Numerical simulation of a prostate tumor growth model by the RBF-FD scheme and a semi-implicit time discretization

The aim of this work consists of finding a suitable numerical method for the solution of the mathematical model describing the prostate tumor growth, formulated as a system of time-dependent partial differential equations (PDEs), which plays a key role in the field of mathematical oncology. In the l...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 388; p. 113314
Main Authors Mohammadi, Vahid, Dehghan, Mehdi, De Marchi, Stefano
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2021
Subjects
Online AccessGet full text
ISSN0377-0427
1879-1778
1879-1778
DOI10.1016/j.cam.2020.113314

Cover

Abstract The aim of this work consists of finding a suitable numerical method for the solution of the mathematical model describing the prostate tumor growth, formulated as a system of time-dependent partial differential equations (PDEs), which plays a key role in the field of mathematical oncology. In the literature on the subject, there are a few numerical methods for solving the proposed mathematical model. Localized prostate cancer growth is known as a moving interface problem, which must be solved in a suitable stable way. The mathematical model considered in this paper is a system of time-dependent nonlinear PDEs that describes the interaction between cancer cells, nutrients, and prostate-specific antigen (PSA). Here, we first derive a non-dimensional form of the studied mathematical model using the well-known non-dimensionalization technique, which makes it easier to implement different numerical techniques. Afterward, the analysis of the numerical method describing the two-dimensional prostate tumor growth problem, based on radial basis function-generated finite difference (RBF-FD) scheme, in combination with a first-order time discretization has been done. The numerical technique we use, does not need the use of any adaptivity techniques to capture the features in the interface. The discretization leads to solving a linear system of algebraic equations solved via the biconjugate gradient stabilized (BiCGSTAB) algorithm with zero-fill incomplete lower–upper (ILU) preconditioner. Comparing the results obtained in this investigation with those reported in the recent literature, the proposed approach confirms the ability of the developed numerical scheme. Besides, the effect of choosing constant parameters in the mathematical model is verified by many simulations on rectangular and circular domains.
AbstractList The aim of this work consists of finding a suitable numerical method for the solution of the mathematical model describing the prostate tumor growth, formulated as a system of time-dependent partial differential equations (PDEs), which plays a key role in the field of mathematical oncology. In the literature on the subject, there are a few numerical methods for solving the proposed mathematical model. Localized prostate cancer growth is known as a moving interface problem, which must be solved in a suitable stable way. The mathematical model considered in this paper is a system of time-dependent nonlinear PDEs that describes the interaction between cancer cells, nutrients, and prostate-specific antigen (PSA). Here, we first derive a non-dimensional form of the studied mathematical model using the well-known non-dimensionalization technique, which makes it easier to implement different numerical techniques. Afterward, the analysis of the numerical method describing the two-dimensional prostate tumor growth problem, based on radial basis function-generated finite difference (RBF-FD) scheme, in combination with a first-order time discretization has been done. The numerical technique we use, does not need the use of any adaptivity techniques to capture the features in the interface. The discretization leads to solving a linear system of algebraic equations solved via the biconjugate gradient stabilized (BiCGSTAB) algorithm with zero-fill incomplete lower–upper (ILU) preconditioner. Comparing the results obtained in this investigation with those reported in the recent literature, the proposed approach confirms the ability of the developed numerical scheme. Besides, the effect of choosing constant parameters in the mathematical model is verified by many simulations on rectangular and circular domains.
ArticleNumber 113314
Author De Marchi, Stefano
Dehghan, Mehdi
Mohammadi, Vahid
Author_xml – sequence: 1
  givenname: Vahid
  surname: Mohammadi
  fullname: Mohammadi, Vahid
  email: v.mohammadi@aut.ac.ir, v.mohammadi.aut@gmail.com
  organization: Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Amirkabir University of Technology, No. 424, Hafez Ave.,15914, Tehran, Iran
– sequence: 2
  givenname: Mehdi
  surname: Dehghan
  fullname: Dehghan, Mehdi
  email: mdehghan@aut.ac.ir, mdehghan.aut@gmail.com
  organization: Department of Applied Mathematics, Faculty of Mathematics and Computer Sciences, Amirkabir University of Technology, No. 424, Hafez Ave.,15914, Tehran, Iran
– sequence: 3
  givenname: Stefano
  surname: De Marchi
  fullname: De Marchi, Stefano
  email: demarchi@math.unipd.it
  organization: Department of Mathematics “Tullio Levi-Civita”, University of Padua, Italy
BookMark eNqNkMFKAzEURYMo2FY_wF1-YOrLJNN0cKXVqlAURNchk7yxKZOZkqRK_XqnrSsX4upxeZwL9wzJcdu1SMgFgzEDNrlcjY324xzyPjPOmTgiAzaVZcaknB6TAXApMxC5PCXDGFcAMCmZGJDwtPEYnNENjc5vGp1c19KuppquQxeTTkjTxneBvofuMy2p7yw2tNrStET6cjPP5rc0miV6pLq1PRbRu8z5deOMSzS5_mFdNAGT-9q3n5GTWjcRz3_uiLzN715nD9ni-f5xdr3IDBeQsqKwRoCopNWyRFFbLLjR0ta2rGoLpqoBEPKJ4VKAxqLOBUesbFkANzbP-Yjkh95Nu9bbT900ah2c12GrGKidNbVSvTW1s6YO1nqIHSDTr48B638x8hfTL99PTUG75k_y6kBi7-HDYVDROGwNWhfQJGU79wf9DZ8umzA
CitedBy_id crossref_primary_10_3390_mca29020023
crossref_primary_10_1007_s40314_023_02256_3
crossref_primary_10_1016_j_padiff_2021_100046
crossref_primary_10_1002_mma_10696
crossref_primary_10_1016_j_cmpb_2025_108700
crossref_primary_10_1007_s11075_023_01719_2
crossref_primary_10_1016_j_enganabound_2024_04_008
crossref_primary_10_1002_mma_8536
crossref_primary_10_1016_j_icheatmasstransfer_2024_108422
crossref_primary_10_3389_fphys_2024_1421591
crossref_primary_10_1016_j_enganabound_2024_105908
crossref_primary_10_1016_j_enganabound_2021_12_008
crossref_primary_10_1007_s11075_024_01835_7
crossref_primary_10_1016_j_cnsns_2022_106616
crossref_primary_10_1016_j_enganabound_2024_106020
crossref_primary_10_1007_s00366_023_01892_x
crossref_primary_10_1016_j_enganabound_2022_05_026
crossref_primary_10_3390_fractalfract7080595
crossref_primary_10_1016_j_camwa_2024_12_023
crossref_primary_10_1016_j_cma_2024_116981
crossref_primary_10_1016_j_enganabound_2025_106129
crossref_primary_10_1155_2021_1290895
crossref_primary_10_1016_j_compbiomed_2023_106708
crossref_primary_10_1016_j_jksus_2022_102430
crossref_primary_10_1007_s40819_022_01439_6
crossref_primary_10_1016_j_cnsns_2024_108470
crossref_primary_10_1016_j_apm_2021_12_011
crossref_primary_10_1016_j_apnum_2024_03_015
crossref_primary_10_1016_j_enganabound_2022_06_024
Cites_doi 10.1016/j.amc.2012.03.062
10.1016/j.jcp.2016.08.045
10.1016/0898-1221(90)90270-T
10.1016/0009-2509(83)80132-8
10.1016/j.jcp.2017.09.007
10.1016/j.cam.2018.07.020
10.1007/s11075-013-9711-1
10.1137/S0036144503429121
10.1142/S0218202520500220
10.1007/s10915-019-01028-8
10.1073/pnas.1615791113
10.1016/j.jcp.2018.06.036
10.1137/060671991
10.1002/cnm.1467
10.1016/j.jcp.2017.04.037
10.1016/j.jcp.2012.01.028
10.1016/j.jcp.2018.03.013
10.1016/j.camwa.2019.11.024
10.1016/j.apm.2018.01.034
10.1093/imanum/drr030
10.1007/s10915-018-0851-2
10.1016/j.jtbi.2008.03.027
10.1016/j.jcp.2016.02.078
10.1016/j.jcp.2018.07.015
10.1371/journal.pone.0149422
10.1016/j.mcm.2010.07.007
10.1002/fld.3880
10.1016/j.jcp.2016.12.008
10.1006/bulm.1998.0042
10.1016/j.jcp.2016.11.030
10.1016/j.apm.2010.03.028
10.1007/s10543-017-0659-8
10.1007/s10915-018-0859-7
10.1016/j.neuroimage.2007.03.008
10.1016/j.amc.2018.02.007
10.1007/s00211-015-0722-9
10.1016/j.jcp.2010.12.014
10.1016/j.cma.2018.11.019
10.1016/j.camwa.2018.12.029
10.1016/j.jtbi.2010.02.036
10.1016/j.camwa.2012.11.006
10.1080/10273660008833042
10.1111/j.1432-1033.1968.tb00175.x
10.1016/j.cpc.2017.03.012
10.1007/s10915-014-9914-1
10.1007/s00211-018-0973-3
10.1371/journal.pone.0010431
10.3934/mbe.2015.12.1173
10.1016/0022-5193(79)90042-0
10.1126/science.251.4994.650
10.1016/j.enganabound.2020.06.005
10.1137/16M1095457
10.1007/BF00289234
10.1073/pnas.1815735116
10.1016/j.camwa.2015.08.032
10.1016/j.cma.2017.03.009
10.1016/j.camwa.2003.08.010
10.1137/09076756X
10.1016/j.jtbi.2014.07.010
10.1016/j.jtbi.2007.10.026
10.1007/s00366-019-00779-0
10.1016/j.jcp.2005.05.030
10.1016/j.enganabound.2019.06.007
10.1016/S0045-7825(02)00618-7
10.1098/rsif.2010.0285
10.1016/j.jcp.2015.06.003
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.cam.2020.113314
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
ExternalDocumentID oai:www.research.unipd.it:11577/3394935
10_1016_j_cam_2020_113314
S0377042720306051
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
5VS
AAFWJ
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EJD
FGOYB
G-2
HZ~
NHB
R2-
SEW
SSZ
WUQ
ZY4
~HD
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c340t-55dc404b7da79e4fde53ca7dfd9bfd0cbf00e026c3740ae5f243eebd9503cd223
IEDL.DBID IXB
ISSN 0377-0427
1879-1778
IngestDate Sun Aug 24 08:55:39 EDT 2025
Thu Apr 24 23:08:35 EDT 2025
Wed Oct 01 06:28:06 EDT 2025
Fri Feb 23 02:48:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Non-dimensionalization technique
Moving interface problem
35Q35
Mathematical oncology
Biconjugate gradient stabilized method
92C17
A prostate tumor growth model based on time-dependent partial differential equations
35Q92
Radial basis function-generated finite difference scheme
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-55dc404b7da79e4fde53ca7dfd9bfd0cbf00e026c3740ae5f243eebd9503cd223
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/11577/3394935
ParticipantIDs unpaywall_primary_10_1016_j_cam_2020_113314
crossref_primary_10_1016_j_cam_2020_113314
crossref_citationtrail_10_1016_j_cam_2020_113314
elsevier_sciencedirect_doi_10_1016_j_cam_2020_113314
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dehghan, Narimani (b13) 2020; 36
Lehto, Shankar, Wright (b31) 2017; 39
Colli, Gomez, Lorenzo, Marinoschi, Reali, Rocca (b22) 2020; 30
Mohammadi, Dehghan (b15) 2019; 345
Flyer, Barnett, Wicker (b49) 2016; 316
Lengyel, Epstein (b63) 1991; 251
Davydov, Schaback (b79) 2018; 140
De Marchi, Marchetti, Perracchione (b28) 2019
Davydov, Schaback (b78) 2016; 132
Dehghan, Narimani (b12) 2018; 59
Mirzaei (b53) 2020
Shankar, Narayan, Kirby (b56) 2018; 373
Persson, Strang (b81) 2004; 46
Nojavan, Abbasbandy, Mohammadi (b30) 2018; 330
Wise, Lowengrub, Cristini (b21) 2011; 53
Islam, Ali, Haq (b64) 2010; 34
Domschke, Trucu, Gerisch, Chaplain (b6) 2014; 361
Bayona (b46) 2019; 81
Sleijpen, Fokkema (b80) 1993; 1
Andasari (b11) 2011
Lorenzo, Hughes, Dominguez-Frojan, Reali, Gomez (b2) 2019; 116
Davydov, Schaback (b74) 2019; 39
Lorenzo, Scott, Tew, Hughes, Gomez (b8) 2017; 319
Shu, H, Ding, Yeo (b38) 2003; 192
Sarra (b82) 2012; 218
Bayona, Flyer, Fornberg, Barnett (b73) 2017; 332
Walsh, Worthington (b3) 2010
Schaback (b42) 2017
Lorenzo, Scott, Tew, Hughes, Zhang, Liu, Vilanova, Gomez (b9) 2016; 113
Shankar, Wright, Kirby, Fogelson (b54) 2015; 63
De Marchi, Martínez, Perracchione, Rossini (b27) 2019; 79
Schnakenberg (b67) 1979; 81
Wendland (b25) 2004
Trask, Maxey, Hu (b35) 2016; 326
Dehghan, Mohammadi (b57) 2019; 107
Mohammadi, Dehghan, Khodadadian, Wick (b34) 2019
Härmä, Virtanen, Mäkelä, Happonen, Mpindi, Knuuttila, Kohonen, Lötjönen, Kallioniemi, Nees (b83) 2010; 5
Fornberg, Lehto (b40) 2011; 230
Dehghan, Abbaszadeh (b47) 2017; 351
Gierer, Meinhardt (b61) 1972; 12
Xu, Vilanova, Gomez (b10) 2016; 11
Shankar, Wright, Fogelson, Kirby (b50) 2014; 75
Fornberg, Flyer (b45) 2015
Shankar (b51) 2017; 342
Anderson, Chaplain, Newman, Steele, Thompson (b5) 2000; 2
Larsson, Lehto, Heryudono, Fornberg (b41) 2013; 35
Fasshauer, McCourt (b70) 2012; 34
Shankar, Fogelson (b52) 2018; 372
Sel’kov (b66) 1968; 4
Frieboes, Jin, Chuang, Wise, Lowengrub, Cristini (b17) 2010; 264
De Marchi, Martínez, Perracchione (b26) 2019; 349
Bayona (b43) 2019; 77
Fornberg, Larsson, Flyer (b71) 2011; 33
Ciarletta, Foret, Ben Amar (b60) 2011; 8
Wright, Fornberg (b72) 2017; 331
Gerisch, Chaplain (b7) 2008; 250
Gomez, van der Zee (b59) 2018
Abbaszadeh, Dehghan (b58) 2020; 119
Liu, Tang, Wang, Zhou (b14) 2018; 364
Dehghan, Mohammadi (b55) 2017; 217
Tillenius, Larsson, Lehto, Flyer (b76) 2015; 298
Mirzaei, Schaback, Dehghan (b32) 2012; 32
Mirzaei (b77) 2017; 57
Mohammadi, Mirzaei, Dehghan (b24) 2019; 79
Anderson, Chaplain (b4) 1998; 60
Fornberg, Wright (b68) 2004; 48
Jabalameli, Mirzaei (b75) 2020; 79
Cooper, Hausman (b1) 2000
Wise, Lowengrub, Frieboes, Cristini (b20) 2008; 253
Fasshauer (b23) 2007
Hawkins-Daarud, van der Zee, Tinsley Oden (b18) 2012; 28
Wright, Fornberg (b39) 2006; 212
Gray, Scott (b62) 1983; 38
Dehghan, Mohammadi (b29) 2015; 70
Frieboes, Lowengrub, Wise, Zheng, Macklin, Bearer, Cristini (b16) 2007; 37
Fornberg, Lehto, Powell (b44) 2013; 65
Kansa (b36) 1990; 19
Fornberg, Piret (b69) 2007; 30
Mohammadi, Mokhtari, Schaback (b65) 2014; 101
Lee, Kim, Kim (b19) 2015; 12
A.I. Tolstykh, On using RBF-based differencing formulas for unstructured and mixed structured–unstructured grid calculations, in: Proceedings of the 16th IMACS world congress, 228, Lausanne, 2000, pp. 4606–4624.
