Numerical simulation of a prostate tumor growth model by the RBF-FD scheme and a semi-implicit time discretization
The aim of this work consists of finding a suitable numerical method for the solution of the mathematical model describing the prostate tumor growth, formulated as a system of time-dependent partial differential equations (PDEs), which plays a key role in the field of mathematical oncology. In the l...
Saved in:
Published in | Journal of computational and applied mathematics Vol. 388; p. 113314 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0377-0427 1879-1778 1879-1778 |
DOI | 10.1016/j.cam.2020.113314 |
Cover
Abstract | The aim of this work consists of finding a suitable numerical method for the solution of the mathematical model describing the prostate tumor growth, formulated as a system of time-dependent partial differential equations (PDEs), which plays a key role in the field of mathematical oncology. In the literature on the subject, there are a few numerical methods for solving the proposed mathematical model. Localized prostate cancer growth is known as a moving interface problem, which must be solved in a suitable stable way. The mathematical model considered in this paper is a system of time-dependent nonlinear PDEs that describes the interaction between cancer cells, nutrients, and prostate-specific antigen (PSA). Here, we first derive a non-dimensional form of the studied mathematical model using the well-known non-dimensionalization technique, which makes it easier to implement different numerical techniques. Afterward, the analysis of the numerical method describing the two-dimensional prostate tumor growth problem, based on radial basis function-generated finite difference (RBF-FD) scheme, in combination with a first-order time discretization has been done. The numerical technique we use, does not need the use of any adaptivity techniques to capture the features in the interface. The discretization leads to solving a linear system of algebraic equations solved via the biconjugate gradient stabilized (BiCGSTAB) algorithm with zero-fill incomplete lower–upper (ILU) preconditioner. Comparing the results obtained in this investigation with those reported in the recent literature, the proposed approach confirms the ability of the developed numerical scheme. Besides, the effect of choosing constant parameters in the mathematical model is verified by many simulations on rectangular and circular domains. |
---|---|
AbstractList | The aim of this work consists of finding a suitable numerical method for the solution of the mathematical model describing the prostate tumor growth, formulated as a system of time-dependent partial differential equations (PDEs), which plays a key role in the field of mathematical oncology. In the literature on the subject, there are a few numerical methods for solving the proposed mathematical model. Localized prostate cancer growth is known as a moving interface problem, which must be solved in a suitable stable way. The mathematical model considered in this paper is a system of time-dependent nonlinear PDEs that describes the interaction between cancer cells, nutrients, and prostate-specific antigen (PSA). Here, we first derive a non-dimensional form of the studied mathematical model using the well-known non-dimensionalization technique, which makes it easier to implement different numerical techniques. Afterward, the analysis of the numerical method describing the two-dimensional prostate tumor growth problem, based on radial basis function-generated finite difference (RBF-FD) scheme, in combination with a first-order time discretization has been done. The numerical technique we use, does not need the use of any adaptivity techniques to capture the features in the interface. The discretization leads to solving a linear system of algebraic equations solved via the biconjugate gradient stabilized (BiCGSTAB) algorithm with zero-fill incomplete lower–upper (ILU) preconditioner. Comparing the results obtained in this investigation with those reported in the recent literature, the proposed approach confirms the ability of the developed numerical scheme. Besides, the effect of choosing constant parameters in the mathematical model is verified by many simulations on rectangular and circular domains. |
ArticleNumber | 113314 |
Author | De Marchi, Stefano Dehghan, Mehdi Mohammadi, Vahid |
Author_xml | – sequence: 1 givenname: Vahid surname: Mohammadi fullname: Mohammadi, Vahid email: v.mohammadi@aut.ac.ir, v.mohammadi.aut@gmail.com organization: Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Amirkabir University of Technology, No. 424, Hafez Ave.,15914, Tehran, Iran – sequence: 2 givenname: Mehdi surname: Dehghan fullname: Dehghan, Mehdi email: mdehghan@aut.ac.ir, mdehghan.aut@gmail.com organization: Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Amirkabir University of Technology, No. 424, Hafez Ave.,15914, Tehran, Iran – sequence: 3 givenname: Stefano surname: De Marchi fullname: De Marchi, Stefano email: demarchi@math.unipd.it organization: Department of Mathematics “Tullio Levi-Civita”, University of Padua, Italy |
BookMark | eNqNkMFKAzEURYMo2FY_wF1-YOrLJNN0cKXVqlAURNchk7yxKZOZkqRK_XqnrSsX4upxeZwL9wzJcdu1SMgFgzEDNrlcjY324xzyPjPOmTgiAzaVZcaknB6TAXApMxC5PCXDGFcAMCmZGJDwtPEYnNENjc5vGp1c19KuppquQxeTTkjTxneBvofuMy2p7yw2tNrStET6cjPP5rc0miV6pLq1PRbRu8z5deOMSzS5_mFdNAGT-9q3n5GTWjcRz3_uiLzN715nD9ni-f5xdr3IDBeQsqKwRoCopNWyRFFbLLjR0ta2rGoLpqoBEPKJ4VKAxqLOBUesbFkANzbP-Yjkh95Nu9bbT900ah2c12GrGKidNbVSvTW1s6YO1nqIHSDTr48B638x8hfTL99PTUG75k_y6kBi7-HDYVDROGwNWhfQJGU79wf9DZ8umzA |
CitedBy_id | crossref_primary_10_3390_mca29020023 crossref_primary_10_1007_s40314_023_02256_3 crossref_primary_10_1016_j_padiff_2021_100046 crossref_primary_10_1002_mma_10696 crossref_primary_10_1016_j_cmpb_2025_108700 crossref_primary_10_1007_s11075_023_01719_2 crossref_primary_10_1016_j_enganabound_2024_04_008 crossref_primary_10_1002_mma_8536 crossref_primary_10_1016_j_icheatmasstransfer_2024_108422 crossref_primary_10_3389_fphys_2024_1421591 crossref_primary_10_1016_j_enganabound_2024_105908 crossref_primary_10_1016_j_enganabound_2021_12_008 crossref_primary_10_1007_s11075_024_01835_7 crossref_primary_10_1016_j_cnsns_2022_106616 crossref_primary_10_1016_j_enganabound_2024_106020 crossref_primary_10_1007_s00366_023_01892_x crossref_primary_10_1016_j_enganabound_2022_05_026 crossref_primary_10_3390_fractalfract7080595 crossref_primary_10_1016_j_camwa_2024_12_023 crossref_primary_10_1016_j_cma_2024_116981 crossref_primary_10_1016_j_enganabound_2025_106129 crossref_primary_10_1155_2021_1290895 crossref_primary_10_1016_j_compbiomed_2023_106708 crossref_primary_10_1016_j_jksus_2022_102430 crossref_primary_10_1007_s40819_022_01439_6 crossref_primary_10_1016_j_cnsns_2024_108470 crossref_primary_10_1016_j_apm_2021_12_011 crossref_primary_10_1016_j_apnum_2024_03_015 crossref_primary_10_1016_j_enganabound_2022_06_024 |
Cites_doi | 10.1016/j.amc.2012.03.062 10.1016/j.jcp.2016.08.045 10.1016/0898-1221(90)90270-T 10.1016/0009-2509(83)80132-8 10.1016/j.jcp.2017.09.007 10.1016/j.cam.2018.07.020 10.1007/s11075-013-9711-1 10.1137/S0036144503429121 10.1142/S0218202520500220 10.1007/s10915-019-01028-8 10.1073/pnas.1615791113 10.1016/j.jcp.2018.06.036 10.1137/060671991 10.1002/cnm.1467 10.1016/j.jcp.2017.04.037 10.1016/j.jcp.2012.01.028 10.1016/j.jcp.2018.03.013 10.1016/j.camwa.2019.11.024 10.1016/j.apm.2018.01.034 10.1093/imanum/drr030 10.1007/s10915-018-0851-2 10.1016/j.jtbi.2008.03.027 10.1016/j.jcp.2016.02.078 10.1016/j.jcp.2018.07.015 10.1371/journal.pone.0149422 10.1016/j.mcm.2010.07.007 10.1002/fld.3880 10.1016/j.jcp.2016.12.008 10.1006/bulm.1998.0042 10.1016/j.jcp.2016.11.030 10.1016/j.apm.2010.03.028 10.1007/s10543-017-0659-8 10.1007/s10915-018-0859-7 10.1016/j.neuroimage.2007.03.008 10.1016/j.amc.2018.02.007 10.1007/s00211-015-0722-9 10.1016/j.jcp.2010.12.014 10.1016/j.cma.2018.11.019 10.1016/j.camwa.2018.12.029 10.1016/j.jtbi.2010.02.036 10.1016/j.camwa.2012.11.006 10.1080/10273660008833042 10.1111/j.1432-1033.1968.tb00175.x 10.1016/j.cpc.2017.03.012 10.1007/s10915-014-9914-1 10.1007/s00211-018-0973-3 10.1371/journal.pone.0010431 10.3934/mbe.2015.12.1173 10.1016/0022-5193(79)90042-0 10.1126/science.251.4994.650 10.1016/j.enganabound.2020.06.005 10.1137/16M1095457 10.1007/BF00289234 10.1073/pnas.1815735116 10.1016/j.camwa.2015.08.032 10.1016/j.cma.2017.03.009 10.1016/j.camwa.2003.08.010 10.1137/09076756X 10.1016/j.jtbi.2014.07.010 10.1016/j.jtbi.2007.10.026 10.1007/s00366-019-00779-0 10.1016/j.jcp.2005.05.030 10.1016/j.enganabound.2019.06.007 10.1016/S0045-7825(02)00618-7 10.1098/rsif.2010.0285 10.1016/j.jcp.2015.06.003 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION ADTOC UNPAY |
DOI | 10.1016/j.cam.2020.113314 |
DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1879-1778 |
ExternalDocumentID | oai:www.research.unipd.it:11577/3394935 10_1016_j_cam_2020_113314 S0377042720306051 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABAOU ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSW T5K TN5 UPT XPP YQT ZMT ~02 ~G- 29K 5VS AAFWJ AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AEXQZ AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS EJD FGOYB G-2 HZ~ NHB R2- SEW SSZ WUQ ZY4 ~HD ADTOC AGCQF UNPAY |
ID | FETCH-LOGICAL-c340t-55dc404b7da79e4fde53ca7dfd9bfd0cbf00e026c3740ae5f243eebd9503cd223 |
IEDL.DBID | IXB |
ISSN | 0377-0427 1879-1778 |
IngestDate | Sun Aug 24 08:55:39 EDT 2025 Thu Apr 24 23:08:35 EDT 2025 Wed Oct 01 06:28:06 EDT 2025 Fri Feb 23 02:48:00 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Non-dimensionalization technique Moving interface problem 35Q35 Mathematical oncology Biconjugate gradient stabilized method 92C17 A prostate tumor growth model based on time-dependent partial differential equations 35Q92 Radial basis function-generated finite difference scheme |
Language | English |
License | other-oa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-55dc404b7da79e4fde53ca7dfd9bfd0cbf00e026c3740ae5f243eebd9503cd223 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/11577/3394935 |
ParticipantIDs | unpaywall_primary_10_1016_j_cam_2020_113314 crossref_primary_10_1016_j_cam_2020_113314 crossref_citationtrail_10_1016_j_cam_2020_113314 elsevier_sciencedirect_doi_10_1016_j_cam_2020_113314 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-01 2021-05-00 |
PublicationDateYYYYMMDD | 2021-05-01 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of computational and applied mathematics |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Dehghan, Narimani (b13) 2020; 36 Lehto, Shankar, Wright (b31) 2017; 39 Colli, Gomez, Lorenzo, Marinoschi, Reali, Rocca (b22) 2020; 30 Mohammadi, Dehghan (b15) 2019; 345 Flyer, Barnett, Wicker (b49) 2016; 316 Lengyel, Epstein (b63) 1991; 251 Davydov, Schaback (b79) 2018; 140 De Marchi, Marchetti, Perracchione (b28) 2019 Davydov, Schaback (b78) 2016; 132 Dehghan, Narimani (b12) 2018; 59 Mirzaei (b53) 2020 Shankar, Narayan, Kirby (b56) 2018; 373 Persson, Strang (b81) 2004; 46 Nojavan, Abbasbandy, Mohammadi (b30) 2018; 330 Wise, Lowengrub, Cristini (b21) 2011; 53 Islam, Ali, Haq (b64) 2010; 34 Domschke, Trucu, Gerisch, Chaplain (b6) 2014; 361 Bayona (b46) 2019; 81 Sleijpen, Fokkema (b80) 1993; 1 Andasari (b11) 2011 Lorenzo, Hughes, Dominguez-Frojan, Reali, Gomez (b2) 2019; 116 Davydov, Schaback (b74) 2019; 39 Lorenzo, Scott, Tew, Hughes, Gomez (b8) 2017; 319 Shu, H, Ding, Yeo (b38) 2003; 192 Sarra (b82) 2012; 218 Bayona, Flyer, Fornberg, Barnett (b73) 2017; 332 Walsh, Worthington (b3) 2010 Schaback (b42) 2017 Lorenzo, Scott, Tew, Hughes, Zhang, Liu, Vilanova, Gomez (b9) 2016; 113 Shankar, Wright, Kirby, Fogelson (b54) 2015; 63 De Marchi, Martínez, Perracchione, Rossini (b27) 2019; 79 Schnakenberg (b67) 1979; 81 Wendland (b25) 2004 Trask, Maxey, Hu (b35) 2016; 326 Dehghan, Mohammadi (b57) 2019; 107 Mohammadi, Dehghan, Khodadadian, Wick (b34) 2019 Härmä, Virtanen, Mäkelä, Happonen, Mpindi, Knuuttila, Kohonen, Lötjönen, Kallioniemi, Nees (b83) 2010; 5 Fornberg, Lehto (b40) 2011; 230 Dehghan, Abbaszadeh (b47) 2017; 351 Gierer, Meinhardt (b61) 1972; 12 Xu, Vilanova, Gomez (b10) 2016; 11 Shankar, Wright, Fogelson, Kirby (b50) 2014; 75 Fornberg, Flyer (b45) 2015 Shankar (b51) 2017; 342 Anderson, Chaplain, Newman, Steele, Thompson (b5) 2000; 2 Larsson, Lehto, Heryudono, Fornberg (b41) 2013; 35 Fasshauer, McCourt (b70) 2012; 34 Shankar, Fogelson (b52) 2018; 372 Sel’kov (b66) 1968; 4 Frieboes, Jin, Chuang, Wise, Lowengrub, Cristini (b17) 2010; 264 De Marchi, Martínez, Perracchione (b26) 2019; 349 Bayona (b43) 2019; 77 Fornberg, Larsson, Flyer (b71) 2011; 33 Ciarletta, Foret, Ben Amar (b60) 2011; 8 Wright, Fornberg (b72) 2017; 331 Gerisch, Chaplain (b7) 2008; 250 Gomez, van der Zee (b59) 2018 Abbaszadeh, Dehghan (b58) 2020; 119 Liu, Tang, Wang, Zhou (b14) 2018; 364 Dehghan, Mohammadi (b55) 2017; 217 Tillenius, Larsson, Lehto, Flyer (b76) 2015; 298 Mirzaei, Schaback, Dehghan (b32) 2012; 32 Mirzaei (b77) 2017; 57 Mohammadi, Mirzaei, Dehghan (b24) 2019; 79 Anderson, Chaplain (b4) 1998; 60 Fornberg, Wright (b68) 2004; 48 Jabalameli, Mirzaei (b75) 2020; 79 Cooper, Hausman (b1) 2000 Wise, Lowengrub, Frieboes, Cristini (b20) 2008; 253 Fasshauer (b23) 2007 Hawkins-Daarud, van der Zee, Tinsley Oden (b18) 2012; 28 Wright, Fornberg (b39) 2006; 212 Gray, Scott (b62) 1983; 38 Dehghan, Mohammadi (b29) 2015; 70 Frieboes, Lowengrub, Wise, Zheng, Macklin, Bearer, Cristini (b16) 2007; 37 Fornberg, Lehto, Powell (b44) 2013; 65 Kansa (b36) 1990; 19 Fornberg, Piret (b69) 2007; 30 Mohammadi, Mokhtari, Schaback (b65) 2014; 101 Lee, Kim, Kim (b19) 2015; 12 A.I. Tolstykh, On using RBF-based differencing formulas for unstructured and mixed structured–unstructured grid calculations, in: Proceedings of the 16th IMACS world congress, 228, Lausanne, 2000, pp. 4606–4624. Flyer, Lehto, Blaise, Wright, St-Cyr (b48) 2012; 231 Mirzaei, Schaback (b33) 2014; 65 Shankar (10.1016/j.cam.2020.113314_b51) 2017; 342 Gomez (10.1016/j.cam.2020.113314_b59) 2018 Cooper (10.1016/j.cam.2020.113314_b1) 2000 10.1016/j.cam.2020.113314_b37 Bayona (10.1016/j.cam.2020.113314_b43) 2019; 77 Fornberg (10.1016/j.cam.2020.113314_b44) 2013; 65 Abbaszadeh (10.1016/j.cam.2020.113314_b58) 2020; 119 Bayona (10.1016/j.cam.2020.113314_b73) 2017; 332 Wright (10.1016/j.cam.2020.113314_b72) 2017; 331 Tillenius (10.1016/j.cam.2020.113314_b76) 2015; 298 Xu (10.1016/j.cam.2020.113314_b10) 2016; 11 Flyer (10.1016/j.cam.2020.113314_b49) 2016; 316 Mohammadi (10.1016/j.cam.2020.113314_b65) 2014; 101 Trask (10.1016/j.cam.2020.113314_b35) 2016; 326 Davydov (10.1016/j.cam.2020.113314_b74) 2019; 39 Hawkins-Daarud (10.1016/j.cam.2020.113314_b18) 2012; 28 De Marchi (10.1016/j.cam.2020.113314_b26) 2019; 349 Dehghan (10.1016/j.cam.2020.113314_b13) 2020; 36 Nojavan (10.1016/j.cam.2020.113314_b30) 2018; 330 Colli (10.1016/j.cam.2020.113314_b22) 2020; 30 Kansa (10.1016/j.cam.2020.113314_b36) 1990; 19 Sleijpen (10.1016/j.cam.2020.113314_b80) 1993; 1 Fasshauer (10.1016/j.cam.2020.113314_b23) 2007 Davydov (10.1016/j.cam.2020.113314_b79) 2018; 140 Härmä (10.1016/j.cam.2020.113314_b83) 2010; 5 Flyer (10.1016/j.cam.2020.113314_b48) 2012; 231 Lengyel (10.1016/j.cam.2020.113314_b63) 1991; 251 Wright (10.1016/j.cam.2020.113314_b39) 2006; 212 Mohammadi (10.1016/j.cam.2020.113314_b24) 2019; 79 Jabalameli (10.1016/j.cam.2020.113314_b75) 2020; 79 Lorenzo (10.1016/j.cam.2020.113314_b8) 2017; 319 Wise (10.1016/j.cam.2020.113314_b21) 2011; 53 Fornberg (10.1016/j.cam.2020.113314_b40) 2011; 230 Shankar (10.1016/j.cam.2020.113314_b52) 2018; 372 Sel’kov (10.1016/j.cam.2020.113314_b66) 1968; 4 Fornberg (10.1016/j.cam.2020.113314_b69) 2007; 30 Dehghan (10.1016/j.cam.2020.113314_b29) 2015; 70 Wendland (10.1016/j.cam.2020.113314_b25) 2004 Lorenzo (10.1016/j.cam.2020.113314_b9) 2016; 113 De Marchi (10.1016/j.cam.2020.113314_b28) 2019 Anderson (10.1016/j.cam.2020.113314_b4) 1998; 60 Wise (10.1016/j.cam.2020.113314_b20) 2008; 253 Gierer (10.1016/j.cam.2020.113314_b61) 1972; 12 Walsh (10.1016/j.cam.2020.113314_b3) 2010 Mirzaei (10.1016/j.cam.2020.113314_b32) 2012; 32 Dehghan (10.1016/j.cam.2020.113314_b47) 2017; 351 Davydov (10.1016/j.cam.2020.113314_b78) 2016; 132 Mohammadi (10.1016/j.cam.2020.113314_b34) 2019 Gray (10.1016/j.cam.2020.113314_b62) 1983; 38 Mohammadi (10.1016/j.cam.2020.113314_b15) 2019; 345 Frieboes (10.1016/j.cam.2020.113314_b16) 2007; 37 Anderson (10.1016/j.cam.2020.113314_b5) 2000; 2 Larsson (10.1016/j.cam.2020.113314_b41) 2013; 35 Mirzaei (10.1016/j.cam.2020.113314_b77) 2017; 57 Schaback (10.1016/j.cam.2020.113314_b42) 2017 Bayona (10.1016/j.cam.2020.113314_b46) 2019; 81 Fornberg (10.1016/j.cam.2020.113314_b71) 2011; 33 Dehghan (10.1016/j.cam.2020.113314_b12) 2018; 59 Gerisch (10.1016/j.cam.2020.113314_b7) 2008; 250 Lehto (10.1016/j.cam.2020.113314_b31) 2017; 39 Islam (10.1016/j.cam.2020.113314_b64) 2010; 34 Liu (10.1016/j.cam.2020.113314_b14) 2018; 364 Dehghan (10.1016/j.cam.2020.113314_b55) 2017; 217 Fornberg (10.1016/j.cam.2020.113314_b68) 2004; 48 Shankar (10.1016/j.cam.2020.113314_b50) 2014; 75 Lee (10.1016/j.cam.2020.113314_b19) 2015; 12 Sarra (10.1016/j.cam.2020.113314_b82) 2012; 218 Frieboes (10.1016/j.cam.2020.113314_b17) 2010; 264 Schnakenberg (10.1016/j.cam.2020.113314_b67) 1979; 81 Mirzaei (10.1016/j.cam.2020.113314_b33) 2014; 65 Domschke (10.1016/j.cam.2020.113314_b6) 2014; 361 Fasshauer (10.1016/j.cam.2020.113314_b70) 2012; 34 Andasari (10.1016/j.cam.2020.113314_b11) 2011 Dehghan (10.1016/j.cam.2020.113314_b57) 2019; 107 De Marchi (10.1016/j.cam.2020.113314_b27) 2019; 79 Fornberg (10.1016/j.cam.2020.113314_b45) 2015 Ciarletta (10.1016/j.cam.2020.113314_b60) 2011; 8 Persson (10.1016/j.cam.2020.113314_b81) 2004; 46 Lorenzo (10.1016/j.cam.2020.113314_b2) 2019; 116 Shankar (10.1016/j.cam.2020.113314_b54) 2015; 63 Shu (10.1016/j.cam.2020.113314_b38) 2003; 192 Mirzaei (10.1016/j.cam.2020.113314_b53) 2020 Shankar (10.1016/j.cam.2020.113314_b56) 2018; 373 |
References_xml | – year: 2011 ident: b11 article-title: Mathematical Modelling of Cancer Cell Invasion of Tissue: Discrete and Continuum Approaches To Studying the Central Role of Adhesion – volume: 116 start-page: 1152 year: 2019 end-page: 1161 ident: b2 article-title: Computer simulations suggest that prostate enlargement due to benign prostatic hyperplasia mechanically impedes prostate cancer growth publication-title: Proc. Natl. Acad. Sci. – start-page: 1 year: 2018 end-page: 35 ident: b59 article-title: Computational phase–field modeling publication-title: Encyclopedia of Computational Mechanics – year: 2020 ident: b53 article-title: The direct radial basis function partition of unity (D-RBF-PU) method for solving PDEs publication-title: SIAM J. Sci. Comput. – year: 2010 ident: b3 article-title: Dr. Patrick Walsh’S Guide To Surviving Prostate Cancer – volume: 53 start-page: 1 year: 2011 end-page: 20 ident: b21 article-title: An adaptive multigrid algorithm for simulating solid tumor growth using mixture models publication-title: Math. Comput. Modelling – volume: 33 start-page: 869 year: 2011 end-page: 892 ident: b71 article-title: Stable computations with Gaussian radial basis functions publication-title: SIAM J. Sci. Comput. – volume: 46 start-page: 329 year: 2004 end-page: 345 ident: b81 article-title: A simple mesh generator in MATLAB publication-title: SIAM Rev. – year: 2019 ident: b34 article-title: Numerical investigation on the transport equation in spherical coordinates via generalized moving least squares and moving Kriging least squares approximations publication-title: Eng. Comput. – year: 2004 ident: b25 article-title: Scattered Data Approximation – volume: 79 start-page: 321 year: 2019 end-page: 344 ident: b27 article-title: RBF–based partition of unity methods for elliptic PDEs: Adaptivity and stability issues via variably scaled kernels publication-title: J. Sci. Comput. – volume: 1 start-page: 2000 year: 1993 ident: b80 article-title: BiCGstab (l) for linear equations involving unsymmetric matrices with complex spectrum publication-title: Electron. Trans. Numer. Anal. – volume: 5 year: 2010 ident: b83 article-title: A comprehensive panel of three–dimensional models for studies of prostate cancer growth, invasion and drug responses publication-title: Plos One – volume: 57 start-page: 1041 year: 2017 end-page: 1063 ident: b77 article-title: Direct approximation on spheres using generalized moving least squares publication-title: BIT – volume: 38 start-page: 29 year: 1983 end-page: 43 ident: b62 article-title: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability publication-title: Chem. Eng. Sci. – volume: 19 start-page: 127 year: 1990 end-page: 145 ident: b36 article-title: Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates publication-title: Comput. Math. Appl. – volume: 60 start-page: 857 year: 1998 end-page: 899 ident: b4 article-title: Continuous and discrete mathematical models of tumor–induced angiogenesis publication-title: Bull. Math. Biol. – volume: 298 start-page: 406 year: 2015 end-page: 422 ident: b76 article-title: A scalable RBF-FD method for atmospheric flow publication-title: J. Comput. Phys. – volume: 39 start-page: 398 year: 2019 end-page: 422 ident: b74 article-title: Optimal stencils in Sobolev spaces publication-title: IMA J. Numer. Anal. – year: 2015 ident: b45 article-title: A Primer on Radial Basis Functions with Applications To the Geosciences – volume: 217 start-page: 23 year: 2017 end-page: 34 ident: b55 article-title: A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high–dimensional nonlinear Schrödinger equations using an explicit time discretization: Runge–Kutta method publication-title: Comput. Phys. Comm. – volume: 30 start-page: 60 year: 2007 end-page: 80 ident: b69 article-title: A stable algorithm for flat radial basis functions on a sphere publication-title: SIAM J. Sci. Comput. – volume: 30 start-page: 1253 year: 2020 end-page: 1295 ident: b22 article-title: Mathematical analysis and simulation study of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects publication-title: Math. Models Methods Appl. Sci. – volume: 79 start-page: 493 year: 2019 end-page: 516 ident: b24 article-title: Numerical simulation and error estimation of the time–dependent Allen–Cahn equation on surfaces with radial basis functions publication-title: J. Sci. Comput. – volume: 63 start-page: 745 year: 2015 end-page: 768 ident: b54 article-title: A radial basis function (RBF)–finite difference (FD) method for diffusion and reaction–diffusion equations on surfaces publication-title: J. Sci. Comput. – volume: 2 start-page: 129 year: 2000 end-page: 154 ident: b5 article-title: Mathematical modelling of tumour invasion and metastasis publication-title: Comput. Math. Methods Med. – volume: 250 start-page: 684 year: 2008 end-page: 704 ident: b7 article-title: Mathematical modelling of cancer cell invasion of tissue: local and non–local models and the effect of adhesion publication-title: J. Theoret. Biol. – volume: 35 start-page: A2096 year: 2013 end-page: A2119 ident: b41 article-title: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions, SIAM publication-title: J. Sci. Comput. – volume: 113 start-page: E7663 year: 2016 end-page: E7671 ident: b9 article-title: Tissue–scale, personalized modeling and simulation of prostate cancer growth publication-title: Proc. Natl. Acad. Sci. – volume: 231 start-page: 4078 year: 2012 end-page: 4095 ident: b48 article-title: A guide to RBF–generated finite differences for nonlinear transport: Shallow water simulations on a sphere publication-title: J. Comput. Phys. – volume: 11 year: 2016 ident: b10 article-title: A mathematical model coupling tumor growth and angiogenesis publication-title: PLoS One – volume: 331 start-page: 137 year: 2017 end-page: 156 ident: b72 article-title: Stable computations with flat radial basis functions using vector-valued rational approximations publication-title: J. Comput. Phys. – volume: 12 start-page: 1173 year: 2015 end-page: 1187 ident: b19 article-title: Mathematical model and its fast numerical method for the tumor growth publication-title: Math. Biosci. Eng. – volume: 251 start-page: 650 year: 1991 end-page: 652 ident: b63 article-title: Modeling of Turing structures in the chlorite-iodidemalonic acid-starch reaction system publication-title: Science – volume: 81 start-page: 389 year: 1979 end-page: 400 ident: b67 article-title: Simple chemical reaction system with limit cycle behaviour publication-title: J. Theoret. Biol. – volume: 345 start-page: 919 year: 2019 end-page: 950 ident: b15 article-title: Simulation of the phase field Cahn-Hilliard and tumor growth models via a numerical scheme: Element–free Galerkin method publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 34 start-page: A737 year: 2012 end-page: A762 ident: b70 article-title: Stable evaluation of Gaussian RBF interpolants, SIAM publication-title: J. Sci. Comput. – volume: 351 start-page: 478 year: 2017 end-page: 510 ident: b47 article-title: The use of proper orthogonal decomposition (POD) meshless RBF–FD technique to simulate the shallow water equations publication-title: J. Comput. Phys. – volume: 101 start-page: 113 year: 2014 end-page: 138 ident: b65 article-title: Simulating the 2D Brusselator system in reproducing kernel Hilbert space publication-title: Comput. Model Eng. Sci. – volume: 8 start-page: 345 year: 2011 end-page: 368 ident: b60 article-title: The radial growth phase of malignant melanoma: multi–phase modelling, numerical simulations and linear stability analysis publication-title: J. R. Soc. Interface – volume: 212 start-page: 99 year: 2006 end-page: 123 ident: b39 article-title: Scattered node compact finite difference–type formulas generated from radial basis functions publication-title: J. Comput. Phys. – volume: 140 start-page: 555 year: 2018 end-page: 592 ident: b79 article-title: Minimal numerical differentiation formulas publication-title: Numer. Math. – volume: 39 start-page: A2129 year: 2017 end-page: A2151 ident: b31 article-title: A radial basis function (RBF) compact finite difference (FD) scheme for reaction–diffusion equations on surfaces publication-title: SIAM J. Sci. Comput. – volume: 81 start-page: 486 year: 2019 end-page: 512 ident: b46 article-title: Comparison of moving least squares and RBF+poly for interpolation and derivative approximation publication-title: J. Sci. Comput. – volume: 59 start-page: 500 year: 2018 end-page: 513 ident: b12 article-title: An element–free Galerkin meshless method for simulating the behavior of cancer cell invasion of surrounding tissue publication-title: Appl. Math. Model. – start-page: 1 year: 2019 end-page: 23 ident: b28 article-title: Jumping with variably scaled discontinuous kernels (VSDKs) publication-title: BIT Numer. Math. – volume: 75 start-page: 1 year: 2014 end-page: 22 ident: b50 article-title: A radial basis function (RBF) finite difference method for the simulation of reaction–diffusion equations on stationary platelets within the augmented forcing method publication-title: Int. J. Numer. Methods Fluids – volume: 372 start-page: 616 year: 2018 end-page: 639 ident: b52 article-title: Hyperviscosity–based stabilization for radial basis function-finite difference (RBF–FD) discretizations of advection-diffusion equations publication-title: J. Comput. Phys. – volume: 4 start-page: 79 year: 1968 end-page: 86 ident: b66 article-title: Self-oscillations in glycolysis publication-title: Eur. J. Biochem. – volume: 12 start-page: 30 year: 1972 end-page: 39 ident: b61 article-title: A theory of biological pattern formation publication-title: Kybernet – volume: 326 start-page: 596 year: 2016 end-page: 611 ident: b35 article-title: Compact moving least squares: an optimization framework for generating high-order compact meshless discretizations publication-title: J. Comput. Phys. – volume: 192 start-page: 941 year: 2003 end-page: 954 ident: b38 article-title: Local radial basis function–based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 37 start-page: S59 year: 2007 end-page: S70 ident: b16 article-title: Computer simulation of glioma growth and morphology publication-title: Neuroimage – volume: 70 start-page: 2292 year: 2015 end-page: 2315 ident: b29 article-title: The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations: The Crank–Nicolson scheme and the method of lines (MOL) publication-title: Comput. Math. Appl. – volume: 65 start-page: 275 year: 2014 end-page: 291 ident: b33 article-title: Solving heat conduction problems by the direct meshless local Petrov–Galerkin (DMLPG) method publication-title: Numer. Algorithms – volume: 373 start-page: 722 year: 2018 end-page: 735 ident: b56 article-title: RBF-LOI: Augmenting radial basis functions (RBFs) with least orthogonal interpolation (LOI) for solving PDEs on surfaces publication-title: J. Comput. Phys. – volume: 361 start-page: 41 year: 2014 end-page: 60 ident: b6 article-title: Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns publication-title: J. Theoret. Biol. – volume: 79 start-page: 2624 year: 2020 end-page: 2643 ident: b75 article-title: A weak–form RBF–generated finite difference method publication-title: Comput. Math. Appl. – volume: 218 start-page: 9853 year: 2012 end-page: 9865 ident: b82 article-title: A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains publication-title: Appl. Math. Comput. – volume: 65 start-page: 627 year: 2013 end-page: 637 ident: b44 article-title: Stable calculation of Gaussian–based RBF-FD stencils publication-title: Comput. Math. Appl. – start-page: 725 year: 2000 end-page: 766 ident: b1 article-title: The development and causes of cancer, the cell: A molecular approach – volume: 34 start-page: 3896 year: 2010 end-page: 3909 ident: b64 article-title: A computational modeling of the behavior of the two-dimensional reaction–diffusion Brusselator system publication-title: Appl. Math. Model. – volume: 132 start-page: 243 year: 2016 end-page: 269 ident: b78 article-title: Error bounds for kernel-based numerical differentiation publication-title: Numer. Math. – volume: 364 start-page: 73 year: 2018 end-page: 94 ident: b14 article-title: An accurate front capturing scheme for tumor growth models with a free boundary limit publication-title: J. Comput. Phys. – volume: 349 start-page: 331 year: 2019 end-page: 343 ident: b26 article-title: Fast and stable rational RBF-based partition of unity interpolation publication-title: J. Comput. Appl. Math. – volume: 319 start-page: 515 year: 2017 end-page: 548 ident: b8 article-title: Hierarchically refined and coarsened splines for moving interface problems, with particular application to phase-field models of prostate tumor growth publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 77 start-page: 2337 year: 2019 end-page: 2353 ident: b43 article-title: An insight into RBF–FD approximations augmented with polynomials publication-title: Comput. Math. Appl. – volume: 119 start-page: 151 year: 2020 end-page: 161 ident: b58 article-title: Simulation flows with multiple phases and components via the radial basis functions-finite difference (RBF-FD) procedure: Shan–Chen model publication-title: Eng. Anal. Bound. Elem. – volume: 316 start-page: 39 year: 2016 end-page: 62 ident: b49 article-title: Enhancing finite differences with radial basis functions: experiments on the Navier–Stokes equations publication-title: J. Comput. Phys. – volume: 36 start-page: 1517 year: 2020 end-page: 1537 ident: b13 article-title: The element–free Galerkin method based on moving least squares and moving Kriging approximations for solving two–dimensional tumor-induced angiogenesis model publication-title: Eng. Comput. – volume: 332 start-page: 257 year: 2017 end-page: 273 ident: b73 article-title: On the role of polynomials in RBF–FD approximations: II. Numerical solution of elliptic PDEs publication-title: J. Comput. Phys. – volume: 330 start-page: 23 year: 2018 end-page: 41 ident: b30 article-title: Local variably scaled Newton basis functions collocation method for solving Burgers’ equation publication-title: Appl. Math. Comput. – volume: 230 start-page: 2270 year: 2011 end-page: 2285 ident: b40 article-title: Stabilization of RBF-generated finite difference methods for convective PDEs publication-title: J. Comput. Phys. – volume: 48 start-page: 853 year: 2004 end-page: 867 ident: b68 article-title: Stable computation of multiquadric interpolants for all values of the shape paramete publication-title: Comput. Math. Appl. – volume: 264 start-page: 1254 year: 2010 end-page: 1278 ident: b17 article-title: Three-dimensional multispecies nonlinear tumor growth II: tumor invasion and angiogenesis publication-title: J. Theoret. Biol. – year: 2007 ident: b23 article-title: Meshfree Approximation Methods with MATLAB, Vol. 6 – start-page: 117 year: 2017 end-page: 143 ident: b42 article-title: Error analysis of nodal meshless methods publication-title: Meshfree Methods for Partial Differential Equations VIII – volume: 28 start-page: 3 year: 2012 end-page: 24 ident: b18 article-title: Numerical simulation of a thermodynamically consistent four–species tumor growth model publication-title: Int. J. Numer. Methods Biomed. Eng. – reference: A.I. Tolstykh, On using RBF-based differencing formulas for unstructured and mixed structured–unstructured grid calculations, in: Proceedings of the 16th IMACS world congress, 228, Lausanne, 2000, pp. 4606–4624. – volume: 342 start-page: 211 year: 2017 end-page: 228 ident: b51 article-title: The overlapped radial basis function-finite difference (RBF-FD) method: A generalization of RBF–FD publication-title: J. Comput. Phys. – volume: 253 start-page: 524 year: 2008 end-page: 543 ident: b20 article-title: Three–dimensional multispecies nonlinear tumor growth I: model and numerical method publication-title: J. Theoret. Biol. – volume: 107 start-page: 168 year: 2019 end-page: 184 ident: b57 article-title: Two–dimensional simulation of the damped Kuramoto-Sivashinsky equation via radial basis function–generated finite difference scheme combined with an exponential time discretization publication-title: Eng. Anal. Bound. Elem. – volume: 32 start-page: 983 year: 2012 end-page: 1000 ident: b32 article-title: On generalized moving least squares and diffuse derivatives publication-title: IMA J. Numer. Anal. – volume: 218 start-page: 9853 issue: 19 year: 2012 ident: 10.1016/j.cam.2020.113314_b82 article-title: A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2012.03.062 – ident: 10.1016/j.cam.2020.113314_b37 – year: 2019 ident: 10.1016/j.cam.2020.113314_b34 article-title: Numerical investigation on the transport equation in spherical coordinates via generalized moving least squares and moving Kriging least squares approximations publication-title: Eng. Comput. – volume: 326 start-page: 596 year: 2016 ident: 10.1016/j.cam.2020.113314_b35 article-title: Compact moving least squares: an optimization framework for generating high-order compact meshless discretizations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.08.045 – volume: 19 start-page: 127 issue: 8–9 year: 1990 ident: 10.1016/j.cam.2020.113314_b36 article-title: Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(90)90270-T – volume: 38 start-page: 29 year: 1983 ident: 10.1016/j.cam.2020.113314_b62 article-title: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(83)80132-8 – volume: 351 start-page: 478 year: 2017 ident: 10.1016/j.cam.2020.113314_b47 article-title: The use of proper orthogonal decomposition (POD) meshless RBF–FD technique to simulate the shallow water equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.09.007 – volume: 349 start-page: 331 year: 2019 ident: 10.1016/j.cam.2020.113314_b26 article-title: Fast and stable rational RBF-based partition of unity interpolation publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.07.020 – volume: 65 start-page: 275 issue: 2 year: 2014 ident: 10.1016/j.cam.2020.113314_b33 article-title: Solving heat conduction problems by the direct meshless local Petrov–Galerkin (DMLPG) method publication-title: Numer. Algorithms doi: 10.1007/s11075-013-9711-1 – volume: 46 start-page: 329 issue: 2 year: 2004 ident: 10.1016/j.cam.2020.113314_b81 article-title: A simple mesh generator in MATLAB publication-title: SIAM Rev. doi: 10.1137/S0036144503429121 – volume: 30 start-page: 1253 issue: 07 year: 2020 ident: 10.1016/j.cam.2020.113314_b22 article-title: Mathematical analysis and simulation study of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202520500220 – volume: 81 start-page: 486 year: 2019 ident: 10.1016/j.cam.2020.113314_b46 article-title: Comparison of moving least squares and RBF+poly for interpolation and derivative approximation publication-title: J. Sci. Comput. doi: 10.1007/s10915-019-01028-8 – start-page: 1 year: 2018 ident: 10.1016/j.cam.2020.113314_b59 article-title: Computational phase–field modeling – start-page: 1 year: 2019 ident: 10.1016/j.cam.2020.113314_b28 article-title: Jumping with variably scaled discontinuous kernels (VSDKs) publication-title: BIT Numer. Math. – volume: 113 start-page: E7663 issue: 48 year: 2016 ident: 10.1016/j.cam.2020.113314_b9 article-title: Tissue–scale, personalized modeling and simulation of prostate cancer growth publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1615791113 – year: 2007 ident: 10.1016/j.cam.2020.113314_b23 – volume: 372 start-page: 616 year: 2018 ident: 10.1016/j.cam.2020.113314_b52 article-title: Hyperviscosity–based stabilization for radial basis function-finite difference (RBF–FD) discretizations of advection-diffusion equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.06.036 – volume: 30 start-page: 60 issue: 1 year: 2007 ident: 10.1016/j.cam.2020.113314_b69 article-title: A stable algorithm for flat radial basis functions on a sphere publication-title: SIAM J. Sci. Comput. doi: 10.1137/060671991 – volume: 28 start-page: 3 issue: 1 year: 2012 ident: 10.1016/j.cam.2020.113314_b18 article-title: Numerical simulation of a thermodynamically consistent four–species tumor growth model publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.1467 – volume: 342 start-page: 211 year: 2017 ident: 10.1016/j.cam.2020.113314_b51 article-title: The overlapped radial basis function-finite difference (RBF-FD) method: A generalization of RBF–FD publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.04.037 – volume: 231 start-page: 4078 issue: 11 year: 2012 ident: 10.1016/j.cam.2020.113314_b48 article-title: A guide to RBF–generated finite differences for nonlinear transport: Shallow water simulations on a sphere publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.01.028 – volume: 364 start-page: 73 year: 2018 ident: 10.1016/j.cam.2020.113314_b14 article-title: An accurate front capturing scheme for tumor growth models with a free boundary limit publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.03.013 – volume: 79 start-page: 2624 issue: 9 year: 2020 ident: 10.1016/j.cam.2020.113314_b75 article-title: A weak–form RBF–generated finite difference method publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2019.11.024 – volume: 59 start-page: 500 year: 2018 ident: 10.1016/j.cam.2020.113314_b12 article-title: An element–free Galerkin meshless method for simulating the behavior of cancer cell invasion of surrounding tissue publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2018.01.034 – volume: 32 start-page: 983 issue: 3 year: 2012 ident: 10.1016/j.cam.2020.113314_b32 article-title: On generalized moving least squares and diffuse derivatives publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drr030 – volume: 79 start-page: 321 issue: 1 year: 2019 ident: 10.1016/j.cam.2020.113314_b27 article-title: RBF–based partition of unity methods for elliptic PDEs: Adaptivity and stability issues via variably scaled kernels publication-title: J. Sci. Comput. doi: 10.1007/s10915-018-0851-2 – volume: 253 start-page: 524 issue: 3 year: 2008 ident: 10.1016/j.cam.2020.113314_b20 article-title: Three–dimensional multispecies nonlinear tumor growth I: model and numerical method publication-title: J. Theoret. Biol. doi: 10.1016/j.jtbi.2008.03.027 – volume: 39 start-page: 398 issue: 1 year: 2019 ident: 10.1016/j.cam.2020.113314_b74 article-title: Optimal stencils in Sobolev spaces publication-title: IMA J. Numer. Anal. – volume: 316 start-page: 39 year: 2016 ident: 10.1016/j.cam.2020.113314_b49 article-title: Enhancing finite differences with radial basis functions: experiments on the Navier–Stokes equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.02.078 – volume: 373 start-page: 722 year: 2018 ident: 10.1016/j.cam.2020.113314_b56 article-title: RBF-LOI: Augmenting radial basis functions (RBFs) with least orthogonal interpolation (LOI) for solving PDEs on surfaces publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.07.015 – volume: 1 start-page: 2000 issue: 11 year: 1993 ident: 10.1016/j.cam.2020.113314_b80 article-title: BiCGstab (l) for linear equations involving unsymmetric matrices with complex spectrum publication-title: Electron. Trans. Numer. Anal. – volume: 11 issue: 2 year: 2016 ident: 10.1016/j.cam.2020.113314_b10 article-title: A mathematical model coupling tumor growth and angiogenesis publication-title: PLoS One doi: 10.1371/journal.pone.0149422 – volume: 53 start-page: 1 issue: 1–2 year: 2011 ident: 10.1016/j.cam.2020.113314_b21 article-title: An adaptive multigrid algorithm for simulating solid tumor growth using mixture models publication-title: Math. Comput. Modelling doi: 10.1016/j.mcm.2010.07.007 – volume: 75 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.cam.2020.113314_b50 article-title: A radial basis function (RBF) finite difference method for the simulation of reaction–diffusion equations on stationary platelets within the augmented forcing method publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.3880 – volume: 332 start-page: 257 year: 2017 ident: 10.1016/j.cam.2020.113314_b73 article-title: On the role of polynomials in RBF–FD approximations: II. Numerical solution of elliptic PDEs publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.12.008 – volume: 34 start-page: A737 issue: 2 year: 2012 ident: 10.1016/j.cam.2020.113314_b70 article-title: Stable evaluation of Gaussian RBF interpolants, SIAM publication-title: J. Sci. Comput. – volume: 60 start-page: 857 issue: 5 year: 1998 ident: 10.1016/j.cam.2020.113314_b4 article-title: Continuous and discrete mathematical models of tumor–induced angiogenesis publication-title: Bull. Math. Biol. doi: 10.1006/bulm.1998.0042 – volume: 331 start-page: 137 year: 2017 ident: 10.1016/j.cam.2020.113314_b72 article-title: Stable computations with flat radial basis functions using vector-valued rational approximations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.11.030 – volume: 34 start-page: 3896 year: 2010 ident: 10.1016/j.cam.2020.113314_b64 article-title: A computational modeling of the behavior of the two-dimensional reaction–diffusion Brusselator system publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2010.03.028 – volume: 57 start-page: 1041 issue: 4 year: 2017 ident: 10.1016/j.cam.2020.113314_b77 article-title: Direct approximation on spheres using generalized moving least squares publication-title: BIT doi: 10.1007/s10543-017-0659-8 – volume: 79 start-page: 493 issue: 1 year: 2019 ident: 10.1016/j.cam.2020.113314_b24 article-title: Numerical simulation and error estimation of the time–dependent Allen–Cahn equation on surfaces with radial basis functions publication-title: J. Sci. Comput. doi: 10.1007/s10915-018-0859-7 – volume: 37 start-page: S59 year: 2007 ident: 10.1016/j.cam.2020.113314_b16 article-title: Computer simulation of glioma growth and morphology publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.03.008 – volume: 101 start-page: 113 year: 2014 ident: 10.1016/j.cam.2020.113314_b65 article-title: Simulating the 2D Brusselator system in reproducing kernel Hilbert space publication-title: Comput. Model Eng. Sci. – volume: 330 start-page: 23 year: 2018 ident: 10.1016/j.cam.2020.113314_b30 article-title: Local variably scaled Newton basis functions collocation method for solving Burgers’ equation publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2018.02.007 – volume: 132 start-page: 243 issue: 2 year: 2016 ident: 10.1016/j.cam.2020.113314_b78 article-title: Error bounds for kernel-based numerical differentiation publication-title: Numer. Math. doi: 10.1007/s00211-015-0722-9 – start-page: 117 year: 2017 ident: 10.1016/j.cam.2020.113314_b42 article-title: Error analysis of nodal meshless methods – volume: 230 start-page: 2270 year: 2011 ident: 10.1016/j.cam.2020.113314_b40 article-title: Stabilization of RBF-generated finite difference methods for convective PDEs publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.12.014 – start-page: 725 year: 2000 ident: 10.1016/j.cam.2020.113314_b1 – volume: 345 start-page: 919 year: 2019 ident: 10.1016/j.cam.2020.113314_b15 article-title: Simulation of the phase field Cahn-Hilliard and tumor growth models via a numerical scheme: Element–free Galerkin method publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2018.11.019 – volume: 77 start-page: 2337 year: 2019 ident: 10.1016/j.cam.2020.113314_b43 article-title: An insight into RBF–FD approximations augmented with polynomials publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2018.12.029 – volume: 264 start-page: 1254 issue: 4 year: 2010 ident: 10.1016/j.cam.2020.113314_b17 article-title: Three-dimensional multispecies nonlinear tumor growth II: tumor invasion and angiogenesis publication-title: J. Theoret. Biol. doi: 10.1016/j.jtbi.2010.02.036 – year: 2020 ident: 10.1016/j.cam.2020.113314_b53 article-title: The direct radial basis function partition of unity (D-RBF-PU) method for solving PDEs publication-title: SIAM J. Sci. Comput. – year: 2004 ident: 10.1016/j.cam.2020.113314_b25 – volume: 65 start-page: 627 issue: 4 year: 2013 ident: 10.1016/j.cam.2020.113314_b44 article-title: Stable calculation of Gaussian–based RBF-FD stencils publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2012.11.006 – volume: 2 start-page: 129 issue: 2 year: 2000 ident: 10.1016/j.cam.2020.113314_b5 article-title: Mathematical modelling of tumour invasion and metastasis publication-title: Comput. Math. Methods Med. doi: 10.1080/10273660008833042 – volume: 4 start-page: 79 year: 1968 ident: 10.1016/j.cam.2020.113314_b66 article-title: Self-oscillations in glycolysis publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.1968.tb00175.x – volume: 217 start-page: 23 year: 2017 ident: 10.1016/j.cam.2020.113314_b55 article-title: A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high–dimensional nonlinear Schrödinger equations using an explicit time discretization: Runge–Kutta method publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2017.03.012 – year: 2011 ident: 10.1016/j.cam.2020.113314_b11 – volume: 63 start-page: 745 issue: 3 year: 2015 ident: 10.1016/j.cam.2020.113314_b54 article-title: A radial basis function (RBF)–finite difference (FD) method for diffusion and reaction–diffusion equations on surfaces publication-title: J. Sci. Comput. doi: 10.1007/s10915-014-9914-1 – volume: 140 start-page: 555 issue: 3 year: 2018 ident: 10.1016/j.cam.2020.113314_b79 article-title: Minimal numerical differentiation formulas publication-title: Numer. Math. doi: 10.1007/s00211-018-0973-3 – volume: 5 issue: 5 year: 2010 ident: 10.1016/j.cam.2020.113314_b83 article-title: A comprehensive panel of three–dimensional models for studies of prostate cancer growth, invasion and drug responses publication-title: Plos One doi: 10.1371/journal.pone.0010431 – volume: 12 start-page: 1173 issue: 6 year: 2015 ident: 10.1016/j.cam.2020.113314_b19 article-title: Mathematical model and its fast numerical method for the tumor growth publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2015.12.1173 – volume: 81 start-page: 389 year: 1979 ident: 10.1016/j.cam.2020.113314_b67 article-title: Simple chemical reaction system with limit cycle behaviour publication-title: J. Theoret. Biol. doi: 10.1016/0022-5193(79)90042-0 – volume: 251 start-page: 650 year: 1991 ident: 10.1016/j.cam.2020.113314_b63 article-title: Modeling of Turing structures in the chlorite-iodidemalonic acid-starch reaction system publication-title: Science doi: 10.1126/science.251.4994.650 – volume: 119 start-page: 151 year: 2020 ident: 10.1016/j.cam.2020.113314_b58 article-title: Simulation flows with multiple phases and components via the radial basis functions-finite difference (RBF-FD) procedure: Shan–Chen model publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2020.06.005 – volume: 39 start-page: A2129 issue: 5 year: 2017 ident: 10.1016/j.cam.2020.113314_b31 article-title: A radial basis function (RBF) compact finite difference (FD) scheme for reaction–diffusion equations on surfaces publication-title: SIAM J. Sci. Comput. doi: 10.1137/16M1095457 – volume: 12 start-page: 30 year: 1972 ident: 10.1016/j.cam.2020.113314_b61 article-title: A theory of biological pattern formation publication-title: Kybernet doi: 10.1007/BF00289234 – volume: 116 start-page: 1152 issue: 4 year: 2019 ident: 10.1016/j.cam.2020.113314_b2 article-title: Computer simulations suggest that prostate enlargement due to benign prostatic hyperplasia mechanically impedes prostate cancer growth publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1815735116 – volume: 70 start-page: 2292 year: 2015 ident: 10.1016/j.cam.2020.113314_b29 article-title: The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations: The Crank–Nicolson scheme and the method of lines (MOL) publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2015.08.032 – volume: 319 start-page: 515 year: 2017 ident: 10.1016/j.cam.2020.113314_b8 article-title: Hierarchically refined and coarsened splines for moving interface problems, with particular application to phase-field models of prostate tumor growth publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2017.03.009 – volume: 48 start-page: 853 year: 2004 ident: 10.1016/j.cam.2020.113314_b68 article-title: Stable computation of multiquadric interpolants for all values of the shape paramete publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2003.08.010 – volume: 33 start-page: 869 year: 2011 ident: 10.1016/j.cam.2020.113314_b71 article-title: Stable computations with Gaussian radial basis functions publication-title: SIAM J. Sci. Comput. doi: 10.1137/09076756X – volume: 361 start-page: 41 year: 2014 ident: 10.1016/j.cam.2020.113314_b6 article-title: Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns publication-title: J. Theoret. Biol. doi: 10.1016/j.jtbi.2014.07.010 – year: 2010 ident: 10.1016/j.cam.2020.113314_b3 – year: 2015 ident: 10.1016/j.cam.2020.113314_b45 – volume: 250 start-page: 684 issue: 4 year: 2008 ident: 10.1016/j.cam.2020.113314_b7 article-title: Mathematical modelling of cancer cell invasion of tissue: local and non–local models and the effect of adhesion publication-title: J. Theoret. Biol. doi: 10.1016/j.jtbi.2007.10.026 – volume: 35 start-page: A2096 issue: 4 year: 2013 ident: 10.1016/j.cam.2020.113314_b41 article-title: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions, SIAM publication-title: J. Sci. Comput. – volume: 36 start-page: 1517 year: 2020 ident: 10.1016/j.cam.2020.113314_b13 article-title: The element–free Galerkin method based on moving least squares and moving Kriging approximations for solving two–dimensional tumor-induced angiogenesis model publication-title: Eng. Comput. doi: 10.1007/s00366-019-00779-0 – volume: 212 start-page: 99 issue: 1 year: 2006 ident: 10.1016/j.cam.2020.113314_b39 article-title: Scattered node compact finite difference–type formulas generated from radial basis functions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.05.030 – volume: 107 start-page: 168 year: 2019 ident: 10.1016/j.cam.2020.113314_b57 article-title: Two–dimensional simulation of the damped Kuramoto-Sivashinsky equation via radial basis function–generated finite difference scheme combined with an exponential time discretization publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2019.06.007 – volume: 192 start-page: 941 year: 2003 ident: 10.1016/j.cam.2020.113314_b38 article-title: Local radial basis function–based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(02)00618-7 – volume: 8 start-page: 345 issue: 56 year: 2011 ident: 10.1016/j.cam.2020.113314_b60 article-title: The radial growth phase of malignant melanoma: multi–phase modelling, numerical simulations and linear stability analysis publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2010.0285 – volume: 298 start-page: 406 year: 2015 ident: 10.1016/j.cam.2020.113314_b76 article-title: A scalable RBF-FD method for atmospheric flow publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.06.003 |
SSID | ssj0006914 |
Score | 2.4885805 |
Snippet | The aim of this work consists of finding a suitable numerical method for the solution of the mathematical model describing the prostate tumor growth,... |
SourceID | unpaywall crossref elsevier |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 113314 |
SubjectTerms | A prostate tumor growth model based on time-dependent partial differential equations Biconjugate gradient stabilized method Mathematical oncology Moving interface problem Non-dimensionalization technique Radial basis function-generated finite difference scheme |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD-LBt1hRycGTEs022U336KuIYBGxoKclj4lW-6LdRfTXm-yjiGLFe7IbmIH5hpnv-xA6EDTwfYciyoIgXLOYyFhHhCsBgWZRGBhPTr5pR1cdfv0QPsyhyvDum7yAV4IRJ4zFPGbhPFqI_BSphhY67dvTx3w-IATxbhG-rWqKmARCNKvZZb7FpaWnmzdy7xIW8N-qz2I2GMn3N9nrfakurRV0UXF0iqWS1-MsVcf646dk46yHr6LlEl3i0yId1tAcDNbR0s1UmnWygcbtrBjS9PCk2y_Nu_DQYolHngHisCdOs_5wjJ9ch54-49wrB6t37D6C785apHWBXUsMfcDuJe7aBPpd0s0307sp9mb12HN9PT2y4Hhuok7r8v78ipTGC0QzTlMShkZz6sJlpIiBWwMh01IYa2JlDdXKUgquedNMcCohtA3OAJSJQ8q0cYBjC9UGwwFsI8w4lyqi0ARmORdN2VDWJYOSWgEFFtURrQKS6FKV3Jtj9JJq_ewlcTFMfAyTIoZ1dDi9MiokOWYd5lWUkxJTFFghcSVj1rWjaUb8_ZOdf53eRbV0nMGeAzOp2i-T-RMyg_Ix priority: 102 providerName: Unpaywall |
Title | Numerical simulation of a prostate tumor growth model by the RBF-FD scheme and a semi-implicit time discretization |
URI | https://dx.doi.org/10.1016/j.cam.2020.113314 http://hdl.handle.net/11577/3394935 |
UnpaywallVersion | submittedVersion |
Volume | 388 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 1879-1778 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Free Content customDbUrl: eissn: 1879-1778 dateEnd: 20211002 omitProxy: true ssIdentifier: ssj0006914 issn: 1879-1778 databaseCode: IXB dateStart: 19750301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-1778 dateEnd: 20211002 omitProxy: true ssIdentifier: ssj0006914 issn: 1879-1778 databaseCode: AIKHN dateStart: 20210501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-1778 dateEnd: 20211002 omitProxy: true ssIdentifier: ssj0006914 issn: 1879-1778 databaseCode: ACRLP dateStart: 19950220 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 1879-1778 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1778 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006914 issn: 1879-1778 databaseCode: AKRWK dateStart: 19750301 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGOAAHxAZoX1Q-cGIydWInXo7dRtVRrZo2Ksop8sfzFtSmVZsK7bK_fbaTVHBgSJyiRM-x9Z71_J78fu-H0EdBI593KKIsCMI1y4jMdEq4EhBpliaR8eDky1E6GPOvk2Syhc5aLIwvq2x8f-3Tg7duvnQbbXYXRdG9oUwIzxQR-7CXBhg14yKA-CanG2-cZnV_bydMvHR7sxlqvLT0YPQ4MJuwiP_tbHqxLhfy_pecTn87e_pv0OsmaMS9el07aAvKXfTqctNxdfUWLUfr-u5lilfFrOHkwnOLJV54YIcLKXG1ns2X-NYl3tUdDhQ4WN1j9xN8fdon_XPsMl2YAZalccNWMCtIEQrOiwp7DnrsIbwe9VhDN9-hcf_Lt7MBafgUiGacViRJjObUWcFIkQG3BhKmpTDWZMoaqpWlFFxOppngVEJiY84AlMkSyrRxccR7tF3OS9hDmHEuVUrhBJjlXJzIWFlnYyW1Agos3Ue01WSum2bjnvNimrdVZT9zp_zcKz-vlb-PPm2GLOpOG08J89Y8-R_bJXcnwVPDjjem_PckB_83ySF6GfvCl1AVeYS2q-UaPrjIpVId9OzzQ9RBz3sXw8HIP4fX34edsGHd23h01fvxCLrQ8d8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQOQAHxCp2fOAEsurGTkyObFVZ2gOLxC3yMoagNq3aVIi_x85SwQGQuEYeO5qxZpHnzUPoSNCWrzsUURYE4ZrFRMY6IlwJaGkWhS3jwcndXtR54jfP4fMcuqixML6tsvL9pU8vvHX1pVlpszlK0-YDZUJ4pojAp73Uw6jneeh8cgPNn13fdnozhxzF5Yhvt554gfpxs2jz0tLj0YOC3IS1-E_haWGajeTHu-z3v4Sf9gparvJGfFb-2iqag2wNLXVnQ1cn62jcm5bPL308SQcVLRceWizxyGM7XFaJ8-lgOMYvrvbOX3HBgoPVB3ab4PvzNmlfYlfswgCwzIwTm8AgJWnRc57m2NPQY4_i9cDHEr25gZ7aV48XHVJRKhDNOM1JGBrNqTOEkSIGbg2ETEthrImVNVQrSym4skwzwamE0AacASgTh5Rp41KJTdTIhhlsIcw4lyqicArMci5OZaCsM7OSWgEFFm0jWmsy0dW8cU970U_qxrK3xCk_8cpPSuVvo-OZyKgctvHbYl6bJ_l2YxIXDH4TO5mZ8u9Ddv53yCFa6Dx275K7697tLloMfB9M0SS5hxr5eAr7LpHJ1UF1UT8BL2rwLw |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD-LBt1hRycGTEs022U336KuIYBGxoKclj4lW-6LdRfTXm-yjiGLFe7IbmIH5hpnv-xA6EDTwfYciyoIgXLOYyFhHhCsBgWZRGBhPTr5pR1cdfv0QPsyhyvDum7yAV4IRJ4zFPGbhPFqI_BSphhY67dvTx3w-IATxbhG-rWqKmARCNKvZZb7FpaWnmzdy7xIW8N-qz2I2GMn3N9nrfakurRV0UXF0iqWS1-MsVcf646dk46yHr6LlEl3i0yId1tAcDNbR0s1UmnWygcbtrBjS9PCk2y_Nu_DQYolHngHisCdOs_5wjJ9ch54-49wrB6t37D6C785apHWBXUsMfcDuJe7aBPpd0s0307sp9mb12HN9PT2y4Hhuok7r8v78ipTGC0QzTlMShkZz6sJlpIiBWwMh01IYa2JlDdXKUgquedNMcCohtA3OAJSJQ8q0cYBjC9UGwwFsI8w4lyqi0ARmORdN2VDWJYOSWgEFFtURrQKS6FKV3Jtj9JJq_ewlcTFMfAyTIoZ1dDi9MiokOWYd5lWUkxJTFFghcSVj1rWjaUb8_ZOdf53eRbV0nMGeAzOp2i-T-RMyg_Ix |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+a+prostate+tumor+growth+model+by+the+RBF-FD+scheme+and+a+semi-implicit+time+discretization&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Mohammadi%2C+Vahid&rft.au=Dehghan%2C+Mehdi&rft.au=De+Marchi%2C+Stefano&rft.date=2021-05-01&rft.issn=0377-0427&rft.volume=388&rft.spage=113314&rft_id=info:doi/10.1016%2Fj.cam.2020.113314&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2020_113314 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |