Definition of Low Earth Orbit slotting architectures using 2D lattice flower constellations

This work proposes the use of 2D Lattice Flower Constellations (2D-LFCs) to facilitate the design of a Low Earth Orbit (LEO) slotting system to avoid collisions between compliant satellites and to optimize the available orbital volume. Specifically, this manuscript proposes the use of concentric orb...

Full description

Saved in:
Bibliographic Details
Published inAdvances in space research Vol. 67; no. 11; pp. 3696 - 3711
Main Authors Arnas, David, Lifson, Miles, Linares, Richard, Avendaño, Martín E.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2021
Subjects
Online AccessGet full text
ISSN0273-1177
1879-1948
DOI10.1016/j.asr.2020.04.021

Cover

Abstract This work proposes the use of 2D Lattice Flower Constellations (2D-LFCs) to facilitate the design of a Low Earth Orbit (LEO) slotting system to avoid collisions between compliant satellites and to optimize the available orbital volume. Specifically, this manuscript proposes the use of concentric orbital shells of admissible “slots” with stacked intersecting orbits that preserve a minimum separation distance between satellites at all times. The problem is formulated in mathematical terms and three approaches are explored: random constellations, single 2D-LFCs, and unions of 2D-LFCs. Each approach is evaluated in terms of several metrics including capacity, Earth coverage, orbits per shell, and symmetries. Additionally, a rough estimate for the capacity of LEO is generated, subject to certain minimum separation and station-keeping assumptions, and several trade-offs are identified to guide policy-makers interested in the adoption of a LEO slotting scheme for space traffic management.
AbstractList This work proposes the use of 2D Lattice Flower Constellations (2D-LFCs) to facilitate the design of a Low Earth Orbit (LEO) slotting system to avoid collisions between compliant satellites and to optimize the available orbital volume. Specifically, this manuscript proposes the use of concentric orbital shells of admissible “slots” with stacked intersecting orbits that preserve a minimum separation distance between satellites at all times. The problem is formulated in mathematical terms and three approaches are explored: random constellations, single 2D-LFCs, and unions of 2D-LFCs. Each approach is evaluated in terms of several metrics including capacity, Earth coverage, orbits per shell, and symmetries. Additionally, a rough estimate for the capacity of LEO is generated, subject to certain minimum separation and station-keeping assumptions, and several trade-offs are identified to guide policy-makers interested in the adoption of a LEO slotting scheme for space traffic management.
Author Lifson, Miles
Linares, Richard
Avendaño, Martín E.
Arnas, David
Author_xml – sequence: 1
  givenname: David
  surname: Arnas
  fullname: Arnas, David
  email: arnas@mit.edu
  organization: Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 2
  givenname: Miles
  surname: Lifson
  fullname: Lifson, Miles
  email: mlifson@mit.edu
  organization: Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 3
  givenname: Richard
  surname: Linares
  fullname: Linares, Richard
  email: linaresr@mit.edu
  organization: Massachusetts Institute of Technology, Cambridge, MA 02139, USA
– sequence: 4
  givenname: Martín E.
  surname: Avendaño
  fullname: Avendaño, Martín E.
  email: avendano@unizar.es
  organization: CUD-AGM (Zaragoza), Crtra Huesca s/n, Zaragoza 50090, Spain
BookMark eNp9kLtOAzEQRS0UJMLjA-j8A7t4vA9vRIWS8JAipYGKwvKObeJoWSPbIeLvcYCKItVId3SuZs45mYx-NIRcAyuBQXuzLVUMJWeclawuGYcTMoVOzAqY1d2ETBkXVQEgxBk5j3HLGHAh2JS8Lox1o0vOj9RbuvJ7ulQhbeg69C7ROPiU3PhGVcCNSwbTLphId_GQ8QUdVF6joXbwexMo-jEmM-Q098VLcmrVEM3V37wgL_fL5_ljsVo_PM3vVgVWNUtFpU3TN7oC5J3Stm3afFnd6lqg6qztQaOFBvquFTWf6a6ziNBWPRrBDeqmuiDw24vBxxiMlR_BvavwJYHJgx25ldmOPNiRrJbZTmbEPwZd-jk7BeWGo-TtL2nyS5_OBBnRmRGNdiH7kdq7I_Q3EImDjQ
CitedBy_id crossref_primary_10_1016_j_ejor_2022_04_030
crossref_primary_10_2514_1_G008301
crossref_primary_10_1073_pnas_2221343120
crossref_primary_10_2514_1_G007208
crossref_primary_10_1016_j_actaastro_2024_03_069
crossref_primary_10_1016_j_cosust_2022_101247
crossref_primary_10_1016_j_actaastro_2024_05_030
crossref_primary_10_3390_aerospace9050234
crossref_primary_10_2514_1_A35913
crossref_primary_10_2514_1_G006514
crossref_primary_10_2514_1_A35995
crossref_primary_10_1086_730695
crossref_primary_10_2514_1_A35875
Cites_doi 10.1016/j.actaastro.2019.03.040
10.1109/JPROC.2011.2158766
10.2514/6.2008-3547
10.2514/6.2011-7184
10.2514/8.5422
10.1007/s10569-017-9789-1
10.1007/BF03546424
10.1016/j.actaastro.2019.05.003
10.2514/1.G001710
10.1007/s10569-013-9493-8
10.1109/TAES.2008.4655355
10.1109/AERO.2007.352713
10.1109/TGRS.2008.2012349
10.1007/s40295-016-0096-y
10.2514/3.20244
10.1007/s10569-016-9747-3
10.1016/j.actaastro.2020.10.026
10.1016/j.actaastro.2017.10.017
10.1177/1043463190002003005
10.1109/TAES.2008.4655356
10.2514/6.IAC-03-A.3.02
10.2514/6.2020-0721
10.1016/j.spacepol.2012.06.004
ContentType Journal Article
Copyright 2020 COSPAR
Copyright_xml – notice: 2020 COSPAR
DBID AAYXX
CITATION
DOI 10.1016/j.asr.2020.04.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Astronomy & Astrophysics
Physics
EISSN 1879-1948
EndPage 3711
ExternalDocumentID 10_1016_j_asr_2020_04_021
S0273117720302593
GroupedDBID --K
--M
-~X
.~1
0R~
1RT
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABJNI
ABMAC
ABNEU
ABQEM
ABQYD
ABYKQ
ACDAQ
ACFVG
ACGFS
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IMUCA
J1W
KOM
LY3
LZ4
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
ROL
SDF
SDG
SEP
SES
SPC
SPCBC
SSE
SSQ
SSZ
T5K
ZMT
~02
~G-
1B1
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMA
HME
HVGLF
HX~
HZ~
IHE
R2-
RIG
RPZ
SEW
SHN
SSH
T9H
UHS
VH1
VOH
WUQ
ZY4
ID FETCH-LOGICAL-c340t-3de5b5d31c28adf65677046d47ca8ffb1dcf151b867429d88fcc163bce72ecd53
IEDL.DBID .~1
ISSN 0273-1177
IngestDate Tue Jul 01 03:24:47 EDT 2025
Thu Apr 24 23:07:00 EDT 2025
Fri Feb 23 02:45:14 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Satellite constellations
Space traffic management
Orbit design
Space mechanics
Orbital slotting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-3de5b5d31c28adf65677046d47ca8ffb1dcf151b867429d88fcc163bce72ecd53
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0273117720302593
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_asr_2020_04_021
crossref_citationtrail_10_1016_j_asr_2020_04_021
elsevier_sciencedirect_doi_10_1016_j_asr_2020_04_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Advances in space research
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References De Sanctis, M., Rossi, T., Lucente, M., Ruggieri, M., Mortari, D., Izzo, D., March 2007. Flower constellation of orbiters for martian communication. In: 2007 IEEE Aerospace Conference. IEEE, Big Sky, Montana, USA.
McManus, Schaub (b0110) 2016; 63
Mortari, Wilkins, Bruccoleri (b0125) 2004; 52
Weeden, B., Shortt, K., 2008. Development of an Architecture of Sun-Synchronous Orbital Slots to Minimize Conjunctions. In: SpaceOps 2008, paper number AIAA 2008-3547. pp. 1–15.
De Sanctis, Rossi, Lucente, Ruggieri, Bruccoleri, Mortari, Izzo (b0055) 2008
Arnas, Casanova, Tresaco (b0025) 2017; 128
Gardner, Ostrom, Walker (b0075) 1990; 2
OneWeb, 2019. Technology. (last accessed on December 1, 2019)
Park, Mortari, Ruggieri (b0145) 2005
Walker (b0170) 1984; 37
Bilimoria, K.D., Krieger, R.A., 2011. Slot Architecture for Separating Satellites in Sun-Synchronous Orbits. In: AIAA Space, paper number 2011-7184. No. 2011-7184. American Institute of Aeronautics and Astronautics, Long Beach, CA.
Lee, Mortari (b0090) May 2017; 40
Arnas (b0015) 2018
Draim (b0065) 1987; 10
Alary, D., Giannopapa, C., Hedman, N., Hodgkins, K., Li, S., Murthi, K., Sanchez-Aranzamendi, M., Stubbe, P., Volynskaya, O., Wang, G., 2018. In: Schrogl, K.U., Jorgenson, C., Robinson, J., Soucek, A., (Eds.), Space Traffic Management - Towards a Roadmap for Implementation. International Academy of Astronautics, Paris, France.
Lee, Avendaño, Mortari (b0085) 2015; 156
Mortari, Davis, Owis, Dwidar (b0115) 2013; 4
Arnas, D., Lifson, M., Linares, R., Avenda no, M., 2020. Low Earth Orbit slotting for Space Traffic Management using Flower Constellation Theory. In: AIAA Scitech 2020 Forum. p. 0721.
Weeden, Chow (b0185) 2012; 28
Watson (b0175) 2012
Letizia, Lemmens, Bastida Virgili, Krag (b0095) 2019; 161
Avendaño, M., Arnas, D., Linares, R., Lifson, M., 2020. Efficient search of optimal Flower Constellations. arXiv prepint 2003.11970.
Dufour, F., 2003. Coverage optimization of elliptical satellite constellations with an extended satellite triplet method. In: 54th International Astronautical Congress, paper number IAC-03-A.3.02. International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Bremen, Germany.
Arnas, Casanova, Tresaco (b0020) 2017; 142
Jakhu (b0080) 2017
Portillo, Cameron, Crawley (b0150) 2019; 159
Noyes (b0135) 2013
.
Speckman, Lang, Boyce (b0160) 1990
Avendaño, Davis, Mortari (b0045) 2013; 116
Mortari, Wilkins (b0130) 2008; 44
Wilkins, Mortari (b0190) Jul 2008; 44
Mortari, De Sanctis, Lucente (b0120) 2011; 99
SpaceX, 2019. Starlink. (last accessed on December 1, 2019)
Arnas, Casanova, Tresaco, Mortari (b0030) 2017; 129
Luders (b0100) 1961; 31
Anilkumar, A., Aoyama, S., Baseley-Walker, B., Bilimoria, K., Curran, C., Drees, K., Giorgi, D., Greneche, E., Hetrick, R.B., Jing, M., Leshner, R.B., Liao, X., Maruyama, K., Marvao, R., Meijer, L., Michalski, X., Ono, A., Oprong, A.A., Pillokeit, S., Shortt, K., Smallhorn, T., Tegnerud, E., Ueta, A.Y., Tió, M.V., Weeden, B., Gao, W., Shen, W., Western, O.K., Zhang, G., Zavaleta, J., 2007. Space Traffic Management Final Report. Tech. rep. International Space University, Beijing, China.
Telesat, 2019. Telesat LEO - Why LEO? (last accessed on December 1, 2019)
Marzano, Cimini, Memmo, Montopoli, Rossi, De Sanctis, Lucente, Mortari, Di Sabatino (b0105) 2009; 47
10.1016/j.asr.2020.04.021_b0005
Watson (10.1016/j.asr.2020.04.021_b0175) 2012
Mortari (10.1016/j.asr.2020.04.021_b0120) 2011; 99
Arnas (10.1016/j.asr.2020.04.021_b0020) 2017; 142
10.1016/j.asr.2020.04.021_b0060
Portillo (10.1016/j.asr.2020.04.021_b0150) 2019; 159
Mortari (10.1016/j.asr.2020.04.021_b0125) 2004; 52
10.1016/j.asr.2020.04.021_b0180
Walker (10.1016/j.asr.2020.04.021_b0170) 1984; 37
10.1016/j.asr.2020.04.021_b0040
De Sanctis (10.1016/j.asr.2020.04.021_b0055) 2008
Mortari (10.1016/j.asr.2020.04.021_b0130) 2008; 44
10.1016/j.asr.2020.04.021_b0140
10.1016/j.asr.2020.04.021_b0165
Lee (10.1016/j.asr.2020.04.021_b0090) 2017; 40
Arnas (10.1016/j.asr.2020.04.021_b0015) 2018
Wilkins (10.1016/j.asr.2020.04.021_b0190) 2008; 44
Park (10.1016/j.asr.2020.04.021_b0145) 2005
Jakhu (10.1016/j.asr.2020.04.021_b0080) 2017
Arnas (10.1016/j.asr.2020.04.021_b0025) 2017; 128
Draim (10.1016/j.asr.2020.04.021_b0065) 1987; 10
Marzano (10.1016/j.asr.2020.04.021_b0105) 2009; 47
Letizia (10.1016/j.asr.2020.04.021_b0095) 2019; 161
Gardner (10.1016/j.asr.2020.04.021_b0075) 1990; 2
10.1016/j.asr.2020.04.021_b0050
Lee (10.1016/j.asr.2020.04.021_b0085) 2015; 156
Noyes (10.1016/j.asr.2020.04.021_b0135) 2013
10.1016/j.asr.2020.04.021_b0070
Avendaño (10.1016/j.asr.2020.04.021_b0045) 2013; 116
10.1016/j.asr.2020.04.021_b0010
McManus (10.1016/j.asr.2020.04.021_b0110) 2016; 63
Mortari (10.1016/j.asr.2020.04.021_b0115) 2013; 4
Speckman (10.1016/j.asr.2020.04.021_b0160) 1990
Arnas (10.1016/j.asr.2020.04.021_b0030) 2017; 129
Weeden (10.1016/j.asr.2020.04.021_b0185) 2012; 28
10.1016/j.asr.2020.04.021_b0035
Luders (10.1016/j.asr.2020.04.021_b0100) 1961; 31
10.1016/j.asr.2020.04.021_b0155
References_xml – volume: 44
  start-page: 953
  year: 2008
  end-page: 963
  ident: b0130
  article-title: Flower constellation set theory part I: compatibility and phasing
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– reference: Alary, D., Giannopapa, C., Hedman, N., Hodgkins, K., Li, S., Murthi, K., Sanchez-Aranzamendi, M., Stubbe, P., Volynskaya, O., Wang, G., 2018. In: Schrogl, K.U., Jorgenson, C., Robinson, J., Soucek, A., (Eds.), Space Traffic Management - Towards a Roadmap for Implementation. International Academy of Astronautics, Paris, France.
– volume: 156
  start-page: 3633
  year: 2015
  end-page: 3648
  ident: b0085
  article-title: Uniform and weighted coverage for large lattice flower constellations
  publication-title: Adv. Astronaut. Sci.
– volume: 99
  start-page: 2008
  year: 2011
  end-page: 2019
  ident: b0120
  article-title: Design of flower constellations for telecommunication services
  publication-title: Proc. IEEE
– volume: 2
  start-page: 335
  year: 1990
  end-page: 358
  ident: b0075
  article-title: The nature of common-pool resource problems
  publication-title: Rationality Soc.
– start-page: 866
  year: 1990
  end-page: 874
  ident: b0160
  article-title: An analysis of the line of sight vector between two satellites in common altitude circular orbits
  publication-title: Astrodynamics Conference, 1990, Paper Number AIAA 90-2988-CP
– volume: 63
  start-page: 263
  year: 2016
  end-page: 286
  ident: b0110
  article-title: Establishing a formation of small satellites in a lunar flower constellation
  publication-title: J. Astronaut. Sci.
– start-page: 589
  year: 2008
  end-page: 598
  ident: b0055
  article-title: Flower constellations for telemedicine services
  publication-title: Satellite Communications and Navigation Systems, Signals and Communication Technology
– reference: OneWeb, 2019. Technology. (last accessed on December 1, 2019)
– reference: De Sanctis, M., Rossi, T., Lucente, M., Ruggieri, M., Mortari, D., Izzo, D., March 2007. Flower constellation of orbiters for martian communication. In: 2007 IEEE Aerospace Conference. IEEE, Big Sky, Montana, USA.
– volume: 44
  start-page: 964
  year: Jul 2008
  end-page: 976
  ident: b0190
  article-title: Flower constellation set theory Part II: secondary paths and equivalency
  publication-title: IEEE Trans. Aerospace Electron. Syst.
– reference: Arnas, D., Lifson, M., Linares, R., Avenda no, M., 2020. Low Earth Orbit slotting for Space Traffic Management using Flower Constellation Theory. In: AIAA Scitech 2020 Forum. p. 0721.
– volume: 128
  start-page: 197
  year: 2017
  end-page: 219
  ident: b0025
  article-title: Time distributions in satellite constellation design
  publication-title: Celestial Mech. Dyn. Astron.
– volume: 37
  start-page: 559
  year: 1984
  end-page: 572
  ident: b0170
  article-title: Satellite constellations
  publication-title: J. Br. Interplanet. Soc.
– volume: 40
  start-page: 1261
  year: May 2017
  end-page: 1269
  ident: b0090
  article-title: Design of constellations for Earth observation with intersatellite links
  publication-title: J. Guidance Control Dyn.
– volume: 116
  start-page: 325
  year: 2013
  end-page: 337
  ident: b0045
  article-title: The 2-D lattice theory of flower constellations
  publication-title: Celestial Mech. Dyn. Astron.
– volume: 47
  start-page: 3107
  year: 2009
  end-page: 3122
  ident: b0105
  article-title: Flower constellation of millimeter-wave radiometers for tropospheric monitoring at pseudogeostationary scale
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 28
  start-page: 166
  year: 2012
  end-page: 172
  ident: b0185
  article-title: Taking a common-pool resources approach to space sustainability: A framework and potential policies
  publication-title: Space Policy
– start-page: 359
  year: 2017
  end-page: 381
  ident: b0080
  article-title: Regulatory process for communications satellite frequency allocations
  publication-title: Handbook of Satellite Applications
– volume: 161
  start-page: 348
  year: 2019
  end-page: 362
  ident: b0095
  article-title: Application of a debris index for global evaluation of mitigation strategies
  publication-title: Acta Astronaut.
– volume: 52
  start-page: 107
  year: 2004
  end-page: 127
  ident: b0125
  article-title: The flower constellations
  publication-title: J. Astronaut. Sci.
– year: 2013
  ident: b0135
  article-title: Characterization of the Effects of a Sun-Synchronous Orbit Slot Architecture on the Earth’s Orbital Debris Environment
– volume: 10
  start-page: 492
  year: 1987
  end-page: 499
  ident: b0065
  article-title: A common-period four-satellite continuous global coverage constellation
  publication-title: J. Guidance Control Dyn.
– volume: 129
  start-page: 433
  year: 2017
  end-page: 448
  ident: b0030
  article-title: 3-dimensional necklace flower constellations
  publication-title: Celestial Mech. Dyn. Astron.
– reference: Bilimoria, K.D., Krieger, R.A., 2011. Slot Architecture for Separating Satellites in Sun-Synchronous Orbits. In: AIAA Space, paper number 2011-7184. No. 2011-7184. American Institute of Aeronautics and Astronautics, Long Beach, CA.
– start-page: 1516
  year: 2005
  end-page: 1523
  ident: b0145
  article-title: Comparisons between GalileoSat and Global Navigation Flower Constellations
  publication-title: 2005 IEEE Aerospace Conference
– reference: Anilkumar, A., Aoyama, S., Baseley-Walker, B., Bilimoria, K., Curran, C., Drees, K., Giorgi, D., Greneche, E., Hetrick, R.B., Jing, M., Leshner, R.B., Liao, X., Maruyama, K., Marvao, R., Meijer, L., Michalski, X., Ono, A., Oprong, A.A., Pillokeit, S., Shortt, K., Smallhorn, T., Tegnerud, E., Ueta, A.Y., Tió, M.V., Weeden, B., Gao, W., Shen, W., Western, O.K., Zhang, G., Zavaleta, J., 2007. Space Traffic Management Final Report. Tech. rep. International Space University, Beijing, China.
– year: 2018
  ident: b0015
  article-title: Necklace Flower Constellations
– reference: Weeden, B., Shortt, K., 2008. Development of an Architecture of Sun-Synchronous Orbital Slots to Minimize Conjunctions. In: SpaceOps 2008, paper number AIAA 2008-3547. pp. 1–15.
– volume: 142
  start-page: 18
  year: 2017
  end-page: 28
  ident: b0020
  article-title: 2D Necklace Flower Constellations
  publication-title: Acta Astronaut.
– reference: Telesat, 2019. Telesat LEO - Why LEO? (last accessed on December 1, 2019)
– reference: Dufour, F., 2003. Coverage optimization of elliptical satellite constellations with an extended satellite triplet method. In: 54th International Astronautical Congress, paper number IAC-03-A.3.02. International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Bremen, Germany.
– reference: .
– reference: SpaceX, 2019. Starlink. (last accessed on December 1, 2019)
– volume: 4
  start-page: 260
  year: 2013
  end-page: 266
  ident: b0115
  article-title: Reliable global navigation system using flower constellation
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 31
  start-page: 179
  year: 1961
  end-page: 184
  ident: b0100
  article-title: Satellite networks for continuous zonal coverage
  publication-title: ARS J.
– volume: 159
  start-page: 123
  year: 2019
  end-page: 135
  ident: b0150
  article-title: A technical comparison of three low earth orbit satellite constellation systems to provide global broadband
  publication-title: Acta Astronaut.
– reference: Avendaño, M., Arnas, D., Linares, R., Lifson, M., 2020. Efficient search of optimal Flower Constellations. arXiv prepint 2003.11970.
– year: 2012
  ident: b0175
  article-title: Sun-Synchronous Orbit Slot Architecture Analysis and Development
– ident: 10.1016/j.asr.2020.04.021_b0010
– ident: 10.1016/j.asr.2020.04.021_b0165
– volume: 159
  start-page: 123
  year: 2019
  ident: 10.1016/j.asr.2020.04.021_b0150
  article-title: A technical comparison of three low earth orbit satellite constellation systems to provide global broadband
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2019.03.040
– volume: 99
  start-page: 2008
  issue: 11
  year: 2011
  ident: 10.1016/j.asr.2020.04.021_b0120
  article-title: Design of flower constellations for telecommunication services
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2011.2158766
– ident: 10.1016/j.asr.2020.04.021_b0140
– start-page: 866
  year: 1990
  ident: 10.1016/j.asr.2020.04.021_b0160
  article-title: An analysis of the line of sight vector between two satellites in common altitude circular orbits
– year: 2013
  ident: 10.1016/j.asr.2020.04.021_b0135
– ident: 10.1016/j.asr.2020.04.021_b0180
  doi: 10.2514/6.2008-3547
– ident: 10.1016/j.asr.2020.04.021_b0050
  doi: 10.2514/6.2011-7184
– start-page: 359
  year: 2017
  ident: 10.1016/j.asr.2020.04.021_b0080
  article-title: Regulatory process for communications satellite frequency allocations
– volume: 31
  start-page: 179
  issue: 2
  year: 1961
  ident: 10.1016/j.asr.2020.04.021_b0100
  article-title: Satellite networks for continuous zonal coverage
  publication-title: ARS J.
  doi: 10.2514/8.5422
– year: 2012
  ident: 10.1016/j.asr.2020.04.021_b0175
– volume: 129
  start-page: 433
  issue: 4
  year: 2017
  ident: 10.1016/j.asr.2020.04.021_b0030
  article-title: 3-dimensional necklace flower constellations
  publication-title: Celestial Mech. Dyn. Astron.
  doi: 10.1007/s10569-017-9789-1
– volume: 52
  start-page: 107
  year: 2004
  ident: 10.1016/j.asr.2020.04.021_b0125
  article-title: The flower constellations
  publication-title: J. Astronaut. Sci.
  doi: 10.1007/BF03546424
– volume: 161
  start-page: 348
  issue: February
  year: 2019
  ident: 10.1016/j.asr.2020.04.021_b0095
  article-title: Application of a debris index for global evaluation of mitigation strategies
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2019.05.003
– start-page: 1516
  year: 2005
  ident: 10.1016/j.asr.2020.04.021_b0145
  article-title: Comparisons between GalileoSat and Global Navigation Flower Constellations
– year: 2018
  ident: 10.1016/j.asr.2020.04.021_b0015
– start-page: 589
  year: 2008
  ident: 10.1016/j.asr.2020.04.021_b0055
  article-title: Flower constellations for telemedicine services
– volume: 156
  start-page: 3633
  year: 2015
  ident: 10.1016/j.asr.2020.04.021_b0085
  article-title: Uniform and weighted coverage for large lattice flower constellations
  publication-title: Adv. Astronaut. Sci.
– ident: 10.1016/j.asr.2020.04.021_b0005
– volume: 40
  start-page: 1261
  issue: 5
  year: 2017
  ident: 10.1016/j.asr.2020.04.021_b0090
  article-title: Design of constellations for Earth observation with intersatellite links
  publication-title: J. Guidance Control Dyn.
  doi: 10.2514/1.G001710
– volume: 116
  start-page: 325
  issue: 4
  year: 2013
  ident: 10.1016/j.asr.2020.04.021_b0045
  article-title: The 2-D lattice theory of flower constellations
  publication-title: Celestial Mech. Dyn. Astron.
  doi: 10.1007/s10569-013-9493-8
– volume: 44
  start-page: 953
  issue: 3
  year: 2008
  ident: 10.1016/j.asr.2020.04.021_b0130
  article-title: Flower constellation set theory part I: compatibility and phasing
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2008.4655355
– ident: 10.1016/j.asr.2020.04.021_b0060
  doi: 10.1109/AERO.2007.352713
– volume: 47
  start-page: 3107
  issue: 9
  year: 2009
  ident: 10.1016/j.asr.2020.04.021_b0105
  article-title: Flower constellation of millimeter-wave radiometers for tropospheric monitoring at pseudogeostationary scale
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2008.2012349
– volume: 63
  start-page: 263
  issue: 4
  year: 2016
  ident: 10.1016/j.asr.2020.04.021_b0110
  article-title: Establishing a formation of small satellites in a lunar flower constellation
  publication-title: J. Astronaut. Sci.
  doi: 10.1007/s40295-016-0096-y
– volume: 10
  start-page: 492
  issue: 5
  year: 1987
  ident: 10.1016/j.asr.2020.04.021_b0065
  article-title: A common-period four-satellite continuous global coverage constellation
  publication-title: J. Guidance Control Dyn.
  doi: 10.2514/3.20244
– volume: 128
  start-page: 197
  issue: 2–3
  year: 2017
  ident: 10.1016/j.asr.2020.04.021_b0025
  article-title: Time distributions in satellite constellation design
  publication-title: Celestial Mech. Dyn. Astron.
  doi: 10.1007/s10569-016-9747-3
– ident: 10.1016/j.asr.2020.04.021_b0040
  doi: 10.1016/j.actaastro.2020.10.026
– ident: 10.1016/j.asr.2020.04.021_b0155
– volume: 142
  start-page: 18
  year: 2017
  ident: 10.1016/j.asr.2020.04.021_b0020
  article-title: 2D Necklace Flower Constellations
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2017.10.017
– volume: 37
  start-page: 559
  year: 1984
  ident: 10.1016/j.asr.2020.04.021_b0170
  article-title: Satellite constellations
  publication-title: J. Br. Interplanet. Soc.
– volume: 2
  start-page: 335
  issue: 3
  year: 1990
  ident: 10.1016/j.asr.2020.04.021_b0075
  article-title: The nature of common-pool resource problems
  publication-title: Rationality Soc.
  doi: 10.1177/1043463190002003005
– volume: 44
  start-page: 964
  issue: 3
  year: 2008
  ident: 10.1016/j.asr.2020.04.021_b0190
  article-title: Flower constellation set theory Part II: secondary paths and equivalency
  publication-title: IEEE Trans. Aerospace Electron. Syst.
  doi: 10.1109/TAES.2008.4655356
– ident: 10.1016/j.asr.2020.04.021_b0070
  doi: 10.2514/6.IAC-03-A.3.02
– volume: 4
  start-page: 260
  issue: 2
  year: 2013
  ident: 10.1016/j.asr.2020.04.021_b0115
  article-title: Reliable global navigation system using flower constellation
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: 10.1016/j.asr.2020.04.021_b0035
  doi: 10.2514/6.2020-0721
– volume: 28
  start-page: 166
  issue: 3
  year: 2012
  ident: 10.1016/j.asr.2020.04.021_b0185
  article-title: Taking a common-pool resources approach to space sustainability: A framework and potential policies
  publication-title: Space Policy
  doi: 10.1016/j.spacepol.2012.06.004
SSID ssj0012770
Score 2.4138672
Snippet This work proposes the use of 2D Lattice Flower Constellations (2D-LFCs) to facilitate the design of a Low Earth Orbit (LEO) slotting system to avoid...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 3696
SubjectTerms Orbit design
Orbital slotting
Satellite constellations
Space mechanics
Space traffic management
Title Definition of Low Earth Orbit slotting architectures using 2D lattice flower constellations
URI https://dx.doi.org/10.1016/j.asr.2020.04.021
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-wwFD6IIlwXoqPimyzEhVCnTdMmsxx8ML4FryC4KEma3DsyTsVWxI2_3Zy0lbngdeGuhATak9OcL-d8-QKwo4XlXLttqhapDJiLOIGKZRTk2jg0L5IeVXh2-OIyHdyy07vkbgoO2rMwSKts1v56TferddPSbazZfRoOuzeoxIIlR-r81IF4VPxkjKOv779_0jwiynmdZ-FxgL3byqbneMkSJUFp6NVOafR1bJqIN8cLMN8ARdKv32URpsy4A6v9ElPXxeMb2SX-uc5MlB2Ym1AW7MDsdd2-BPeHxg7HnphFCkvOi1dy5D7wL7l6VsOKlKPCM5_JZEWhJEiH_0PoIRnJCulxxI7wOjWiEU4iYcq76zLcHh_9PhgEzY0KgY5ZWAVxbhKV5HGkqZC5dVjOWYelOeNaCmtVlGvrIIASqdsx93IhrNYOsCltODU6T-IVmB4XY7MKJDVMstj97UILZlKpdEplGDPDelRyI9YgbG2Z6UZuHG-9GGUtr-whc-bP0PxZyDJn_jXY-xzyVGttfNeZtROU_eMwmYsF_x-2_rNhG_CLIpnFp182Ybp6fjFbDo1Uatu72zbM9E_OBpcfTpzfaQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED4xpmnjAY0CgjGGH9AeJoUmtpO4jwhadaOwSSsSEg-W7dhbp65BJGjaC799ZyepOmnbw94iyycl54vv893nO4BjI1yeGzymGpGpiKPHiTRTSVQYi2hepAOq_d3hy6tsfM0_3KQ3a3DW3YXxtMp272_29LBbtyP9Vpv9u9ms_9lXYvEpR4p2iiCePYGn3Lc5QKM-eVzyPBKa502gJWeRn96lNgPJS1W-JiiNQ7lTmvzZOa04nNFL2GyRIjltXmYL1uyiB3unlY9dl99_krckPDehiaoHGyulBXvw7FMzvg2359bNFoGZRUpHJuUPMsQv_Eo-3utZTap5GajPZDWlUBHPh_9C6DmZq9rz44ib-35qxHg86RlTwV534Ho0nJ6No7alQmQYj-uIFTbVacESQ4UqHII51A7PCp4bJZzTSWEcYgAtMjwyDwohnDGI2LSxObWmSNkurC_Khd0DklmuOMPfXRjBbaa0yaiKGbd8QFVuxT7EnS6laeuN-7YXc9kRy75JVL_06pcxl6j-fXi3FLlrim38azLvFkj-ZjESncHfxV79n9gRPB9PLydy8v7q4gBeUM9sCbGY17Be3z_YQ4QmtX4TTO8Xdsng8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Definition+of+Low+Earth+Orbit+slotting+architectures+using+2D+lattice+flower+constellations&rft.jtitle=Advances+in+space+research&rft.au=Arnas%2C+David&rft.au=Lifson%2C+Miles&rft.au=Linares%2C+Richard&rft.au=Avenda%C3%B1o%2C+Mart%C3%ADn+E.&rft.date=2021-06-01&rft.pub=Elsevier+B.V&rft.issn=0273-1177&rft.eissn=1879-1948&rft.volume=67&rft.issue=11&rft.spage=3696&rft.epage=3711&rft_id=info:doi/10.1016%2Fj.asr.2020.04.021&rft.externalDocID=S0273117720302593
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1177&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1177&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1177&client=summon