A hybrid deep forest approach for outlier detection and fault diagnosis of variable refrigerant flow system

•An improved deep learning model based on tree structure is proposed in VRF system.•Pearson's correlation coefficient combines with isolation forest for data preprocessing•The physical significance of outliers in VRF system is explained.•The IF-CF model does not require complex hyper-parameter...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of refrigeration Vol. 120; pp. 104 - 118
Main Authors Zeng, Yuke, Chen, Huanxin, Xu, Chengliang, Cheng, Yahao, Gong, Qijian
Format Journal Article
LanguageEnglish
Published Paris Elsevier Ltd 01.12.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0140-7007
1879-2081
DOI10.1016/j.ijrefrig.2020.08.014

Cover

Abstract •An improved deep learning model based on tree structure is proposed in VRF system.•Pearson's correlation coefficient combines with isolation forest for data preprocessing•The physical significance of outliers in VRF system is explained.•The IF-CF model does not require complex hyper-parameter optimization strategy. This paper presents a hybrid deep forest approach for outlier detection and fault diagnosis. Isolation forest algorithm is combined with Pearson's correlation coefficient for outlier detection. The physical significance of outliers detected by the proposed algorithm is explained by origin analysis, which is rarely mentioned in existing studies. In addition, a novel non-neural network deep learning model-cascade forest model is proposed to fault diagnosis of HVAC system for the first time to achieve high precision accuracy in low-dimensional features. The proposed approach is validated with the refrigerant charge fault of VRF system. The results show that the isolation forest algorithm can improve the performance of fault diagnosis model and the mainly outliers of VRF system are defrosting data. The IF-CF model has short operation time, and high accuracy in low-dimensional features. When the dimension drops to 6, the accuracy of the IF-CF model is 94.16%, which is 5.26%, 10.02%, 5.87% and 3.34% higher than the IF-MLP, IF-BPNN, IF-SVM and IF-LSTM models, respectively. Moreover, IF-CF model does not require complex hyper-parameter optimization strategy because its maximum accuracy difference in different hyper-parameters is 2.04%. This study is enlightening which may inspire the potential of outlier detection technology and deep learning in HVAC field.
AbstractList This paper presents a hybrid deep forest approach for outlier detection and fault diagnosis. Isolation forest algorithm is combined with Pearson's correlation coefficient for outlier detection. The physical significance of outliers detected by the proposed algorithm is explained by origin analysis, which is rarely mentioned in existing studies. In addition, a novel non-neural network deep learning model-cascade forest model is proposed to fault diagnosis of HVAC system for the first time to achieve high precision accuracy in low-dimensional features. The proposed approach is validated with the refrigerant charge fault of VRF system. The results show that the isolation forest algorithm can improve the performance of fault diagnosis model and the mainly outliers of VRF system are defrosting data. The IF-CF model has short operation time, and high accuracy in low-dimensional features. When the dimension drops to 6, the accuracy of the IF-CF model is 94.16%, which is 5.26%, 10.02%, 5.87% and 3.34% higher than the IF-MLP, IF-BPNN, IF-SVM and IF-LSTM models, respectively. Moreover, IF-CF model does not require complex hyper-parameter optimization strategy because its maximum accuracy difference in different hyper-parameters is 2.04%. This study is enlightening which may inspire the potential of outlier detection technology and deep learning in HVAC field.
•An improved deep learning model based on tree structure is proposed in VRF system.•Pearson's correlation coefficient combines with isolation forest for data preprocessing•The physical significance of outliers in VRF system is explained.•The IF-CF model does not require complex hyper-parameter optimization strategy. This paper presents a hybrid deep forest approach for outlier detection and fault diagnosis. Isolation forest algorithm is combined with Pearson's correlation coefficient for outlier detection. The physical significance of outliers detected by the proposed algorithm is explained by origin analysis, which is rarely mentioned in existing studies. In addition, a novel non-neural network deep learning model-cascade forest model is proposed to fault diagnosis of HVAC system for the first time to achieve high precision accuracy in low-dimensional features. The proposed approach is validated with the refrigerant charge fault of VRF system. The results show that the isolation forest algorithm can improve the performance of fault diagnosis model and the mainly outliers of VRF system are defrosting data. The IF-CF model has short operation time, and high accuracy in low-dimensional features. When the dimension drops to 6, the accuracy of the IF-CF model is 94.16%, which is 5.26%, 10.02%, 5.87% and 3.34% higher than the IF-MLP, IF-BPNN, IF-SVM and IF-LSTM models, respectively. Moreover, IF-CF model does not require complex hyper-parameter optimization strategy because its maximum accuracy difference in different hyper-parameters is 2.04%. This study is enlightening which may inspire the potential of outlier detection technology and deep learning in HVAC field.
