Nonlinear mechanics of nanotubes conveying fluid

A nonlocal strain gradient elasticity approach is proposed for the mechanical behaviour of fluid-conveying nanotubes; a nonlinear analysis, incorporating stretching, is conducted for a model based on both a nonlocal theory along with a strain gradient one. A clamped–clamped nanotube conveying fluid,...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of engineering science Vol. 133; pp. 132 - 143
Main Authors Farajpour, Ali, Farokhi, Hamed, Ghayesh, Mergen H., Hussain, Shahid
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.12.2018
Elsevier BV
Subjects
Online AccessGet full text
ISSN0020-7225
1879-2197
DOI10.1016/j.ijengsci.2018.08.009

Cover

More Information
Summary:A nonlocal strain gradient elasticity approach is proposed for the mechanical behaviour of fluid-conveying nanotubes; a nonlinear analysis, incorporating stretching, is conducted for a model based on both a nonlocal theory along with a strain gradient one. A clamped–clamped nanotube conveying fluid, as a conservative gyroscopic nanosystem, is considered and the motion energy and size-dependent potential energy are developed via use of constitutive and strain–displacement relations. An energy minimisation is conducted via Hamilton's method for an oscillating nanotube subject to external forces. This gives the nonlinear equation of the motion which is reduced to a high DOF system via Galerkin's technique. As many nanodevices operate near resonance, the resonant motions are obtained using a frequency-continuation method. The effect of different nanosystem/fluid parameters, including fluid/solid interface and the flow speed, on the nonlinear resonance is analysed.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0020-7225
1879-2197
DOI:10.1016/j.ijengsci.2018.08.009