease and Right Atrial Volume Overload
  publication-title: J Am Coll Cardiol EP
SSID ssj0053874
Score 2.2508755
Snippet Late gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) allows noninvasive detection of left atrial fibrosis in patients with atrial fibrillation (AF)....
AbstractIntroduction and objectivesLate gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) allows noninvasive detection of left atrial fibrosis in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 173
SubjectTerms atrial fibrillation
Aurícula derecha
Cardiovascular
Fibrilación auricular
fibrosis
Internal Medicine
magnetic resonance
Resonancia magnética
right atrium
Title Quantification of right atrial fibrosis by cardiac magnetic resonance: verification of the method to standardize thresholds
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1885585722001815
https://www.clinicalkey.es/playcontent/1-s2.0-S1885585722001815
https://dx.doi.org/10.1016/j.rec.2022.06.010
https://www.ncbi.nlm.nih.gov/pubmed/35809892
https://www.proquest.com/docview/2687718383
Volume 76
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dS-QwcNAVxBc5v9c7JYJPQt1tkn7dm8jJqiiICr6FNkllBVuxuw96cL_9ZtJGEL_A17bTtJP5zHwB7IaFFEJLHphYJoG0wgapLHWQFlJyaujG3XnH2Xk8upYnN9HNDBz6WhhKq-xkfyvTnbTurgw6bA4exuPBZZimERq7Cae0oJQKzec4avu0B3MHx6ejcy-QkaVdM2Z6PiAAH9x0aV64BnqJnLsunlRH-756-sj8dGro6AcsdvYjO2g_cQlmbLUM82ddhHwF_l5M8zb_x6Gc1SVz_jfL3XwOVqJ7XDfjhhVPTDvq0Ow-v62olpGh611TAw77myGFv3oJ2omsnTbNJjXzBxDjZ4t3EIyCWM0qXB_9uTocBd2AhUALOZwEsTYmS6UN0acxIjaZpLFF2lLDHXSLhBiWWZEMTViKAhmVR7kQpTBxlotIGCHFGvSqurIbwCz10ZE6zgy30kY6z0ubIGBMczzQhuzDnseremj7aCifYHancBMUbYKiJLtw2AfuMa98gSiKNIVS_jOg5D0g23RM2ahQNfiwekM4fZAvkK9o76sFdzxRKORJCrTkla2njeJxmqDOR-e_D-sttbz8NIWdM2SBze8t-hMWaOB9mwX3C3qTx6ndQrNoUmzD7P6_cLsj_v-iqQpX
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1dSxwxcJATWl_Ej1ZPrabQp8Jyt0n2y7fjqJzVOyhV8C3sJlm5QnfFvXtQ_7wz2Y0gaoW-bjKb3cnMZCbzBfAtLKQQWvLAxDIJpBU2SGWpg7SQklNBN-7uO6azeHIpf15FVysw9rkwFFbZyf5Wpjtp3T0ZdNgc3Mzng99hmkao7CacwoJSSjRfldTUugero9OzycwLZGRpV4yZ5gcE4J2bLswL10ArkXNXxZPyaF8_nt5SP90xdLIB653-yEbtJ27Ciq224MO085Bvw8OvZd7G_ziUs7pkzv5muevPwUo0j-tm3rDijmlHHZr9za8rymVkaHrXVIDDHjOk8GcvQT2Rtd2m2aJm_gJifm9xBMHIidV8gsuTHxfjSdA1WAi0kMNFEGtjslTaEG0aI2KTSWpbpC0V3EGzSIhhmRXJ0ISlKJBReZQLUQoTZ7mIhBFSfIZeVVd2F5ilOjpSx5nhVtpI53lpEwSMqY8H6pB9-O7xqm7aOhrKB5j9UbgJijZBUZBdOOwD95hXPkEURZpCKf8voOQ1INt0TNmoUDU4Wb0gnD7IJ8hntPfegl89USjkSXK05JWtl43icZrgmY_Gfx92Wmp5-mlyO2fIAnv_t-gRfJxcTM_V-ensbB_WcES0EXEH0FvcLu0XVJEWxWHHAo_nfQw9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+right+atrial+fibrosis+by+cardiac+magnetic+resonance%3A+verification+of+the+method+to+standardize+thresholds&rft.jtitle=Revista+espa%C3%B1ola+de+cardiolog%C3%ADa+%28English+ed.%29&rft.au=Gunturiz-Beltr%C3%A1n%2C+Clara&rft.au=Borr%C3%A0s%2C+Roger&rft.au=Alarc%C3%B3n%2C+Francisco&rft.au=Garre%2C+Paz&rft.date=2023-03-01&rft.pub=Elsevier+Espa%C3%B1a%2C+S.L.U&rft.issn=1885-5857&rft.eissn=1885-5857&rft.volume=76&rft.issue=3&rft.spage=173&rft.epage=182&rft_id=info:doi/10.1016%2Fj.rec.2022.06.010&rft.externalDocID=S1885585722001815
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F18855857%2FS1885585723X00036%2Fcov150h.gif