Author Zeng, Yuke
Cheng, Yahao
Chen, Huanxin
Xu, Chengliang
Gong, Qijian
Author_xml – sequence: 1
  givenname: Yuke
  surname: Zeng
  fullname: Zeng, Yuke
– sequence: 2
  givenname: Huanxin
  surname: Chen
  fullname: Chen, Huanxin
  email: chenhuanxin@tsinghua.org.cn
– sequence: 3
  givenname: Chengliang
  surname: Xu
  fullname: Xu, Chengliang
– sequence: 4
  givenname: Yahao
  surname: Cheng
  fullname: Cheng, Yahao
– sequence: 5
  givenname: Qijian
  surname: Gong
  fullname: Gong, Qijian
BookMark eNqFkE1LAzEQhoMoWKt_QQKed53sdjdZ8GApfoHgRc8hnzbrdlOTVOm_N6V68dLTMMP7zsz7nKHj0Y8GoUsCJQHSXvel64Oxwb2XFVRQAiuBzI7QhDDaFRUwcowmeQIFBaCn6CzGHoBQaNgEfczxciuD01gbs8bWBxMTFut18EItdz32mzQ4E7IgGZWcH7EYNbZiMySsnXgffXQRe4u_RHBCDgbvvzFBjAnbwX_juI3JrM7RiRVDNBe_dYre7u9eF4_F88vD02L-XKh6Bqloa2kpEFNpqiWzbVuxVlagmo7WsqOtYIJJQlkjZFaZjiqratXNmkppqxpZT9HVfm8O8bnJeXjvN2HMJ3k1ox20BCjLqpu9SgUfY36ZK5fELl8Kwg2cAN_h5T3_w8t3eDkwnmFme_vPvg5uJcL2sPF2bzQZwVcGy6NyZlRGu5D5cu3doRU_GrydOw
CitedBy_id crossref_primary_10_3390_app12020847
crossref_primary_10_1109_TCE_2023_3278283
crossref_primary_10_3390_en17030736
crossref_primary_10_3390_s23010001
crossref_primary_10_1016_j_jobe_2022_104792
crossref_primary_10_1016_j_knosys_2021_107658
crossref_primary_10_1016_j_applthermaleng_2024_123910
crossref_primary_10_1016_j_chemosphere_2022_133716
crossref_primary_10_3390_s22176338
crossref_primary_10_1016_j_fuel_2023_128511
crossref_primary_10_1016_j_apenergy_2023_121030
crossref_primary_10_1016_j_rser_2024_114853
crossref_primary_10_1016_j_isatra_2021_04_037
crossref_primary_10_3390_math13010118
crossref_primary_10_1016_j_applthermaleng_2023_121354
crossref_primary_10_3390_en15124366
crossref_primary_10_1007_s10973_023_12837_3
Cites_doi 10.1016/j.ijrefrig.2012.06.007
10.1080/10789669.2005.10391123
10.1016/j.applthermaleng.2004.07.008
10.1016/j.apenergy.2004.11.002
10.1080/10789669.2010.10390906
10.1016/j.applthermaleng.2016.10.043
10.1023/A:1010933404324
10.1016/j.neucom.2012.02.031
10.1016/j.apenergy.2012.09.005
10.1186/s41044-016-0014-0
10.1016/j.enbuild.2018.11.020
10.1016/j.enbuild.2014.06.042
10.1016/j.enbuild.2015.12.045
10.1016/j.apenergy.2016.10.091
10.1007/s10994-006-6226-1
10.1016/j.apenergy.2018.05.075
10.1016/j.apenergy.2013.10.062
10.1016/j.enbuild.2011.06.011
10.1016/j.applthermaleng.2016.11.200
10.1016/j.rser.2019.04.021
10.1016/j.enbuild.2009.03.015
10.1016/j.procs.2017.05.074
10.1016/j.apenergy.2015.06.043
10.1016/j.ijrefrig.2014.10.017
10.1111/insr.12042_10
10.1016/j.enbuild.2014.07.034
10.1016/j.enbuild.2017.06.056
10.1016/j.ijrefrig.2017.11.003
10.1016/j.energy.2014.08.081
10.1016/j.buildenv.2017.08.044
10.1016/j.knosys.2015.12.006
10.1016/j.applthermaleng.2010.10.021
10.1016/j.ijrefrig.2019.07.018
10.1016/j.applthermaleng.2016.07.109
10.1016/j.csl.2017.02.006
10.1016/j.apenergy.2017.08.035
ContentType Journal Article
Copyright 2020
Copyright Elsevier Science Ltd. Dec 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier Science Ltd. Dec 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
DOI 10.1016/j.ijrefrig.2020.08.014
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Approche hybride de forêt neuronale profonde pour la détection des valeurs aberrantes et le diagnostic des défauts du système à débit de frigorigène variable
EISSN 1879-2081
EndPage 118
ExternalDocumentID 10_1016_j_ijrefrig_2020_08_014
S0140700720303455
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABGRD
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CBWCG
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSA
SST
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7TB
8FD
AGCQF
AGRNS
BNPGV
FR3
SSH
ID FETCH-LOGICAL-c340t-63bf701e2d7db8f66286b20c5973b976a8a8b1785ab01ee97cfc3c9452cdfc5b3
IEDL.DBID .~1
ISSN 0140-7007
IngestDate Fri Jul 25 08:09:32 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Thu Oct 02 04:31:02 EDT 2025
Fri Feb 23 02:45:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Méthode de détection des valeurs aberrantes
Modèle de forêt neuronale profonde
Diagnostic des défaillances
Outlier detection
Variable refrigerant flow system
Deep forest model
Système à débit de frigorigène variable
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-63bf701e2d7db8f66286b20c5973b976a8a8b1785ab01ee97cfc3c9452cdfc5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2479061078
PQPubID 2047558
PageCount 15
ParticipantIDs proquest_journals_2479061078
crossref_citationtrail_10_1016_j_ijrefrig_2020_08_014
crossref_primary_10_1016_j_ijrefrig_2020_08_014
elsevier_sciencedirect_doi_10_1016_j_ijrefrig_2020_08_014
PublicationCentury 2000
PublicationDate December 2020
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: December 2020
PublicationDecade 2020
PublicationPlace Paris
PublicationPlace_xml – name: Paris
PublicationTitle International journal of refrigeration
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Thornton, Hutter, Hoos, Leyton-Brown (bib0033) 2013
Li, Hu, Chen, Li, Hu, Guo (bib0023) 2017; 185
Chung, Yang, Lee, Lee, Moon (bib0005) 2017; 125
Guo, Tan, Chen, Li, Wang, Huang (bib0014) 2018; 225
Han, Gu, Kang, Li (bib0017) 2011; 31
Hong, Koo, Kim, Lee, Jeong (bib0018) 2015; 155
Li, Tan, Li, Liu, Chen, Shen (bib0025) 2019; 183
Doquire, Verleysen (bib0007) 2012; 90
García, Luengo, Herrera (bib0008) 2000
Li, Hu, Chen, Shen, Li, Hu (bib0024) 2016; 116
Yu, Woradechjumroen, Yu (bib0043) 2014; 82
Sun, Li, Chen, Liu, Li, Hu (bib0031) 2016; 108
Liu, Ting, Zhou (bib0026) 2009
Katipamula, Brambley (bib0019) 2005; 11
Wang, Chen (bib0035) 2014; 82
Dirks, Gorrissen, Hathaway, Skorski, Scott, Pulsipher (bib0006) 2015; 79
Wang, detection (bib0038) 2005; 82
Zhou, Forest (bib0045) 2017
Grace, Datta, Tassou (bib0013) 2005; 25
Xue, Zhou, Fang, Chen, Liu, Liu (bib0040) 2017; 205
Wang, Li, Chen, Liu, Guo, Hu (bib0036) 2017; 114
Yang, Yan, Lam (bib0042) 2014; 115
García, Ramírez-Gallego, Luengo, Benítez, Herrera (bib0010) 2016; 1
VRF grows as US packaged AC market reaches $20.4bn. 2020
Lee, House, Park, Kelly (bib0022) 1996; 102
Aynur, Hwang, Radermacher (bib0001) 2009; 41
Kocyigit (bib0021) 2015; 50
García, Luengo, Herrera (bib0009) 2016; 98
Sun, Li, Chen, Guo, Wang, Huang (bib0032) 2017; 151
Kim, Braun (bib0020) 2012; 35
Nordhausen (bib0028) 2013; 81
Breiman (bib0002) 2001; 45
Geurts, Ernst, Wehenkel (bib0011) 2006; 63
Liu, Xu, Guo, Chen (bib0027) 2019; 107
Gharsellaoui, Mansouri, Trabelsi, Refaat, Messaoud (bib0012) 2020; 30
.
Wang, Greenberg, Fiegel, Rubalcava, Earni, Pang (bib0037) 2013; 102
Han, Gu, Hong, Kang (bib0016) 2011; 43
Yan, Ma, Dai, Shen, Ji, Xie (bib0041) 2018; 86
Zhao, Li, Zhang, Zhang (bib0044) 2019; 109
Campos, Sastre, Yagües, Bellver, Giró-i-Nieto, Torres (bib0003) 2017; 108
Rossi (bib0029) 2004
Williams (bib0039) 1996; 109
Castro Martinez, Mallidi, Meyer (bib0004) 2017; 45
Shi, Li, Chen, Liu, Hu (bib0030) 2016; 112
Han, Cao, Gu, Ren (bib0015) 2010; 16
Grace (10.1016/j.ijrefrig.2020.08.014_bib0013) 2005; 25
Thornton (10.1016/j.ijrefrig.2020.08.014_bib0033) 2013
Yan (10.1016/j.ijrefrig.2020.08.014_bib0041) 2018; 86
Yu (10.1016/j.ijrefrig.2020.08.014_bib0043) 2014; 82
Sun (10.1016/j.ijrefrig.2020.08.014_bib0032) 2017; 151
Han (10.1016/j.ijrefrig.2020.08.014_bib0016) 2011; 43
10.1016/j.ijrefrig.2020.08.014_bib0034
Wang (10.1016/j.ijrefrig.2020.08.014_bib0036) 2017; 114
Li (10.1016/j.ijrefrig.2020.08.014_bib0024) 2016; 116
Li (10.1016/j.ijrefrig.2020.08.014_bib0025) 2019; 183
Wang (10.1016/j.ijrefrig.2020.08.014_bib0038) 2005; 82
Wang (10.1016/j.ijrefrig.2020.08.014_bib0035) 2014; 82
García (10.1016/j.ijrefrig.2020.08.014_bib0008) 2000
Guo (10.1016/j.ijrefrig.2020.08.014_bib0014) 2018; 225
Liu (10.1016/j.ijrefrig.2020.08.014_bib0027) 2019; 107
Xue (10.1016/j.ijrefrig.2020.08.014_bib0040) 2017; 205
Gharsellaoui (10.1016/j.ijrefrig.2020.08.014_bib0012) 2020; 30
Han (10.1016/j.ijrefrig.2020.08.014_bib0017) 2011; 31
Li (10.1016/j.ijrefrig.2020.08.014_bib0023) 2017; 185
Zhou (10.1016/j.ijrefrig.2020.08.014_bib0045) 2017
Sun (10.1016/j.ijrefrig.2020.08.014_bib0031) 2016; 108
Yang (10.1016/j.ijrefrig.2020.08.014_bib0042) 2014; 115
Aynur (10.1016/j.ijrefrig.2020.08.014_bib0001) 2009; 41
Nordhausen (10.1016/j.ijrefrig.2020.08.014_bib0028) 2013; 81
Kim (10.1016/j.ijrefrig.2020.08.014_bib0020) 2012; 35
Kocyigit (10.1016/j.ijrefrig.2020.08.014_bib0021) 2015; 50
Liu (10.1016/j.ijrefrig.2020.08.014_bib0026) 2009
Zhao (10.1016/j.ijrefrig.2020.08.014_bib0044) 2019; 109
Hong (10.1016/j.ijrefrig.2020.08.014_bib0018) 2015; 155
Lee (10.1016/j.ijrefrig.2020.08.014_bib0022) 1996; 102
Breiman (10.1016/j.ijrefrig.2020.08.014_bib0002) 2001; 45
Doquire (10.1016/j.ijrefrig.2020.08.014_bib0007) 2012; 90
García (10.1016/j.ijrefrig.2020.08.014_bib0009) 2016; 98
Han (10.1016/j.ijrefrig.2020.08.014_bib0015) 2010; 16
Katipamula (10.1016/j.ijrefrig.2020.08.014_bib0019) 2005; 11
Castro Martinez (10.1016/j.ijrefrig.2020.08.014_bib0004) 2017; 45
Wang (10.1016/j.ijrefrig.2020.08.014_bib0037) 2013; 102
Shi (10.1016/j.ijrefrig.2020.08.014_bib0030) 2016; 112
García (10.1016/j.ijrefrig.2020.08.014_bib0010) 2016; 1
Geurts (10.1016/j.ijrefrig.2020.08.014_bib0011) 2006; 63
Rossi (10.1016/j.ijrefrig.2020.08.014_bib0029) 2004
Williams (10.1016/j.ijrefrig.2020.08.014_bib0039) 1996; 109
Campos (10.1016/j.ijrefrig.2020.08.014_bib0003) 2017; 108
Chung (10.1016/j.ijrefrig.2020.08.014_bib0005) 2017; 125
Dirks (10.1016/j.ijrefrig.2020.08.014_bib0006) 2015; 79
References_xml – volume: 35
  start-page: 1805
  year: 2012
  end-page: 1814
  ident: bib0020
  article-title: Evaluation of the impacts of refrigerant charge on air conditioner and heat pump performance
  publication-title: Int. J. Refrig.
– volume: 109
  start-page: 38
  year: 1996
  ident: bib0039
  article-title: Pearson's correlation coefficient
  publication-title: N. Z. Med. J.
– volume: 1
  start-page: 9
  year: 2016
  ident: bib0010
  article-title: Big data preprocessing: methods and prospects
  publication-title: Big Data Anal.
– volume: 116
  start-page: 104
  year: 2016
  end-page: 113
  ident: bib0024
  article-title: An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm
  publication-title: Energy Build.
– volume: 41
  start-page: 922
  year: 2009
  end-page: 929
  ident: bib0001
  article-title: Simulation of a VAV air conditioning system in an existing building for the cooling mode
  publication-title: Energy Build.
– volume: 45
  start-page: 21
  year: 2017
  end-page: 38
  ident: bib0004
  article-title: On the relevance of auditory-based Gabor features for deep learning in robust speech recognition
  publication-title: Comput. Speech Lang.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0002
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 25
  start-page: 557
  year: 2005
  end-page: 566
  ident: bib0013
  article-title: Sensitivity of refrigeration system performance to charge levels and parameters for on-line leak detection
  publication-title: Appl. Therm. Eng.
– volume: 16
  start-page: 295
  year: 2010
  end-page: 313
  ident: bib0015
  article-title: PCA-SVM-based automated fault detection and diagnosis (AFDD) for vapor-compression refrigeration systems
  publication-title: HVAC&R Res.
– volume: 11
  start-page: 3
  year: 2005
  end-page: 25
  ident: bib0019
  article-title: Methods for Fault detection, diagnostics and prognostics for building systems – a review part I
  publication-title: HVAC and R Res.
– volume: 102
  start-page: 1
  year: 1996
  ident: bib0022
  article-title: Fault diagnosis of an air-handling unit using artificial neural networks
  publication-title: ASHRAE Trans.
– start-page: 413
  year: 2009
  end-page: 422
  ident: bib0026
  article-title: Isolation Forest
  publication-title: Proceedings of the eighth IEEE international conference on data mining (ICDM)
– volume: 82
  start-page: 428
  year: 2014
  end-page: 436
  ident: bib0035
  article-title: Impact of climate change heating and cooling energy use in buildings in the United States
  publication-title: Energy Build.
– volume: 114
  start-page: 921
  year: 2017
  end-page: 930
  ident: bib0036
  article-title: Liquid floodback detection for scroll compressor in a VRF system under heating mode
  publication-title: Appl. Therm. Eng.
– volume: 50
  start-page: 69
  year: 2015
  end-page: 79
  ident: bib0021
  article-title: Fault and sensor error diagnostic strategies for a vapor compression refrigeration system by using fuzzy inference systems and artificial neural network
  publication-title: Int. J. Refrig.
– volume: 86
  start-page: 401
  year: 2018
  end-page: 409
  ident: bib0041
  article-title: Cost-sensitive and sequential feature selection for chiller fault detection and diagnosis
  publication-title: Int. J. Refrig.
– volume: 108
  start-page: 315
  year: 2017
  end-page: 324
  ident: bib0003
  article-title: Distributed training strategies for a computer vision deep learning algorithm on a distributed GPU cluster
  publication-title: Proc. Comput. Sci.
– volume: 109
  start-page: 85
  year: 2019
  end-page: 101
  ident: bib0044
  article-title: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future
  publication-title: Renew. Sustain. Energy Rev.
– volume: 125
  start-page: 77
  year: 2017
  end-page: 87
  ident: bib0005
  article-title: Application of artificial neural networks for determining energy-efficient operating set-points of the VRF cooling system
  publication-title: Build. Environ.
– volume: 30
  start-page: 101
  year: 2020
  end-page: 221
  ident: bib0012
  article-title: Fault diagnosis of heating systems using multivariate feature extraction based machine learning classifiers
  publication-title: J. Build. Eng.
– volume: 81
  start-page: 470
  year: 2013
  ident: bib0028
  article-title: Ensemble methods: foundations and algorithms
  publication-title: Int. Stat. Rev.
– volume: 82
  start-page: 550
  year: 2014
  end-page: 562
  ident: bib0043
  article-title: A review of fault detection and diagnosis methodologies on air-handling units
  publication-title: Energy Build.
– volume: 225
  start-page: 732
  year: 2018
  end-page: 745
  ident: bib0014
  article-title: Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving
  publication-title: Appl. Energy
– volume: 155
  start-page: 671
  year: 2015
  end-page: 707
  ident: bib0018
  article-title: A review on sustainable construction management strategies for monitoring, diagnosing, and retrofitting the building's dynamic energy performance: focused on the operation and maintenance phase
  publication-title: Appl. Energy
– volume: 183
  start-page: 222
  year: 2019
  end-page: 237
  ident: bib0025
  article-title: An efficient online wkNN diagnostic strategy for variable refrigerant flow system based on coupled feature selection method
  publication-title: Energy Build.
– volume: 151
  start-page: 35
  year: 2017
  end-page: 44
  ident: bib0032
  article-title: Optimization of support vector regression model based on outlier detection methods for predicting electricity consumption of a public building WSHP system
  publication-title: Energy Build.
– volume: 31
  start-page: 582
  year: 2011
  end-page: 592
  ident: bib0017
  article-title: Study on a hybrid SVM model for chiller FDD applications
  publication-title: Appl. Therm. Eng.
– reference: VRF grows as US packaged AC market reaches $20.4bn. 2020
– start-page: 3553
  year: 2017
  end-page: 3559
  ident: bib0045
  article-title: Towards An alternative to deep neural networks
  publication-title: Int. Jt. Conf. Artif. Intell.
– volume: 112
  start-page: 698
  year: 2016
  end-page: 706
  ident: bib0030
  article-title: Refrigerant charge fault diagnosis in the VRF system using Bayesian artificial neural network combined with ReliefF filter
  publication-title: Appl. Therm. Eng.
– start-page: 847
  year: 2013
  end-page: 855
  ident: bib0033
  article-title: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms
  publication-title: Proceedings of the Nineteenth ACM SIGKDD international conference on Knowledge discovery and data mining August
– volume: 63
  start-page: 3
  year: 2006
  end-page: 42
  ident: bib0011
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
– volume: 205
  start-page: 926
  year: 2017
  end-page: 940
  ident: bib0040
  article-title: Fault detection and operation optimization in district heating substations based on data mining techniques
  publication-title: Applied Energy
– reference: .
– volume: 102
  start-page: 1382
  year: 2013
  end-page: 1390
  ident: bib0037
  article-title: Monitoring-based HVAC commissioning of an existing office building for energy efficiency
  publication-title: Appl. Energy
– start-page: 72
  year: 2000
  ident: bib0008
  article-title: Data preprocessing in data mining
  publication-title: Comput. Sci.
– year: 2004
  ident: bib0029
  article-title: Unitary air conditioner field performance
  publication-title: International Refrigeration and Air Conditioning Conference
– volume: 185
  start-page: 846
  year: 2017
  end-page: 861
  ident: bib0023
  article-title: Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions
  publication-title: Appl. Energy
– volume: 79
  start-page: 20
  year: 2015
  end-page: 32
  ident: bib0006
  article-title: Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach
  publication-title: Energy
– volume: 43
  start-page: 2524
  year: 2011
  end-page: 2532
  ident: bib0016
  article-title: Automated FDD of multiple-simultaneous faults (MSF) and the application to building chillers
  publication-title: Energy Build.
– volume: 107
  start-page: 39
  year: 2019
  end-page: 51
  ident: bib0027
  article-title: A novel deep reinforcement learning based methodology for short-term HVAC system energy consumption prediction
  publication-title: Int. J. Refrig.
– volume: 90
  start-page: 3
  year: 2012
  end-page: 11
  ident: bib0007
  article-title: Feature selection with missing data using mutual information estimators
  publication-title: Neurocomputing
– volume: 108
  start-page: 989
  year: 2016
  end-page: 998
  ident: bib0031
  article-title: A novel efficient SVM-based fault diagnosis method for multi-split air conditioning system's refrigerant charge fault amount
  publication-title: Appl. Therm. Eng.
– volume: 82
  start-page: 197
  year: 2005
  end-page: 213
  ident: bib0038
  article-title: diagnosis and estimation for centrifugal chiller systems using principal-component analysis method
  publication-title: Appl. Energy
– volume: 98
  start-page: 1
  year: 2016
  end-page: 29
  ident: bib0009
  article-title: Tutorial on practical tips of the most influential data preprocessing algorithms in data mining
  publication-title: Knowl.-Based Syst.
– volume: 115
  year: 2014
  ident: bib0042
  article-title: Thermal comfort and building energy consumption implications – a review
  publication-title: Appl. Energy
– volume: 35
  start-page: 1805
  year: 2012
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0020
  article-title: Evaluation of the impacts of refrigerant charge on air conditioner and heat pump performance
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2012.06.007
– volume: 11
  start-page: 3
  year: 2005
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0019
  article-title: Methods for Fault detection, diagnostics and prognostics for building systems – a review part I
  publication-title: HVAC and R Res.
  doi: 10.1080/10789669.2005.10391123
– volume: 25
  start-page: 557
  year: 2005
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0013
  article-title: Sensitivity of refrigeration system performance to charge levels and parameters for on-line leak detection
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2004.07.008
– volume: 82
  start-page: 197
  year: 2005
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0038
  article-title: diagnosis and estimation for centrifugal chiller systems using principal-component analysis method
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2004.11.002
– year: 2004
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0029
  article-title: Unitary air conditioner field performance
– volume: 16
  start-page: 295
  year: 2010
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0015
  article-title: PCA-SVM-based automated fault detection and diagnosis (AFDD) for vapor-compression refrigeration systems
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2010.10390906
– volume: 112
  start-page: 698
  year: 2016
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0030
  article-title: Refrigerant charge fault diagnosis in the VRF system using Bayesian artificial neural network combined with ReliefF filter
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.10.043
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0002
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 90
  start-page: 3
  year: 2012
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0007
  article-title: Feature selection with missing data using mutual information estimators
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.031
– volume: 102
  start-page: 1382
  year: 2013
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0037
  article-title: Monitoring-based HVAC commissioning of an existing office building for energy efficiency
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.09.005
– volume: 1
  start-page: 9
  year: 2016
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0010
  article-title: Big data preprocessing: methods and prospects
  publication-title: Big Data Anal.
  doi: 10.1186/s41044-016-0014-0
– volume: 183
  start-page: 222
  year: 2019
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0025
  article-title: An efficient online wkNN diagnostic strategy for variable refrigerant flow system based on coupled feature selection method
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.11.020
– volume: 102
  start-page: 1
  year: 1996
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0022
  article-title: Fault diagnosis of an air-handling unit using artificial neural networks
  publication-title: ASHRAE Trans.
– volume: 82
  start-page: 550
  year: 2014
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0043
  article-title: A review of fault detection and diagnosis methodologies on air-handling units
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.06.042
– volume: 116
  start-page: 104
  year: 2016
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0024
  article-title: An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.12.045
– volume: 185
  start-page: 846
  year: 2017
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0023
  article-title: Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.10.091
– volume: 63
  start-page: 3
  year: 2006
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0011
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6226-1
– volume: 225
  start-page: 732
  year: 2018
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0014
  article-title: Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.05.075
– volume: 115
  year: 2014
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0042
  article-title: Thermal comfort and building energy consumption implications – a review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.10.062
– volume: 43
  start-page: 2524
  year: 2011
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0016
  article-title: Automated FDD of multiple-simultaneous faults (MSF) and the application to building chillers
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2011.06.011
– volume: 114
  start-page: 921
  year: 2017
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0036
  article-title: Liquid floodback detection for scroll compressor in a VRF system under heating mode
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.11.200
– volume: 109
  start-page: 85
  year: 2019
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0044
  article-title: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2019.04.021
– volume: 41
  start-page: 922
  year: 2009
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0001
  article-title: Simulation of a VAV air conditioning system in an existing building for the cooling mode
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2009.03.015
– volume: 108
  start-page: 315
  year: 2017
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0003
  article-title: Distributed training strategies for a computer vision deep learning algorithm on a distributed GPU cluster
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2017.05.074
– volume: 155
  start-page: 671
  year: 2015
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0018
  article-title: A review on sustainable construction management strategies for monitoring, diagnosing, and retrofitting the building's dynamic energy performance: focused on the operation and maintenance phase
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.06.043
– start-page: 3553
  year: 2017
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0045
  article-title: Towards An alternative to deep neural networks
  publication-title: Int. Jt. Conf. Artif. Intell.
– volume: 50
  start-page: 69
  year: 2015
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0021
  article-title: Fault and sensor error diagnostic strategies for a vapor compression refrigeration system by using fuzzy inference systems and artificial neural network
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2014.10.017
– volume: 81
  start-page: 470
  issue: 3
  year: 2013
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0028
  article-title: Ensemble methods: foundations and algorithms
  publication-title: Int. Stat. Rev.
  doi: 10.1111/insr.12042_10
– volume: 82
  start-page: 428
  year: 2014
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0035
  article-title: Impact of climate change heating and cooling energy use in buildings in the United States
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.07.034
– start-page: 847
  year: 2013
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0033
  article-title: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms
– volume: 151
  start-page: 35
  year: 2017
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0032
  article-title: Optimization of support vector regression model based on outlier detection methods for predicting electricity consumption of a public building WSHP system
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.06.056
– ident: 10.1016/j.ijrefrig.2020.08.014_bib0034
– volume: 86
  start-page: 401
  year: 2018
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0041
  article-title: Cost-sensitive and sequential feature selection for chiller fault detection and diagnosis
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2017.11.003
– volume: 109
  start-page: 38
  year: 1996
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0039
  article-title: Pearson's correlation coefficient
  publication-title: N. Z. Med. J.
– volume: 30
  start-page: 101
  year: 2020
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0012
  article-title: Fault diagnosis of heating systems using multivariate feature extraction based machine learning classifiers
  publication-title: J. Build. Eng.
– volume: 79
  start-page: 20
  year: 2015
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0006
  article-title: Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach
  publication-title: Energy
  doi: 10.1016/j.energy.2014.08.081
– volume: 125
  start-page: 77
  year: 2017
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0005
  article-title: Application of artificial neural networks for determining energy-efficient operating set-points of the VRF cooling system
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2017.08.044
– start-page: 72
  year: 2000
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0008
  article-title: Data preprocessing in data mining
  publication-title: Comput. Sci.
– volume: 98
  start-page: 1
  year: 2016
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0009
  article-title: Tutorial on practical tips of the most influential data preprocessing algorithms in data mining
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.006
– start-page: 413
  year: 2009
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0026
  article-title: Isolation Forest
– volume: 31
  start-page: 582
  year: 2011
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0017
  article-title: Study on a hybrid SVM model for chiller FDD applications
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2010.10.021
– volume: 107
  start-page: 39
  year: 2019
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0027
  article-title: A novel deep reinforcement learning based methodology for short-term HVAC system energy consumption prediction
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2019.07.018
– volume: 108
  start-page: 989
  year: 2016
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0031
  article-title: A novel efficient SVM-based fault diagnosis method for multi-split air conditioning system's refrigerant charge fault amount
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.07.109
– volume: 45
  start-page: 21
  year: 2017
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0004
  article-title: On the relevance of auditory-based Gabor features for deep learning in robust speech recognition
  publication-title: Comput. Speech Lang.
  doi: 10.1016/j.csl.2017.02.006
– volume: 205
  start-page: 926
  year: 2017
  ident: 10.1016/j.ijrefrig.2020.08.014_bib0040
  article-title: Fault detection and operation optimization in district heating substations based on data mining techniques
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.08.035
SSID ssj0017058
Score 2.4001281
Snippet •An improved deep learning model based on tree structure is proposed in VRF system.•Pearson's correlation coefficient combines with isolation forest for data...
This paper presents a hybrid deep forest approach for outlier detection and fault diagnosis. Isolation forest algorithm is combined with Pearson's correlation...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104
SubjectTerms Algorithms
Artificial neural networks
Back propagation
Correlation coefficients
Data analysis
Deep forest model
Deep learning
Defrosting
Diagnostic des défaillances
Diagnostic systems
Fault diagnosis
HVAC
HVAC equipment
Machine learning
Mathematical models
Model accuracy
Modèle de forêt neuronale profonde
Méthode de détection des valeurs aberrantes
Neural networks
Optimization
Outlier detection
Outliers (statistics)
Parameters
Refrigerants
Système à débit de frigorigène variable
Variable refrigerant flow system
Title A hybrid deep forest approach for outlier detection and fault diagnosis of variable refrigerant flow system
URI https://dx.doi.org/10.1016/j.ijrefrig.2020.08.014
https://www.proquest.com/docview/2479061078
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2081
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017058
  issn: 0140-7007
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Journals
  customDbUrl:
  eissn: 1879-2081
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017058
  issn: 0140-7007
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-2081
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017058
  issn: 0140-7007
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-2081
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017058
  issn: 0140-7007
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2081
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017058
  issn: 0140-7007
  databaseCode: AKRWK
  dateStart: 19780501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvQgPrE-yh68pmmS3WxyLMVSFT0peFv2ia0lLTYqXvztzuQhKogHjwm7m2V2M_MNfPMNIWcKZdCyOAm4iFjAeB4FmVEiMMrlgGa18AkWJ1_fpJM7dnnP79fIqK2FQVpl4_trn1556-ZN2FgzXE6nYUVLEqh8Dfc0YRwLzRkT2MWg__5J80C1mKylMeLoL1XCs_50BmEIsmDIE-NBJeUZsd8C1A9XXcWf8TbZaoAjHdZ72yFrrtglm1_kBPfI45A-vGEFFrXOLSnAUViHtqrh-EyR_wPfgQFlxcEqqCos9ep5XlJbs-6mK7rw9AVyaKyqovXWHYS0kvr54pXW2s_75G58fjuaBE0zhcAkbFAGaaK9GEQutsLqzKdYkqrjgYGEItGASVSmMh2JjCsNo1wujDeJyRmPjfWG6-SAdIpF4Q4J9dbmkIMbbi1nTigFKDEVzmeeO2OF7hLeWlCaRmkcG17MZUspm8nW8hItL7ETZsS6JPyct6y1Nv6ckbcHJL_dGgkB4c-5J-2Jyua_XcmYiRwQDuCmo38sfUw28KlmvZyQTvn07E4Bu5S6V13OHlkfXlxNbj4Apjjxdg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RSPAh5YQ5vEjpOxqqgKtJ1aqZvlp2ip0gpSEAu_nXMeFSAhBsY4tmOdnbvvpO8-I3QtnAxaHIQeZT7xCE18L1aCeUqYBNCsZDZ0xcmDYdQbk_sJndRQp6qFcbTK0vcXPj331mVLs7RmczmdNnNaEnPK13BOQ0LpBtokNGAuA7v5WPM8nFxMXPEYXfcvZcKzm-kM4hCkwZAoBq1cy9Mnv0WoH746D0DdPbRbIkfcLha3j2omPUA7X_QED9FTGz--uxIsrI1ZYsCjMA-uZMPdM3YEIPgOdMhyElaKRaqxFat5hnVBu5u-4IXFr5BEu7IqXCzdQEzLsJ0v3nAh_nyExt3bUafnlbcpeCokrcyLQmlZyzeBZlrGNnI1qTJoKcgoQgmgRMQilj6LqZDQyyRMWRWqBEyqtFVUhseoni5Sc4Kw1TqBJFxRrSkxTAiAiREzNrbUKM3kKaKVBbkqpcbdjRdzXnHKZryyPHeW5-4qTJ-couZ63LIQ2_hzRFJtEP92bDhEhD_HNqod5eWP-8IDwhKAOACczv4x9RXa6o0Gfd6_Gz6co233pqDANFA9e16ZCwAymbzMD-onPqnzCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+deep+forest+approach+for+outlier+detection+and+fault+diagnosis+of+variable+refrigerant+flow+system&rft.jtitle=International+journal+of+refrigeration&rft.au=Zeng%2C+Yuke&rft.au=Chen%2C+Huanxin&rft.au=Xu%2C+Chengliang&rft.au=Cheng%2C+Yahao&rft.date=2020-12-01&rft.issn=0140-7007&rft.volume=120&rft.spage=104&rft.epage=118&rft_id=info:doi/10.1016%2Fj.ijrefrig.2020.08.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijrefrig_2020_08_014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7007&client=summon