Flyer, Lehto, Blaise, Wright, St-Cyr (b48) 2012; 231
Mirzaei, Schaback (b33) 2014; 65
Shankar (10.1016/j.cam.2020.113314_b51) 2017; 342
Gomez (10.1016/j.cam.2020.113314_b59) 2018
Cooper (10.1016/j.cam.2020.113314_b1) 2000
10.1016/j.cam.2020.113314_b37
Bayona (10.1016/j.cam.2020.113314_b43) 2019; 77
Fornberg (10.1016/j.cam.2020.113314_b44) 2013; 65
Abbaszadeh (10.1016/j.cam.2020.113314_b58) 2020; 119
Bayona (10.1016/j.cam.2020.113314_b73) 2017; 332
Wright (10.1016/j.cam.2020.113314_b72) 2017; 331
Tillenius (10.1016/j.cam.2020.113314_b76) 2015; 298
Xu (10.1016/j.cam.2020.113314_b10) 2016; 11
Flyer (10.1016/j.cam.2020.113314_b49) 2016; 316
Mohammadi (10.1016/j.cam.2020.113314_b65) 2014; 101
Trask (10.1016/j.cam.2020.113314_b35) 2016; 326
Davydov (10.1016/j.cam.2020.113314_b74) 2019; 39
Hawkins-Daarud (10.1016/j.cam.2020.113314_b18) 2012; 28
De Marchi (10.1016/j.cam.2020.113314_b26) 2019; 349
Dehghan (10.1016/j.cam.2020.113314_b13) 2020; 36
Nojavan (10.1016/j.cam.2020.113314_b30) 2018; 330
Colli (10.1016/j.cam.2020.113314_b22) 2020; 30
Kansa (10.1016/j.cam.2020.113314_b36) 1990; 19
Sleijpen (10.1016/j.cam.2020.113314_b80) 1993; 1
Fasshauer (10.1016/j.cam.2020.113314_b23) 2007
Davydov (10.1016/j.cam.2020.113314_b79) 2018; 140
Härmä (10.1016/j.cam.2020.113314_b83) 2010; 5
Flyer (10.1016/j.cam.2020.113314_b48) 2012; 231
Lengyel (10.1016/j.cam.2020.113314_b63) 1991; 251
Wright (10.1016/j.cam.2020.113314_b39) 2006; 212
Mohammadi (10.1016/j.cam.2020.113314_b24) 2019; 79
Jabalameli (10.1016/j.cam.2020.113314_b75) 2020; 79
Lorenzo (10.1016/j.cam.2020.113314_b8) 2017; 319
Wise (10.1016/j.cam.2020.113314_b21) 2011; 53
Fornberg (10.1016/j.cam.2020.113314_b40) 2011; 230
Shankar (10.1016/j.cam.2020.113314_b52) 2018; 372
Sel’kov (10.1016/j.cam.2020.113314_b66) 1968; 4
Fornberg (10.1016/j.cam.2020.113314_b69) 2007; 30
Dehghan (10.1016/j.cam.2020.113314_b29) 2015; 70
Wendland (10.1016/j.cam.2020.113314_b25) 2004
Lorenzo (10.1016/j.cam.2020.113314_b9) 2016; 113
De Marchi (10.1016/j.cam.2020.113314_b28) 2019
Anderson (10.1016/j.cam.2020.113314_b4) 1998; 60
Wise (10.1016/j.cam.2020.113314_b20) 2008; 253
Gierer (10.1016/j.cam.2020.113314_b61) 1972; 12
Walsh (10.1016/j.cam.2020.113314_b3) 2010
Mirzaei (10.1016/j.cam.2020.113314_b32) 2012; 32
Dehghan (10.1016/j.cam.2020.113314_b47) 2017; 351
Davydov (10.1016/j.cam.2020.113314_b78) 2016; 132
Mohammadi (10.1016/j.cam.2020.113314_b34) 2019
Gray (10.1016/j.cam.2020.113314_b62) 1983; 38
Mohammadi (10.1016/j.cam.2020.113314_b15) 2019; 345
Frieboes (10.1016/j.cam.2020.113314_b16) 2007; 37
Anderson (10.1016/j.cam.2020.113314_b5) 2000; 2
Larsson (10.1016/j.cam.2020.113314_b41) 2013; 35
Mirzaei (10.1016/j.cam.2020.113314_b77) 2017; 57
Schaback (10.1016/j.cam.2020.113314_b42) 2017
Bayona (10.1016/j.cam.2020.113314_b46) 2019; 81
Fornberg (10.1016/j.cam.2020.113314_b71) 2011; 33
Dehghan (10.1016/j.cam.2020.113314_b12) 2018; 59
Gerisch (10.1016/j.cam.2020.113314_b7) 2008; 250
Lehto (10.1016/j.cam.2020.113314_b31) 2017; 39
Islam (10.1016/j.cam.2020.113314_b64) 2010; 34
Liu (10.1016/j.cam.2020.113314_b14) 2018; 364
Dehghan (10.1016/j.cam.2020.113314_b55) 2017; 217
Fornberg (10.1016/j.cam.2020.113314_b68) 2004; 48
Shankar (10.1016/j.cam.2020.113314_b50) 2014; 75
Lee (10.1016/j.cam.2020.113314_b19) 2015; 12
Sarra (10.1016/j.cam.2020.113314_b82) 2012; 218
Frieboes (10.1016/j.cam.2020.113314_b17) 2010; 264
Schnakenberg (10.1016/j.cam.2020.113314_b67) 1979; 81
Mirzaei (10.1016/j.cam.2020.113314_b33) 2014; 65
Domschke (10.1016/j.cam.2020.113314_b6) 2014; 361
Fasshauer (10.1016/j.cam.2020.113314_b70) 2012; 34
Andasari (10.1016/j.cam.2020.113314_b11) 2011
Dehghan (10.1016/j.cam.2020.113314_b57) 2019; 107
De Marchi (10.1016/j.cam.2020.113314_b27) 2019; 79
Fornberg (10.1016/j.cam.2020.113314_b45) 2015
Ciarletta (10.1016/j.cam.2020.113314_b60) 2011; 8
Persson (10.1016/j.cam.2020.113314_b81) 2004; 46
Lorenzo (10.1016/j.cam.2020.113314_b2) 2019; 116
Shankar (10.1016/j.cam.2020.113314_b54) 2015; 63
Shu (10.1016/j.cam.2020.113314_b38) 2003; 192
Mirzaei (10.1016/j.cam.2020.113314_b53) 2020
Shankar (10.1016/j.cam.2020.113314_b56) 2018; 373
References_xml – year: 2011
  ident: b11
  article-title: Mathematical Modelling of Cancer Cell Invasion of Tissue: Discrete and Continuum Approaches To Studying the Central Role of Adhesion
– volume: 116
  start-page: 1152
  year: 2019
  end-page: 1161
  ident: b2
  article-title: Computer simulations suggest that prostate enlargement due to benign prostatic hyperplasia mechanically impedes prostate cancer growth
  publication-title: Proc. Natl. Acad. Sci.
– start-page: 1
  year: 2018
  end-page: 35
  ident: b59
  article-title: Computational phase–field modeling
  publication-title: Encyclopedia of Computational Mechanics
– year: 2020
  ident: b53
  article-title: The direct radial basis function partition of unity (D-RBF-PU) method for solving PDEs
  publication-title: SIAM J. Sci. Comput.
– year: 2010
  ident: b3
  article-title: Dr. Patrick Walsh’S Guide To Surviving Prostate Cancer
– volume: 53
  start-page: 1
  year: 2011
  end-page: 20
  ident: b21
  article-title: An adaptive multigrid algorithm for simulating solid tumor growth using mixture models
  publication-title: Math. Comput. Modelling
– volume: 33
  start-page: 869
  year: 2011
  end-page: 892
  ident: b71
  article-title: Stable computations with Gaussian radial basis functions
  publication-title: SIAM J. Sci. Comput.
– volume: 46
  start-page: 329
  year: 2004
  end-page: 345
  ident: b81
  article-title: A simple mesh generator in MATLAB
  publication-title: SIAM Rev.
– year: 2019
  ident: b34
  article-title: Numerical investigation on the transport equation in spherical coordinates via generalized moving least squares and moving Kriging least squares approximations
  publication-title: Eng. Comput.
– year: 2004
  ident: b25
  article-title: Scattered Data Approximation
– volume: 79
  start-page: 321
  year: 2019
  end-page: 344
  ident: b27
  article-title: RBF–based partition of unity methods for elliptic PDEs: Adaptivity and stability issues via variably scaled kernels
  publication-title: J. Sci. Comput.
– volume: 1
  start-page: 2000
  year: 1993
  ident: b80
  article-title: BiCGstab (l) for linear equations involving unsymmetric matrices with complex spectrum
  publication-title: Electron. Trans. Numer. Anal.
– volume: 5
  year: 2010
  ident: b83
  article-title: A comprehensive panel of three–dimensional models for studies of prostate cancer growth, invasion and drug responses
  publication-title: Plos One
– volume: 57
  start-page: 1041
  year: 2017
  end-page: 1063
  ident: b77
  article-title: Direct approximation on spheres using generalized moving least squares
  publication-title: BIT
– volume: 38
  start-page: 29
  year: 1983
  end-page: 43
  ident: b62
  article-title: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability
  publication-title: Chem. Eng. Sci.
– volume: 19
  start-page: 127
  year: 1990
  end-page: 145
  ident: b36
  article-title: Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates
  publication-title: Comput. Math. Appl.
– volume: 60
  start-page: 857
  year: 1998
  end-page: 899
  ident: b4
  article-title: Continuous and discrete mathematical models of tumor–induced angiogenesis
  publication-title: Bull. Math. Biol.
– volume: 298
  start-page: 406
  year: 2015
  end-page: 422
  ident: b76
  article-title: A scalable RBF-FD method for atmospheric flow
  publication-title: J. Comput. Phys.
– volume: 39
  start-page: 398
  year: 2019
  end-page: 422
  ident: b74
  article-title: Optimal stencils in Sobolev spaces
  publication-title: IMA J. Numer. Anal.
– year: 2015
  ident: b45
  article-title: A Primer on Radial Basis Functions with Applications To the Geosciences
– volume: 217
  start-page: 23
  year: 2017
  end-page: 34
  ident: b55
  article-title: A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high–dimensional nonlinear Schrödinger equations using an explicit time discretization: Runge–Kutta method
  publication-title: Comput. Phys. Comm.
– volume: 30
  start-page: 60
  year: 2007
  end-page: 80
  ident: b69
  article-title: A stable algorithm for flat radial basis functions on a sphere
  publication-title: SIAM J. Sci. Comput.
– volume: 30
  start-page: 1253
  year: 2020
  end-page: 1295
  ident: b22
  article-title: Mathematical analysis and simulation study of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects
  publication-title: Math. Models Methods Appl. Sci.
– volume: 79
  start-page: 493
  year: 2019
  end-page: 516
  ident: b24
  article-title: Numerical simulation and error estimation of the time–dependent Allen–Cahn equation on surfaces with radial basis functions
  publication-title: J. Sci. Comput.
– volume: 63
  start-page: 745
  year: 2015
  end-page: 768
  ident: b54
  article-title: A radial basis function (RBF)–finite difference (FD) method for diffusion and reaction–diffusion equations on surfaces
  publication-title: J. Sci. Comput.
– volume: 2
  start-page: 129
  year: 2000
  end-page: 154
  ident: b5
  article-title: Mathematical modelling of tumour invasion and metastasis
  publication-title: Comput. Math. Methods Med.
– volume: 250
  start-page: 684
  year: 2008
  end-page: 704
  ident: b7
  article-title: Mathematical modelling of cancer cell invasion of tissue: local and non–local models and the effect of adhesion
  publication-title: J. Theoret. Biol.
– volume: 35
  start-page: A2096
  year: 2013
  end-page: A2119
  ident: b41
  article-title: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions, SIAM
  publication-title: J. Sci. Comput.
– volume: 113
  start-page: E7663
  year: 2016
  end-page: E7671
  ident: b9
  article-title: Tissue–scale, personalized modeling and simulation of prostate cancer growth
  publication-title: Proc. Natl. Acad. Sci.
– volume: 231
  start-page: 4078
  year: 2012
  end-page: 4095
  ident: b48
  article-title: A guide to RBF–generated finite differences for nonlinear transport: Shallow water simulations on a sphere
  publication-title: J. Comput. Phys.
– volume: 11
  year: 2016
  ident: b10
  article-title: A mathematical model coupling tumor growth and angiogenesis
  publication-title: PLoS One
– volume: 331
  start-page: 137
  year: 2017
  end-page: 156
  ident: b72
  article-title: Stable computations with flat radial basis functions using vector-valued rational approximations
  publication-title: J. Comput. Phys.
– volume: 12
  start-page: 1173
  year: 2015
  end-page: 1187
  ident: b19
  article-title: Mathematical model and its fast numerical method for the tumor growth
  publication-title: Math. Biosci. Eng.
– volume: 251
  start-page: 650
  year: 1991
  end-page: 652
  ident: b63
  article-title: Modeling of Turing structures in the chlorite-iodidemalonic acid-starch reaction system
  publication-title: Science
– volume: 81
  start-page: 389
  year: 1979
  end-page: 400
  ident: b67
  article-title: Simple chemical reaction system with limit cycle behaviour
  publication-title: J. Theoret. Biol.
– volume: 345
  start-page: 919
  year: 2019
  end-page: 950
  ident: b15
  article-title: Simulation of the phase field Cahn-Hilliard and tumor growth models via a numerical scheme: Element–free Galerkin method
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 34
  start-page: A737
  year: 2012
  end-page: A762
  ident: b70
  article-title: Stable evaluation of Gaussian RBF interpolants, SIAM
  publication-title: J. Sci. Comput.
– volume: 351
  start-page: 478
  year: 2017
  end-page: 510
  ident: b47
  article-title: The use of proper orthogonal decomposition (POD) meshless RBF–FD technique to simulate the shallow water equations
  publication-title: J. Comput. Phys.
– volume: 101
  start-page: 113
  year: 2014
  end-page: 138
  ident: b65
  article-title: Simulating the 2D Brusselator system in reproducing kernel Hilbert space
  publication-title: Comput. Model Eng. Sci.
– volume: 8
  start-page: 345
  year: 2011
  end-page: 368
  ident: b60
  article-title: The radial growth phase of malignant melanoma: multi–phase modelling, numerical simulations and linear stability analysis
  publication-title: J. R. Soc. Interface
– volume: 212
  start-page: 99
  year: 2006
  end-page: 123
  ident: b39
  article-title: Scattered node compact finite difference–type formulas generated from radial basis functions
  publication-title: J. Comput. Phys.
– volume: 140
  start-page: 555
  year: 2018
  end-page: 592
  ident: b79
  article-title: Minimal numerical differentiation formulas
  publication-title: Numer. Math.
– volume: 39
  start-page: A2129
  year: 2017
  end-page: A2151
  ident: b31
  article-title: A radial basis function (RBF) compact finite difference (FD) scheme for reaction–diffusion equations on surfaces
  publication-title: SIAM J. Sci. Comput.
– volume: 81
  start-page: 486
  year: 2019
  end-page: 512
  ident: b46
  article-title: Comparison of moving least squares and RBF+poly for interpolation and derivative approximation
  publication-title: J. Sci. Comput.
– volume: 59
  start-page: 500
  year: 2018
  end-page: 513
  ident: b12
  article-title: An element–free Galerkin meshless method for simulating the behavior of cancer cell invasion of surrounding tissue
  publication-title: Appl. Math. Model.
– start-page: 1
  year: 2019
  end-page: 23
  ident: b28
  article-title: Jumping with variably scaled discontinuous kernels (VSDKs)
  publication-title: BIT Numer. Math.
– volume: 75
  start-page: 1
  year: 2014
  end-page: 22
  ident: b50
  article-title: A radial basis function (RBF) finite difference method for the simulation of reaction–diffusion equations on stationary platelets within the augmented forcing method
  publication-title: Int. J. Numer. Methods Fluids
– volume: 372
  start-page: 616
  year: 2018
  end-page: 639
  ident: b52
  article-title: Hyperviscosity–based stabilization for radial basis function-finite difference (RBF–FD) discretizations of advection-diffusion equations
  publication-title: J. Comput. Phys.
– volume: 4
  start-page: 79
  year: 1968
  end-page: 86
  ident: b66
  article-title: Self-oscillations in glycolysis
  publication-title: Eur. J. Biochem.
– volume: 12
  start-page: 30
  year: 1972
  end-page: 39
  ident: b61
  article-title: A theory of biological pattern formation
  publication-title: Kybernet
– volume: 326
  start-page: 596
  year: 2016
  end-page: 611
  ident: b35
  article-title: Compact moving least squares: an optimization framework for generating high-order compact meshless discretizations
  publication-title: J. Comput. Phys.
– volume: 192
  start-page: 941
  year: 2003
  end-page: 954
  ident: b38
  article-title: Local radial basis function–based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 37
  start-page: S59
  year: 2007
  end-page: S70
  ident: b16
  article-title: Computer simulation of glioma growth and morphology
  publication-title: Neuroimage
– volume: 70
  start-page: 2292
  year: 2015
  end-page: 2315
  ident: b29
  article-title: The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations: The Crank–Nicolson scheme and the method of lines (MOL)
  publication-title: Comput. Math. Appl.
– volume: 65
  start-page: 275
  year: 2014
  end-page: 291
  ident: b33
  article-title: Solving heat conduction problems by the direct meshless local Petrov–Galerkin (DMLPG) method
  publication-title: Numer. Algorithms
– volume: 373
  start-page: 722
  year: 2018
  end-page: 735
  ident: b56
  article-title: RBF-LOI: Augmenting radial basis functions (RBFs) with least orthogonal interpolation (LOI) for solving PDEs on surfaces
  publication-title: J. Comput. Phys.
– volume: 361
  start-page: 41
  year: 2014
  end-page: 60
  ident: b6
  article-title: Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns
  publication-title: J. Theoret. Biol.
– volume: 79
  start-page: 2624
  year: 2020
  end-page: 2643
  ident: b75
  article-title: A weak–form RBF–generated finite difference method
  publication-title: Comput. Math. Appl.
– volume: 218
  start-page: 9853
  year: 2012
  end-page: 9865
  ident: b82
  article-title: A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains
  publication-title: Appl. Math. Comput.
– volume: 65
  start-page: 627
  year: 2013
  end-page: 637
  ident: b44
  article-title: Stable calculation of Gaussian–based RBF-FD stencils
  publication-title: Comput. Math. Appl.
– start-page: 725
  year: 2000
  end-page: 766
  ident: b1
  article-title: The development and causes of cancer, the cell: A molecular approach
– volume: 34
  start-page: 3896
  year: 2010
  end-page: 3909
  ident: b64
  article-title: A computational modeling of the behavior of the two-dimensional reaction–diffusion Brusselator system
  publication-title: Appl. Math. Model.
– volume: 132
  start-page: 243
  year: 2016
  end-page: 269
  ident: b78
  article-title: Error bounds for kernel-based numerical differentiation
  publication-title: Numer. Math.
– volume: 364
  start-page: 73
  year: 2018
  end-page: 94
  ident: b14
  article-title: An accurate front capturing scheme for tumor growth models with a free boundary limit
  publication-title: J. Comput. Phys.
– volume: 349
  start-page: 331
  year: 2019
  end-page: 343
  ident: b26
  article-title: Fast and stable rational RBF-based partition of unity interpolation
  publication-title: J. Comput. Appl. Math.
– volume: 319
  start-page: 515
  year: 2017
  end-page: 548
  ident: b8
  article-title: Hierarchically refined and coarsened splines for moving interface problems, with particular application to phase-field models of prostate tumor growth
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 77
  start-page: 2337
  year: 2019
  end-page: 2353
  ident: b43
  article-title: An insight into RBF–FD approximations augmented with polynomials
  publication-title: Comput. Math. Appl.
– volume: 119
  start-page: 151
  year: 2020
  end-page: 161
  ident: b58
  article-title: Simulation flows with multiple phases and components via the radial basis functions-finite difference (RBF-FD) procedure: Shan–Chen model
  publication-title: Eng. Anal. Bound. Elem.
– volume: 316
  start-page: 39
  year: 2016
  end-page: 62
  ident: b49
  article-title: Enhancing finite differences with radial basis functions: experiments on the Navier–Stokes equations
  publication-title: J. Comput. Phys.
– volume: 36
  start-page: 1517
  year: 2020
  end-page: 1537
  ident: b13
  article-title: The element–free Galerkin method based on moving least squares and moving Kriging approximations for solving two–dimensional tumor-induced angiogenesis model
  publication-title: Eng. Comput.
– volume: 332
  start-page: 257
  year: 2017
  end-page: 273
  ident: b73
  article-title: On the role of polynomials in RBF–FD approximations: II. Numerical solution of elliptic PDEs
  publication-title: J. Comput. Phys.
– volume: 330
  start-page: 23
  year: 2018
  end-page: 41
  ident: b30
  article-title: Local variably scaled Newton basis functions collocation method for solving Burgers’ equation
  publication-title: Appl. Math. Comput.
– volume: 230
  start-page: 2270
  year: 2011
  end-page: 2285
  ident: b40
  article-title: Stabilization of RBF-generated finite difference methods for convective PDEs
  publication-title: J. Comput. Phys.
– volume: 48
  start-page: 853
  year: 2004
  end-page: 867
  ident: b68
  article-title: Stable computation of multiquadric interpolants for all values of the shape paramete
  publication-title: Comput. Math. Appl.
– volume: 264
  start-page: 1254
  year: 2010
  end-page: 1278
  ident: b17
  article-title: Three-dimensional multispecies nonlinear tumor growth II: tumor invasion and angiogenesis
  publication-title: J. Theoret. Biol.
– year: 2007
  ident: b23
  article-title: Meshfree Approximation Methods with MATLAB, Vol. 6
– start-page: 117
  year: 2017
  end-page: 143
  ident: b42
  article-title: Error analysis of nodal meshless methods
  publication-title: Meshfree Methods for Partial Differential Equations VIII
– volume: 28
  start-page: 3
  year: 2012
  end-page: 24
  ident: b18
  article-title: Numerical simulation of a thermodynamically consistent four–species tumor growth model
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– reference: A.I. Tolstykh, On using RBF-based differencing formulas for unstructured and mixed structured–unstructured grid calculations, in: Proceedings of the 16th IMACS world congress, 228, Lausanne, 2000, pp. 4606–4624.
– volume: 342
  start-page: 211
  year: 2017
  end-page: 228
  ident: b51
  article-title: The overlapped radial basis function-finite difference (RBF-FD) method: A generalization of RBF–FD
  publication-title: J. Comput. Phys.
– volume: 253
  start-page: 524
  year: 2008
  end-page: 543
  ident: b20
  article-title: Three–dimensional multispecies nonlinear tumor growth I: model and numerical method
  publication-title: J. Theoret. Biol.
– volume: 107
  start-page: 168
  year: 2019
  end-page: 184
  ident: b57
  article-title: Two–dimensional simulation of the damped Kuramoto-Sivashinsky equation via radial basis function–generated finite difference scheme combined with an exponential time discretization
  publication-title: Eng. Anal. Bound. Elem.
– volume: 32
  start-page: 983
  year: 2012
  end-page: 1000
  ident: b32
  article-title: On generalized moving least squares and diffuse derivatives
  publication-title: IMA J. Numer. Anal.
– volume: 218
  start-page: 9853
  issue: 19
  year: 2012
  ident: 10.1016/j.cam.2020.113314_b82
  article-title: A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2012.03.062
– ident: 10.1016/j.cam.2020.113314_b37
– year: 2019
  ident: 10.1016/j.cam.2020.113314_b34
  article-title: Numerical investigation on the transport equation in spherical coordinates via generalized moving least squares and moving Kriging least squares approximations
  publication-title: Eng. Comput.
– volume: 326
  start-page: 596
  year: 2016
  ident: 10.1016/j.cam.2020.113314_b35
  article-title: Compact moving least squares: an optimization framework for generating high-order compact meshless discretizations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.08.045
– volume: 19
  start-page: 127
  issue: 8–9
  year: 1990
  ident: 10.1016/j.cam.2020.113314_b36
  article-title: Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(90)90270-T
– volume: 38
  start-page: 29
  year: 1983
  ident: 10.1016/j.cam.2020.113314_b62
  article-title: Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(83)80132-8
– volume: 351
  start-page: 478
  year: 2017
  ident: 10.1016/j.cam.2020.113314_b47
  article-title: The use of proper orthogonal decomposition (POD) meshless RBF–FD technique to simulate the shallow water equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.09.007
– volume: 349
  start-page: 331
  year: 2019
  ident: 10.1016/j.cam.2020.113314_b26
  article-title: Fast and stable rational RBF-based partition of unity interpolation
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.07.020
– volume: 65
  start-page: 275
  issue: 2
  year: 2014
  ident: 10.1016/j.cam.2020.113314_b33
  article-title: Solving heat conduction problems by the direct meshless local Petrov–Galerkin (DMLPG) method
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-013-9711-1
– volume: 46
  start-page: 329
  issue: 2
  year: 2004
  ident: 10.1016/j.cam.2020.113314_b81
  article-title: A simple mesh generator in MATLAB
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144503429121
– volume: 30
  start-page: 1253
  issue: 07
  year: 2020
  ident: 10.1016/j.cam.2020.113314_b22
  article-title: Mathematical analysis and simulation study of a phase-field model of prostate cancer growth with chemotherapy and antiangiogenic therapy effects
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202520500220
– volume: 81
  start-page: 486
  year: 2019
  ident: 10.1016/j.cam.2020.113314_b46
  article-title: Comparison of moving least squares and RBF+poly for interpolation and derivative approximation
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-019-01028-8
– start-page: 1
  year: 2018
  ident: 10.1016/j.cam.2020.113314_b59
  article-title: Computational phase–field modeling
– start-page: 1
  year: 2019
  ident: 10.1016/j.cam.2020.113314_b28
  article-title: Jumping with variably scaled discontinuous kernels (VSDKs)
  publication-title: BIT Numer. Math.
– volume: 113
  start-page: E7663
  issue: 48
  year: 2016
  ident: 10.1016/j.cam.2020.113314_b9
  article-title: Tissue–scale, personalized modeling and simulation of prostate cancer growth
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1615791113
– year: 2007
  ident: 10.1016/j.cam.2020.113314_b23
– volume: 372
  start-page: 616
  year: 2018
  ident: 10.1016/j.cam.2020.113314_b52
  article-title: Hyperviscosity–based stabilization for radial basis function-finite difference (RBF–FD) discretizations of advection-diffusion equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.06.036
– volume: 30
  start-page: 60
  issue: 1
  year: 2007
  ident: 10.1016/j.cam.2020.113314_b69
  article-title: A stable algorithm for flat radial basis functions on a sphere
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/060671991
– volume: 28
  start-page: 3
  issue: 1
  year: 2012
  ident: 10.1016/j.cam.2020.113314_b18
  article-title: Numerical simulation of a thermodynamically consistent four–species tumor growth model
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.1467
– volume: 342
  start-page: 211
  year: 2017
  ident: 10.1016/j.cam.2020.113314_b51
  article-title: The overlapped radial basis function-finite difference (RBF-FD) method: A generalization of RBF–FD
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.04.037
– volume: 231
  start-page: 4078
  issue: 11
  year: 2012
  ident: 10.1016/j.cam.2020.113314_b48
  article-title: A guide to RBF–generated finite differences for nonlinear transport: Shallow water simulations on a sphere
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.01.028
– volume: 364
  start-page: 73
  year: 2018
  ident: 10.1016/j.cam.2020.113314_b14
  article-title: An accurate front capturing scheme for tumor growth models with a free boundary limit
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.03.013
– volume: 79
  start-page: 2624
  issue: 9
  year: 2020
  ident: 10.1016/j.cam.2020.113314_b75
  article-title: A weak–form RBF–generated finite difference method
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2019.11.024
– volume: 59
  start-page: 500
  year: 2018
  ident: 10.1016/j.cam.2020.113314_b12
  article-title: An element–free Galerkin meshless method for simulating the behavior of cancer cell invasion of surrounding tissue
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.01.034
– volume: 32
  start-page: 983
  issue: 3
  year: 2012
  ident: 10.1016/j.cam.2020.113314_b32
  article-title: On generalized moving least squares and diffuse derivatives
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drr030
– volume: 79
  start-page: 321
  issue: 1
  year: 2019
  ident: 10.1016/j.cam.2020.113314_b27
  article-title: RBF–based partition of unity methods for elliptic PDEs: Adaptivity and stability issues via variably scaled kernels
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-0851-2
– volume: 253
  start-page: 524
  issue: 3
  year: 2008
  ident: 10.1016/j.cam.2020.113314_b20
  article-title: Three–dimensional multispecies nonlinear tumor growth I: model and numerical method
  publication-title: J. Theoret. Biol.
  doi: 10.1016/j.jtbi.2008.03.027
– volume: 39
  start-page: 398
  issue: 1
  year: 2019
  ident: 10.1016/j.cam.2020.113314_b74
  article-title: Optimal stencils in Sobolev spaces
  publication-title: IMA J. Numer. Anal.
– volume: 316
  start-page: 39
  year: 2016
  ident: 10.1016/j.cam.2020.113314_b49
  article-title: Enhancing finite differences with radial basis functions: experiments on the Navier–Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.02.078
– volume: 373
  start-page: 722
  year: 2018
  ident: 10.1016/j.cam.2020.113314_b56
  article-title: RBF-LOI: Augmenting radial basis functions (RBFs) with least orthogonal interpolation (LOI) for solving PDEs on surfaces
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.07.015
– volume: 1
  start-page: 2000
  issue: 11
  year: 1993
  ident: 10.1016/j.cam.2020.113314_b80
  article-title: BiCGstab (l) for linear equations involving unsymmetric matrices with complex spectrum
  publication-title: Electron. Trans. Numer. Anal.
– volume: 11
  issue: 2
  year: 2016
  ident: 10.1016/j.cam.2020.113314_b10
  article-title: A mathematical model coupling tumor growth and angiogenesis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0149422
– volume: 53
  start-page: 1
  issue: 1–2
  year: 2011
  ident: 10.1016/j.cam.2020.113314_b21
  article-title: An adaptive multigrid algorithm for simulating solid tumor growth using mixture models
  publication-title: Math. Comput. Modelling
  doi: 10.1016/j.mcm.2010.07.007
– volume: 75
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.cam.2020.113314_b50
  article-title: A radial basis function (RBF) finite difference method for the simulation of reaction–diffusion equations on stationary platelets within the augmented forcing method
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.3880
– volume: 332
  start-page: 257
  year: 2017
  ident: 10.1016/j.cam.2020.113314_b73
  article-title: On the role of polynomials in RBF–FD approximations: II. Numerical solution of elliptic PDEs
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.12.008
– volume: 34
  start-page: A737
  issue: 2
  year: 2012
  ident: 10.1016/j.cam.2020.113314_b70
  article-title: Stable evaluation of Gaussian RBF interpolants, SIAM
  publication-title: J. Sci. Comput.
– volume: 60
  start-page: 857
  issue: 5
  year: 1998
  ident: 10.1016/j.cam.2020.113314_b4
  article-title: Continuous and discrete mathematical models of tumor–induced angiogenesis
  publication-title: Bull. Math. Biol.
  doi: 10.1006/bulm.1998.0042
– volume: 331
  start-page: 137
  year: 2017
  ident: 10.1016/j.cam.2020.113314_b72
  article-title: Stable computations with flat radial basis functions using vector-valued rational approximations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.11.030
– volume: 34
  start-page: 3896
  year: 2010
  ident: 10.1016/j.cam.2020.113314_b64
  article-title: A computational modeling of the behavior of the two-dimensional reaction–diffusion Brusselator system
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2010.03.028
– volume: 57
  start-page: 1041
  issue: 4
  year: 2017
  ident: 10.1016/j.cam.2020.113314_b77
  article-title: Direct approximation on spheres using generalized moving least squares
  publication-title: BIT
  doi: 10.1007/s10543-017-0659-8
– volume: 79
  start-page: 493
  issue: 1
  year: 2019
  ident: 10.1016/j.cam.2020.113314_b24
  article-title: Numerical simulation and error estimation of the time–dependent Allen–Cahn equation on surfaces with radial basis functions
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-018-0859-7
– volume: 37
  start-page: S59
  year: 2007
  ident: 10.1016/j.cam.2020.113314_b16
  article-title: Computer simulation of glioma growth and morphology
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.03.008
– volume: 101
  start-page: 113
  year: 2014
  ident: 10.1016/j.cam.2020.113314_b65
  article-title: Simulating the 2D Brusselator system in reproducing kernel Hilbert space
  publication-title: Comput. Model Eng. Sci.
– volume: 330
  start-page: 23
  year: 2018
  ident: 10.1016/j.cam.2020.113314_b30
  article-title: Local variably scaled Newton basis functions collocation method for solving Burgers’ equation
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2018.02.007
– volume: 132
  start-page: 243
  issue: 2
  year: 2016
  ident: 10.1016/j.cam.2020.113314_b78
  article-title: Error bounds for kernel-based numerical differentiation
  publication-title: Numer. Math.
  doi: 10.1007/s00211-015-0722-9
– start-page: 117
  year: 2017
  ident: 10.1016/j.cam.2020.113314_b42
  article-title: Error analysis of nodal meshless methods
– volume: 230
  start-page: 2270
  year: 2011
  ident: 10.1016/j.cam.2020.113314_b40
  article-title: Stabilization of RBF-generated finite difference methods for convective PDEs
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.12.014
– start-page: 725
  year: 2000
  ident: 10.1016/j.cam.2020.113314_b1
– volume: 345
  start-page: 919
  year: 2019
  ident: 10.1016/j.cam.2020.113314_b15
  article-title: Simulation of the phase field Cahn-Hilliard and tumor growth models via a numerical scheme: Element–free Galerkin method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.11.019
– volume: 77
  start-page: 2337
  year: 2019
  ident: 10.1016/j.cam.2020.113314_b43
  article-title: An insight into RBF–FD approximations augmented with polynomials
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.12.029
– volume: 264
  start-page: 1254
  issue: 4
  year: 2010
  ident: 10.1016/j.cam.2020.113314_b17
  article-title: Three-dimensional multispecies nonlinear tumor growth II: tumor invasion and angiogenesis
  publication-title: J. Theoret. Biol.
  doi: 10.1016/j.jtbi.2010.02.036
– year: 2020
  ident: 10.1016/j.cam.2020.113314_b53
  article-title: The direct radial basis function partition of unity (D-RBF-PU) method for solving PDEs
  publication-title: SIAM J. Sci. Comput.
– year: 2004
  ident: 10.1016/j.cam.2020.113314_b25
– volume: 65
  start-page: 627
  issue: 4
  year: 2013
  ident: 10.1016/j.cam.2020.113314_b44
  article-title: Stable calculation of Gaussian–based RBF-FD stencils
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2012.11.006
– volume: 2
  start-page: 129
  issue: 2
  year: 2000
  ident: 10.1016/j.cam.2020.113314_b5
  article-title: Mathematical modelling of tumour invasion and metastasis
  publication-title: Comput. Math. Methods Med.
  doi: 10.1080/10273660008833042
– volume: 4
  start-page: 79
  year: 1968
  ident: 10.1016/j.cam.2020.113314_b66
  article-title: Self-oscillations in glycolysis
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.1968.tb00175.x
– volume: 217
  start-page: 23
  year: 2017
  ident: 10.1016/j.cam.2020.113314_b55
  article-title: A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high–dimensional nonlinear Schrödinger equations using an explicit time discretization: Runge–Kutta method
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2017.03.012
– year: 2011
  ident: 10.1016/j.cam.2020.113314_b11
– volume: 63
  start-page: 745
  issue: 3
  year: 2015
  ident: 10.1016/j.cam.2020.113314_b54
  article-title: A radial basis function (RBF)–finite difference (FD) method for diffusion and reaction–diffusion equations on surfaces
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-014-9914-1
– volume: 140
  start-page: 555
  issue: 3
  year: 2018
  ident: 10.1016/j.cam.2020.113314_b79
  article-title: Minimal numerical differentiation formulas
  publication-title: Numer. Math.
  doi: 10.1007/s00211-018-0973-3
– volume: 5
  issue: 5
  year: 2010
  ident: 10.1016/j.cam.2020.113314_b83
  article-title: A comprehensive panel of three–dimensional models for studies of prostate cancer growth, invasion and drug responses
  publication-title: Plos One
  doi: 10.1371/journal.pone.0010431
– volume: 12
  start-page: 1173
  issue: 6
  year: 2015
  ident: 10.1016/j.cam.2020.113314_b19
  article-title: Mathematical model and its fast numerical method for the tumor growth
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2015.12.1173
– volume: 81
  start-page: 389
  year: 1979
  ident: 10.1016/j.cam.2020.113314_b67
  article-title: Simple chemical reaction system with limit cycle behaviour
  publication-title: J. Theoret. Biol.
  doi: 10.1016/0022-5193(79)90042-0
– volume: 251
  start-page: 650
  year: 1991
  ident: 10.1016/j.cam.2020.113314_b63
  article-title: Modeling of Turing structures in the chlorite-iodidemalonic acid-starch reaction system
  publication-title: Science
  doi: 10.1126/science.251.4994.650
– volume: 119
  start-page: 151
  year: 2020
  ident: 10.1016/j.cam.2020.113314_b58
  article-title: Simulation flows with multiple phases and components via the radial basis functions-finite difference (RBF-FD) procedure: Shan–Chen model
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2020.06.005
– volume: 39
  start-page: A2129
  issue: 5
  year: 2017
  ident: 10.1016/j.cam.2020.113314_b31
  article-title: A radial basis function (RBF) compact finite difference (FD) scheme for reaction–diffusion equations on surfaces
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/16M1095457
– volume: 12
  start-page: 30
  year: 1972
  ident: 10.1016/j.cam.2020.113314_b61
  article-title: A theory of biological pattern formation
  publication-title: Kybernet
  doi: 10.1007/BF00289234
– volume: 116
  start-page: 1152
  issue: 4
  year: 2019
  ident: 10.1016/j.cam.2020.113314_b2
  article-title: Computer simulations suggest that prostate enlargement due to benign prostatic hyperplasia mechanically impedes prostate cancer growth
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1815735116
– volume: 70
  start-page: 2292
  year: 2015
  ident: 10.1016/j.cam.2020.113314_b29
  article-title: The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations: The Crank–Nicolson scheme and the method of lines (MOL)
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2015.08.032
– volume: 319
  start-page: 515
  year: 2017
  ident: 10.1016/j.cam.2020.113314_b8
  article-title: Hierarchically refined and coarsened splines for moving interface problems, with particular application to phase-field models of prostate tumor growth
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2017.03.009
– volume: 48
  start-page: 853
  year: 2004
  ident: 10.1016/j.cam.2020.113314_b68
  article-title: Stable computation of multiquadric interpolants for all values of the shape paramete
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2003.08.010
– volume: 33
  start-page: 869
  year: 2011
  ident: 10.1016/j.cam.2020.113314_b71
  article-title: Stable computations with Gaussian radial basis functions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/09076756X
– volume: 361
  start-page: 41
  year: 2014
  ident: 10.1016/j.cam.2020.113314_b6
  article-title: Mathematical modelling of cancer invasion: implications of cell adhesion variability for tumour infiltrative growth patterns
  publication-title: J. Theoret. Biol.
  doi: 10.1016/j.jtbi.2014.07.010
– year: 2010
  ident: 10.1016/j.cam.2020.113314_b3
– year: 2015
  ident: 10.1016/j.cam.2020.113314_b45
– volume: 250
  start-page: 684
  issue: 4
  year: 2008
  ident: 10.1016/j.cam.2020.113314_b7
  article-title: Mathematical modelling of cancer cell invasion of tissue: local and non–local models and the effect of adhesion
  publication-title: J. Theoret. Biol.
  doi: 10.1016/j.jtbi.2007.10.026
– volume: 35
  start-page: A2096
  issue: 4
  year: 2013
  ident: 10.1016/j.cam.2020.113314_b41
  article-title: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions, SIAM
  publication-title: J. Sci. Comput.
– volume: 36
  start-page: 1517
  year: 2020
  ident: 10.1016/j.cam.2020.113314_b13
  article-title: The element–free Galerkin method based on moving least squares and moving Kriging approximations for solving two–dimensional tumor-induced angiogenesis model
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-019-00779-0
– volume: 212
  start-page: 99
  issue: 1
  year: 2006
  ident: 10.1016/j.cam.2020.113314_b39
  article-title: Scattered node compact finite difference–type formulas generated from radial basis functions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.05.030
– volume: 107
  start-page: 168
  year: 2019
  ident: 10.1016/j.cam.2020.113314_b57
  article-title: Two–dimensional simulation of the damped Kuramoto-Sivashinsky equation via radial basis function–generated finite difference scheme combined with an exponential time discretization
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2019.06.007
– volume: 192
  start-page: 941
  year: 2003
  ident: 10.1016/j.cam.2020.113314_b38
  article-title: Local radial basis function–based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(02)00618-7
– volume: 8
  start-page: 345
  issue: 56
  year: 2011
  ident: 10.1016/j.cam.2020.113314_b60
  article-title: The radial growth phase of malignant melanoma: multi–phase modelling, numerical simulations and linear stability analysis
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2010.0285
– volume: 298
  start-page: 406
  year: 2015
  ident: 10.1016/j.cam.2020.113314_b76
  article-title: A scalable RBF-FD method for atmospheric flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.06.003
SSID ssj0006914
Score 2.4885805
Snippet The aim of this work consists of finding a suitable numerical method for the solution of the mathematical model describing the prostate tumor growth,...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 113314
SubjectTerms A prostate tumor growth model based on time-dependent partial differential equations
Biconjugate gradient stabilized method
Mathematical oncology
Moving interface problem
Non-dimensionalization technique
Radial basis function-generated finite difference scheme
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD-LBt1hRycGTEs022U336KuIYBGxoKclj4lW-6LdRfTXm-yjiGLFe7IbmIH5hpnv-xA6EDTwfYciyoIgXLOYyFhHhCsBgWZRGBhPTr5pR1cdfv0QPsyhyvDum7yAV4IRJ4zFPGbhPFqI_BSphhY67dvTx3w-IATxbhG-rWqKmARCNKvZZb7FpaWnmzdy7xIW8N-qz2I2GMn3N9nrfakurRV0UXF0iqWS1-MsVcf646dk46yHr6LlEl3i0yId1tAcDNbR0s1UmnWygcbtrBjS9PCk2y_Nu_DQYolHngHisCdOs_5wjJ9ch54-49wrB6t37D6C785apHWBXUsMfcDuJe7aBPpd0s0307sp9mb12HN9PT2y4Hhuok7r8v78ipTGC0QzTlMShkZz6sJlpIiBWwMh01IYa2JlDdXKUgquedNMcCohtA3OAJSJQ8q0cYBjC9UGwwFsI8w4lyqi0ARmORdN2VDWJYOSWgEFFtURrQKS6FKV3Jtj9JJq_ewlcTFMfAyTIoZ1dDi9MiokOWYd5lWUkxJTFFghcSVj1rWjaUb8_ZOdf53eRbV0nMGeAzOp2i-T-RMyg_Ix
  priority: 102
  providerName: Unpaywall
Title Numerical simulation of a prostate tumor growth model by the RBF-FD scheme and a semi-implicit time discretization
URI https://dx.doi.org/10.1016/j.cam.2020.113314
http://hdl.handle.net/11577/3394935
UnpaywallVersion submittedVersion
Volume 388
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 1879-1778
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211002
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 1879-1778
  databaseCode: IXB
  dateStart: 19750301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211002
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 1879-1778
  databaseCode: AIKHN
  dateStart: 20210501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 20211002
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 1879-1778
  databaseCode: ACRLP
  dateStart: 19950220
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 1879-1778
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006914
  issn: 1879-1778
  databaseCode: AKRWK
  dateStart: 19750301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfGOAAHxAZoX1Q-cGIydWInXo7dRtVRrZo2Ksop8sfzFtSmVZsK7bK_fbaTVHBgSJyiRM-x9Z71_J78fu-H0EdBI593KKIsCMI1y4jMdEq4EhBpliaR8eDky1E6GPOvk2Syhc5aLIwvq2x8f-3Tg7duvnQbbXYXRdG9oUwIzxQR-7CXBhg14yKA-CanG2-cZnV_bydMvHR7sxlqvLT0YPQ4MJuwiP_tbHqxLhfy_pecTn87e_pv0OsmaMS9el07aAvKXfTqctNxdfUWLUfr-u5lilfFrOHkwnOLJV54YIcLKXG1ns2X-NYl3tUdDhQ4WN1j9xN8fdon_XPsMl2YAZalccNWMCtIEQrOiwp7DnrsIbwe9VhDN9-hcf_Lt7MBafgUiGacViRJjObUWcFIkQG3BhKmpTDWZMoaqpWlFFxOppngVEJiY84AlMkSyrRxccR7tF3OS9hDmHEuVUrhBJjlXJzIWFlnYyW1Agos3Ue01WSum2bjnvNimrdVZT9zp_zcKz-vlb-PPm2GLOpOG08J89Y8-R_bJXcnwVPDjjem_PckB_83ySF6GfvCl1AVeYS2q-UaPrjIpVId9OzzQ9RBz3sXw8HIP4fX34edsGHd23h01fvxCLrQ8d8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVQOQAHxCp2fOAEsurGTkyObFVZ2gOLxC3yMoagNq3aVIi_x85SwQGQuEYeO5qxZpHnzUPoSNCWrzsUURYE4ZrFRMY6IlwJaGkWhS3jwcndXtR54jfP4fMcuqixML6tsvL9pU8vvHX1pVlpszlK0-YDZUJ4pojAp73Uw6jneeh8cgPNn13fdnozhxzF5Yhvt554gfpxs2jz0tLj0YOC3IS1-E_haWGajeTHu-z3v4Sf9gparvJGfFb-2iqag2wNLXVnQ1cn62jcm5bPL308SQcVLRceWizxyGM7XFaJ8-lgOMYvrvbOX3HBgoPVB3ab4PvzNmlfYlfswgCwzIwTm8AgJWnRc57m2NPQY4_i9cDHEr25gZ7aV48XHVJRKhDNOM1JGBrNqTOEkSIGbg2ETEthrImVNVQrSym4skwzwamE0AacASgTh5Rp41KJTdTIhhlsIcw4lyqicArMci5OZaCsM7OSWgEFFm0jWmsy0dW8cU970U_qxrK3xCk_8cpPSuVvo-OZyKgctvHbYl6bJ_l2YxIXDH4TO5mZ8u9Ddv53yCFa6Dx275K7697tLloMfB9M0SS5hxr5eAr7LpHJ1UF1UT8BL2rwLw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD-LBt1hRycGTEs022U336KuIYBGxoKclj4lW-6LdRfTXm-yjiGLFe7IbmIH5hpnv-xA6EDTwfYciyoIgXLOYyFhHhCsBgWZRGBhPTr5pR1cdfv0QPsyhyvDum7yAV4IRJ4zFPGbhPFqI_BSphhY67dvTx3w-IATxbhG-rWqKmARCNKvZZb7FpaWnmzdy7xIW8N-qz2I2GMn3N9nrfakurRV0UXF0iqWS1-MsVcf646dk46yHr6LlEl3i0yId1tAcDNbR0s1UmnWygcbtrBjS9PCk2y_Nu_DQYolHngHisCdOs_5wjJ9ch54-49wrB6t37D6C785apHWBXUsMfcDuJe7aBPpd0s0307sp9mb12HN9PT2y4Hhuok7r8v78ipTGC0QzTlMShkZz6sJlpIiBWwMh01IYa2JlDdXKUgquedNMcCohtA3OAJSJQ8q0cYBjC9UGwwFsI8w4lyqi0ARmORdN2VDWJYOSWgEFFtURrQKS6FKV3Jtj9JJq_ewlcTFMfAyTIoZ1dDi9MiokOWYd5lWUkxJTFFghcSVj1rWjaUb8_ZOdf53eRbV0nMGeAzOp2i-T-RMyg_Ix
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+a+prostate+tumor+growth+model+by+the+RBF-FD+scheme+and+a+semi-implicit+time+discretization&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Mohammadi%2C+Vahid&rft.au=Dehghan%2C+Mehdi&rft.au=De+Marchi%2C+Stefano&rft.date=2021-05-01&rft.issn=0377-0427&rft.volume=388&rft.spage=113314&rft_id=info:doi/10.1016%2Fj.cam.2020.113314&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2020_113314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon