A hybrid deep forest approach for outlier detection and fault diagnosis of variable refrigerant flow system
•An improved deep learning model based on tree structure is proposed in VRF system.•Pearson's correlation coefficient combines with isolation forest for data preprocessing•The physical significance of outliers in VRF system is explained.•The IF-CF model does not require complex hyper-parameter...
Saved in:
| Published in | International journal of refrigeration Vol. 120; pp. 104 - 118 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Paris
Elsevier Ltd
01.12.2020
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0140-7007 1879-2081 |
| DOI | 10.1016/j.ijrefrig.2020.08.014 |
Cover
| Abstract | •An improved deep learning model based on tree structure is proposed in VRF system.•Pearson's correlation coefficient combines with isolation forest for data preprocessing•The physical significance of outliers in VRF system is explained.•The IF-CF model does not require complex hyper-parameter optimization strategy.
This paper presents a hybrid deep forest approach for outlier detection and fault diagnosis. Isolation forest algorithm is combined with Pearson's correlation coefficient for outlier detection. The physical significance of outliers detected by the proposed algorithm is explained by origin analysis, which is rarely mentioned in existing studies. In addition, a novel non-neural network deep learning model-cascade forest model is proposed to fault diagnosis of HVAC system for the first time to achieve high precision accuracy in low-dimensional features. The proposed approach is validated with the refrigerant charge fault of VRF system. The results show that the isolation forest algorithm can improve the performance of fault diagnosis model and the mainly outliers of VRF system are defrosting data. The IF-CF model has short operation time, and high accuracy in low-dimensional features. When the dimension drops to 6, the accuracy of the IF-CF model is 94.16%, which is 5.26%, 10.02%, 5.87% and 3.34% higher than the IF-MLP, IF-BPNN, IF-SVM and IF-LSTM models, respectively. Moreover, IF-CF model does not require complex hyper-parameter optimization strategy because its maximum accuracy difference in different hyper-parameters is 2.04%. This study is enlightening which may inspire the potential of outlier detection technology and deep learning in HVAC field. |
|---|---|
| AbstractList | This paper presents a hybrid deep forest approach for outlier detection and fault diagnosis. Isolation forest algorithm is combined with Pearson's correlation coefficient for outlier detection. The physical significance of outliers detected by the proposed algorithm is explained by origin analysis, which is rarely mentioned in existing studies. In addition, a novel non-neural network deep learning model-cascade forest model is proposed to fault diagnosis of HVAC system for the first time to achieve high precision accuracy in low-dimensional features. The proposed approach is validated with the refrigerant charge fault of VRF system. The results show that the isolation forest algorithm can improve the performance of fault diagnosis model and the mainly outliers of VRF system are defrosting data. The IF-CF model has short operation time, and high accuracy in low-dimensional features. When the dimension drops to 6, the accuracy of the IF-CF model is 94.16%, which is 5.26%, 10.02%, 5.87% and 3.34% higher than the IF-MLP, IF-BPNN, IF-SVM and IF-LSTM models, respectively. Moreover, IF-CF model does not require complex hyper-parameter optimization strategy because its maximum accuracy difference in different hyper-parameters is 2.04%. This study is enlightening which may inspire the potential of outlier detection technology and deep learning in HVAC field. •An improved deep learning model based on tree structure is proposed in VRF system.•Pearson's correlation coefficient combines with isolation forest for data preprocessing•The physical significance of outliers in VRF system is explained.•The IF-CF model does not require complex hyper-parameter optimization strategy. This paper presents a hybrid deep forest approach for outlier detection and fault diagnosis. Isolation forest algorithm is combined with Pearson's correlation coefficient for outlier detection. The physical significance of outliers detected by the proposed algorithm is explained by origin analysis, which is rarely mentioned in existing studies. In addition, a novel non-neural network deep learning model-cascade forest model is proposed to fault diagnosis of HVAC system for the first time to achieve high precision accuracy in low-dimensional features. The proposed approach is validated with the refrigerant charge fault of VRF system. The results show that the isolation forest algorithm can improve the performance of fault diagnosis model and the mainly outliers of VRF system are defrosting data. The IF-CF model has short operation time, and high accuracy in low-dimensional features. When the dimension drops to 6, the accuracy of the IF-CF model is 94.16%, which is 5.26%, 10.02%, 5.87% and 3.34% higher than the IF-MLP, IF-BPNN, IF-SVM and IF-LSTM models, respectively. Moreover, IF-CF model does not require complex hyper-parameter optimization strategy because its maximum accuracy difference in different hyper-parameters is 2.04%. This study is enlightening which may inspire the potential of outlier detection technology and deep learning in HVAC field. |
| Author | Zeng, Yuke Cheng, Yahao Chen, Huanxin Xu, Chengliang Gong, Qijian |
| Author_xml | – sequence: 1 givenname: Yuke surname: Zeng fullname: Zeng, Yuke – sequence: 2 givenname: Huanxin surname: Chen fullname: Chen, Huanxin email: chenhuanxin@tsinghua.org.cn – sequence: 3 givenname: Chengliang surname: Xu fullname: Xu, Chengliang – sequence: 4 givenname: Yahao surname: Cheng fullname: Cheng, Yahao – sequence: 5 givenname: Qijian surname: Gong fullname: Gong, Qijian |
| BookMark | eNqFkE1LAzEQhoMoWKt_QQKed53sdjdZ8GApfoHgRc8hnzbrdlOTVOm_N6V68dLTMMP7zsz7nKHj0Y8GoUsCJQHSXvel64Oxwb2XFVRQAiuBzI7QhDDaFRUwcowmeQIFBaCn6CzGHoBQaNgEfczxciuD01gbs8bWBxMTFut18EItdz32mzQ4E7IgGZWcH7EYNbZiMySsnXgffXQRe4u_RHBCDgbvvzFBjAnbwX_juI3JrM7RiRVDNBe_dYre7u9eF4_F88vD02L-XKh6Bqloa2kpEFNpqiWzbVuxVlagmo7WsqOtYIJJQlkjZFaZjiqratXNmkppqxpZT9HVfm8O8bnJeXjvN2HMJ3k1ox20BCjLqpu9SgUfY36ZK5fELl8Kwg2cAN_h5T3_w8t3eDkwnmFme_vPvg5uJcL2sPF2bzQZwVcGy6NyZlRGu5D5cu3doRU_GrydOw |
| CitedBy_id | crossref_primary_10_3390_app12020847 crossref_primary_10_1109_TCE_2023_3278283 crossref_primary_10_3390_en17030736 crossref_primary_10_3390_s23010001 crossref_primary_10_1016_j_jobe_2022_104792 crossref_primary_10_1016_j_knosys_2021_107658 crossref_primary_10_1016_j_applthermaleng_2024_123910 crossref_primary_10_1016_j_chemosphere_2022_133716 crossref_primary_10_3390_s22176338 crossref_primary_10_1016_j_fuel_2023_128511 crossref_primary_10_1016_j_apenergy_2023_121030 crossref_primary_10_1016_j_rser_2024_114853 crossref_primary_10_1016_j_isatra_2021_04_037 crossref_primary_10_3390_math13010118 crossref_primary_10_1016_j_applthermaleng_2023_121354 crossref_primary_10_3390_en15124366 crossref_primary_10_1007_s10973_023_12837_3 |
| Cites_doi | 10.1016/j.ijrefrig.2012.06.007 10.1080/10789669.2005.10391123 10.1016/j.applthermaleng.2004.07.008 10.1016/j.apenergy.2004.11.002 10.1080/10789669.2010.10390906 10.1016/j.applthermaleng.2016.10.043 10.1023/A:1010933404324 10.1016/j.neucom.2012.02.031 10.1016/j.apenergy.2012.09.005 10.1186/s41044-016-0014-0 10.1016/j.enbuild.2018.11.020 10.1016/j.enbuild.2014.06.042 10.1016/j.enbuild.2015.12.045 10.1016/j.apenergy.2016.10.091 10.1007/s10994-006-6226-1 10.1016/j.apenergy.2018.05.075 10.1016/j.apenergy.2013.10.062 10.1016/j.enbuild.2011.06.011 10.1016/j.applthermaleng.2016.11.200 10.1016/j.rser.2019.04.021 10.1016/j.enbuild.2009.03.015 10.1016/j.procs.2017.05.074 10.1016/j.apenergy.2015.06.043 10.1016/j.ijrefrig.2014.10.017 10.1111/insr.12042_10 10.1016/j.enbuild.2014.07.034 10.1016/j.enbuild.2017.06.056 10.1016/j.ijrefrig.2017.11.003 10.1016/j.energy.2014.08.081 10.1016/j.buildenv.2017.08.044 10.1016/j.knosys.2015.12.006 10.1016/j.applthermaleng.2010.10.021 10.1016/j.ijrefrig.2019.07.018 10.1016/j.applthermaleng.2016.07.109 10.1016/j.csl.2017.02.006 10.1016/j.apenergy.2017.08.035 |
| ContentType | Journal Article |
| Copyright | 2020 Copyright Elsevier Science Ltd. Dec 2020 |
| Copyright_xml | – notice: 2020 – notice: Copyright Elsevier Science Ltd. Dec 2020 |
| DBID | AAYXX CITATION 7TB 8FD FR3 |
| DOI | 10.1016/j.ijrefrig.2020.08.014 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | Approche hybride de forêt neuronale profonde pour la détection des valeurs aberrantes et le diagnostic des défauts du système à débit de frigorigène variable |
| EISSN | 1879-2081 |
| EndPage | 118 |
| ExternalDocumentID | 10_1016_j_ijrefrig_2020_08_014 S0140700720303455 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABGRD ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CBWCG CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSA SST SSZ T5K WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7TB 8FD AGCQF AGRNS BNPGV FR3 SSH |
| ID | FETCH-LOGICAL-c340t-63bf701e2d7db8f66286b20c5973b976a8a8b1785ab01ee97cfc3c9452cdfc5b3 |
| IEDL.DBID | .~1 |
| ISSN | 0140-7007 |
| IngestDate | Fri Jul 25 08:09:32 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Thu Oct 02 04:31:02 EDT 2025 Fri Feb 23 02:45:48 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Fault diagnosis Méthode de détection des valeurs aberrantes Modèle de forêt neuronale profonde Diagnostic des défaillances Outlier detection Variable refrigerant flow system Deep forest model Système à débit de frigorigène variable |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c340t-63bf701e2d7db8f66286b20c5973b976a8a8b1785ab01ee97cfc3c9452cdfc5b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2479061078 |
| PQPubID | 2047558 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2479061078 crossref_citationtrail_10_1016_j_ijrefrig_2020_08_014 crossref_primary_10_1016_j_ijrefrig_2020_08_014 elsevier_sciencedirect_doi_10_1016_j_ijrefrig_2020_08_014 |
| PublicationCentury | 2000 |
| PublicationDate | December 2020 2020-12-00 20201201 |
| PublicationDateYYYYMMDD | 2020-12-01 |
| PublicationDate_xml | – month: 12 year: 2020 text: December 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Paris |
| PublicationPlace_xml | – name: Paris |
| PublicationTitle | International journal of refrigeration |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Thornton, Hutter, Hoos, Leyton-Brown (bib0033) 2013 Li, Hu, Chen, Li, Hu, Guo (bib0023) 2017; 185 Chung, Yang, Lee, Lee, Moon (bib0005) 2017; 125 Guo, Tan, Chen, Li, Wang, Huang (bib0014) 2018; 225 Han, Gu, Kang, Li (bib0017) 2011; 31 Hong, Koo, Kim, Lee, Jeong (bib0018) 2015; 155 Li, Tan, Li, Liu, Chen, Shen (bib0025) 2019; 183 Doquire, Verleysen (bib0007) 2012; 90 García, Luengo, Herrera (bib0008) 2000 Li, Hu, Chen, Shen, Li, Hu (bib0024) 2016; 116 Yu, Woradechjumroen, Yu (bib0043) 2014; 82 Sun, Li, Chen, Liu, Li, Hu (bib0031) 2016; 108 Liu, Ting, Zhou (bib0026) 2009 Katipamula, Brambley (bib0019) 2005; 11 Wang, Chen (bib0035) 2014; 82 Dirks, Gorrissen, Hathaway, Skorski, Scott, Pulsipher (bib0006) 2015; 79 Wang, detection (bib0038) 2005; 82 Zhou, Forest (bib0045) 2017 Grace, Datta, Tassou (bib0013) 2005; 25 Xue, Zhou, Fang, Chen, Liu, Liu (bib0040) 2017; 205 Wang, Li, Chen, Liu, Guo, Hu (bib0036) 2017; 114 Yang, Yan, Lam (bib0042) 2014; 115 García, Ramírez-Gallego, Luengo, Benítez, Herrera (bib0010) 2016; 1 VRF grows as US packaged AC market reaches $20.4bn. 2020 Lee, House, Park, Kelly (bib0022) 1996; 102 Aynur, Hwang, Radermacher (bib0001) 2009; 41 Kocyigit (bib0021) 2015; 50 García, Luengo, Herrera (bib0009) 2016; 98 Sun, Li, Chen, Guo, Wang, Huang (bib0032) 2017; 151 Kim, Braun (bib0020) 2012; 35 Nordhausen (bib0028) 2013; 81 Breiman (bib0002) 2001; 45 Geurts, Ernst, Wehenkel (bib0011) 2006; 63 Liu, Xu, Guo, Chen (bib0027) 2019; 107 Gharsellaoui, Mansouri, Trabelsi, Refaat, Messaoud (bib0012) 2020; 30 . Wang, Greenberg, Fiegel, Rubalcava, Earni, Pang (bib0037) 2013; 102 Han, Gu, Hong, Kang (bib0016) 2011; 43 Yan, Ma, Dai, Shen, Ji, Xie (bib0041) 2018; 86 Zhao, Li, Zhang, Zhang (bib0044) 2019; 109 Campos, Sastre, Yagües, Bellver, Giró-i-Nieto, Torres (bib0003) 2017; 108 Rossi (bib0029) 2004 Williams (bib0039) 1996; 109 Castro Martinez, Mallidi, Meyer (bib0004) 2017; 45 Shi, Li, Chen, Liu, Hu (bib0030) 2016; 112 Han, Cao, Gu, Ren (bib0015) 2010; 16 Grace (10.1016/j.ijrefrig.2020.08.014_bib0013) 2005; 25 Thornton (10.1016/j.ijrefrig.2020.08.014_bib0033) 2013 Yan (10.1016/j.ijrefrig.2020.08.014_bib0041) 2018; 86 Yu (10.1016/j.ijrefrig.2020.08.014_bib0043) 2014; 82 Sun (10.1016/j.ijrefrig.2020.08.014_bib0032) 2017; 151 Han (10.1016/j.ijrefrig.2020.08.014_bib0016) 2011; 43 10.1016/j.ijrefrig.2020.08.014_bib0034 Wang (10.1016/j.ijrefrig.2020.08.014_bib0036) 2017; 114 Li (10.1016/j.ijrefrig.2020.08.014_bib0024) 2016; 116 Li (10.1016/j.ijrefrig.2020.08.014_bib0025) 2019; 183 Wang (10.1016/j.ijrefrig.2020.08.014_bib0038) 2005; 82 Wang (10.1016/j.ijrefrig.2020.08.014_bib0035) 2014; 82 García (10.1016/j.ijrefrig.2020.08.014_bib0008) 2000 Guo (10.1016/j.ijrefrig.2020.08.014_bib0014) 2018; 225 Liu (10.1016/j.ijrefrig.2020.08.014_bib0027) 2019; 107 Xue (10.1016/j.ijrefrig.2020.08.014_bib0040) 2017; 205 Gharsellaoui (10.1016/j.ijrefrig.2020.08.014_bib0012) 2020; 30 Han (10.1016/j.ijrefrig.2020.08.014_bib0017) 2011; 31 Li (10.1016/j.ijrefrig.2020.08.014_bib0023) 2017; 185 Zhou (10.1016/j.ijrefrig.2020.08.014_bib0045) 2017 Sun (10.1016/j.ijrefrig.2020.08.014_bib0031) 2016; 108 Yang (10.1016/j.ijrefrig.2020.08.014_bib0042) 2014; 115 Aynur (10.1016/j.ijrefrig.2020.08.014_bib0001) 2009; 41 Nordhausen (10.1016/j.ijrefrig.2020.08.014_bib0028) 2013; 81 Kim (10.1016/j.ijrefrig.2020.08.014_bib0020) 2012; 35 Kocyigit (10.1016/j.ijrefrig.2020.08.014_bib0021) 2015; 50 Liu (10.1016/j.ijrefrig.2020.08.014_bib0026) 2009 Zhao (10.1016/j.ijrefrig.2020.08.014_bib0044) 2019; 109 Hong (10.1016/j.ijrefrig.2020.08.014_bib0018) 2015; 155 Lee (10.1016/j.ijrefrig.2020.08.014_bib0022) 1996; 102 Breiman (10.1016/j.ijrefrig.2020.08.014_bib0002) 2001; 45 Doquire (10.1016/j.ijrefrig.2020.08.014_bib0007) 2012; 90 García (10.1016/j.ijrefrig.2020.08.014_bib0009) 2016; 98 Han (10.1016/j.ijrefrig.2020.08.014_bib0015) 2010; 16 Katipamula (10.1016/j.ijrefrig.2020.08.014_bib0019) 2005; 11 Castro Martinez (10.1016/j.ijrefrig.2020.08.014_bib0004) 2017; 45 Wang (10.1016/j.ijrefrig.2020.08.014_bib0037) 2013; 102 Shi (10.1016/j.ijrefrig.2020.08.014_bib0030) 2016; 112 García (10.1016/j.ijrefrig.2020.08.014_bib0010) 2016; 1 Geurts (10.1016/j.ijrefrig.2020.08.014_bib0011) 2006; 63 Rossi (10.1016/j.ijrefrig.2020.08.014_bib0029) 2004 Williams (10.1016/j.ijrefrig.2020.08.014_bib0039) 1996; 109 Campos (10.1016/j.ijrefrig.2020.08.014_bib0003) 2017; 108 Chung (10.1016/j.ijrefrig.2020.08.014_bib0005) 2017; 125 Dirks (10.1016/j.ijrefrig.2020.08.014_bib0006) 2015; 79 |
