On the minimal Hamming weight of a multi-base representation

Given a finite set of bases b1, b2, …, br (integers greater than 1), a multi-base representation of an integer n is a sum with summands db1α1b2α2⋯brαr, where the αj are nonnegative integers and the digits d are taken from a fixed finite set. We consider multi-base representations with at least two b...

Full description

Saved in:
Bibliographic Details
Published inJournal of number theory Vol. 208; pp. 168 - 179
Main Authors Krenn, Daniel, Suppakitpaisarn, Vorapong, Wagner, Stephan
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.03.2020
Subjects
Online AccessGet full text
ISSN0022-314X
1096-1658
1096-1658
DOI10.1016/j.jnt.2019.07.023

Cover

Abstract Given a finite set of bases b1, b2, …, br (integers greater than 1), a multi-base representation of an integer n is a sum with summands db1α1b2α2⋯brαr, where the αj are nonnegative integers and the digits d are taken from a fixed finite set. We consider multi-base representations with at least two bases that are multiplicatively independent. Our main result states that the order of magnitude of the minimal Hamming weight of an integer n, i.e., the minimal number of nonzero summands in a representation of n, is log⁡n/(log⁡log⁡n). This is independent of the number of bases, the bases themselves, and the digit set. For the proof, the existing upper bound for prime bases is generalized to multiplicatively independent bases; for the required analysis of the natural greedy algorithm, an auxiliary result in Diophantine approximation is derived. The lower bound follows by a counting argument and alternatively by using communication complexity; thereby improving the existing bounds and closing the gap in the order of magnitude. This implies also that the greedy algorithm terminates after O(log⁡n/log⁡log⁡n) steps, and that this bound is sharp.
AbstractList Given a finite set of bases b1, b2, …, br (integers greater than 1), a multi-base representation of an integer n is a sum with summands db1α1b2α2⋯brαr, where the αj are nonnegative integers and the digits d are taken from a fixed finite set. We consider multi-base representations with at least two bases that are multiplicatively independent. Our main result states that the order of magnitude of the minimal Hamming weight of an integer n, i.e., the minimal number of nonzero summands in a representation of n, is log⁡n/(log⁡log⁡n). This is independent of the number of bases, the bases themselves, and the digit set. For the proof, the existing upper bound for prime bases is generalized to multiplicatively independent bases; for the required analysis of the natural greedy algorithm, an auxiliary result in Diophantine approximation is derived. The lower bound follows by a counting argument and alternatively by using communication complexity; thereby improving the existing bounds and closing the gap in the order of magnitude. This implies also that the greedy algorithm terminates after O(log⁡n/log⁡log⁡n) steps, and that this bound is sharp.
Author Wagner, Stephan
Krenn, Daniel
Suppakitpaisarn, Vorapong
Author_xml – sequence: 1
  givenname: Daniel
  surname: Krenn
  fullname: Krenn, Daniel
  email: math@danielkrenn.at, daniel.krenn@aau.at
  organization: Department of Mathematics, Alpen-Adria-Universität Klagenfurt, Universitätsstraße 65–67, 9020 Klagenfurt, Austria
– sequence: 2
  givenname: Vorapong
  surname: Suppakitpaisarn
  fullname: Suppakitpaisarn, Vorapong
  email: vorapong@is.s.u-tokyo.ac.jp
  organization: Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
– sequence: 3
  givenname: Stephan
  surname: Wagner
  fullname: Wagner, Stephan
  email: swagner@sun.ac.za
  organization: Department of Mathematical Sciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
BookMark eNqN0EFLwzAUwPEgE9ymH8Bbv0DrS9o0C3qRoU4Y7KLgLaTt65bSpiPJHPv2dtSTh-Ep7_J7vH9mZGJ7i4TcU0go0PyhSRobEgZUJiASYOkVmVKQeUxzvpiQKQBjcUqzrxsy874BoJQLPiVPGxuFHUadsabTbbTS3TBuoyOa7S5EfR3pqDu0wcSF9hg53Dv0aIMOpre35LrWrce733dOPl9fPpareL15e18-r-MyzSDEKVSSMy0zKliea1pxAbhgEtMcOOeyLLiWKUoUdc7qjIlCQ8VlhghZkdZFOids3Huwe3066rZVezec606Kgjr3q0YN_ercr0CooX9AdESl6713WP_LiD-mNGNqcNq0F-XjKHH4h2-DTvnSoC2xMg7LoKreXNA_8XqG9w
CitedBy_id crossref_primary_10_1016_j_ipl_2021_106226
crossref_primary_10_1109_ACCESS_2020_2981555
Cites_doi 10.1109/TC.2004.14
10.2298/AADM150917018K
10.1023/A:1008306223194
10.1090/S0025-5718-07-02048-0
10.1051/ita/1990240605311
10.1090/S0002-9939-2011-10764-0
10.1007/s00605-012-0443-4
10.1023/A:1004715619287
10.1109/12.805158
10.1007/s10623-005-6158-y
10.5802/jtnb.840
10.1016/S0065-2458(08)60342-3
10.1007/s10623-009-9276-0
10.1090/S0025-5718-05-01769-2
10.5486/PMD.2017.7562
10.1587/transfun.E98.A.1310
10.1007/s10474-013-0309-9
10.1007/s00145-004-0218-8
10.1016/S0020-0190(98)00044-1
ContentType Journal Article
Copyright 2019 The Authors
Copyright_xml – notice: 2019 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.jnt.2019.07.023
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-1658
EndPage 179
ExternalDocumentID 10.1016/j.jnt.2019.07.023
10_1016_j_jnt_2019_07_023
S0022314X19302768
GrantInformation_xml – fundername: National Research Foundation
  grantid: 96236
  funderid: https://doi.org/10.13039/501100001321
– fundername: Austrian Science Fund
  grantid: P 28466-N35
  funderid: https://doi.org/10.13039/501100002428
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
186
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HF~
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
WH7
WUQ
XJT
XOL
XPP
YQT
ZCG
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c340t-30d952a9417266a1d570e829e3605559cb5a93e9e7f62f427ba0d594ee04b3fb3
IEDL.DBID .~1
ISSN 0022-314X
1096-1658
IngestDate Sun Oct 26 03:49:47 EDT 2025
Wed Oct 01 05:20:56 EDT 2025
Thu Apr 24 22:57:04 EDT 2025
Fri Feb 23 02:33:32 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords 94A15
11J25
68R05
11A63
Minimal weight
Multi-base representations
Hamming weight
Language English
License This is an open access article under the CC BY license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-30d952a9417266a1d570e829e3605559cb5a93e9e7f62f427ba0d594ee04b3fb3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0022314X19302768
PageCount 12
ParticipantIDs unpaywall_primary_10_1016_j_jnt_2019_07_023
crossref_primary_10_1016_j_jnt_2019_07_023
crossref_citationtrail_10_1016_j_jnt_2019_07_023
elsevier_sciencedirect_doi_10_1016_j_jnt_2019_07_023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationTitle Journal of number theory
PublicationYear 2020
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Reitwiesner (br0250) 1960
Morain, Olivos (br0220) 1990; 24
Cohen (br0090) 2005; 18
Muir, Stinson (br0230) 2006; 75
Yu, Wang, Li, Tian (br0300) 2013
Krenn, Ralaivaosaona, Wagner (br0170) 2014
Dimitrov, Howe (br0100) 2011; 139
Phillips, Burgess (br0240) 2004; 53
Grabner, Heuberger (br0140) 2006; 40
Tijdeman (br0280) 1974; 28
Dimitrov, Jullien, Miller (br0120) 1998; 66
Thuswaldner (br0270) 1999; 38
Avanzi, Dimitrov, Doche, Sica (br0020) 2006; vol. 4284
Chalermsook, Imai, Suppakitpaisarn (br0080) 2015; E98.A
Baker (br0030) 1990
Heuberger, Krenn (br0150) 2013; 25
Bertók (br0040) 2013; 141
Kuipers, Niederreiter (br0200) 1974
Yao (br0290) 1979
Bertók, Hajdu, Luca, Sharma (br0050) 2017; 90
Bugeaud (br0070) 2015; 38
Heuberger, Muir (br0160) 2009; 52
Berthé, Imbert (br0060) 2009; 11
Solinas (br0260) 2000; 19
Kushilevitz (br0210) 1997; 44
Dimitrov, Jullien, Miller (br0130) 1999; 48
Dimitrov, Imbert, Mishra (br0110) 2008; 77
Krenn, Thuswaldner, Ziegler (br0190) 2013; 171
Alessandri, Berthé (br0010) 1998; 44
Krenn, Ralaivaosaona, Wagner (br0180) 2015; 9
Morain (10.1016/j.jnt.2019.07.023_br0220) 1990; 24
Krenn (10.1016/j.jnt.2019.07.023_br0170) 2014
Kushilevitz (10.1016/j.jnt.2019.07.023_br0210) 1997; 44
Cohen (10.1016/j.jnt.2019.07.023_br0090) 2005; 18
Grabner (10.1016/j.jnt.2019.07.023_br0140) 2006; 40
Bugeaud (10.1016/j.jnt.2019.07.023_br0070) 2015; 38
Dimitrov (10.1016/j.jnt.2019.07.023_br0130) 1999; 48
Heuberger (10.1016/j.jnt.2019.07.023_br0150) 2013; 25
Reitwiesner (10.1016/j.jnt.2019.07.023_br0250) 1960
Chalermsook (10.1016/j.jnt.2019.07.023_br0080) 2015; E98.A
Tijdeman (10.1016/j.jnt.2019.07.023_br0280) 1974; 28
Avanzi (10.1016/j.jnt.2019.07.023_br0020) 2006; vol. 4284
Solinas (10.1016/j.jnt.2019.07.023_br0260) 2000; 19
Alessandri (10.1016/j.jnt.2019.07.023_br0010) 1998; 44
Heuberger (10.1016/j.jnt.2019.07.023_br0160) 2009; 52
Yao (10.1016/j.jnt.2019.07.023_br0290) 1979
Phillips (10.1016/j.jnt.2019.07.023_br0240) 2004; 53
Baker (10.1016/j.jnt.2019.07.023_br0030) 1990
Berthé (10.1016/j.jnt.2019.07.023_br0060) 2009; 11
Muir (10.1016/j.jnt.2019.07.023_br0230) 2006; 75
Yu (10.1016/j.jnt.2019.07.023_br0300) 2013
Bertók (10.1016/j.jnt.2019.07.023_br0050) 2017; 90
Dimitrov (10.1016/j.jnt.2019.07.023_br0110) 2008; 77
Thuswaldner (10.1016/j.jnt.2019.07.023_br0270) 1999; 38
Dimitrov (10.1016/j.jnt.2019.07.023_br0120) 1998; 66
Krenn (10.1016/j.jnt.2019.07.023_br0180) 2015; 9
Kuipers (10.1016/j.jnt.2019.07.023_br0200) 1974
Dimitrov (10.1016/j.jnt.2019.07.023_br0100) 2011; 139
Krenn (10.1016/j.jnt.2019.07.023_br0190) 2013; 171
Bertók (10.1016/j.jnt.2019.07.023_br0040) 2013; 141
References_xml – year: 1974
  ident: br0200
  article-title: Uniform Distribution of Sequences
  publication-title: Pure and Applied Mathematics
– volume: E98.A
  start-page: 1310
  year: 2015
  end-page: 1312
  ident: br0080
  article-title: Two lower bounds for shortest double-base number system
  publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
– volume: 40
  start-page: 25
  year: 2006
  end-page: 39
  ident: br0140
  article-title: On the number of optimal base 2 representations of integers
  publication-title: Des. Codes Cryptogr.
– start-page: 231
  year: 1960
  end-page: 308
  ident: br0250
  article-title: Binary Arithmetic, Advances in Computers, vol. 1
– volume: 28
  start-page: 159
  year: 1974
  end-page: 162
  ident: br0280
  article-title: On the maximal distance between integers composed of small primes
  publication-title: Compos. Math.
– start-page: 209
  year: 1979
  end-page: 213
  ident: br0290
  article-title: Some complexity questions related to distributive computing (preliminary report)
  publication-title: Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing
– start-page: 229
  year: 2014
  end-page: 240
  ident: br0170
  article-title: On the number of multi-base representations of an integer
  publication-title: 25th International Conference on Probabilistic, Combinatorial, and Asymptotic Methods for the Analysis of Algorithms (AofA'14), DMTCS-HAL Proceedings, Vol. BA
– volume: 11
  start-page: 153
  year: 2009
  end-page: 172
  ident: br0060
  article-title: Diophantine approximation, Ostrowski numeration and the double-base number system
  publication-title: Discrete Math. Theor. Comput. Sci.
– volume: 53
  start-page: 666
  year: 2004
  end-page: 677
  ident: br0240
  article-title: Minimal weight digit set conversions
  publication-title: IEEE Trans. Comput.
– volume: 141
  start-page: 291
  year: 2013
  end-page: 300
  ident: br0040
  article-title: Representing integers as sums or differences of general power products
  publication-title: Acta Math. Hungar.
– volume: 44
  start-page: 331
  year: 1997
  end-page: 360
  ident: br0210
  article-title: Communication complexity
  publication-title: Adv. Comput.
– volume: 75
  start-page: 369
  year: 2006
  end-page: 384
  ident: br0230
  article-title: Minimality and other properties of the width-
  publication-title: Math. Comp.
– volume: 77
  start-page: 1075
  year: 2008
  end-page: 1104
  ident: br0110
  article-title: The double-base number system and its application to elliptic curve cryptography
  publication-title: Math. Comp.
– volume: 9
  start-page: 285
  year: 2015
  end-page: 312
  ident: br0180
  article-title: Multi-base representations of integers: asymptotic enumeration and central limit theorems
  publication-title: Appl. Anal. Discrete Math.
– volume: vol. 4284
  start-page: 130
  year: 2006
  end-page: 144
  ident: br0020
  article-title: Extending scalar multiplication using double bases
  publication-title: Advances in Cryptology—ASIACRYPT 2006
– volume: 48
  start-page: 1098
  year: 1999
  end-page: 1106
  ident: br0130
  article-title: Theory and applications of the double-base number system
  publication-title: IEEE Trans. Comput.
– start-page: 424
  year: 2013
  end-page: 432
  ident: br0300
  article-title: On the expansion length of triple-base number systems
  publication-title: Progress in Cryptology – AFRICACRYPT 2013
– year: 1990
  ident: br0030
  article-title: Transcendental Number Theory
– volume: 139
  start-page: 3423
  year: 2011
  end-page: 3430
  ident: br0100
  article-title: Lower bounds on the lengths of double-base representations
  publication-title: Proc. Amer. Math. Soc.
– volume: 52
  start-page: 185
  year: 2009
  end-page: 208
  ident: br0160
  article-title: Unbalanced digit sets and the closest choice strategy for minimal weight integer representations
  publication-title: Des. Codes Cryptogr.
– volume: 38
  start-page: 45
  year: 2015
  end-page: 48
  ident: br0070
  article-title: Effective irrationality measures for quotients of logarithms of rational numbers
  publication-title: Hardy-Ramanujan J.
– volume: 19
  start-page: 195
  year: 2000
  end-page: 249
  ident: br0260
  article-title: Efficient arithmetic on Koblitz curves
  publication-title: Des. Codes Cryptogr.
– volume: 38
  start-page: 111
  year: 1999
  end-page: 130
  ident: br0270
  article-title: Summatory functions of digital sums occurring in cryptography
  publication-title: Period. Math. Hungar.
– volume: 25
  start-page: 353
  year: 2013
  end-page: 386
  ident: br0150
  article-title: Optimality of the width-
  publication-title: J. Théor. Nombres Bordeaux
– volume: 171
  start-page: 377
  year: 2013
  end-page: 394
  ident: br0190
  article-title: On linear combinations of units with bounded coefficients and double-base digit expansions
  publication-title: Monatsh. Math.
– volume: 90
  start-page: 181
  year: 2017
  end-page: 194
  ident: br0050
  article-title: On the number of non-zero digits of integers in multi-base representations
  publication-title: Publ. Math. Debrecen
– volume: 24
  start-page: 531
  year: 1990
  end-page: 543
  ident: br0220
  article-title: Speeding up the computations on an elliptic curve using addition-subtraction chains
  publication-title: RAIRO Theor. Inform. Appl.
– volume: 44
  start-page: 103
  year: 1998
  end-page: 132
  ident: br0010
  article-title: Three distance theorems and combinatorics on words
  publication-title: Enseign. Math. (2)
– volume: 66
  start-page: 155
  year: 1998
  end-page: 159
  ident: br0120
  article-title: An algorithm for modular exponentiation
  publication-title: Inform. Process. Lett.
– volume: 18
  start-page: 63
  year: 2005
  end-page: 76
  ident: br0090
  article-title: Analysis of the sliding window powering algorithm
  publication-title: J. Cryptology
– volume: 53
  start-page: 666
  year: 2004
  ident: 10.1016/j.jnt.2019.07.023_br0240
  article-title: Minimal weight digit set conversions
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2004.14
– volume: 9
  start-page: 285
  issue: 2
  year: 2015
  ident: 10.1016/j.jnt.2019.07.023_br0180
  article-title: Multi-base representations of integers: asymptotic enumeration and central limit theorems
  publication-title: Appl. Anal. Discrete Math.
  doi: 10.2298/AADM150917018K
– volume: 19
  start-page: 195
  year: 2000
  ident: 10.1016/j.jnt.2019.07.023_br0260
  article-title: Efficient arithmetic on Koblitz curves
  publication-title: Des. Codes Cryptogr.
  doi: 10.1023/A:1008306223194
– volume: 77
  start-page: 1075
  issue: 262
  year: 2008
  ident: 10.1016/j.jnt.2019.07.023_br0110
  article-title: The double-base number system and its application to elliptic curve cryptography
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-07-02048-0
– year: 1974
  ident: 10.1016/j.jnt.2019.07.023_br0200
  article-title: Uniform Distribution of Sequences
– volume: 24
  start-page: 531
  year: 1990
  ident: 10.1016/j.jnt.2019.07.023_br0220
  article-title: Speeding up the computations on an elliptic curve using addition-subtraction chains
  publication-title: RAIRO Theor. Inform. Appl.
  doi: 10.1051/ita/1990240605311
– volume: 139
  start-page: 3423
  issue: 10
  year: 2011
  ident: 10.1016/j.jnt.2019.07.023_br0100
  article-title: Lower bounds on the lengths of double-base representations
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-2011-10764-0
– volume: 171
  start-page: 377
  issue: 3–4
  year: 2013
  ident: 10.1016/j.jnt.2019.07.023_br0190
  article-title: On linear combinations of units with bounded coefficients and double-base digit expansions
  publication-title: Monatsh. Math.
  doi: 10.1007/s00605-012-0443-4
– volume: 38
  start-page: 111
  issue: 1–2
  year: 1999
  ident: 10.1016/j.jnt.2019.07.023_br0270
  article-title: Summatory functions of digital sums occurring in cryptography
  publication-title: Period. Math. Hungar.
  doi: 10.1023/A:1004715619287
– start-page: 209
  year: 1979
  ident: 10.1016/j.jnt.2019.07.023_br0290
  article-title: Some complexity questions related to distributive computing (preliminary report)
– volume: 38
  start-page: 45
  year: 2015
  ident: 10.1016/j.jnt.2019.07.023_br0070
  article-title: Effective irrationality measures for quotients of logarithms of rational numbers
  publication-title: Hardy-Ramanujan J.
– volume: 48
  start-page: 1098
  year: 1999
  ident: 10.1016/j.jnt.2019.07.023_br0130
  article-title: Theory and applications of the double-base number system
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/12.805158
– volume: 40
  start-page: 25
  issue: 1
  year: 2006
  ident: 10.1016/j.jnt.2019.07.023_br0140
  article-title: On the number of optimal base 2 representations of integers
  publication-title: Des. Codes Cryptogr.
  doi: 10.1007/s10623-005-6158-y
– start-page: 229
  year: 2014
  ident: 10.1016/j.jnt.2019.07.023_br0170
  article-title: On the number of multi-base representations of an integer
– volume: 28
  start-page: 159
  year: 1974
  ident: 10.1016/j.jnt.2019.07.023_br0280
  article-title: On the maximal distance between integers composed of small primes
  publication-title: Compos. Math.
– volume: 25
  start-page: 353
  issue: 2
  year: 2013
  ident: 10.1016/j.jnt.2019.07.023_br0150
  article-title: Optimality of the width-w non-adjacent form: General characterisation and the case of imaginary quadratic bases
  publication-title: J. Théor. Nombres Bordeaux
  doi: 10.5802/jtnb.840
– volume: 44
  start-page: 331
  year: 1997
  ident: 10.1016/j.jnt.2019.07.023_br0210
  article-title: Communication complexity
  publication-title: Adv. Comput.
  doi: 10.1016/S0065-2458(08)60342-3
– start-page: 231
  year: 1960
  ident: 10.1016/j.jnt.2019.07.023_br0250
– volume: 52
  start-page: 185
  year: 2009
  ident: 10.1016/j.jnt.2019.07.023_br0160
  article-title: Unbalanced digit sets and the closest choice strategy for minimal weight integer representations
  publication-title: Des. Codes Cryptogr.
  doi: 10.1007/s10623-009-9276-0
– volume: 11
  start-page: 153
  issue: 1
  year: 2009
  ident: 10.1016/j.jnt.2019.07.023_br0060
  article-title: Diophantine approximation, Ostrowski numeration and the double-base number system
  publication-title: Discrete Math. Theor. Comput. Sci.
– volume: 75
  start-page: 369
  year: 2006
  ident: 10.1016/j.jnt.2019.07.023_br0230
  article-title: Minimality and other properties of the width-w nonadjacent form
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-05-01769-2
– year: 1990
  ident: 10.1016/j.jnt.2019.07.023_br0030
– volume: 90
  start-page: 181
  issue: 1–2
  year: 2017
  ident: 10.1016/j.jnt.2019.07.023_br0050
  article-title: On the number of non-zero digits of integers in multi-base representations
  publication-title: Publ. Math. Debrecen
  doi: 10.5486/PMD.2017.7562
– volume: vol. 4284
  start-page: 130
  year: 2006
  ident: 10.1016/j.jnt.2019.07.023_br0020
  article-title: Extending scalar multiplication using double bases
– volume: E98.A
  start-page: 1310
  issue: 6
  year: 2015
  ident: 10.1016/j.jnt.2019.07.023_br0080
  article-title: Two lower bounds for shortest double-base number system
  publication-title: IEICE Trans. Fundam. Electron. Commun. Comput. Sci.
  doi: 10.1587/transfun.E98.A.1310
– volume: 141
  start-page: 291
  issue: 3
  year: 2013
  ident: 10.1016/j.jnt.2019.07.023_br0040
  article-title: Representing integers as sums or differences of general power products
  publication-title: Acta Math. Hungar.
  doi: 10.1007/s10474-013-0309-9
– volume: 44
  start-page: 103
  issue: 1–2
  year: 1998
  ident: 10.1016/j.jnt.2019.07.023_br0010
  article-title: Three distance theorems and combinatorics on words
  publication-title: Enseign. Math. (2)
– volume: 18
  start-page: 63
  issue: 1
  year: 2005
  ident: 10.1016/j.jnt.2019.07.023_br0090
  article-title: Analysis of the sliding window powering algorithm
  publication-title: J. Cryptology
  doi: 10.1007/s00145-004-0218-8
– start-page: 424
  year: 2013
  ident: 10.1016/j.jnt.2019.07.023_br0300
  article-title: On the expansion length of triple-base number systems
– volume: 66
  start-page: 155
  issue: 3
  year: 1998
  ident: 10.1016/j.jnt.2019.07.023_br0120
  article-title: An algorithm for modular exponentiation
  publication-title: Inform. Process. Lett.
  doi: 10.1016/S0020-0190(98)00044-1
SSID ssj0011575
Score 2.2419615
Snippet Given a finite set of bases b1, b2, …, br (integers greater than 1), a multi-base representation of an integer n is a sum with summands db1α1b2α2⋯brαr, where...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 168
SubjectTerms Hamming weight
Minimal weight
Multi-base representations
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aHsSDb7GikoMnJSW7yT4CXopYitDqwUI9hWQ3OdS6LXZL0V9vkn2golWPgcmDmcB8ZL75AsA5iSnRxEuQ58kE2ZIjEoEWiMUpTanwcOrax_qDsDekt6NgVIpF216YT_V7x8MaZ5by6DGnsemTddAMAwO7G6A5HNx3Hms1cI-OXGWThcgzabWqYH63xk85aGORzcTrUkwmH3JMd7tgZ82dNKGlljy1F7lsJ29fhBv_dPwdsFUiTdgprsYuWFPZHtjs1zKt831wdZdBM4RWX-TZ2NpnbJPK4NK9l8KphgI6xiGyyQ46AcyqWSk7AMPuzcN1D5XfKaCEUJwjglMW-IJRg1nCUHhpEGEV-0yR0Kp-sUQGghHFVKRDX1M_ksJEilGlMJVES3IIGtk0U0cABljrQPtSCo2p9kWsYpkkoRRCMWbWbAFcOZgnpda4_fJiwitS2Zgbx3DrGI4jbhzTAhf1lFkhtLHKmFZR4yVSKBAANwFYNe2yjvDvmxz_y_oENPKXhTo1ECWXZ-XlfAeCkOBn
  priority: 102
  providerName: Unpaywall
Title On the minimal Hamming weight of a multi-base representation
URI https://dx.doi.org/10.1016/j.jnt.2019.07.023
https://doi.org/10.1016/j.jnt.2019.07.023
UnpaywallVersion publishedVersion
Volume 208
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1096-1658
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011575
  issn: 1096-1658
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 1096-1658
  dateEnd: 20211101
  omitProxy: true
  ssIdentifier: ssj0011575
  issn: 1096-1658
  databaseCode: IXB
  dateStart: 19690101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1096-1658
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011575
  issn: 1096-1658
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection EURAC
  customDbUrl:
  eissn: 1096-1658
  dateEnd: 20211101
  omitProxy: true
  ssIdentifier: ssj0011575
  issn: 1096-1658
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1096-1658
  dateEnd: 20211031
  omitProxy: true
  ssIdentifier: ssj0011575
  issn: 1096-1658
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1096-1658
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011575
  issn: 1096-1658
  databaseCode: AKRWK
  dateStart: 19690101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jHtSD-BPnj5GDJyUubZK2AS9zODZl04ODeSpJm8DG7IZuDC_-7SZZW_TgBI8pSVO-lPdeku99D4ALElGiiZcgz5MJsleOSDAtEI9SmlLh4dSlj_X6QWdA74dsWAGtIhfG0ipz27-y6c5a508aOZqN2Whkc3yNa_Po0IQgZm8V2IRfSkNbxeD6s6R5WC0ZViqGm97FzabjeI0zS6f0uNPv9Mlvvmlzkc3Ex1JMJt98T3sX7ORBI2yuvmsPVFS2D7Z7peLq-wG4ecygaUIrFfJq-toTaeOV4NIdfcKphgI68iCyfgs6Lcsi7yg7BIP23XOrg_LKCCghFM8RwSlnvuDUhB9BILyUhVhFPlcksAJePJFMcKK4CnXga-qHUhjQOVUKU0m0JEegmk0zdQwgw1oz7UspNKbaF5GKZJIEUgjFuXlnDeACkzjJZcNt9YpJXPDDxrGBMbYwxjiMDYw1cFkOma00M9Z1pgXQ8Y-Fj41NXzfsqlyUvyc5-d8kp2DLt9trRzk7A9X520KdmxhkLuvuJ6uDjWb3odM3re7w1rQG_afmyxdMcdyh
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwHA5TD-pBfOJ85uBJiUvzaBvwIuKYuullwm4haROYzDp0Q7z4t5tkbdGDEzy2JE35En6P5Pt9AeCEpoxaGmUoinSG_JEjUtwqJNKc5UxFOA_lY737uPPIbgd80ABXVS2Mp1WWtn9m04O1Lt-0SjRb4-HQ1_g61xaxgQtBXG4VpwtgiXGS-Azs_LPmeXgxGV5Lhrvm1dFmIHk9FZ5PGYkg4Enob85peVqM1ce7Go2-OZ_2Olgro0Z4OfuxDdAwxSZY7dWSq29b4OKhgO4Req2QZ9fWb0k7twTfw94nfLFQwcAeRN5xwSBmWRUeFdvgsX3dv-qg8moElFGGJ4jiXHCiBHPxRxyrKOcJNikRhsZewUtkmitBjTCJjYllJNHKoS6YMZhpajXdAYvFS2F2AeTYWm6J1spiZolKTaqzLNZKGSHcN5sAV5jIrNQN99dXjGRFEHuSDkbpYZQ4kQ7GJjitu4xnohnzGrMKaPlj5qUz6vO6ndWT8vcge_8b5Bgsd_q9ruze3N_tgxXic-3APzsAi5PXqTl0AclEH4UF9wV-ltuC
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7aHsSDb7GikoMnJSW7yT4CXopYitDqwUI9hWQ3OdS6LXZL0V9vkn2golWPgcmDmcB8ZL75AsA5iSnRxEuQ58kE2ZIjEoEWiMUpTanwcOrax_qDsDekt6NgVIpF216YT_V7x8MaZ5by6DGnsemTddAMAwO7G6A5HNx3Hms1cI-OXGWThcgzabWqYH63xk85aGORzcTrUkwmH3JMd7tgZ82dNKGlljy1F7lsJ29fhBv_dPwdsFUiTdgprsYuWFPZHtjs1zKt831wdZdBM4RWX-TZ2NpnbJPK4NK9l8KphgI6xiGyyQ46AcyqWSk7AMPuzcN1D5XfKaCEUJwjglMW-IJRg1nCUHhpEGEV-0yR0Kp-sUQGghHFVKRDX1M_ksJEilGlMJVES3IIGtk0U0cABljrQPtSCo2p9kWsYpkkoRRCMWbWbAFcOZgnpda4_fJiwitS2Zgbx3DrGI4jbhzTAhf1lFkhtLHKmFZR4yVSKBAANwFYNe2yjvDvmxz_y_oENPKXhTo1ECWXZ-XlfAeCkOBn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+minimal+Hamming+weight+of+a+multi-base+representation&rft.jtitle=Journal+of+number+theory&rft.au=Krenn%2C+Daniel&rft.au=Suppakitpaisarn%2C+Vorapong&rft.au=Wagner%2C+Stephan&rft.date=2020-03-01&rft.issn=0022-314X&rft.volume=208&rft.spage=168&rft.epage=179&rft_id=info:doi/10.1016%2Fj.jnt.2019.07.023&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jnt_2019_07_023
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-314X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-314X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-314X&client=summon