Measurement of somatosensory evoked magnetic fields using an adjustable magnetoresistive sensor array

An adjustable helmet-style magnetoresistive (MR) sensor array with room-temperature magnetic flux sensors was developed to demonstrate the simultaneous multipoint measurement of the somatosensory evoked magnetic field (SEF). Utilizing the extended sensor length, we designed the array to permit indiv...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. A. Physical. Vol. 374; p. 115456
Main Authors Tatsuoka, Tetsuro, Kawabata, Shigenori, Hashimoto, Jun, Hoshino, Yuko, Sekihara, Kensuke, Shibuya, Tomohiko, Adachi, Yoshiaki, Okawa, Atsushi
Format Journal Article
LanguageEnglish
Published Elsevier B.V 16.08.2024
Subjects
Online AccessGet full text
ISSN0924-4247
DOI10.1016/j.sna.2024.115456

Cover

Abstract An adjustable helmet-style magnetoresistive (MR) sensor array with room-temperature magnetic flux sensors was developed to demonstrate the simultaneous multipoint measurement of the somatosensory evoked magnetic field (SEF). Utilizing the extended sensor length, we designed the array to permit individual radial adjustment of each sensor, thereby achieving a precise fit to the varied head geometries of different subjects. Furthermore, the geometry of the sensor array precisely adjusted for the individual subject was quickly obtained by calibration. The SEF was measured in three healthy subjects using an array of 30-channel MR sensors placed on the left hemisphere of the head with median nerve stimulation in the right wrist and averaged over 8000 measurements. An M20 component considered to originate from the primary somatosensory cortex was observed at an approximate latency of 20 ms of the magnetic field waveform in all cases (maximum amplitude of 725 ± 257 fT, peak latency of 20.5 ± 0.45 ms). The phase inversion observed around C3 in the international 10–20 system corresponded to the palmar area of the primary somatosensory cortex on the contour map of the magnetic field at the M20 peak. The MR sensor, an affordable and easy-to-use magnetic sensor that does not require a zero-field environment nor a cryogenic apparatus, was successfully used for simultaneous multipoint SEF measurements in humans and provides a promising system for realizing magnetoencephalography application devices. [Display omitted] •Adjustable helmet-style MR sensor array developed.•Sensor positions on the array can be individually adjusted in the radial direction.•The MR sensor does not require a zero-field environment or cryogenic apparatus.•Simultaneous multipoint SEF measurement demonstrated using the developed sensor.
AbstractList An adjustable helmet-style magnetoresistive (MR) sensor array with room-temperature magnetic flux sensors was developed to demonstrate the simultaneous multipoint measurement of the somatosensory evoked magnetic field (SEF). Utilizing the extended sensor length, we designed the array to permit individual radial adjustment of each sensor, thereby achieving a precise fit to the varied head geometries of different subjects. Furthermore, the geometry of the sensor array precisely adjusted for the individual subject was quickly obtained by calibration. The SEF was measured in three healthy subjects using an array of 30-channel MR sensors placed on the left hemisphere of the head with median nerve stimulation in the right wrist and averaged over 8000 measurements. An M20 component considered to originate from the primary somatosensory cortex was observed at an approximate latency of 20 ms of the magnetic field waveform in all cases (maximum amplitude of 725 ± 257 fT, peak latency of 20.5 ± 0.45 ms). The phase inversion observed around C3 in the international 10–20 system corresponded to the palmar area of the primary somatosensory cortex on the contour map of the magnetic field at the M20 peak. The MR sensor, an affordable and easy-to-use magnetic sensor that does not require a zero-field environment nor a cryogenic apparatus, was successfully used for simultaneous multipoint SEF measurements in humans and provides a promising system for realizing magnetoencephalography application devices. [Display omitted] •Adjustable helmet-style MR sensor array developed.•Sensor positions on the array can be individually adjusted in the radial direction.•The MR sensor does not require a zero-field environment or cryogenic apparatus.•Simultaneous multipoint SEF measurement demonstrated using the developed sensor.
ArticleNumber 115456
Author Kawabata, Shigenori
Adachi, Yoshiaki
Sekihara, Kensuke
Hoshino, Yuko
Shibuya, Tomohiko
Tatsuoka, Tetsuro
Hashimoto, Jun
Okawa, Atsushi
Author_xml – sequence: 1
  givenname: Tetsuro
  surname: Tatsuoka
  fullname: Tatsuoka, Tetsuro
  email: tatsuoka@metool.co.jp
  organization: TDK Corporation, Tokyo, Japan
– sequence: 2
  givenname: Shigenori
  surname: Kawabata
  fullname: Kawabata, Shigenori
  organization: Tokyo Medical and Dental University, Tokyo, Japan
– sequence: 3
  givenname: Jun
  surname: Hashimoto
  fullname: Hashimoto, Jun
  organization: Tokyo Medical and Dental University, Tokyo, Japan
– sequence: 4
  givenname: Yuko
  surname: Hoshino
  fullname: Hoshino, Yuko
  organization: Tokyo Medical and Dental University, Tokyo, Japan
– sequence: 5
  givenname: Kensuke
  surname: Sekihara
  fullname: Sekihara, Kensuke
  organization: Tokyo Medical and Dental University, Tokyo, Japan
– sequence: 6
  givenname: Tomohiko
  surname: Shibuya
  fullname: Shibuya, Tomohiko
  organization: TDK Corporation, Tokyo, Japan
– sequence: 7
  givenname: Yoshiaki
  surname: Adachi
  fullname: Adachi, Yoshiaki
  organization: Kanazawa Institute of Technology, Ishikawa, Japan
– sequence: 8
  givenname: Atsushi
  surname: Okawa
  fullname: Okawa, Atsushi
  organization: Tokyo Medical and Dental University, Tokyo, Japan
BookMark eNp9kL1OwzAUhT0UibbwAGx-gQbbceJGTKjiTypigdm6ca4rh9RGtlupb0-qMDF0Osv5jnS-BZn54JGQO84Kznh93xfJQyGYkAXnlazqGZmzRsiVFFJdk0VKPWOsLJWaE3xHSIeIe_SZBktT2EMOCX0K8UTxGL6xo3vYeczOUOtw6BI9JOd3FDyFrj-kDO2Af50QMbmU3RHptEEhRjjdkCsLQ8Lbv1ySr-enz83ravvx8rZ53K5MKVleyTVHLtuGN2hbW0Jd2QpkxcoGGuSqWYNhRlihGg7cWKUEY3W7FiiULavx0pLwadfEkFJEq3-i20M8ac702Y3u9ehGn93oyc3IqH-McRmyCz5HcMNF8mEicbx0dBh1Mg69wc5FNFl3wV2gfwFMx4Tq
CitedBy_id crossref_primary_10_1109_JSEN_2024_3491164
Cites_doi 10.1088/0967-3334/14/4A/006
10.1016/j.neuroimage.2016.12.048
10.1016/j.jocn.2003.07.012
10.1088/1741-2552/ab4065
10.1016/j.jneumeth.2015.05.004
10.1088/0031-9155/32/1/004
10.1016/0168-5597(95)00217-0
10.1038/nature26147
10.1101/534107
10.1088/1361-6560/aa93d1
10.1016/j.neuroimage.2017.01.034
10.1016/j.clinph.2008.03.016
10.1109/TMAG.2019.2895399
10.1088/1361-6668/aa66b3
10.1016/j.clinph.2018.03.042
10.1016/j.isci.2022.103752
10.1109/TIM.2023.3265750
10.1109/TMAG.1987.1064889
10.1038/s41598-017-02406-8
10.1016/S1388-2457(03)00233-5
10.1038/s41598-020-73051-x
10.1109/TASC.2021.3056492
10.1016/S1388-2457(00)00506-X
10.1103/RevModPhys.65.413
10.1038/s41598-017-07046-6
10.1063/1.5066250
10.1016/j.neuroimage.2020.116995
10.1038/s41598-022-10155-6
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.sna.2024.115456
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_sna_2024_115456
S0924424724004503
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXKI
AAXUO
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFJKZ
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SSK
SSQ
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AGQPQ
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMU
HVGLF
HZ~
R2-
SCB
SCH
SET
WUQ
~HD
ID FETCH-LOGICAL-c340t-481e14b919efbf3a65f5a45039a9e1798ac0c2f2791a1cf772006b82e27f35003
IEDL.DBID .~1
ISSN 0924-4247
IngestDate Wed Oct 01 03:06:24 EDT 2025
Thu Apr 24 23:01:49 EDT 2025
Sat Nov 09 15:59:26 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Somatosensory evoked magnetic fields
Biomagnetic sensors
Magnetoresistive element
Magnetoencephalography
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-481e14b919efbf3a65f5a45039a9e1798ac0c2f2791a1cf772006b82e27f35003
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0924424724004503
ParticipantIDs crossref_primary_10_1016_j_sna_2024_115456
crossref_citationtrail_10_1016_j_sna_2024_115456
elsevier_sciencedirect_doi_10_1016_j_sna_2024_115456
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-16
PublicationDateYYYYMMDD 2024-08-16
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-16
  day: 16
PublicationDecade 2020
PublicationTitle Sensors and actuators. A. Physical.
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Boto, Holmes, Leggett, Roberts, Shah, Meyer, Muñoz, Mullinger, Tierney, Bestmann, Barnes, Bowtell, Brookes (bib10) 2018; 555
Akushichi, T., Kameno, M., Kasajima, T., 2021. MAGNETIC SENSOR. PCT patent WO/2021/100252.
Osborne, Orton, Alem, Shah (bib28) 2018
Sarvas (bib20) 1987; 32
Hashimoto, Kimura, Tanosaki, Iguchi, Sekihara (bib21) 2003; 114
Kawamura, Nakasato, Seki, Kanno, Fujita, Fujiwara, Yoshimoto (bib16) 1996; 100
Hill, Boto, Rea, Holmes, Leggett, Coles, Papastavrou, Everton, Hunt, Sims, Osborne, Shah, Bowtell, Brookes (bib5) 2020; 219
Adachi, Kawai, Haruta, Miyamoto, Kawabata, Sekihara, Uehara (bib15) 2017; 30
An, Cao, Li, Wang, Xu, Wang, Xiang, Gao, Sui, Liang, Ning (bib25) 2022; 25
Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (bib1) 1993; 65
Cai, Kang, Kirsch, Mizuiri, Chen, Bhutada, Sekihara, Nagarajan (bib31) 2019; 16
Sumiya, Kawabata, Hoshino, Adachi, Sekihara, Tomizawa, Tomori, Ishii, Sakaki, Ukegawa, Ushio, Watanabe, Okawa (bib30) 2017; 7
Hari, Baillet, Barnes, Burgess, Forss, Gross, Hämäläinen, Jensen, Kakigi, Mauguière, Nakasato, Puce, Romani, Schnitzler, Taulu (bib2) 2018; 129
Iwasaki, Nakasato, Kanno, Hatanaka, Nagamatsu, Nagamine, Yoshimoto (bib18) 2001; 112
Uchiyama, Ma (bib4) 2019; 55
Borna, Carter, Goldberg, Colombo, Jau, Berry, McKay, Stephen, Weisend, Schwindt (bib26) 2017; 62
Oyama, Adachi, Yumoto, Hashimoto, Uehara (bib19) 2015; 251
Adachi, Kawabata, Hashimoto, Okada, Naijo, Watanabe, Miyano, Uehara (bib29) 2021; 31
Pfeiffer, C., Ruffieux, S., Jönsson, L., Chukharkin, M.L., Kalaboukhov, A., Xie, M., Winkler, D., Schneiderman, J.F., 2019. A 7-channel high-Tc SQUID-based on-scalp MEG system.
Kanno, Nakasato, Oogane, Fujiwara, Nakano, Arimoto, Matsuzaki, Ando (bib6) 2022; 12
Nakasato, Seki, Kawamura, Ohtomo, Kanno, Fujita, Hatanaka, Fujiwara, Kayama, Takahashi, Jokura, Kumabe, Ikeda, Mizoi, Yoshimoto (bib22) 1996; 47
.
He, Wan, Sheng, Liu, Wang, Li, Qin, Luo, Qin, Gao (bib27) 2019; 90
Yu, Nakasato, Iwasaki, Shamoto, Nagamatsu, Yoshimoto (bib3) 2004; 11
Adachi, Oyama, Higuchi, Uehara (bib12) 2023; 72
Boto, Meyer, Shah, Alem, Knappe, Kruger, Fromhold, Lim, Glover, Morris, Bowtell, Barnes, Brookes (bib7) 2017; 149
Erne, Narici, Pizzella, Romani (bib14) 1987; 23
Ishida, Jin, Kakisaka, Kanno, Kawashima, Nakasato (bib23) 2020; 10
Scherg, Buchner (bib17) 1993; 14
Iivanainen, Stenroos, Parkkonen (bib24) 2017; 147
Riaz, Pfeiffer, Schneiderman (bib9) 2017; 7
Cruccu, Aminoff, Curio, Guerit, Kakigi, Mauguiere, Rossini, Treede, Garcia-Larrea (bib13) 2008; 119
Iwasaki (10.1016/j.sna.2024.115456_bib18) 2001; 112
Sumiya (10.1016/j.sna.2024.115456_bib30) 2017; 7
Riaz (10.1016/j.sna.2024.115456_bib9) 2017; 7
Kawamura (10.1016/j.sna.2024.115456_bib16) 1996; 100
Cruccu (10.1016/j.sna.2024.115456_bib13) 2008; 119
Iivanainen (10.1016/j.sna.2024.115456_bib24) 2017; 147
Hill (10.1016/j.sna.2024.115456_bib5) 2020; 219
Yu (10.1016/j.sna.2024.115456_bib3) 2004; 11
Kanno (10.1016/j.sna.2024.115456_bib6) 2022; 12
Nakasato (10.1016/j.sna.2024.115456_bib22) 1996; 47
Adachi (10.1016/j.sna.2024.115456_bib15) 2017; 30
Hari (10.1016/j.sna.2024.115456_bib2) 2018; 129
Uchiyama (10.1016/j.sna.2024.115456_bib4) 2019; 55
Hashimoto (10.1016/j.sna.2024.115456_bib21) 2003; 114
Ishida (10.1016/j.sna.2024.115456_bib23) 2020; 10
10.1016/j.sna.2024.115456_bib8
An (10.1016/j.sna.2024.115456_bib25) 2022; 25
Boto (10.1016/j.sna.2024.115456_bib7) 2017; 149
Adachi (10.1016/j.sna.2024.115456_bib29) 2021; 31
He (10.1016/j.sna.2024.115456_bib27) 2019; 90
10.1016/j.sna.2024.115456_bib11
Hämäläinen (10.1016/j.sna.2024.115456_bib1) 1993; 65
Scherg (10.1016/j.sna.2024.115456_bib17) 1993; 14
Oyama (10.1016/j.sna.2024.115456_bib19) 2015; 251
Erne (10.1016/j.sna.2024.115456_bib14) 1987; 23
Adachi (10.1016/j.sna.2024.115456_bib12) 2023; 72
Boto (10.1016/j.sna.2024.115456_bib10) 2018; 555
Osborne (10.1016/j.sna.2024.115456_bib28) 2018
Cai (10.1016/j.sna.2024.115456_bib31) 2019; 16
Borna (10.1016/j.sna.2024.115456_bib26) 2017; 62
Sarvas (10.1016/j.sna.2024.115456_bib20) 1987; 32
References_xml – volume: 129
  start-page: 1720
  year: 2018
  end-page: 1747
  ident: bib2
  article-title: IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG)
  publication-title: Clin. Neurophysiol.
– volume: 12
  start-page: 6106
  year: 2022
  ident: bib6
  article-title: Scalp attached tangential magnetoencephalography using tunnel magneto-resistive sensors
  publication-title: Sci. Rep.
– volume: 7
  start-page: 6974
  year: 2017
  ident: bib9
  article-title: Evaluation of realistic layouts for next generation on-scalp MEG: spatial information density maps
  publication-title: Sci. Rep.