| References_xml | – volume: 35 start-page: 1805 year: 2012 end-page: 1814 ident: bib0020 article-title: Evaluation of the impacts of refrigerant charge on air conditioner and heat pump performance publication-title: Int. J. Refrig. – volume: 109 start-page: 38 year: 1996 ident: bib0039 article-title: Pearson's correlation coefficient publication-title: N. Z. Med. J. – volume: 1 start-page: 9 year: 2016 ident: bib0010 article-title: Big data preprocessing: methods and prospects publication-title: Big Data Anal. – volume: 116 start-page: 104 year: 2016 end-page: 113 ident: bib0024 article-title: An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm publication-title: Energy Build. – volume: 41 start-page: 922 year: 2009 end-page: 929 ident: bib0001 article-title: Simulation of a VAV air conditioning system in an existing building for the cooling mode publication-title: Energy Build. – volume: 45 start-page: 21 year: 2017 end-page: 38 ident: bib0004 article-title: On the relevance of auditory-based Gabor features for deep learning in robust speech recognition publication-title: Comput. Speech Lang. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0002 article-title: Random forests publication-title: Mach. Learn. – volume: 25 start-page: 557 year: 2005 end-page: 566 ident: bib0013 article-title: Sensitivity of refrigeration system performance to charge levels and parameters for on-line leak detection publication-title: Appl. Therm. Eng. – volume: 16 start-page: 295 year: 2010 end-page: 313 ident: bib0015 article-title: PCA-SVM-based automated fault detection and diagnosis (AFDD) for vapor-compression refrigeration systems publication-title: HVAC&R Res. – volume: 11 start-page: 3 year: 2005 end-page: 25 ident: bib0019 article-title: Methods for Fault detection, diagnostics and prognostics for building systems – a review part I publication-title: HVAC and R Res. – volume: 102 start-page: 1 year: 1996 ident: bib0022 article-title: Fault diagnosis of an air-handling unit using artificial neural networks publication-title: ASHRAE Trans. – start-page: 413 year: 2009 end-page: 422 ident: bib0026 article-title: Isolation Forest publication-title: Proceedings of the eighth IEEE international conference on data mining (ICDM) – volume: 82 start-page: 428 year: 2014 end-page: 436 ident: bib0035 article-title: Impact of climate change heating and cooling energy use in buildings in the United States publication-title: Energy Build. – volume: 114 start-page: 921 year: 2017 end-page: 930 ident: bib0036 article-title: Liquid floodback detection for scroll compressor in a VRF system under heating mode publication-title: Appl. Therm. Eng. – volume: 50 start-page: 69 year: 2015 end-page: 79 ident: bib0021 article-title: Fault and sensor error diagnostic strategies for a vapor compression refrigeration system by using fuzzy inference systems and artificial neural network publication-title: Int. J. Refrig. – volume: 86 start-page: 401 year: 2018 end-page: 409 ident: bib0041 article-title: Cost-sensitive and sequential feature selection for chiller fault detection and diagnosis publication-title: Int. J. Refrig. – volume: 108 start-page: 315 year: 2017 end-page: 324 ident: bib0003 article-title: Distributed training strategies for a computer vision deep learning algorithm on a distributed GPU cluster publication-title: Proc. Comput. Sci. – volume: 109 start-page: 85 year: 2019 end-page: 101 ident: bib0044 article-title: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future publication-title: Renew. Sustain. Energy Rev. – volume: 125 start-page: 77 year: 2017 end-page: 87 ident: bib0005 article-title: Application of artificial neural networks for determining energy-efficient operating set-points of the VRF cooling system publication-title: Build. Environ. – volume: 30 start-page: 101 year: 2020 end-page: 221 ident: bib0012 article-title: Fault diagnosis of heating systems using multivariate feature extraction based machine learning classifiers publication-title: J. Build. Eng. – volume: 81 start-page: 470 year: 2013 ident: bib0028 article-title: Ensemble methods: foundations and algorithms publication-title: Int. Stat. Rev. – volume: 82 start-page: 550 year: 2014 end-page: 562 ident: bib0043 article-title: A review of fault detection and diagnosis methodologies on air-handling units publication-title: Energy Build. – volume: 225 start-page: 732 year: 2018 end-page: 745 ident: bib0014 article-title: Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving publication-title: Appl. Energy – volume: 155 start-page: 671 year: 2015 end-page: 707 ident: bib0018 article-title: A review on sustainable construction management strategies for monitoring, diagnosing, and retrofitting the building's dynamic energy performance: focused on the operation and maintenance phase publication-title: Appl. Energy – volume: 183 start-page: 222 year: 2019 end-page: 237 ident: bib0025 article-title: An efficient online wkNN diagnostic strategy for variable refrigerant flow system based on coupled feature selection method publication-title: Energy Build. – volume: 151 start-page: 35 year: 2017 end-page: 44 ident: bib0032 article-title: Optimization of support vector regression model based on outlier detection methods for predicting electricity consumption of a public building WSHP system publication-title: Energy Build. – volume: 31 start-page: 582 year: 2011 end-page: 592 ident: bib0017 article-title: Study on a hybrid SVM model for chiller FDD applications publication-title: Appl. Therm. Eng. – reference: VRF grows as US packaged AC market reaches $20.4bn. 2020 – start-page: 3553 year: 2017 end-page: 3559 ident: bib0045 article-title: Towards An alternative to deep neural networks publication-title: Int. Jt. Conf. Artif. Intell. – volume: 112 start-page: 698 year: 2016 end-page: 706 ident: bib0030 article-title: Refrigerant charge fault diagnosis in the VRF system using Bayesian artificial neural network combined with ReliefF filter publication-title: Appl. Therm. Eng. – start-page: 847 year: 2013 end-page: 855 ident: bib0033 article-title: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms publication-title: Proceedings of the Nineteenth ACM SIGKDD international conference on Knowledge discovery and data mining August – volume: 63 start-page: 3 year: 2006 end-page: 42 ident: bib0011 article-title: Extremely randomized trees publication-title: Mach. Learn. – volume: 205 start-page: 926 year: 2017 end-page: 940 ident: bib0040 article-title: Fault detection and operation optimization in district heating substations based on data mining techniques publication-title: Applied Energy – reference: . – volume: 102 start-page: 1382 year: 2013 end-page: 1390 ident: bib0037 article-title: Monitoring-based HVAC commissioning of an existing office building for energy efficiency publication-title: Appl. Energy – start-page: 72 year: 2000 ident: bib0008 article-title: Data preprocessing in data mining publication-title: Comput. Sci. – year: 2004 ident: bib0029 article-title: Unitary air conditioner field performance publication-title: International Refrigeration and Air Conditioning Conference – volume: 185 start-page: 846 year: 2017 end-page: 861 ident: bib0023 article-title: Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions publication-title: Appl. Energy – volume: 79 start-page: 20 year: 2015 end-page: 32 ident: bib0006 article-title: Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach publication-title: Energy – volume: 43 start-page: 2524 year: 2011 end-page: 2532 ident: bib0016 article-title: Automated FDD of multiple-simultaneous faults (MSF) and the application to building chillers publication-title: Energy Build. – volume: 107 start-page: 39 year: 2019 end-page: 51 ident: bib0027 article-title: A novel deep reinforcement learning based methodology for short-term HVAC system energy consumption prediction publication-title: Int. J. Refrig. – volume: 90 start-page: 3 year: 2012 end-page: 11 ident: bib0007 article-title: Feature selection with missing data using mutual information estimators publication-title: Neurocomputing – volume: 108 start-page: 989 year: 2016 end-page: 998 ident: bib0031 article-title: A novel efficient SVM-based fault diagnosis method for multi-split air conditioning system's refrigerant charge fault amount publication-title: Appl. Therm. Eng. – volume: 82 start-page: 197 year: 2005 end-page: 213 ident: bib0038 article-title: diagnosis and estimation for centrifugal chiller systems using principal-component analysis method publication-title: Appl. Energy – volume: 98 start-page: 1 year: 2016 end-page: 29 ident: bib0009 article-title: Tutorial on practical tips of the most influential data preprocessing algorithms in data mining publication-title: Knowl.-Based Syst. – volume: 115 year: 2014 ident: bib0042 article-title: Thermal comfort and building energy consumption implications – a review publication-title: Appl. Energy – volume: 35 start-page: 1805 year: 2012 ident: 10.1016/j.ijrefrig.2020.08.014_bib0020 article-title: Evaluation of the impacts of refrigerant charge on air conditioner and heat pump performance publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2012.06.007 – volume: 11 start-page: 3 year: 2005 ident: 10.1016/j.ijrefrig.2020.08.014_bib0019 article-title: Methods for Fault detection, diagnostics and prognostics for building systems – a review part I publication-title: HVAC and R Res. doi: 10.1080/10789669.2005.10391123 – volume: 25 start-page: 557 year: 2005 ident: 10.1016/j.ijrefrig.2020.08.014_bib0013 article-title: Sensitivity of refrigeration system performance to charge levels and parameters for on-line leak detection publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2004.07.008 – volume: 82 start-page: 197 year: 2005 ident: 10.1016/j.ijrefrig.2020.08.014_bib0038 article-title: diagnosis and estimation for centrifugal chiller systems using principal-component analysis method publication-title: Appl. Energy doi: 10.1016/j.apenergy.2004.11.002 – year: 2004 ident: 10.1016/j.ijrefrig.2020.08.014_bib0029 article-title: Unitary air conditioner field performance – volume: 16 start-page: 295 year: 2010 ident: 10.1016/j.ijrefrig.2020.08.014_bib0015 article-title: PCA-SVM-based automated fault detection and diagnosis (AFDD) for vapor-compression refrigeration systems publication-title: HVAC&R Res. doi: 10.1080/10789669.2010.10390906 – volume: 112 start-page: 698 year: 2016 ident: 10.1016/j.ijrefrig.2020.08.014_bib0030 article-title: Refrigerant charge fault diagnosis in the VRF system using Bayesian artificial neural network combined with ReliefF filter publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.10.043 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.ijrefrig.2020.08.014_bib0002 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 90 start-page: 3 year: 2012 ident: 10.1016/j.ijrefrig.2020.08.014_bib0007 article-title: Feature selection with missing data using mutual information estimators publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.031 – volume: 102 start-page: 1382 year: 2013 ident: 10.1016/j.ijrefrig.2020.08.014_bib0037 article-title: Monitoring-based HVAC commissioning of an existing office building for energy efficiency publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.09.005 – volume: 1 start-page: 9 year: 2016 ident: 10.1016/j.ijrefrig.2020.08.014_bib0010 article-title: Big data preprocessing: methods and prospects publication-title: Big Data Anal. doi: 10.1186/s41044-016-0014-0 – volume: 183 start-page: 222 year: 2019 ident: 10.1016/j.ijrefrig.2020.08.014_bib0025 article-title: An efficient online wkNN diagnostic strategy for variable refrigerant flow system based on coupled feature selection method publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.11.020 – volume: 102 start-page: 1 year: 1996 ident: 10.1016/j.ijrefrig.2020.08.014_bib0022 article-title: Fault diagnosis of an air-handling unit using artificial neural networks publication-title: ASHRAE Trans. – volume: 82 start-page: 550 year: 2014 ident: 10.1016/j.ijrefrig.2020.08.014_bib0043 article-title: A review of fault detection and diagnosis methodologies on air-handling units publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.06.042 – volume: 116 start-page: 104 year: 2016 ident: 10.1016/j.ijrefrig.2020.08.014_bib0024 article-title: An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.12.045 – volume: 185 start-page: 846 year: 2017 ident: 10.1016/j.ijrefrig.2020.08.014_bib0023 article-title: Data partitioning and association mining for identifying VRF energy consumption patterns under various part loads and refrigerant charge conditions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.10.091 – volume: 63 start-page: 3 year: 2006 ident: 10.1016/j.ijrefrig.2020.08.014_bib0011 article-title: Extremely randomized trees publication-title: Mach. Learn. doi: 10.1007/s10994-006-6226-1 – volume: 225 start-page: 732 year: 2018 ident: 10.1016/j.ijrefrig.2020.08.014_bib0014 article-title: Deep learning-based fault diagnosis of variable refrigerant flow air-conditioning system for building energy saving publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.05.075 – volume: 115 year: 2014 ident: 10.1016/j.ijrefrig.2020.08.014_bib0042 article-title: Thermal comfort and building energy consumption implications – a review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.10.062 – volume: 43 start-page: 2524 year: 2011 ident: 10.1016/j.ijrefrig.2020.08.014_bib0016 article-title: Automated FDD of multiple-simultaneous faults (MSF) and the application to building chillers publication-title: Energy Build. doi: 10.1016/j.enbuild.2011.06.011 – volume: 114 start-page: 921 year: 2017 ident: 10.1016/j.ijrefrig.2020.08.014_bib0036 article-title: Liquid floodback detection for scroll compressor in a VRF system under heating mode publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.11.200 – volume: 109 start-page: 85 year: 2019 ident: 10.1016/j.ijrefrig.2020.08.014_bib0044 article-title: Artificial intelligence-based fault detection and diagnosis methods for building energy systems: Advantages, challenges and the future publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2019.04.021 – volume: 41 start-page: 922 year: 2009 ident: 10.1016/j.ijrefrig.2020.08.014_bib0001 article-title: Simulation of a VAV air conditioning system in an existing building for the cooling mode publication-title: Energy Build. doi: 10.1016/j.enbuild.2009.03.015 – volume: 108 start-page: 315 year: 2017 ident: 10.1016/j.ijrefrig.2020.08.014_bib0003 article-title: Distributed training strategies for a computer vision deep learning algorithm on a distributed GPU cluster publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2017.05.074 – volume: 155 start-page: 671 year: 2015 ident: 10.1016/j.ijrefrig.2020.08.014_bib0018 article-title: A review on sustainable construction management strategies for monitoring, diagnosing, and retrofitting the building's dynamic energy performance: focused on the operation and maintenance phase publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.06.043 – start-page: 3553 year: 2017 ident: 10.1016/j.ijrefrig.2020.08.014_bib0045 article-title: Towards An alternative to deep neural networks publication-title: Int. Jt. Conf. Artif. Intell. – volume: 50 start-page: 69 year: 2015 ident: 10.1016/j.ijrefrig.2020.08.014_bib0021 article-title: Fault and sensor error diagnostic strategies for a vapor compression refrigeration system by using fuzzy inference systems and artificial neural network publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2014.10.017 – volume: 81 start-page: 470 issue: 3 year: 2013 ident: 10.1016/j.ijrefrig.2020.08.014_bib0028 article-title: Ensemble methods: foundations and algorithms publication-title: Int. Stat. Rev. doi: 10.1111/insr.12042_10 – volume: 82 start-page: 428 year: 2014 ident: 10.1016/j.ijrefrig.2020.08.014_bib0035 article-title: Impact of climate change heating and cooling energy use in buildings in the United States publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.07.034 – start-page: 847 year: 2013 ident: 10.1016/j.ijrefrig.2020.08.014_bib0033 article-title: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms – volume: 151 start-page: 35 year: 2017 ident: 10.1016/j.ijrefrig.2020.08.014_bib0032 article-title: Optimization of support vector regression model based on outlier detection methods for predicting electricity consumption of a public building WSHP system publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.06.056 – ident: 10.1016/j.ijrefrig.2020.08.014_bib0034 – volume: 86 start-page: 401 year: 2018 ident: 10.1016/j.ijrefrig.2020.08.014_bib0041 article-title: Cost-sensitive and sequential feature selection for chiller fault detection and diagnosis publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2017.11.003 – volume: 109 start-page: 38 year: 1996 ident: 10.1016/j.ijrefrig.2020.08.014_bib0039 article-title: Pearson's correlation coefficient publication-title: N. Z. Med. J. – volume: 30 start-page: 101 year: 2020 ident: 10.1016/j.ijrefrig.2020.08.014_bib0012 article-title: Fault diagnosis of heating systems using multivariate feature extraction based machine learning classifiers publication-title: J. Build. Eng. – volume: 79 start-page: 20 year: 2015 ident: 10.1016/j.ijrefrig.2020.08.014_bib0006 article-title: Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach publication-title: Energy doi: 10.1016/j.energy.2014.08.081 – volume: 125 start-page: 77 year: 2017 ident: 10.1016/j.ijrefrig.2020.08.014_bib0005 article-title: Application of artificial neural networks for determining energy-efficient operating set-points of the VRF cooling system publication-title: Build. Environ. doi: 10.1016/j.buildenv.2017.08.044 – start-page: 72 year: 2000 ident: 10.1016/j.ijrefrig.2020.08.014_bib0008 article-title: Data preprocessing in data mining publication-title: Comput. Sci. – volume: 98 start-page: 1 year: 2016 ident: 10.1016/j.ijrefrig.2020.08.014_bib0009 article-title: Tutorial on practical tips of the most influential data preprocessing algorithms in data mining publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.006 – start-page: 413 year: 2009 ident: 10.1016/j.ijrefrig.2020.08.014_bib0026 article-title: Isolation Forest – volume: 31 start-page: 582 year: 2011 ident: 10.1016/j.ijrefrig.2020.08.014_bib0017 article-title: Study on a hybrid SVM model for chiller FDD applications publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2010.10.021 – volume: 107 start-page: 39 year: 2019 ident: 10.1016/j.ijrefrig.2020.08.014_bib0027 article-title: A novel deep reinforcement learning based methodology for short-term HVAC system energy consumption prediction publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2019.07.018 – volume: 108 start-page: 989 year: 2016 ident: 10.1016/j.ijrefrig.2020.08.014_bib0031 article-title: A novel efficient SVM-based fault diagnosis method for multi-split air conditioning system's refrigerant charge fault amount publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.07.109 – volume: 45 start-page: 21 year: 2017 ident: 10.1016/j.ijrefrig.2020.08.014_bib0004 article-title: On the relevance of auditory-based Gabor features for deep learning in robust speech recognition publication-title: Comput. Speech Lang. doi: 10.1016/j.csl.2017.02.006 – volume: 205 start-page: 926 year: 2017 ident: 10.1016/j.ijrefrig.2020.08.014_bib0040 article-title: Fault detection and operation optimization in district heating substations based on data mining techniques publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.08.035 |
| SSID | ssj0017058 |
| Score | 2.4001281 |
| Snippet | •An improved deep learning model based on tree structure is proposed in VRF system.•Pearson's correlation coefficient combines with isolation forest for data... This paper presents a hybrid deep forest approach for outlier detection and fault diagnosis. Isolation forest algorithm is combined with Pearson's correlation... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 104 |
| SubjectTerms | Algorithms Artificial neural networks Back propagation Correlation coefficients Data analysis Deep forest model Deep learning Defrosting Diagnostic des défaillances Diagnostic systems Fault diagnosis HVAC HVAC equipment Machine learning Mathematical models Model accuracy Modèle de forêt neuronale profonde Méthode de détection des valeurs aberrantes Neural networks Optimization Outlier detection Outliers (statistics) Parameters Refrigerants Système à débit de frigorigène variable Variable refrigerant flow system |
| Title | A hybrid deep forest approach for outlier detection and fault diagnosis of variable refrigerant flow system |
| URI | https://dx.doi.org/10.1016/j.ijrefrig.2020.08.014 https://www.proquest.com/docview/2479061078 |
| Volume | 120 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2081 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017058 issn: 0140-7007 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Journals customDbUrl: eissn: 1879-2081 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017058 issn: 0140-7007 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-2081 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017058 issn: 0140-7007 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-2081 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017058 issn: 0140-7007 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2081 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017058 issn: 0140-7007 databaseCode: AKRWK dateStart: 19780501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kXvQgPrE-yh68pmmS3WxyLMVSFT0peFv2ia0lLTYqXvztzuQhKogHjwm7m2V2M_MNfPMNIWcKZdCyOAm4iFjAeB4FmVEiMMrlgGa18AkWJ1_fpJM7dnnP79fIqK2FQVpl4_trn1556-ZN2FgzXE6nYUVLEqh8Dfc0YRwLzRkT2MWg__5J80C1mKylMeLoL1XCs_50BmEIsmDIE-NBJeUZsd8C1A9XXcWf8TbZaoAjHdZ72yFrrtglm1_kBPfI45A-vGEFFrXOLSnAUViHtqrh-EyR_wPfgQFlxcEqqCos9ep5XlJbs-6mK7rw9AVyaKyqovXWHYS0kvr54pXW2s_75G58fjuaBE0zhcAkbFAGaaK9GEQutsLqzKdYkqrjgYGEItGASVSmMh2JjCsNo1wujDeJyRmPjfWG6-SAdIpF4Q4J9dbmkIMbbi1nTigFKDEVzmeeO2OF7hLeWlCaRmkcG17MZUspm8nW8hItL7ETZsS6JPyct6y1Nv6ckbcHJL_dGgkB4c-5J-2Jyua_XcmYiRwQDuCmo38sfUw28KlmvZyQTvn07E4Bu5S6V13OHlkfXlxNbj4Apjjxdg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGYAB8RSPAh5YQ5vEjpOxqqgKtJ1aqZvlp2ip0gpSEAu_nXMeFSAhBsY4tmOdnbvvpO8-I3QtnAxaHIQeZT7xCE18L1aCeUqYBNCsZDZ0xcmDYdQbk_sJndRQp6qFcbTK0vcXPj331mVLs7RmczmdNnNaEnPK13BOQ0LpBtokNGAuA7v5WPM8nFxMXPEYXfcvZcKzm-kM4hCkwZAoBq1cy9Mnv0WoH746D0DdPbRbIkfcLha3j2omPUA7X_QED9FTGz--uxIsrI1ZYsCjMA-uZMPdM3YEIPgOdMhyElaKRaqxFat5hnVBu5u-4IXFr5BEu7IqXCzdQEzLsJ0v3nAh_nyExt3bUafnlbcpeCokrcyLQmlZyzeBZlrGNnI1qTJoKcgoQgmgRMQilj6LqZDQyyRMWRWqBEyqtFVUhseoni5Sc4Kw1TqBJFxRrSkxTAiAiREzNrbUKM3kKaKVBbkqpcbdjRdzXnHKZryyPHeW5-4qTJ-couZ63LIQ2_hzRFJtEP92bDhEhD_HNqod5eWP-8IDwhKAOACczv4x9RXa6o0Gfd6_Gz6co233pqDANFA9e16ZCwAymbzMD-onPqnzCw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+deep+forest+approach+for+outlier+detection+and+fault+diagnosis+of+variable+refrigerant+flow+system&rft.jtitle=International+journal+of+refrigeration&rft.au=Zeng%2C+Yuke&rft.au=Chen%2C+Huanxin&rft.au=Xu%2C+Chengliang&rft.au=Cheng%2C+Yahao&rft.date=2020-12-01&rft.issn=0140-7007&rft.volume=120&rft.spage=104&rft.epage=118&rft_id=info:doi/10.1016%2Fj.ijrefrig.2020.08.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijrefrig_2020_08_014 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-7007&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-7007&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-7007&client=summon |