Definition of Low Earth Orbit slotting architectures using 2D lattice flower constellations
This work proposes the use of 2D Lattice Flower Constellations (2D-LFCs) to facilitate the design of a Low Earth Orbit (LEO) slotting system to avoid collisions between compliant satellites and to optimize the available orbital volume. Specifically, this manuscript proposes the use of concentric orb...
Saved in:
Published in | Advances in space research Vol. 67; no. 11; pp. 3696 - 3711 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0273-1177 1879-1948 |
DOI | 10.1016/j.asr.2020.04.021 |
Cover
Abstract | This work proposes the use of 2D Lattice Flower Constellations (2D-LFCs) to facilitate the design of a Low Earth Orbit (LEO) slotting system to avoid collisions between compliant satellites and to optimize the available orbital volume. Specifically, this manuscript proposes the use of concentric orbital shells of admissible “slots” with stacked intersecting orbits that preserve a minimum separation distance between satellites at all times. The problem is formulated in mathematical terms and three approaches are explored: random constellations, single 2D-LFCs, and unions of 2D-LFCs. Each approach is evaluated in terms of several metrics including capacity, Earth coverage, orbits per shell, and symmetries. Additionally, a rough estimate for the capacity of LEO is generated, subject to certain minimum separation and station-keeping assumptions, and several trade-offs are identified to guide policy-makers interested in the adoption of a LEO slotting scheme for space traffic management. |
---|---|
AbstractList | This work proposes the use of 2D Lattice Flower Constellations (2D-LFCs) to facilitate the design of a Low Earth Orbit (LEO) slotting system to avoid collisions between compliant satellites and to optimize the available orbital volume. Specifically, this manuscript proposes the use of concentric orbital shells of admissible “slots” with stacked intersecting orbits that preserve a minimum separation distance between satellites at all times. The problem is formulated in mathematical terms and three approaches are explored: random constellations, single 2D-LFCs, and unions of 2D-LFCs. Each approach is evaluated in terms of several metrics including capacity, Earth coverage, orbits per shell, and symmetries. Additionally, a rough estimate for the capacity of LEO is generated, subject to certain minimum separation and station-keeping assumptions, and several trade-offs are identified to guide policy-makers interested in the adoption of a LEO slotting scheme for space traffic management. |
Author | Lifson, Miles Linares, Richard Avendaño, Martín E. Arnas, David |
Author_xml | – sequence: 1 givenname: David surname: Arnas fullname: Arnas, David email: arnas@mit.edu organization: Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 2 givenname: Miles surname: Lifson fullname: Lifson, Miles email: mlifson@mit.edu organization: Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 3 givenname: Richard surname: Linares fullname: Linares, Richard email: linaresr@mit.edu organization: Massachusetts Institute of Technology, Cambridge, MA 02139, USA – sequence: 4 givenname: Martín E. surname: Avendaño fullname: Avendaño, Martín E. email: avendano@unizar.es organization: CUD-AGM (Zaragoza), Crtra Huesca s/n, Zaragoza 50090, Spain |
BookMark | eNp9kLtOAzEQRS0UJMLjA-j8A7t4vA9vRIWS8JAipYGKwvKObeJoWSPbIeLvcYCKItVId3SuZs45mYx-NIRcAyuBQXuzLVUMJWeclawuGYcTMoVOzAqY1d2ETBkXVQEgxBk5j3HLGHAh2JS8Lox1o0vOj9RbuvJ7ulQhbeg69C7ROPiU3PhGVcCNSwbTLphId_GQ8QUdVF6joXbwexMo-jEmM-Q098VLcmrVEM3V37wgL_fL5_ljsVo_PM3vVgVWNUtFpU3TN7oC5J3Stm3afFnd6lqg6qztQaOFBvquFTWf6a6ziNBWPRrBDeqmuiDw24vBxxiMlR_BvavwJYHJgx25ldmOPNiRrJbZTmbEPwZd-jk7BeWGo-TtL2nyS5_OBBnRmRGNdiH7kdq7I_Q3EImDjQ |
CitedBy_id | crossref_primary_10_1016_j_ejor_2022_04_030 crossref_primary_10_2514_1_G008301 crossref_primary_10_1073_pnas_2221343120 crossref_primary_10_2514_1_G007208 crossref_primary_10_1016_j_actaastro_2024_03_069 crossref_primary_10_1016_j_cosust_2022_101247 crossref_primary_10_1016_j_actaastro_2024_05_030 crossref_primary_10_3390_aerospace9050234 crossref_primary_10_2514_1_A35913 crossref_primary_10_2514_1_G006514 crossref_primary_10_2514_1_A35995 crossref_primary_10_1086_730695 crossref_primary_10_2514_1_A35875 |
Cites_doi | 10.1016/j.actaastro.2019.03.040 10.1109/JPROC.2011.2158766 10.2514/6.2008-3547 10.2514/6.2011-7184 10.2514/8.5422 10.1007/s10569-017-9789-1 10.1007/BF03546424 10.1016/j.actaastro.2019.05.003 10.2514/1.G001710 10.1007/s10569-013-9493-8 10.1109/TAES.2008.4655355 10.1109/AERO.2007.352713 10.1109/TGRS.2008.2012349 10.1007/s40295-016-0096-y 10.2514/3.20244 10.1007/s10569-016-9747-3 10.1016/j.actaastro.2020.10.026 10.1016/j.actaastro.2017.10.017 10.1177/1043463190002003005 10.1109/TAES.2008.4655356 10.2514/6.IAC-03-A.3.02 10.2514/6.2020-0721 10.1016/j.spacepol.2012.06.004 |
ContentType | Journal Article |
Copyright | 2020 COSPAR |
Copyright_xml | – notice: 2020 COSPAR |
DBID | AAYXX CITATION |
DOI | 10.1016/j.asr.2020.04.021 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Astronomy & Astrophysics Physics |
EISSN | 1879-1948 |
EndPage | 3711 |
ExternalDocumentID | 10_1016_j_asr_2020_04_021 S0273117720302593 |
GroupedDBID | --K --M -~X .~1 0R~ 1RT 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABJNI ABMAC ABNEU ABQEM ABQYD ABYKQ ACDAQ ACFVG ACGFS ACLVX ACRLP ACSBN ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IMUCA J1W KOM LY3 LZ4 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 ROL SDF SDG SEP SES SPC SPCBC SSE SSQ SSZ T5K ZMT ~02 ~G- 1B1 AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGHFR AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMA HME HVGLF HX~ HZ~ IHE R2- RIG RPZ SEW SHN SSH T9H UHS VH1 VOH WUQ ZY4 |
ID | FETCH-LOGICAL-c340t-3de5b5d31c28adf65677046d47ca8ffb1dcf151b867429d88fcc163bce72ecd53 |
IEDL.DBID | .~1 |
ISSN | 0273-1177 |
IngestDate | Tue Jul 01 03:24:47 EDT 2025 Thu Apr 24 23:07:00 EDT 2025 Fri Feb 23 02:45:14 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Satellite constellations Space traffic management Orbit design Space mechanics Orbital slotting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c340t-3de5b5d31c28adf65677046d47ca8ffb1dcf151b867429d88fcc163bce72ecd53 |
OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S0273117720302593 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1016_j_asr_2020_04_021 crossref_citationtrail_10_1016_j_asr_2020_04_021 elsevier_sciencedirect_doi_10_1016_j_asr_2020_04_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 2021-06-00 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Advances in space research |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | De Sanctis, M., Rossi, T., Lucente, M., Ruggieri, M., Mortari, D., Izzo, D., March 2007. Flower constellation of orbiters for martian communication. In: 2007 IEEE Aerospace Conference. IEEE, Big Sky, Montana, USA. McManus, Schaub (b0110) 2016; 63 Mortari, Wilkins, Bruccoleri (b0125) 2004; 52 Weeden, B., Shortt, K., 2008. Development of an Architecture of Sun-Synchronous Orbital Slots to Minimize Conjunctions. In: SpaceOps 2008, paper number AIAA 2008-3547. pp. 1–15. De Sanctis, Rossi, Lucente, Ruggieri, Bruccoleri, Mortari, Izzo (b0055) 2008 Arnas, Casanova, Tresaco (b0025) 2017; 128 Gardner, Ostrom, Walker (b0075) 1990; 2 OneWeb, 2019. Technology. (last accessed on December 1, 2019) Park, Mortari, Ruggieri (b0145) 2005 Walker (b0170) 1984; 37 Bilimoria, K.D., Krieger, R.A., 2011. Slot Architecture for Separating Satellites in Sun-Synchronous Orbits. In: AIAA Space, paper number 2011-7184. No. 2011-7184. American Institute of Aeronautics and Astronautics, Long Beach, CA. Lee, Mortari (b0090) May 2017; 40 Arnas (b0015) 2018 Draim (b0065) 1987; 10 Alary, D., Giannopapa, C., Hedman, N., Hodgkins, K., Li, S., Murthi, K., Sanchez-Aranzamendi, M., Stubbe, P., Volynskaya, O., Wang, G., 2018. In: Schrogl, K.U., Jorgenson, C., Robinson, J., Soucek, A., (Eds.), Space Traffic Management - Towards a Roadmap for Implementation. International Academy of Astronautics, Paris, France. Lee, Avendaño, Mortari (b0085) 2015; 156 Mortari, Davis, Owis, Dwidar (b0115) 2013; 4 Arnas, D., Lifson, M., Linares, R., Avenda no, M., 2020. Low Earth Orbit slotting for Space Traffic Management using Flower Constellation Theory. In: AIAA Scitech 2020 Forum. p. 0721. Weeden, Chow (b0185) 2012; 28 Watson (b0175) 2012 Letizia, Lemmens, Bastida Virgili, Krag (b0095) 2019; 161 Avendaño, M., Arnas, D., Linares, R., Lifson, M., 2020. Efficient search of optimal Flower Constellations. arXiv prepint 2003.11970. Dufour, F., 2003. Coverage optimization of elliptical satellite constellations with an extended satellite triplet method. In: 54th International Astronautical Congress, paper number IAC-03-A.3.02. International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Bremen, Germany. Arnas, Casanova, Tresaco (b0020) 2017; 142 Jakhu (b0080) 2017 Portillo, Cameron, Crawley (b0150) 2019; 159 Noyes (b0135) 2013 . Speckman, Lang, Boyce (b0160) 1990 Avendaño, Davis, Mortari (b0045) 2013; 116 Mortari, Wilkins (b0130) 2008; 44 Wilkins, Mortari (b0190) Jul 2008; 44 Mortari, De Sanctis, Lucente (b0120) 2011; 99 SpaceX, 2019. Starlink. (last accessed on December 1, 2019) Arnas, Casanova, Tresaco, Mortari (b0030) 2017; 129 Luders (b0100) 1961; 31 Anilkumar, A., Aoyama, S., Baseley-Walker, B., Bilimoria, K., Curran, C., Drees, K., Giorgi, D., Greneche, E., Hetrick, R.B., Jing, M., Leshner, R.B., Liao, X., Maruyama, K., Marvao, R., Meijer, L., Michalski, X., Ono, A., Oprong, A.A., Pillokeit, S., Shortt, K., Smallhorn, T., Tegnerud, E., Ueta, A.Y., Tió, M.V., Weeden, B., Gao, W., Shen, W., Western, O.K., Zhang, G., Zavaleta, J., 2007. Space Traffic Management Final Report. Tech. rep. International Space University, Beijing, China. Telesat, 2019. Telesat LEO - Why LEO? (last accessed on December 1, 2019) Marzano, Cimini, Memmo, Montopoli, Rossi, De Sanctis, Lucente, Mortari, Di Sabatino (b0105) 2009; 47 10.1016/j.asr.2020.04.021_b0005 Watson (10.1016/j.asr.2020.04.021_b0175) 2012 Mortari (10.1016/j.asr.2020.04.021_b0120) 2011; 99 Arnas (10.1016/j.asr.2020.04.021_b0020) 2017; 142 10.1016/j.asr.2020.04.021_b0060 Portillo (10.1016/j.asr.2020.04.021_b0150) 2019; 159 Mortari (10.1016/j.asr.2020.04.021_b0125) 2004; 52 10.1016/j.asr.2020.04.021_b0180 Walker (10.1016/j.asr.2020.04.021_b0170) 1984; 37 10.1016/j.asr.2020.04.021_b0040 De Sanctis (10.1016/j.asr.2020.04.021_b0055) 2008 Mortari (10.1016/j.asr.2020.04.021_b0130) 2008; 44 10.1016/j.asr.2020.04.021_b0140 10.1016/j.asr.2020.04.021_b0165 Lee (10.1016/j.asr.2020.04.021_b0090) 2017; 40 Arnas (10.1016/j.asr.2020.04.021_b0015) 2018 Wilkins (10.1016/j.asr.2020.04.021_b0190) 2008; 44 Park (10.1016/j.asr.2020.04.021_b0145) 2005 Jakhu (10.1016/j.asr.2020.04.021_b0080) 2017 Arnas (10.1016/j.asr.2020.04.021_b0025) 2017; 128 Draim (10.1016/j.asr.2020.04.021_b0065) 1987; 10 Marzano (10.1016/j.asr.2020.04.021_b0105) 2009; 47 Letizia (10.1016/j.asr.2020.04.021_b0095) 2019; 161 Gardner (10.1016/j.asr.2020.04.021_b0075) 1990; 2 10.1016/j.asr.2020.04.021_b0050 Lee (10.1016/j.asr.2020.04.021_b0085) 2015; 156 Noyes (10.1016/j.asr.2020.04.021_b0135) 2013 10.1016/j.asr.2020.04.021_b0070 Avendaño (10.1016/j.asr.2020.04.021_b0045) 2013; 116 10.1016/j.asr.2020.04.021_b0010 McManus (10.1016/j.asr.2020.04.021_b0110) 2016; 63 Mortari (10.1016/j.asr.2020.04.021_b0115) 2013; 4 Speckman (10.1016/j.asr.2020.04.021_b0160) 1990 Arnas (10.1016/j.asr.2020.04.021_b0030) 2017; 129 Weeden (10.1016/j.asr.2020.04.021_b0185) 2012; 28 10.1016/j.asr.2020.04.021_b0035 Luders (10.1016/j.asr.2020.04.021_b0100) 1961; 31 10.1016/j.asr.2020.04.021_b0155 |
References_xml | – volume: 44 start-page: 953 year: 2008 end-page: 963 ident: b0130 article-title: Flower constellation set theory part I: compatibility and phasing publication-title: IEEE Trans. Aerosp. Electron. Syst. – reference: Alary, D., Giannopapa, C., Hedman, N., Hodgkins, K., Li, S., Murthi, K., Sanchez-Aranzamendi, M., Stubbe, P., Volynskaya, O., Wang, G., 2018. In: Schrogl, K.U., Jorgenson, C., Robinson, J., Soucek, A., (Eds.), Space Traffic Management - Towards a Roadmap for Implementation. International Academy of Astronautics, Paris, France. – volume: 156 start-page: 3633 year: 2015 end-page: 3648 ident: b0085 article-title: Uniform and weighted coverage for large lattice flower constellations publication-title: Adv. Astronaut. Sci. – volume: 99 start-page: 2008 year: 2011 end-page: 2019 ident: b0120 article-title: Design of flower constellations for telecommunication services publication-title: Proc. IEEE – volume: 2 start-page: 335 year: 1990 end-page: 358 ident: b0075 article-title: The nature of common-pool resource problems publication-title: Rationality Soc. – start-page: 866 year: 1990 end-page: 874 ident: b0160 article-title: An analysis of the line of sight vector between two satellites in common altitude circular orbits publication-title: Astrodynamics Conference, 1990, Paper Number AIAA 90-2988-CP – volume: 63 start-page: 263 year: 2016 end-page: 286 ident: b0110 article-title: Establishing a formation of small satellites in a lunar flower constellation publication-title: J. Astronaut. Sci. – start-page: 589 year: 2008 end-page: 598 ident: b0055 article-title: Flower constellations for telemedicine services publication-title: Satellite Communications and Navigation Systems, Signals and Communication Technology – reference: OneWeb, 2019. Technology. (last accessed on December 1, 2019) – reference: De Sanctis, M., Rossi, T., Lucente, M., Ruggieri, M., Mortari, D., Izzo, D., March 2007. Flower constellation of orbiters for martian communication. In: 2007 IEEE Aerospace Conference. IEEE, Big Sky, Montana, USA. – volume: 44 start-page: 964 year: Jul 2008 end-page: 976 ident: b0190 article-title: Flower constellation set theory Part II: secondary paths and equivalency publication-title: IEEE Trans. Aerospace Electron. Syst. – reference: Arnas, D., Lifson, M., Linares, R., Avenda no, M., 2020. Low Earth Orbit slotting for Space Traffic Management using Flower Constellation Theory. In: AIAA Scitech 2020 Forum. p. 0721. – volume: 128 start-page: 197 year: 2017 end-page: 219 ident: b0025 article-title: Time distributions in satellite constellation design publication-title: Celestial Mech. Dyn. Astron. – volume: 37 start-page: 559 year: 1984 end-page: 572 ident: b0170 article-title: Satellite constellations publication-title: J. Br. Interplanet. Soc. – volume: 40 start-page: 1261 year: May 2017 end-page: 1269 ident: b0090 article-title: Design of constellations for Earth observation with intersatellite links publication-title: J. Guidance Control Dyn. – volume: 116 start-page: 325 year: 2013 end-page: 337 ident: b0045 article-title: The 2-D lattice theory of flower constellations publication-title: Celestial Mech. Dyn. Astron. – volume: 47 start-page: 3107 year: 2009 end-page: 3122 ident: b0105 article-title: Flower constellation of millimeter-wave radiometers for tropospheric monitoring at pseudogeostationary scale publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 28 start-page: 166 year: 2012 end-page: 172 ident: b0185 article-title: Taking a common-pool resources approach to space sustainability: A framework and potential policies publication-title: Space Policy – start-page: 359 year: 2017 end-page: 381 ident: b0080 article-title: Regulatory process for communications satellite frequency allocations publication-title: Handbook of Satellite Applications – volume: 161 start-page: 348 year: 2019 end-page: 362 ident: b0095 article-title: Application of a debris index for global evaluation of mitigation strategies publication-title: Acta Astronaut. – volume: 52 start-page: 107 year: 2004 end-page: 127 ident: b0125 article-title: The flower constellations publication-title: J. Astronaut. Sci. – year: 2013 ident: b0135 article-title: Characterization of the Effects of a Sun-Synchronous Orbit Slot Architecture on the Earth’s Orbital Debris Environment – volume: 10 start-page: 492 year: 1987 end-page: 499 ident: b0065 article-title: A common-period four-satellite continuous global coverage constellation publication-title: J. Guidance Control Dyn. – volume: 129 start-page: 433 year: 2017 end-page: 448 ident: b0030 article-title: 3-dimensional necklace flower constellations publication-title: Celestial Mech. Dyn. Astron. – reference: Bilimoria, K.D., Krieger, R.A., 2011. Slot Architecture for Separating Satellites in Sun-Synchronous Orbits. In: AIAA Space, paper number 2011-7184. No. 2011-7184. American Institute of Aeronautics and Astronautics, Long Beach, CA. – start-page: 1516 year: 2005 end-page: 1523 ident: b0145 article-title: Comparisons between GalileoSat and Global Navigation Flower Constellations publication-title: 2005 IEEE Aerospace Conference – reference: Anilkumar, A., Aoyama, S., Baseley-Walker, B., Bilimoria, K., Curran, C., Drees, K., Giorgi, D., Greneche, E., Hetrick, R.B., Jing, M., Leshner, R.B., Liao, X., Maruyama, K., Marvao, R., Meijer, L., Michalski, X., Ono, A., Oprong, A.A., Pillokeit, S., Shortt, K., Smallhorn, T., Tegnerud, E., Ueta, A.Y., Tió, M.V., Weeden, B., Gao, W., Shen, W., Western, O.K., Zhang, G., Zavaleta, J., 2007. Space Traffic Management Final Report. Tech. rep. International Space University, Beijing, China. – year: 2018 ident: b0015 article-title: Necklace Flower Constellations – reference: Weeden, B., Shortt, K., 2008. Development of an Architecture of Sun-Synchronous Orbital Slots to Minimize Conjunctions. In: SpaceOps 2008, paper number AIAA 2008-3547. pp. 1–15. – volume: 142 start-page: 18 year: 2017 end-page: 28 ident: b0020 article-title: 2D Necklace Flower Constellations publication-title: Acta Astronaut. – reference: Telesat, 2019. Telesat LEO - Why LEO? (last accessed on December 1, 2019) – reference: Dufour, F., 2003. Coverage optimization of elliptical satellite constellations with an extended satellite triplet method. In: 54th International Astronautical Congress, paper number IAC-03-A.3.02. International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law, Bremen, Germany. – reference: . – reference: SpaceX, 2019. Starlink. (last accessed on December 1, 2019) – volume: 4 start-page: 260 year: 2013 end-page: 266 ident: b0115 article-title: Reliable global navigation system using flower constellation publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 31 start-page: 179 year: 1961 end-page: 184 ident: b0100 article-title: Satellite networks for continuous zonal coverage publication-title: ARS J. – volume: 159 start-page: 123 year: 2019 end-page: 135 ident: b0150 article-title: A technical comparison of three low earth orbit satellite constellation systems to provide global broadband publication-title: Acta Astronaut. – reference: Avendaño, M., Arnas, D., Linares, R., Lifson, M., 2020. Efficient search of optimal Flower Constellations. arXiv prepint 2003.11970. – year: 2012 ident: b0175 article-title: Sun-Synchronous Orbit Slot Architecture Analysis and Development – ident: 10.1016/j.asr.2020.04.021_b0010 – ident: 10.1016/j.asr.2020.04.021_b0165 – volume: 159 start-page: 123 year: 2019 ident: 10.1016/j.asr.2020.04.021_b0150 article-title: A technical comparison of three low earth orbit satellite constellation systems to provide global broadband publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2019.03.040 – volume: 99 start-page: 2008 issue: 11 year: 2011 ident: 10.1016/j.asr.2020.04.021_b0120 article-title: Design of flower constellations for telecommunication services publication-title: Proc. IEEE doi: 10.1109/JPROC.2011.2158766 – ident: 10.1016/j.asr.2020.04.021_b0140 – start-page: 866 year: 1990 ident: 10.1016/j.asr.2020.04.021_b0160 article-title: An analysis of the line of sight vector between two satellites in common altitude circular orbits – year: 2013 ident: 10.1016/j.asr.2020.04.021_b0135 – ident: 10.1016/j.asr.2020.04.021_b0180 doi: 10.2514/6.2008-3547 – ident: 10.1016/j.asr.2020.04.021_b0050 doi: 10.2514/6.2011-7184 – start-page: 359 year: 2017 ident: 10.1016/j.asr.2020.04.021_b0080 article-title: Regulatory process for communications satellite frequency allocations – volume: 31 start-page: 179 issue: 2 year: 1961 ident: 10.1016/j.asr.2020.04.021_b0100 article-title: Satellite networks for continuous zonal coverage publication-title: ARS J. doi: 10.2514/8.5422 – year: 2012 ident: 10.1016/j.asr.2020.04.021_b0175 – volume: 129 start-page: 433 issue: 4 year: 2017 ident: 10.1016/j.asr.2020.04.021_b0030 article-title: 3-dimensional necklace flower constellations publication-title: Celestial Mech. Dyn. Astron. doi: 10.1007/s10569-017-9789-1 – volume: 52 start-page: 107 year: 2004 ident: 10.1016/j.asr.2020.04.021_b0125 article-title: The flower constellations publication-title: J. Astronaut. Sci. doi: 10.1007/BF03546424 – volume: 161 start-page: 348 issue: February year: 2019 ident: 10.1016/j.asr.2020.04.021_b0095 article-title: Application of a debris index for global evaluation of mitigation strategies publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2019.05.003 – start-page: 1516 year: 2005 ident: 10.1016/j.asr.2020.04.021_b0145 article-title: Comparisons between GalileoSat and Global Navigation Flower Constellations – year: 2018 ident: 10.1016/j.asr.2020.04.021_b0015 – start-page: 589 year: 2008 ident: 10.1016/j.asr.2020.04.021_b0055 article-title: Flower constellations for telemedicine services – volume: 156 start-page: 3633 year: 2015 ident: 10.1016/j.asr.2020.04.021_b0085 article-title: Uniform and weighted coverage for large lattice flower constellations publication-title: Adv. Astronaut. Sci. – ident: 10.1016/j.asr.2020.04.021_b0005 – volume: 40 start-page: 1261 issue: 5 year: 2017 ident: 10.1016/j.asr.2020.04.021_b0090 article-title: Design of constellations for Earth observation with intersatellite links publication-title: J. Guidance Control Dyn. doi: 10.2514/1.G001710 – volume: 116 start-page: 325 issue: 4 year: 2013 ident: 10.1016/j.asr.2020.04.021_b0045 article-title: The 2-D lattice theory of flower constellations publication-title: Celestial Mech. Dyn. Astron. doi: 10.1007/s10569-013-9493-8 – volume: 44 start-page: 953 issue: 3 year: 2008 ident: 10.1016/j.asr.2020.04.021_b0130 article-title: Flower constellation set theory part I: compatibility and phasing publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2008.4655355 – ident: 10.1016/j.asr.2020.04.021_b0060 doi: 10.1109/AERO.2007.352713 – volume: 47 start-page: 3107 issue: 9 year: 2009 ident: 10.1016/j.asr.2020.04.021_b0105 article-title: Flower constellation of millimeter-wave radiometers for tropospheric monitoring at pseudogeostationary scale publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2008.2012349 – volume: 63 start-page: 263 issue: 4 year: 2016 ident: 10.1016/j.asr.2020.04.021_b0110 article-title: Establishing a formation of small satellites in a lunar flower constellation publication-title: J. Astronaut. Sci. doi: 10.1007/s40295-016-0096-y – volume: 10 start-page: 492 issue: 5 year: 1987 ident: 10.1016/j.asr.2020.04.021_b0065 article-title: A common-period four-satellite continuous global coverage constellation publication-title: J. Guidance Control Dyn. doi: 10.2514/3.20244 – volume: 128 start-page: 197 issue: 2–3 year: 2017 ident: 10.1016/j.asr.2020.04.021_b0025 article-title: Time distributions in satellite constellation design publication-title: Celestial Mech. Dyn. Astron. doi: 10.1007/s10569-016-9747-3 – ident: 10.1016/j.asr.2020.04.021_b0040 doi: 10.1016/j.actaastro.2020.10.026 – ident: 10.1016/j.asr.2020.04.021_b0155 – volume: 142 start-page: 18 year: 2017 ident: 10.1016/j.asr.2020.04.021_b0020 article-title: 2D Necklace Flower Constellations publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2017.10.017 – volume: 37 start-page: 559 year: 1984 ident: 10.1016/j.asr.2020.04.021_b0170 article-title: Satellite constellations publication-title: J. Br. Interplanet. Soc. – volume: 2 start-page: 335 issue: 3 year: 1990 ident: 10.1016/j.asr.2020.04.021_b0075 article-title: The nature of common-pool resource problems publication-title: Rationality Soc. doi: 10.1177/1043463190002003005 – volume: 44 start-page: 964 issue: 3 year: 2008 ident: 10.1016/j.asr.2020.04.021_b0190 article-title: Flower constellation set theory Part II: secondary paths and equivalency publication-title: IEEE Trans. Aerospace Electron. Syst. doi: 10.1109/TAES.2008.4655356 – ident: 10.1016/j.asr.2020.04.021_b0070 doi: 10.2514/6.IAC-03-A.3.02 – volume: 4 start-page: 260 issue: 2 year: 2013 ident: 10.1016/j.asr.2020.04.021_b0115 article-title: Reliable global navigation system using flower constellation publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: 10.1016/j.asr.2020.04.021_b0035 doi: 10.2514/6.2020-0721 – volume: 28 start-page: 166 issue: 3 year: 2012 ident: 10.1016/j.asr.2020.04.021_b0185 article-title: Taking a common-pool resources approach to space sustainability: A framework and potential policies publication-title: Space Policy doi: 10.1016/j.spacepol.2012.06.004 |
SSID | ssj0012770 |
Score | 2.4138672 |
Snippet | This work proposes the use of 2D Lattice Flower Constellations (2D-LFCs) to facilitate the design of a Low Earth Orbit (LEO) slotting system to avoid... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3696 |
SubjectTerms | Orbit design Orbital slotting Satellite constellations Space mechanics Space traffic management |
Title | Definition of Low Earth Orbit slotting architectures using 2D lattice flower constellations |
URI | https://dx.doi.org/10.1016/j.asr.2020.04.021 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-wwFD6IIlwXoqPimyzEhVCnTdMmsxx8ML4FryC4KEma3DsyTsVWxI2_3Zy0lbngdeGuhATak9OcL-d8-QKwo4XlXLttqhapDJiLOIGKZRTk2jg0L5IeVXh2-OIyHdyy07vkbgoO2rMwSKts1v56TferddPSbazZfRoOuzeoxIIlR-r81IF4VPxkjKOv779_0jwiynmdZ-FxgL3byqbneMkSJUFp6NVOafR1bJqIN8cLMN8ARdKv32URpsy4A6v9ElPXxeMb2SX-uc5MlB2Ym1AW7MDsdd2-BPeHxg7HnphFCkvOi1dy5D7wL7l6VsOKlKPCM5_JZEWhJEiH_0PoIRnJCulxxI7wOjWiEU4iYcq76zLcHh_9PhgEzY0KgY5ZWAVxbhKV5HGkqZC5dVjOWYelOeNaCmtVlGvrIIASqdsx93IhrNYOsCltODU6T-IVmB4XY7MKJDVMstj97UILZlKpdEplGDPDelRyI9YgbG2Z6UZuHG-9GGUtr-whc-bP0PxZyDJn_jXY-xzyVGttfNeZtROU_eMwmYsF_x-2_rNhG_CLIpnFp182Ybp6fjFbDo1Uatu72zbM9E_OBpcfTpzfaQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED4xpmnjAY0CgjGGH9AeJoUmtpO4jwhadaOwSSsSEg-W7dhbp65BJGjaC799ZyepOmnbw94iyycl54vv893nO4BjI1yeGzymGpGpiKPHiTRTSVQYi2hepAOq_d3hy6tsfM0_3KQ3a3DW3YXxtMp272_29LBbtyP9Vpv9u9ms_9lXYvEpR4p2iiCePYGn3Lc5QKM-eVzyPBKa502gJWeRn96lNgPJS1W-JiiNQ7lTmvzZOa04nNFL2GyRIjltXmYL1uyiB3unlY9dl99_krckPDehiaoHGyulBXvw7FMzvg2359bNFoGZRUpHJuUPMsQv_Eo-3utZTap5GajPZDWlUBHPh_9C6DmZq9rz44ib-35qxHg86RlTwV534Ho0nJ6No7alQmQYj-uIFTbVacESQ4UqHII51A7PCp4bJZzTSWEcYgAtMjwyDwohnDGI2LSxObWmSNkurC_Khd0DklmuOMPfXRjBbaa0yaiKGbd8QFVuxT7EnS6laeuN-7YXc9kRy75JVL_06pcxl6j-fXi3FLlrim38azLvFkj-ZjESncHfxV79n9gRPB9PLydy8v7q4gBeUM9sCbGY17Be3z_YQ4QmtX4TTO8Xdsng8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Definition+of+Low+Earth+Orbit+slotting+architectures+using+2D+lattice+flower+constellations&rft.jtitle=Advances+in+space+research&rft.au=Arnas%2C+David&rft.au=Lifson%2C+Miles&rft.au=Linares%2C+Richard&rft.au=Avenda%C3%B1o%2C+Mart%C3%ADn+E.&rft.date=2021-06-01&rft.pub=Elsevier+B.V&rft.issn=0273-1177&rft.eissn=1879-1948&rft.volume=67&rft.issue=11&rft.spage=3696&rft.epage=3711&rft_id=info:doi/10.1016%2Fj.asr.2020.04.021&rft.externalDocID=S0273117720302593 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0273-1177&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0273-1177&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0273-1177&client=summon |