– volume: 16
  year: 2019
  ident: bib31
  article-title: Comparison of DSSP and tSSS algorithms for removing artifacts from vagus nerve stimulators in magnetoencephalography data
  publication-title: J. Neural Eng.
– volume: 62
  start-page: 8909
  year: 2017
  ident: bib26
  article-title: A 20-channel magnetoencephalography system based on optically pumped magnetometers
  publication-title: Phys. Med. Biol.
– volume: 90
  year: 2019
  ident: bib27
  article-title: A high-performance compact magnetic shield for optically pumped magnetometer-based magnetoencephalography
  publication-title: Rev. Sci. Instrum.
– volume: 112
  start-page: 205
  year: 2001
  end-page: 211
  ident: bib18
  article-title: Somatosensory evoked fields in comatose survivors after severe traumatic brain injury
  publication-title: Clin. Neurophysiol.
– volume: 114
  start-page: 2107
  year: 2003
  end-page: 2117
  ident: bib21
  article-title: Muscle afferent inputs from the hand activate human cerebellum sequentially through parallel and climbing fiber systems
  publication-title: Clin. Neurophysiol.
– volume: 10
  year: 2020
  ident: bib23
  article-title: Awake state-specific suppression of primary somatosensory evoked response correlated with duration of temporal lobe epilepsy
  publication-title: Sci. Rep.
– volume: 65
  start-page: 413
  year: 1993
  end-page: 497
  ident: bib1
  article-title: Magnetoencephalography---theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
– volume: 251
  start-page: 24
  year: 2015
  end-page: 36
  ident: bib19
  article-title: Dry phantom for magnetoencephalography —configuration, calibration, and contribution
  publication-title: J. Neurosci. Methods
– volume: 23
  start-page: 1319
  year: 1987
  end-page: 1322
  ident: bib14
  article-title: The positioning problem in biomagnetic measurements: a solution for arrays of superconducting sensors
  publication-title: IEEE Trans. Magn.
– volume: 11
  start-page: 644
  year: 2004
  end-page: 648
  ident: bib3
  article-title: Neuromagnetic separation of secondarily bilateral synchronized spike foci: report of three cases
  publication-title: J. Clin. Neurosci.
– volume: 30
  year: 2017
  ident: bib15
  article-title: Recent advancements in the SQUID magnetospinogram system
  publication-title: Supercond. Sci. Technol.
– volume: 72
  start-page: 1
  year: 2023
  end-page: 10
  ident: bib12
  article-title: A spherical coil array for the calibration of whole-head magnetoencephalograph systems
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 14
  start-page: A35
  year: 1993
  ident: bib17
  article-title: Somatosensory evoked potentials and magnetic fields: separation of multiple source activities
  publication-title: Physiol. Meas.
– reference: Akushichi, T., Kameno, M., Kasajima, T., 2021. MAGNETIC SENSOR. PCT patent WO/2021/100252.
– volume: 55
  start-page: 1
  year: 2019
  end-page: 8
  ident: bib4
  article-title: Design and demonstration of novel magnetoencephalogram detectors
  publication-title: IEEE Trans. Magn.
– volume: 25
  year: 2022
  ident: bib25
  article-title: Imaging somatosensory cortex responses measured by OPM-MEG: Variational free energy-based spatial smoothing estimation approach
  publication-title: iScience
– volume: 149
  start-page: 404
  year: 2017
  end-page: 414
  ident: bib7
  article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers
  publication-title: NeuroImage
– start-page: 89
  year: 2018
  end-page: 95
  ident: bib28
  article-title: Fully integrated standalone zero field optically pumped magnetometer for biomagnetism
  publication-title: Steep Dispersion Engineering and Opto-Atomic Precision Metrology XI. Presented at the Steep Dispersion Engineering and Opto-Atomic Precision Metrology XI
– reference: Pfeiffer, C., Ruffieux, S., Jönsson, L., Chukharkin, M.L., Kalaboukhov, A., Xie, M., Winkler, D., Schneiderman, J.F., 2019. A 7-channel high-Tc SQUID-based on-scalp MEG system.
– volume: 32
  start-page: 11
  year: 1987
  ident: bib20
  article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem
  publication-title: Phys. Med. Biol.
– volume: 100
  start-page: 44
  year: 1996
  end-page: 50
  ident: bib16
  article-title: Neuromagnetic evidence of pre- and post-central cortical sources of somatosensory evoked responses
  publication-title: Electroencephalogr. Clin. Neurophysiol. /Evoked Potentials Sect.
– volume: 147
  start-page: 542
  year: 2017
  end-page: 553
  ident: bib24
  article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays
  publication-title: NeuroImage
– volume: 47
  start-page: 333
  year: 1996
  end-page: 341
  ident: bib22
  article-title: Cortical mapping using an MRI-linked whole head MEG system and presurgical decision making
  publication-title: Electroencephalogr. Clin. Neurophysiol. Suppl.
– reference: .
– volume: 219
  year: 2020
  ident: bib5
  article-title: Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system
  publication-title: NeuroImage
– volume: 31
  start-page: 1
  year: 2021
  end-page: 5
  ident: bib29
  article-title: Multichannel SQUID magnetoneurograph system for functional imaging of spinal cords and peripheral nerves
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 119
  start-page: 1705
  year: 2008
  end-page: 1719
  ident: bib13
  article-title: Recommendations for the clinical use of somatosensory-evoked potentials
  publication-title: Clin. Neurophysiol.
– volume: 555
  start-page: 657
  year: 2018
  end-page: 661
  ident: bib10
  article-title: Moving magnetoencephalography towards real-world applications with a wearable system
  publication-title: Nature
– volume: 7
  start-page: 2192
  year: 2017
  ident: bib30
  article-title: Magnetospinography visualizes electrophysiological activity in the cervical spinal cord
  publication-title: Sci. Rep.
– volume: 14
  start-page: A35
  year: 1993
  ident: 10.1016/j.sna.2024.115456_bib17
  article-title: Somatosensory evoked potentials and magnetic fields: separation of multiple source activities
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/14/4A/006
– volume: 147
  start-page: 542
  year: 2017
  ident: 10.1016/j.sna.2024.115456_bib24
  article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.12.048
– volume: 11
  start-page: 644
  year: 2004
  ident: 10.1016/j.sna.2024.115456_bib3
  article-title: Neuromagnetic separation of secondarily bilateral synchronized spike foci: report of three cases
  publication-title: J. Clin. Neurosci.
  doi: 10.1016/j.jocn.2003.07.012
– volume: 16
  year: 2019
  ident: 10.1016/j.sna.2024.115456_bib31
  article-title: Comparison of DSSP and tSSS algorithms for removing artifacts from vagus nerve stimulators in magnetoencephalography data
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ab4065
– volume: 251
  start-page: 24
  year: 2015
  ident: 10.1016/j.sna.2024.115456_bib19
  article-title: Dry phantom for magnetoencephalography —configuration, calibration, and contribution
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.05.004
– volume: 32
  start-page: 11
  year: 1987
  ident: 10.1016/j.sna.2024.115456_bib20
  article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/32/1/004
– volume: 100
  start-page: 44
  year: 1996
  ident: 10.1016/j.sna.2024.115456_bib16
  article-title: Neuromagnetic evidence of pre- and post-central cortical sources of somatosensory evoked responses
  publication-title: Electroencephalogr. Clin. Neurophysiol. /Evoked Potentials Sect.
  doi: 10.1016/0168-5597(95)00217-0
– volume: 555
  start-page: 657
  year: 2018
  ident: 10.1016/j.sna.2024.115456_bib10
  article-title: Moving magnetoencephalography towards real-world applications with a wearable system
  publication-title: Nature
  doi: 10.1038/nature26147
– ident: 10.1016/j.sna.2024.115456_bib11
– ident: 10.1016/j.sna.2024.115456_bib8
  doi: 10.1101/534107
– volume: 62
  start-page: 8909
  year: 2017
  ident: 10.1016/j.sna.2024.115456_bib26
  article-title: A 20-channel magnetoencephalography system based on optically pumped magnetometers
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aa93d1
– volume: 149
  start-page: 404
  year: 2017
  ident: 10.1016/j.sna.2024.115456_bib7
  article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.01.034
– volume: 119
  start-page: 1705
  year: 2008
  ident: 10.1016/j.sna.2024.115456_bib13
  article-title: Recommendations for the clinical use of somatosensory-evoked potentials
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2008.03.016
– volume: 55
  start-page: 1
  year: 2019
  ident: 10.1016/j.sna.2024.115456_bib4
  article-title: Design and demonstration of novel magnetoencephalogram detectors
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2019.2895399
– volume: 30
  year: 2017
  ident: 10.1016/j.sna.2024.115456_bib15
  article-title: Recent advancements in the SQUID magnetospinogram system
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/1361-6668/aa66b3
– volume: 129
  start-page: 1720
  year: 2018
  ident: 10.1016/j.sna.2024.115456_bib2
  article-title: IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG)
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2018.03.042
– volume: 25
  year: 2022
  ident: 10.1016/j.sna.2024.115456_bib25
  article-title: Imaging somatosensory cortex responses measured by OPM-MEG: Variational free energy-based spatial smoothing estimation approach
  publication-title: iScience
  doi: 10.1016/j.isci.2022.103752
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.sna.2024.115456_bib12
  article-title: A spherical coil array for the calibration of whole-head magnetoencephalograph systems
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3265750
– volume: 23
  start-page: 1319
  year: 1987
  ident: 10.1016/j.sna.2024.115456_bib14
  article-title: The positioning problem in biomagnetic measurements: a solution for arrays of superconducting sensors
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.1987.1064889
– volume: 7
  start-page: 2192
  year: 2017
  ident: 10.1016/j.sna.2024.115456_bib30
  article-title: Magnetospinography visualizes electrophysiological activity in the cervical spinal cord
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-02406-8
– volume: 114
  start-page: 2107
  year: 2003
  ident: 10.1016/j.sna.2024.115456_bib21
  article-title: Muscle afferent inputs from the hand activate human cerebellum sequentially through parallel and climbing fiber systems
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(03)00233-5
– volume: 47
  start-page: 333
  year: 1996
  ident: 10.1016/j.sna.2024.115456_bib22
  article-title: Cortical mapping using an MRI-linked whole head MEG system and presurgical decision making
  publication-title: Electroencephalogr. Clin. Neurophysiol. Suppl.
– volume: 10
  year: 2020
  ident: 10.1016/j.sna.2024.115456_bib23
  article-title: Awake state-specific suppression of primary somatosensory evoked response correlated with duration of temporal lobe epilepsy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-73051-x
– volume: 31
  start-page: 1
  year: 2021
  ident: 10.1016/j.sna.2024.115456_bib29
  article-title: Multichannel SQUID magnetoneurograph system for functional imaging of spinal cords and peripheral nerves
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/TASC.2021.3056492
– volume: 112
  start-page: 205
  year: 2001
  ident: 10.1016/j.sna.2024.115456_bib18
  article-title: Somatosensory evoked fields in comatose survivors after severe traumatic brain injury
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/S1388-2457(00)00506-X
– volume: 65
  start-page: 413
  year: 1993
  ident: 10.1016/j.sna.2024.115456_bib1
  article-title: Magnetoencephalography---theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.413
– start-page: 89
  year: 2018
  ident: 10.1016/j.sna.2024.115456_bib28
  article-title: Fully integrated standalone zero field optically pumped magnetometer for biomagnetism
– volume: 7
  start-page: 6974
  year: 2017
  ident: 10.1016/j.sna.2024.115456_bib9
  article-title: Evaluation of realistic layouts for next generation on-scalp MEG: spatial information density maps
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-07046-6
– volume: 90
  year: 2019
  ident: 10.1016/j.sna.2024.115456_bib27
  article-title: A high-performance compact magnetic shield for optically pumped magnetometer-based magnetoencephalography
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.5066250
– volume: 219
  year: 2020
  ident: 10.1016/j.sna.2024.115456_bib5
  article-title: Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116995
– volume: 12
  start-page: 6106
  year: 2022
  ident: 10.1016/j.sna.2024.115456_bib6
  article-title: Scalp attached tangential magnetoencephalography using tunnel magneto-resistive sensors
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-10155-6
SSID ssj0003377
Score 2.4526904
Snippet An adjustable helmet-style magnetoresistive (MR) sensor array with room-temperature magnetic flux sensors was developed to demonstrate the simultaneous...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115456
SubjectTerms Biomagnetic sensors
Magnetoencephalography
Magnetoresistive element
Somatosensory evoked magnetic fields
Title Measurement of somatosensory evoked magnetic fields using an adjustable magnetoresistive sensor array
URI https://dx.doi.org/10.1016/j.sna.2024.115456
Volume 374
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0924-4247
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003377
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0924-4247
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003377
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  issn: 0924-4247
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003377
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0924-4247
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003377
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IXvRg_BnxB-nBk8lg7TqgR0IkqIGLknBb2q0lIG5kQxIu_u2-dptgoh48bnlvXb62r6_t168I3SoY5CgEPafla9dhkaSOpII6TEsS0barI8uqHI5agzF7nPiTCuqVZ2EMrbKI_XlMt9G6eNMs0GwuZ7PmswuFMCjHsCCZbxU_jfoXtOnGx5bm4Xn29kVj7BjrcmfTcryy2EgPUdYgNpP4eWzaGW_6R-iwSBRxN_-XY1RR8Qk62JEPPEVquF3gw4nGWQLpZ5LBxDRJN1itk1cV4Tcxjc1BRWy5ahk2RPcpFjEW0dwcnpILVdgkMPM2PX6tcP4NLNJUbM7QuH__0hs4xbUJTugxd-WwDlGESU640lJ7AmrBFwYgLrgy-mQidEOqaZsTQUIN6TX0PNmhira15wNi56gaJ7G6QDhSPOSMdyAPkIx5SkAEkL7gBKqTi7BTQ24JWBAWmuLmaotFUJLH5gFgHBiMgxzjGrr7clnmghp_GbOyFoJvrSKAgP-72-X_3K7QvnkyK8akdY2qq_Rd3UDKsZJ126bqaK_78DQYfQJx5dYH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IHNSD8TPiZw-eTCZr18F6JEQy5OMiJNyWdmsJiBsBJOG_93UfqIl68Lr1rcvvtb--tr--InSvYJCjQHpW3dW2xSJJLUkFtZiWJKINW0epqrI_qPsj9jx2xyXUKs7CGFllzv0Zp6dsnT-p5WjWFtNp7cWGShjUY1SQzDUZPyvMBU4uo0qz0_UHO0J2nPQCRlPeMgbF5mYq81rFJvsQZY8kDSZ-Hp6-DDntI3SYx4q4mf3OMSqp-AQdfMkgeIpU_3ONDycarxKIQJMVzE2T5RarTfKqIvwmJrE5q4hTudoKG637BIsYi2hmzk_JucrLJDD5Np1-o3D2DSyWS7E9Q6P207DlW_nNCVboMHttMY8owiQnXGmpHQGOcIXBiAuuTIoyEdoh1bTBiSChhggbOp_0qKIN7biA2Dkqx0msLhCOFA854x6EApIxRwkgAekKTsCjXIReFdkFYEGYpxU3t1vMg0I_NgsA48BgHGQYV9HDzmSR5dT4qzArvBB8axgBcP7vZpf_M7tDe_6w3wt6nUH3Cu2bN2YBmdSvUXm9fFc3EIGs5W3ewj4AxYTYsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+somatosensory+evoked+magnetic+fields+using+an+adjustable+magnetoresistive+sensor+array&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Tatsuoka%2C+Tetsuro&rft.au=Kawabata%2C+Shigenori&rft.au=Hashimoto%2C+Jun&rft.au=Hoshino%2C+Yuko&rft.date=2024-08-16&rft.issn=0924-4247&rft.volume=374&rft.spage=115456&rft_id=info:doi/10.1016%2Fj.sna.2024.115456&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sna_2024_115456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon