Measurement of somatosensory evoked magnetic fields using an adjustable magnetoresistive sensor array
An adjustable helmet-style magnetoresistive (MR) sensor array with room-temperature magnetic flux sensors was developed to demonstrate the simultaneous multipoint measurement of the somatosensory evoked magnetic field (SEF). Utilizing the extended sensor length, we designed the array to permit indiv...
Saved in:
Published in | Sensors and actuators. A. Physical. Vol. 374; p. 115456 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
16.08.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0924-4247 |
DOI | 10.1016/j.sna.2024.115456 |
Cover
Abstract | An adjustable helmet-style magnetoresistive (MR) sensor array with room-temperature magnetic flux sensors was developed to demonstrate the simultaneous multipoint measurement of the somatosensory evoked magnetic field (SEF). Utilizing the extended sensor length, we designed the array to permit individual radial adjustment of each sensor, thereby achieving a precise fit to the varied head geometries of different subjects. Furthermore, the geometry of the sensor array precisely adjusted for the individual subject was quickly obtained by calibration. The SEF was measured in three healthy subjects using an array of 30-channel MR sensors placed on the left hemisphere of the head with median nerve stimulation in the right wrist and averaged over 8000 measurements. An M20 component considered to originate from the primary somatosensory cortex was observed at an approximate latency of 20 ms of the magnetic field waveform in all cases (maximum amplitude of 725 ± 257 fT, peak latency of 20.5 ± 0.45 ms). The phase inversion observed around C3 in the international 10–20 system corresponded to the palmar area of the primary somatosensory cortex on the contour map of the magnetic field at the M20 peak. The MR sensor, an affordable and easy-to-use magnetic sensor that does not require a zero-field environment nor a cryogenic apparatus, was successfully used for simultaneous multipoint SEF measurements in humans and provides a promising system for realizing magnetoencephalography application devices.
[Display omitted]
•Adjustable helmet-style MR sensor array developed.•Sensor positions on the array can be individually adjusted in the radial direction.•The MR sensor does not require a zero-field environment or cryogenic apparatus.•Simultaneous multipoint SEF measurement demonstrated using the developed sensor. |
---|---|
AbstractList | An adjustable helmet-style magnetoresistive (MR) sensor array with room-temperature magnetic flux sensors was developed to demonstrate the simultaneous multipoint measurement of the somatosensory evoked magnetic field (SEF). Utilizing the extended sensor length, we designed the array to permit individual radial adjustment of each sensor, thereby achieving a precise fit to the varied head geometries of different subjects. Furthermore, the geometry of the sensor array precisely adjusted for the individual subject was quickly obtained by calibration. The SEF was measured in three healthy subjects using an array of 30-channel MR sensors placed on the left hemisphere of the head with median nerve stimulation in the right wrist and averaged over 8000 measurements. An M20 component considered to originate from the primary somatosensory cortex was observed at an approximate latency of 20 ms of the magnetic field waveform in all cases (maximum amplitude of 725 ± 257 fT, peak latency of 20.5 ± 0.45 ms). The phase inversion observed around C3 in the international 10–20 system corresponded to the palmar area of the primary somatosensory cortex on the contour map of the magnetic field at the M20 peak. The MR sensor, an affordable and easy-to-use magnetic sensor that does not require a zero-field environment nor a cryogenic apparatus, was successfully used for simultaneous multipoint SEF measurements in humans and provides a promising system for realizing magnetoencephalography application devices.
[Display omitted]
•Adjustable helmet-style MR sensor array developed.•Sensor positions on the array can be individually adjusted in the radial direction.•The MR sensor does not require a zero-field environment or cryogenic apparatus.•Simultaneous multipoint SEF measurement demonstrated using the developed sensor. |
ArticleNumber | 115456 |
Author | Kawabata, Shigenori Adachi, Yoshiaki Sekihara, Kensuke Hoshino, Yuko Shibuya, Tomohiko Tatsuoka, Tetsuro Hashimoto, Jun Okawa, Atsushi |
Author_xml | – sequence: 1 givenname: Tetsuro surname: Tatsuoka fullname: Tatsuoka, Tetsuro email: tatsuoka@metool.co.jp organization: TDK Corporation, Tokyo, Japan – sequence: 2 givenname: Shigenori surname: Kawabata fullname: Kawabata, Shigenori organization: Tokyo Medical and Dental University, Tokyo, Japan – sequence: 3 givenname: Jun surname: Hashimoto fullname: Hashimoto, Jun organization: Tokyo Medical and Dental University, Tokyo, Japan – sequence: 4 givenname: Yuko surname: Hoshino fullname: Hoshino, Yuko organization: Tokyo Medical and Dental University, Tokyo, Japan – sequence: 5 givenname: Kensuke surname: Sekihara fullname: Sekihara, Kensuke organization: Tokyo Medical and Dental University, Tokyo, Japan – sequence: 6 givenname: Tomohiko surname: Shibuya fullname: Shibuya, Tomohiko organization: TDK Corporation, Tokyo, Japan – sequence: 7 givenname: Yoshiaki surname: Adachi fullname: Adachi, Yoshiaki organization: Kanazawa Institute of Technology, Ishikawa, Japan – sequence: 8 givenname: Atsushi surname: Okawa fullname: Okawa, Atsushi organization: Tokyo Medical and Dental University, Tokyo, Japan |
BookMark | eNp9kL1OwzAUhT0UibbwAGx-gQbbceJGTKjiTypigdm6ca4rh9RGtlupb0-qMDF0Osv5jnS-BZn54JGQO84Kznh93xfJQyGYkAXnlazqGZmzRsiVFFJdk0VKPWOsLJWaE3xHSIeIe_SZBktT2EMOCX0K8UTxGL6xo3vYeczOUOtw6BI9JOd3FDyFrj-kDO2Af50QMbmU3RHptEEhRjjdkCsLQ8Lbv1ySr-enz83ravvx8rZ53K5MKVleyTVHLtuGN2hbW0Jd2QpkxcoGGuSqWYNhRlihGg7cWKUEY3W7FiiULavx0pLwadfEkFJEq3-i20M8ac702Y3u9ehGn93oyc3IqH-McRmyCz5HcMNF8mEicbx0dBh1Mg69wc5FNFl3wV2gfwFMx4Tq |
CitedBy_id | crossref_primary_10_1109_JSEN_2024_3491164 |
Cites_doi | 10.1088/0967-3334/14/4A/006 10.1016/j.neuroimage.2016.12.048 10.1016/j.jocn.2003.07.012 10.1088/1741-2552/ab4065 10.1016/j.jneumeth.2015.05.004 10.1088/0031-9155/32/1/004 10.1016/0168-5597(95)00217-0 10.1038/nature26147 10.1101/534107 10.1088/1361-6560/aa93d1 10.1016/j.neuroimage.2017.01.034 10.1016/j.clinph.2008.03.016 10.1109/TMAG.2019.2895399 10.1088/1361-6668/aa66b3 10.1016/j.clinph.2018.03.042 10.1016/j.isci.2022.103752 10.1109/TIM.2023.3265750 10.1109/TMAG.1987.1064889 10.1038/s41598-017-02406-8 10.1016/S1388-2457(03)00233-5 10.1038/s41598-020-73051-x 10.1109/TASC.2021.3056492 10.1016/S1388-2457(00)00506-X 10.1103/RevModPhys.65.413 10.1038/s41598-017-07046-6 10.1063/1.5066250 10.1016/j.neuroimage.2020.116995 10.1038/s41598-022-10155-6 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.sna.2024.115456 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_sna_2024_115456 S0924424724004503 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABMAC ABNEU ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADECG ADEZE ADTZH AEBSH AECPX AEKER AFJKZ AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSK SSQ SST SSZ T5K TN5 YK3 ~G- AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO AEIPS AGQPQ AIIUN AJQLL ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMU HVGLF HZ~ R2- SCB SCH SET WUQ ~HD |
ID | FETCH-LOGICAL-c340t-481e14b919efbf3a65f5a45039a9e1798ac0c2f2791a1cf772006b82e27f35003 |
IEDL.DBID | .~1 |
ISSN | 0924-4247 |
IngestDate | Wed Oct 01 03:06:24 EDT 2025 Thu Apr 24 23:01:49 EDT 2025 Sat Nov 09 15:59:26 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Somatosensory evoked magnetic fields Biomagnetic sensors Magnetoresistive element Magnetoencephalography |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-481e14b919efbf3a65f5a45039a9e1798ac0c2f2791a1cf772006b82e27f35003 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0924424724004503 |
ParticipantIDs | crossref_primary_10_1016_j_sna_2024_115456 crossref_citationtrail_10_1016_j_sna_2024_115456 elsevier_sciencedirect_doi_10_1016_j_sna_2024_115456 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-16 |
PublicationDateYYYYMMDD | 2024-08-16 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-16 day: 16 |
PublicationDecade | 2020 |
PublicationTitle | Sensors and actuators. A. Physical. |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Boto, Holmes, Leggett, Roberts, Shah, Meyer, Muñoz, Mullinger, Tierney, Bestmann, Barnes, Bowtell, Brookes (bib10) 2018; 555 Akushichi, T., Kameno, M., Kasajima, T., 2021. MAGNETIC SENSOR. PCT patent WO/2021/100252. Osborne, Orton, Alem, Shah (bib28) 2018 Sarvas (bib20) 1987; 32 Hashimoto, Kimura, Tanosaki, Iguchi, Sekihara (bib21) 2003; 114 Kawamura, Nakasato, Seki, Kanno, Fujita, Fujiwara, Yoshimoto (bib16) 1996; 100 Hill, Boto, Rea, Holmes, Leggett, Coles, Papastavrou, Everton, Hunt, Sims, Osborne, Shah, Bowtell, Brookes (bib5) 2020; 219 Adachi, Kawai, Haruta, Miyamoto, Kawabata, Sekihara, Uehara (bib15) 2017; 30 An, Cao, Li, Wang, Xu, Wang, Xiang, Gao, Sui, Liang, Ning (bib25) 2022; 25 Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (bib1) 1993; 65 Cai, Kang, Kirsch, Mizuiri, Chen, Bhutada, Sekihara, Nagarajan (bib31) 2019; 16 Sumiya, Kawabata, Hoshino, Adachi, Sekihara, Tomizawa, Tomori, Ishii, Sakaki, Ukegawa, Ushio, Watanabe, Okawa (bib30) 2017; 7 Hari, Baillet, Barnes, Burgess, Forss, Gross, Hämäläinen, Jensen, Kakigi, Mauguière, Nakasato, Puce, Romani, Schnitzler, Taulu (bib2) 2018; 129 Iwasaki, Nakasato, Kanno, Hatanaka, Nagamatsu, Nagamine, Yoshimoto (bib18) 2001; 112 Uchiyama, Ma (bib4) 2019; 55 Borna, Carter, Goldberg, Colombo, Jau, Berry, McKay, Stephen, Weisend, Schwindt (bib26) 2017; 62 Oyama, Adachi, Yumoto, Hashimoto, Uehara (bib19) 2015; 251 Adachi, Kawabata, Hashimoto, Okada, Naijo, Watanabe, Miyano, Uehara (bib29) 2021; 31 Pfeiffer, C., Ruffieux, S., Jönsson, L., Chukharkin, M.L., Kalaboukhov, A., Xie, M., Winkler, D., Schneiderman, J.F., 2019. A 7-channel high-Tc SQUID-based on-scalp MEG system. Kanno, Nakasato, Oogane, Fujiwara, Nakano, Arimoto, Matsuzaki, Ando (bib6) 2022; 12 Nakasato, Seki, Kawamura, Ohtomo, Kanno, Fujita, Hatanaka, Fujiwara, Kayama, Takahashi, Jokura, Kumabe, Ikeda, Mizoi, Yoshimoto (bib22) 1996; 47 . He, Wan, Sheng, Liu, Wang, Li, Qin, Luo, Qin, Gao (bib27) 2019; 90 Yu, Nakasato, Iwasaki, Shamoto, Nagamatsu, Yoshimoto (bib3) 2004; 11 Adachi, Oyama, Higuchi, Uehara (bib12) 2023; 72 Boto, Meyer, Shah, Alem, Knappe, Kruger, Fromhold, Lim, Glover, Morris, Bowtell, Barnes, Brookes (bib7) 2017; 149 Erne, Narici, Pizzella, Romani (bib14) 1987; 23 Ishida, Jin, Kakisaka, Kanno, Kawashima, Nakasato (bib23) 2020; 10 Scherg, Buchner (bib17) 1993; 14 Iivanainen, Stenroos, Parkkonen (bib24) 2017; 147 Riaz, Pfeiffer, Schneiderman (bib9) 2017; 7 Cruccu, Aminoff, Curio, Guerit, Kakigi, Mauguiere, Rossini, Treede, Garcia-Larrea (bib13) 2008; 119 Iwasaki (10.1016/j.sna.2024.115456_bib18) 2001; 112 Sumiya (10.1016/j.sna.2024.115456_bib30) 2017; 7 Riaz (10.1016/j.sna.2024.115456_bib9) 2017; 7 Kawamura (10.1016/j.sna.2024.115456_bib16) 1996; 100 Cruccu (10.1016/j.sna.2024.115456_bib13) 2008; 119 Iivanainen (10.1016/j.sna.2024.115456_bib24) 2017; 147 Hill (10.1016/j.sna.2024.115456_bib5) 2020; 219 Yu (10.1016/j.sna.2024.115456_bib3) 2004; 11 Kanno (10.1016/j.sna.2024.115456_bib6) 2022; 12 Nakasato (10.1016/j.sna.2024.115456_bib22) 1996; 47 Adachi (10.1016/j.sna.2024.115456_bib15) 2017; 30 Hari (10.1016/j.sna.2024.115456_bib2) 2018; 129 Uchiyama (10.1016/j.sna.2024.115456_bib4) 2019; 55 Hashimoto (10.1016/j.sna.2024.115456_bib21) 2003; 114 Ishida (10.1016/j.sna.2024.115456_bib23) 2020; 10 10.1016/j.sna.2024.115456_bib8 An (10.1016/j.sna.2024.115456_bib25) 2022; 25 Boto (10.1016/j.sna.2024.115456_bib7) 2017; 149 Adachi (10.1016/j.sna.2024.115456_bib29) 2021; 31 He (10.1016/j.sna.2024.115456_bib27) 2019; 90 10.1016/j.sna.2024.115456_bib11 Hämäläinen (10.1016/j.sna.2024.115456_bib1) 1993; 65 Scherg (10.1016/j.sna.2024.115456_bib17) 1993; 14 Oyama (10.1016/j.sna.2024.115456_bib19) 2015; 251 Erne (10.1016/j.sna.2024.115456_bib14) 1987; 23 Adachi (10.1016/j.sna.2024.115456_bib12) 2023; 72 Boto (10.1016/j.sna.2024.115456_bib10) 2018; 555 Osborne (10.1016/j.sna.2024.115456_bib28) 2018 Cai (10.1016/j.sna.2024.115456_bib31) 2019; 16 Borna (10.1016/j.sna.2024.115456_bib26) 2017; 62 Sarvas (10.1016/j.sna.2024.115456_bib20) 1987; 32 |
References_xml | – volume: 129 start-page: 1720 year: 2018 end-page: 1747 ident: bib2 article-title: IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG) publication-title: Clin. Neurophysiol. – volume: 12 start-page: 6106 year: 2022 ident: bib6 article-title: Scalp attached tangential magnetoencephalography using tunnel magneto-resistive sensors publication-title: Sci. Rep. – volume: 7 start-page: 6974 year: 2017 ident: bib9 article-title: Evaluation of realistic layouts for next generation on-scalp MEG: spatial information density maps publication-title: Sci. Rep. – volume: 16 year: 2019 ident: bib31 article-title: Comparison of DSSP and tSSS algorithms for removing artifacts from vagus nerve stimulators in magnetoencephalography data publication-title: J. Neural Eng. – volume: 62 start-page: 8909 year: 2017 ident: bib26 article-title: A 20-channel magnetoencephalography system based on optically pumped magnetometers publication-title: Phys. Med. Biol. – volume: 90 year: 2019 ident: bib27 article-title: A high-performance compact magnetic shield for optically pumped magnetometer-based magnetoencephalography publication-title: Rev. Sci. Instrum. – volume: 112 start-page: 205 year: 2001 end-page: 211 ident: bib18 article-title: Somatosensory evoked fields in comatose survivors after severe traumatic brain injury publication-title: Clin. Neurophysiol. – volume: 114 start-page: 2107 year: 2003 end-page: 2117 ident: bib21 article-title: Muscle afferent inputs from the hand activate human cerebellum sequentially through parallel and climbing fiber systems publication-title: Clin. Neurophysiol. – volume: 10 year: 2020 ident: bib23 article-title: Awake state-specific suppression of primary somatosensory evoked response correlated with duration of temporal lobe epilepsy publication-title: Sci. Rep. – volume: 65 start-page: 413 year: 1993 end-page: 497 ident: bib1 article-title: Magnetoencephalography---theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Mod. Phys. – volume: 251 start-page: 24 year: 2015 end-page: 36 ident: bib19 article-title: Dry phantom for magnetoencephalography —configuration, calibration, and contribution publication-title: J. Neurosci. Methods – volume: 23 start-page: 1319 year: 1987 end-page: 1322 ident: bib14 article-title: The positioning problem in biomagnetic measurements: a solution for arrays of superconducting sensors publication-title: IEEE Trans. Magn. – volume: 11 start-page: 644 year: 2004 end-page: 648 ident: bib3 article-title: Neuromagnetic separation of secondarily bilateral synchronized spike foci: report of three cases publication-title: J. Clin. Neurosci. – volume: 30 year: 2017 ident: bib15 article-title: Recent advancements in the SQUID magnetospinogram system publication-title: Supercond. Sci. Technol. – volume: 72 start-page: 1 year: 2023 end-page: 10 ident: bib12 article-title: A spherical coil array for the calibration of whole-head magnetoencephalograph systems publication-title: IEEE Trans. Instrum. Meas. – volume: 14 start-page: A35 year: 1993 ident: bib17 article-title: Somatosensory evoked potentials and magnetic fields: separation of multiple source activities publication-title: Physiol. Meas. – reference: Akushichi, T., Kameno, M., Kasajima, T., 2021. MAGNETIC SENSOR. PCT patent WO/2021/100252. – volume: 55 start-page: 1 year: 2019 end-page: 8 ident: bib4 article-title: Design and demonstration of novel magnetoencephalogram detectors publication-title: IEEE Trans. Magn. – volume: 25 year: 2022 ident: bib25 article-title: Imaging somatosensory cortex responses measured by OPM-MEG: Variational free energy-based spatial smoothing estimation approach publication-title: iScience – volume: 149 start-page: 404 year: 2017 end-page: 414 ident: bib7 article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers publication-title: NeuroImage – start-page: 89 year: 2018 end-page: 95 ident: bib28 article-title: Fully integrated standalone zero field optically pumped magnetometer for biomagnetism publication-title: Steep Dispersion Engineering and Opto-Atomic Precision Metrology XI. Presented at the Steep Dispersion Engineering and Opto-Atomic Precision Metrology XI – reference: Pfeiffer, C., Ruffieux, S., Jönsson, L., Chukharkin, M.L., Kalaboukhov, A., Xie, M., Winkler, D., Schneiderman, J.F., 2019. A 7-channel high-Tc SQUID-based on-scalp MEG system. – volume: 32 start-page: 11 year: 1987 ident: bib20 article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem publication-title: Phys. Med. Biol. – volume: 100 start-page: 44 year: 1996 end-page: 50 ident: bib16 article-title: Neuromagnetic evidence of pre- and post-central cortical sources of somatosensory evoked responses publication-title: Electroencephalogr. Clin. Neurophysiol. /Evoked Potentials Sect. – volume: 147 start-page: 542 year: 2017 end-page: 553 ident: bib24 article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays publication-title: NeuroImage – volume: 47 start-page: 333 year: 1996 end-page: 341 ident: bib22 article-title: Cortical mapping using an MRI-linked whole head MEG system and presurgical decision making publication-title: Electroencephalogr. Clin. Neurophysiol. Suppl. – reference: . – volume: 219 year: 2020 ident: bib5 article-title: Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system publication-title: NeuroImage – volume: 31 start-page: 1 year: 2021 end-page: 5 ident: bib29 article-title: Multichannel SQUID magnetoneurograph system for functional imaging of spinal cords and peripheral nerves publication-title: IEEE Trans. Appl. Supercond. – volume: 119 start-page: 1705 year: 2008 end-page: 1719 ident: bib13 article-title: Recommendations for the clinical use of somatosensory-evoked potentials publication-title: Clin. Neurophysiol. – volume: 555 start-page: 657 year: 2018 end-page: 661 ident: bib10 article-title: Moving magnetoencephalography towards real-world applications with a wearable system publication-title: Nature – volume: 7 start-page: 2192 year: 2017 ident: bib30 article-title: Magnetospinography visualizes electrophysiological activity in the cervical spinal cord publication-title: Sci. Rep. – volume: 14 start-page: A35 year: 1993 ident: 10.1016/j.sna.2024.115456_bib17 article-title: Somatosensory evoked potentials and magnetic fields: separation of multiple source activities publication-title: Physiol. Meas. doi: 10.1088/0967-3334/14/4A/006 – volume: 147 start-page: 542 year: 2017 ident: 10.1016/j.sna.2024.115456_bib24 article-title: Measuring MEG closer to the brain: performance of on-scalp sensor arrays publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.12.048 – volume: 11 start-page: 644 year: 2004 ident: 10.1016/j.sna.2024.115456_bib3 article-title: Neuromagnetic separation of secondarily bilateral synchronized spike foci: report of three cases publication-title: J. Clin. Neurosci. doi: 10.1016/j.jocn.2003.07.012 – volume: 16 year: 2019 ident: 10.1016/j.sna.2024.115456_bib31 article-title: Comparison of DSSP and tSSS algorithms for removing artifacts from vagus nerve stimulators in magnetoencephalography data publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ab4065 – volume: 251 start-page: 24 year: 2015 ident: 10.1016/j.sna.2024.115456_bib19 article-title: Dry phantom for magnetoencephalography —configuration, calibration, and contribution publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.05.004 – volume: 32 start-page: 11 year: 1987 ident: 10.1016/j.sna.2024.115456_bib20 article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/32/1/004 – volume: 100 start-page: 44 year: 1996 ident: 10.1016/j.sna.2024.115456_bib16 article-title: Neuromagnetic evidence of pre- and post-central cortical sources of somatosensory evoked responses publication-title: Electroencephalogr. Clin. Neurophysiol. /Evoked Potentials Sect. doi: 10.1016/0168-5597(95)00217-0 – volume: 555 start-page: 657 year: 2018 ident: 10.1016/j.sna.2024.115456_bib10 article-title: Moving magnetoencephalography towards real-world applications with a wearable system publication-title: Nature doi: 10.1038/nature26147 – ident: 10.1016/j.sna.2024.115456_bib11 – ident: 10.1016/j.sna.2024.115456_bib8 doi: 10.1101/534107 – volume: 62 start-page: 8909 year: 2017 ident: 10.1016/j.sna.2024.115456_bib26 article-title: A 20-channel magnetoencephalography system based on optically pumped magnetometers publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aa93d1 – volume: 149 start-page: 404 year: 2017 ident: 10.1016/j.sna.2024.115456_bib7 article-title: A new generation of magnetoencephalography: room temperature measurements using optically-pumped magnetometers publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.01.034 – volume: 119 start-page: 1705 year: 2008 ident: 10.1016/j.sna.2024.115456_bib13 article-title: Recommendations for the clinical use of somatosensory-evoked potentials publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2008.03.016 – volume: 55 start-page: 1 year: 2019 ident: 10.1016/j.sna.2024.115456_bib4 article-title: Design and demonstration of novel magnetoencephalogram detectors publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2019.2895399 – volume: 30 year: 2017 ident: 10.1016/j.sna.2024.115456_bib15 article-title: Recent advancements in the SQUID magnetospinogram system publication-title: Supercond. Sci. Technol. doi: 10.1088/1361-6668/aa66b3 – volume: 129 start-page: 1720 year: 2018 ident: 10.1016/j.sna.2024.115456_bib2 article-title: IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG) publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2018.03.042 – volume: 25 year: 2022 ident: 10.1016/j.sna.2024.115456_bib25 article-title: Imaging somatosensory cortex responses measured by OPM-MEG: Variational free energy-based spatial smoothing estimation approach publication-title: iScience doi: 10.1016/j.isci.2022.103752 – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.sna.2024.115456_bib12 article-title: A spherical coil array for the calibration of whole-head magnetoencephalograph systems publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3265750 – volume: 23 start-page: 1319 year: 1987 ident: 10.1016/j.sna.2024.115456_bib14 article-title: The positioning problem in biomagnetic measurements: a solution for arrays of superconducting sensors publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.1987.1064889 – volume: 7 start-page: 2192 year: 2017 ident: 10.1016/j.sna.2024.115456_bib30 article-title: Magnetospinography visualizes electrophysiological activity in the cervical spinal cord publication-title: Sci. Rep. doi: 10.1038/s41598-017-02406-8 – volume: 114 start-page: 2107 year: 2003 ident: 10.1016/j.sna.2024.115456_bib21 article-title: Muscle afferent inputs from the hand activate human cerebellum sequentially through parallel and climbing fiber systems publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(03)00233-5 – volume: 47 start-page: 333 year: 1996 ident: 10.1016/j.sna.2024.115456_bib22 article-title: Cortical mapping using an MRI-linked whole head MEG system and presurgical decision making publication-title: Electroencephalogr. Clin. Neurophysiol. Suppl. – volume: 10 year: 2020 ident: 10.1016/j.sna.2024.115456_bib23 article-title: Awake state-specific suppression of primary somatosensory evoked response correlated with duration of temporal lobe epilepsy publication-title: Sci. Rep. doi: 10.1038/s41598-020-73051-x – volume: 31 start-page: 1 year: 2021 ident: 10.1016/j.sna.2024.115456_bib29 article-title: Multichannel SQUID magnetoneurograph system for functional imaging of spinal cords and peripheral nerves publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/TASC.2021.3056492 – volume: 112 start-page: 205 year: 2001 ident: 10.1016/j.sna.2024.115456_bib18 article-title: Somatosensory evoked fields in comatose survivors after severe traumatic brain injury publication-title: Clin. Neurophysiol. doi: 10.1016/S1388-2457(00)00506-X – volume: 65 start-page: 413 year: 1993 ident: 10.1016/j.sna.2024.115456_bib1 article-title: Magnetoencephalography---theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.65.413 – start-page: 89 year: 2018 ident: 10.1016/j.sna.2024.115456_bib28 article-title: Fully integrated standalone zero field optically pumped magnetometer for biomagnetism – volume: 7 start-page: 6974 year: 2017 ident: 10.1016/j.sna.2024.115456_bib9 article-title: Evaluation of realistic layouts for next generation on-scalp MEG: spatial information density maps publication-title: Sci. Rep. doi: 10.1038/s41598-017-07046-6 – volume: 90 year: 2019 ident: 10.1016/j.sna.2024.115456_bib27 article-title: A high-performance compact magnetic shield for optically pumped magnetometer-based magnetoencephalography publication-title: Rev. Sci. Instrum. doi: 10.1063/1.5066250 – volume: 219 year: 2020 ident: 10.1016/j.sna.2024.115456_bib5 article-title: Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.116995 – volume: 12 start-page: 6106 year: 2022 ident: 10.1016/j.sna.2024.115456_bib6 article-title: Scalp attached tangential magnetoencephalography using tunnel magneto-resistive sensors publication-title: Sci. Rep. doi: 10.1038/s41598-022-10155-6 |
SSID | ssj0003377 |
Score | 2.4526904 |
Snippet | An adjustable helmet-style magnetoresistive (MR) sensor array with room-temperature magnetic flux sensors was developed to demonstrate the simultaneous... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 115456 |
SubjectTerms | Biomagnetic sensors Magnetoencephalography Magnetoresistive element Somatosensory evoked magnetic fields |
Title | Measurement of somatosensory evoked magnetic fields using an adjustable magnetoresistive sensor array |
URI | https://dx.doi.org/10.1016/j.sna.2024.115456 |
Volume | 374 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0924-4247 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003377 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0924-4247 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003377 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection issn: 0924-4247 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003377 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0924-4247 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003377 providerName: Elsevier |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IXvRg_BnxB-nBk8lg7TqgR0IkqIGLknBb2q0lIG5kQxIu_u2-dptgoh48bnlvXb62r6_t168I3SoY5CgEPafla9dhkaSOpII6TEsS0barI8uqHI5agzF7nPiTCuqVZ2EMrbKI_XlMt9G6eNMs0GwuZ7PmswuFMCjHsCCZbxU_jfoXtOnGx5bm4Xn29kVj7BjrcmfTcryy2EgPUdYgNpP4eWzaGW_6R-iwSBRxN_-XY1RR8Qk62JEPPEVquF3gw4nGWQLpZ5LBxDRJN1itk1cV4Tcxjc1BRWy5ahk2RPcpFjEW0dwcnpILVdgkMPM2PX6tcP4NLNJUbM7QuH__0hs4xbUJTugxd-WwDlGESU640lJ7AmrBFwYgLrgy-mQidEOqaZsTQUIN6TX0PNmhira15wNi56gaJ7G6QDhSPOSMdyAPkIx5SkAEkL7gBKqTi7BTQ24JWBAWmuLmaotFUJLH5gFgHBiMgxzjGrr7clnmghp_GbOyFoJvrSKAgP-72-X_3K7QvnkyK8akdY2qq_Rd3UDKsZJ126bqaK_78DQYfQJx5dYH |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IHNSD8TPiZw-eTCZr18F6JEQy5OMiJNyWdmsJiBsBJOG_93UfqIl68Lr1rcvvtb--tr--InSvYJCjQHpW3dW2xSJJLUkFtZiWJKINW0epqrI_qPsj9jx2xyXUKs7CGFllzv0Zp6dsnT-p5WjWFtNp7cWGShjUY1SQzDUZPyvMBU4uo0qz0_UHO0J2nPQCRlPeMgbF5mYq81rFJvsQZY8kDSZ-Hp6-DDntI3SYx4q4mf3OMSqp-AQdfMkgeIpU_3ONDycarxKIQJMVzE2T5RarTfKqIvwmJrE5q4hTudoKG637BIsYi2hmzk_JucrLJDD5Np1-o3D2DSyWS7E9Q6P207DlW_nNCVboMHttMY8owiQnXGmpHQGOcIXBiAuuTIoyEdoh1bTBiSChhggbOp_0qKIN7biA2Dkqx0msLhCOFA854x6EApIxRwkgAekKTsCjXIReFdkFYEGYpxU3t1vMg0I_NgsA48BgHGQYV9HDzmSR5dT4qzArvBB8axgBcP7vZpf_M7tDe_6w3wt6nUH3Cu2bN2YBmdSvUXm9fFc3EIGs5W3ewj4AxYTYsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measurement+of+somatosensory+evoked+magnetic+fields+using+an+adjustable+magnetoresistive+sensor+array&rft.jtitle=Sensors+and+actuators.+A.+Physical.&rft.au=Tatsuoka%2C+Tetsuro&rft.au=Kawabata%2C+Shigenori&rft.au=Hashimoto%2C+Jun&rft.au=Hoshino%2C+Yuko&rft.date=2024-08-16&rft.issn=0924-4247&rft.volume=374&rft.spage=115456&rft_id=info:doi/10.1016%2Fj.sna.2024.115456&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sna_2024_115456 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-4247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-4247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-4247&client=summon |