Status of CORC cables and wires for use in high-field magnets and power systems a decade after their introduction

High-field, low-inductance superconducting magnets in particle accelerators and fusion machines require high operating currents, often in combination with high current densities and for some applications conductor bending radii of less than 50 mm. These requirements form a major challenge for magnet...

Full description

Saved in:
Bibliographic Details
Published inSuperconductor science & technology Vol. 32; no. 3; pp. 33001 - 33033
Main Authors van der Laan, D C, Weiss, J D, McRae, D M
Format Journal Article
LanguageEnglish
Published United States IOP Publishing 12.02.2019
Subjects
Online AccessGet full text
ISSN0953-2048
1361-6668
DOI10.1088/1361-6668/aafc82

Cover

Abstract High-field, low-inductance superconducting magnets in particle accelerators and fusion machines require high operating currents, often in combination with high current densities and for some applications conductor bending radii of less than 50 mm. These requirements form a major challenge for magnet conductors consisting of high-temperature superconductors, which are required for reaching magnetic fields exceeding 20 T, or allowing for operating temperatures above 20 K. The high tolerance of RE-Ba2Cu3O7−δ coated conductors to axial tensile and compressive strain has led to the concept of CORC cables in an attempt to develop a round and mechanically as well as electrically isotropic, high-performance conductor that would meet these challenging requirements. This review article will outline how CORC cables evolved from a concept into a practical and robust conductor for high-field magnets and compact superconducting power cables. This review article provides an extensive overview of how CORC cable technology has overcome most of the challenges associated with its use in large magnets for fusion, particle accelerators and in helium gas cooled power and fault current limiting cables, while further development is ongoing that will push the CORC cable technology to even higher performance levels.
AbstractList High-field, low-inductance superconducting magnets in particle accelerators and fusion machines require high operating currents, often in combination with high current densities and for some applications conductor bending radii of less than 50 mm. These requirements form a major challenge for magnet conductors consisting of high-temperature superconductors, which are required for reaching magnetic fields exceeding 20 T, or allowing for operating temperatures above 20 K. The high tolerance of RE-Ba2Cu3O7−δ coated conductors to axial tensile and compressive strain has led to the concept of CORC cables in an attempt to develop a round and mechanically as well as electrically isotropic, high-performance conductor that would meet these challenging requirements. This review article will outline how CORC cables evolved from a concept into a practical and robust conductor for high-field magnets and compact superconducting power cables. This review article provides an extensive overview of how CORC cable technology has overcome most of the challenges associated with its use in large magnets for fusion, particle accelerators and in helium gas cooled power and fault current limiting cables, while further development is ongoing that will push the CORC cable technology to even higher performance levels.
Not provided.
Author van der Laan, D C
Weiss, J D
McRae, D M
Author_xml – sequence: 1
  givenname: D C
  orcidid: 0000-0001-5889-3751
  surname: van der Laan
  fullname: van der Laan, D C
  email: danko@advancedconductor.com
  organization: Department of Physics, University of Colorado, Boulder, CO 80309, United States of America
– sequence: 2
  givenname: J D
  orcidid: 0000-0003-0026-3049
  surname: Weiss
  fullname: Weiss, J D
  organization: Department of Physics, University of Colorado, Boulder, CO 80309, United States of America
– sequence: 3
  givenname: D M
  surname: McRae
  fullname: McRae, D M
  organization: Department of Physics, University of Colorado, Boulder, CO 80309, United States of America
BackLink https://www.osti.gov/biblio/1610958$$D View this record in Osti.gov
BookMark eNp9kUtLQzEQRoMoWKt7l8GVC6_m0aa3Sym-oCD4WId0MrGRNqlJLuK_N-WKC5GuJnycb2BOjsh-iAEJOeXskrO2veJS8UYp1V4Z46AVe2TwG-2TAZuOZSPYqD0kRzm_M8Z5K8WAfDwXU7pMo6Ozx6cZBbNYYaYmWPrpU325mGiXkfpAl_5t2TiPK0vX5i1g6blN_MRE81cuuK4JtQjGIjWu1Lgs0adaLinaDoqP4ZgcOLPKePIzh-T19uZldt_MH-8eZtfzBuSIlUaMAd2EsQXCBKZSKCc452CRMyv5GMcGlOWIcgEMRmphmKxzIlCwSfWh5JCc9XtjLl5n8AVhCTEEhKK54tVIWyHWQ5Bizgmd3iS_NulLc6a3XvVWot5K1L3XWlF_KnW12V5WkvGrXcWLvujjRr_HLoV6_i78_B88d7loKbTUTMr6i3pjnfwGbR-btQ
CODEN SUSTEF
CitedBy_id crossref_primary_10_2139_ssrn_4101764
crossref_primary_10_1038_s44287_024_00112_y
crossref_primary_10_1109_TASC_2023_3348096
crossref_primary_10_1088_1361_6668_ac3f9c
crossref_primary_10_1088_1361_6668_ac3f9b
crossref_primary_10_1109_TASC_2024_3362734
crossref_primary_10_1038_s41467_021_23487_0
crossref_primary_10_3390_instruments3040062
crossref_primary_10_1109_TASC_2023_3348090
crossref_primary_10_1109_TASC_2023_3243874
crossref_primary_10_1109_TASC_2023_3254492
crossref_primary_10_1088_1361_6668_ac662f
crossref_primary_10_1109_TASC_2024_3425323
crossref_primary_10_1109_TASC_2024_3510512
crossref_primary_10_1016_j_cryogenics_2024_103975
crossref_primary_10_1016_j_compstruct_2022_116000
crossref_primary_10_1016_j_fusengdes_2024_114707
crossref_primary_10_1016_j_supcon_2023_100037
crossref_primary_10_1109_TASC_2023_3346357
crossref_primary_10_1007_s10948_024_06716_7
crossref_primary_10_1088_1361_6668_abdc7f
crossref_primary_10_1088_1361_6668_acf1d4
crossref_primary_10_1109_TASC_2021_3101759
crossref_primary_10_1007_s11340_023_00953_y
crossref_primary_10_1109_TASC_2022_3229656
crossref_primary_10_1109_TASC_2023_3275213
crossref_primary_10_1007_s10338_024_00527_y
crossref_primary_10_1109_TTE_2024_3409777
crossref_primary_10_1088_1361_6668_adba98
crossref_primary_10_1088_1757_899X_1241_1_012023
crossref_primary_10_1109_TASC_2022_3163688
crossref_primary_10_1088_1361_6668_ac86fd
crossref_primary_10_1103_PhysRevB_102_174511
crossref_primary_10_1109_TMAG_2023_3315474
crossref_primary_10_1109_TASC_2023_3260762
crossref_primary_10_1088_1361_6668_ac8e39
crossref_primary_10_1088_1361_6668_ac5162
crossref_primary_10_1109_TASC_2020_2968251
crossref_primary_10_1109_TASC_2022_3159507
crossref_primary_10_1088_1361_6668_abb8c0
crossref_primary_10_1088_1361_6668_ab97ff
crossref_primary_10_1109_TASC_2023_3250168
crossref_primary_10_1016_j_engfracmech_2023_109625
crossref_primary_10_1088_1361_6668_ac6bcc
crossref_primary_10_1109_TASC_2025_3544568
crossref_primary_10_1063_5_0026000
crossref_primary_10_2221_jcsj_59_246
crossref_primary_10_1016_j_physc_2024_1354501
crossref_primary_10_1109_TASC_2021_3071827
crossref_primary_10_1109_TASC_2021_3089110
crossref_primary_10_1088_1361_6668_ac1aae
crossref_primary_10_1088_1361_6668_ad0473
crossref_primary_10_1016_j_fusengdes_2020_111898
crossref_primary_10_1109_TASC_2019_2962767
crossref_primary_10_1109_TASC_2022_3152985
crossref_primary_10_1088_1361_6668_acca4f
crossref_primary_10_1109_TASC_2024_3389649
crossref_primary_10_1016_j_cryogenics_2025_104045
crossref_primary_10_1109_TASC_2023_3340634
crossref_primary_10_1088_1361_6668_ac5e55
crossref_primary_10_1109_TASC_2024_3420339
crossref_primary_10_1016_j_supcon_2022_100013
crossref_primary_10_3390_en14216861
crossref_primary_10_1063_5_0218241
crossref_primary_10_1109_TASC_2023_3251305
crossref_primary_10_1109_TASC_2023_3267055
crossref_primary_10_1088_1361_6668_abb441
crossref_primary_10_1088_1361_6668_adbf55
crossref_primary_10_1109_TASC_2021_3064002
crossref_primary_10_1007_s10854_024_13642_w
crossref_primary_10_1088_1361_6668_acdc59
crossref_primary_10_1109_TASC_2020_2972215
crossref_primary_10_1016_j_est_2024_114925
crossref_primary_10_1016_j_physc_2023_1354358
crossref_primary_10_1109_TASC_2022_3149733
crossref_primary_10_1109_TASC_2022_3217692
crossref_primary_10_1088_1361_6668_acc281
crossref_primary_10_1088_1361_6668_ad7c89
crossref_primary_10_1109_TASC_2021_3071561
crossref_primary_10_1109_TASC_2025_3531249
crossref_primary_10_1007_s10483_023_3025_7
crossref_primary_10_1134_S1063780X21110155
crossref_primary_10_1038_s41598_022_26592_2
crossref_primary_10_1109_TASC_2024_3512521
crossref_primary_10_1088_1361_6668_ac3b62
crossref_primary_10_1109_TASC_2021_3069923
crossref_primary_10_3390_en14082234
crossref_primary_10_1016_j_supcon_2022_100024
crossref_primary_10_1109_TASC_2021_3064518
crossref_primary_10_1109_TASC_2024_3364131
crossref_primary_10_1109_TASC_2024_3369570
crossref_primary_10_1109_TASC_2021_3134192
crossref_primary_10_1109_TASC_2022_3145309
crossref_primary_10_1109_TASC_2023_3247990
crossref_primary_10_1016_j_fusengdes_2022_113022
crossref_primary_10_1109_ACCESS_2022_3232726
crossref_primary_10_1088_1361_6668_ad7c8b
crossref_primary_10_1088_1742_6596_2776_1_012004
crossref_primary_10_1016_j_physc_2022_1354048
crossref_primary_10_1007_s10948_021_06103_6
crossref_primary_10_1088_1361_6668_ad1461
crossref_primary_10_1109_TASC_2024_3368403
crossref_primary_10_1134_S1063780X21110246
crossref_primary_10_1109_TASC_2022_3159276
crossref_primary_10_1016_j_fusengdes_2025_114868
crossref_primary_10_1134_S1063778822100349
crossref_primary_10_1109_TASC_2024_3515961
crossref_primary_10_1088_1361_6668_aca6ad
crossref_primary_10_1088_1361_6668_ac6a52
crossref_primary_10_1007_s10948_020_05757_y
crossref_primary_10_1088_1741_4326_adbb02
crossref_primary_10_1088_1361_6668_ad7efc
crossref_primary_10_1088_1361_6668_abaec2
crossref_primary_10_1088_1361_6668_ad7efb
crossref_primary_10_1088_1361_6668_ac9dc3
crossref_primary_10_1109_TASC_2023_3241822
crossref_primary_10_1109_TASC_2023_3257272
crossref_primary_10_1109_ACCESS_2023_3321194
crossref_primary_10_1109_TASC_2023_3243567
crossref_primary_10_1109_TASC_2023_3242629
crossref_primary_10_1109_TASC_2025_3530334
crossref_primary_10_1109_TASC_2024_3357470
crossref_primary_10_1140_epjs_s11734_024_01350_9
crossref_primary_10_1109_TASC_2023_3347376
crossref_primary_10_1088_1361_6668_acbac7
crossref_primary_10_1134_S1063778822100611
crossref_primary_10_1016_j_fusengdes_2021_112611
crossref_primary_10_4236_eng_2022_1410033
crossref_primary_10_1016_j_cryogenics_2022_103422
crossref_primary_10_1088_1361_6668_acb08e
crossref_primary_10_1088_1361_6668_ac0992
crossref_primary_10_1109_TASC_2025_3539610
crossref_primary_10_1088_1361_6668_ac4952
crossref_primary_10_1109_TASC_2024_3356435
crossref_primary_10_1109_TASC_2024_3356436
crossref_primary_10_1088_1361_6668_acfbbe
crossref_primary_10_3390_ma16237333
crossref_primary_10_1109_TASC_2022_3165736
crossref_primary_10_1088_1361_6668_acff27
crossref_primary_10_1016_j_jclepro_2024_141310
crossref_primary_10_1109_TASC_2023_3241833
crossref_primary_10_1016_j_physc_2021_1353828
crossref_primary_10_1088_1361_6668_ac3464
crossref_primary_10_1109_TASC_2024_3391760
crossref_primary_10_1088_1361_6668_ada832
crossref_primary_10_1109_TASC_2022_3153751
crossref_primary_10_1088_1361_6668_ad01eb
crossref_primary_10_1109_TASC_2023_3241824
crossref_primary_10_1109_TASC_2024_3446286
crossref_primary_10_1088_1361_6668_ac96b4
crossref_primary_10_1088_1361_6668_abc2a5
crossref_primary_10_1109_TASC_2023_3253666
crossref_primary_10_1088_1361_6668_ac9f82
crossref_primary_10_1088_2399_6528_ab7954
crossref_primary_10_1109_TASC_2024_3352521
crossref_primary_10_1109_TASC_2022_3140688
crossref_primary_10_1109_TASC_2022_3178183
crossref_primary_10_1109_TASC_2023_3263332
crossref_primary_10_1088_1361_6668_acf7f9
crossref_primary_10_1088_1742_6596_1975_1_012036
crossref_primary_10_1109_TASC_2020_2972498
crossref_primary_10_1109_TASC_2021_3063070
crossref_primary_10_1109_TASC_2023_3241600
crossref_primary_10_1109_TASC_2021_3109720
crossref_primary_10_1093_nsr_nwad001
crossref_primary_10_1088_1361_6668_acff8b
crossref_primary_10_1109_TASC_2023_3242924
crossref_primary_10_1088_1361_6668_ac1e65
crossref_primary_10_1109_TASC_2023_3236010
crossref_primary_10_1109_TASC_2023_3250383
crossref_primary_10_1109_TASC_2021_3118318
crossref_primary_10_1109_TASC_2025_3529409
Cites_doi 10.1109/77.620990
10.1088/0953-2048/29/10/104007
10.1088/0953-2048/28/3/035001
10.1109/TASC.2016.2535202
10.1109/TASC.2017.2774362
10.1109/TASC.2009.2018313
10.1109/TASC.2016.2517187
10.1088/1361-6668/aafaa7
10.1109/TASC.2016.2515988
10.1109/TASC.2017.2653204
10.1088/0953-2048/26/4/045005
10.1109/TASC.2017.2652378
10.1088/0953-2048/29/5/055009
10.1088/0953-2048/26/8/085019
10.1109/TASC.2007.897842
10.1109/TASC.2009.2018791
10.1088/0953-2048/22/6/065013
10.1109/TASC.2014.2367162
10.1109/TASC.2007.899828
10.1088/0953-2048/30/1/014002
10.1088/0953-2048/28/12/124005
10.1088/0953-2048/29/4/04LT04
10.1109/TASC.2012.2234182
10.1088/0953-2048/25/1/014009
10.1109/TASC.2018.2818278
10.1109/TASC.2013.2287910
10.1063/1.2435612
10.1088/0953-2048/27/9/093001
10.1109/TASC.2014.2364391
10.1109/TASC.2018.2815767
10.1063/1.1628818
10.1088/1742-6596/43/1/220
10.1038/nmat3887
10.1088/1757-899X/279/1/012033
10.1088/0953-2048/28/12/125005
10.1088/0953-2048/28/12/124001
10.1109/TASC.2016.2527241
10.1109/TASC.2010.2094176
10.1088/0953-2048/26/6/065014
10.1109/TASC.2016.2521323
10.1088/1361-6668/aae8bf
10.1088/0029-5515/55/5/053021
10.1109/TASC.2016.2521827
10.1109/TASC.2014.2377793
10.1088/1361-6668/aacf6b
10.1109/TASC.2016.2637163
10.1109/TASC.2013.2281783
10.1088/0953-2048/29/2/025007
10.1109/TASC.2017.2788402
10.1109/TASC.2009.2019065
10.1109/TASC.2013.2284722
10.1109/TASC.2009.2018825
10.1109/TASC.2009.2018310
10.1088/0953-2048/28/6/065014
ContentType Journal Article
Copyright 2019 IOP Publishing Ltd
Copyright_xml – notice: 2019 IOP Publishing Ltd
CorporateAuthor Univ. of Colorado, Boulder, CO (United States)
Advanced Conductor Technologies LLC, Boulder, CO (United States)
CorporateAuthor_xml – name: Univ. of Colorado, Boulder, CO (United States)
– name: Advanced Conductor Technologies LLC, Boulder, CO (United States)
DBID AAYXX
CITATION
OTOTI
DOI 10.1088/1361-6668/aafc82
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
DocumentTitleAlternate Status of CORC cables and wires for use in high-field magnets and power systems a decade after their introduction
EISSN 1361-6668
ExternalDocumentID 1610958
10_1088_1361_6668_aafc82
sustaafc82
GrantInformation_xml – fundername: U.S. Navy
  grantid: N00014-15-P-1171; N00024-14-C-4065
  funderid: https://doi.org/10.13039/100009896
– fundername: U.S. Department of Energy
  grantid: DE-SC0007660; DE-SC0009545; DE-SC0013723; DE-SC0014009; DE-SC0015775; DE-SC0018125; DE-SC0018127
  funderid: https://doi.org/10.13039/100000015
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
W28
XPP
XSW
ZMT
AAYXX
ADEQX
AEINN
CITATION
1PV
AAPBV
ABPTK
KNG
OTOTI
RW3
ID FETCH-LOGICAL-c340t-25cef700bec7c9326f2111cde10d315e5ac6d1ee3bc0c46ba030c472e20708863
IEDL.DBID IOP
ISSN 0953-2048
IngestDate Fri May 19 01:09:13 EDT 2023
Wed Oct 01 03:56:48 EDT 2025
Thu Apr 24 22:52:48 EDT 2025
Wed Aug 21 03:33:12 EDT 2024
Thu Jan 07 13:53:40 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c340t-25cef700bec7c9326f2111cde10d315e5ac6d1ee3bc0c46ba030c472e20708863
Notes SUST-102962.R2
SC0007660; SC0009545; SC0013723; SC0014009; SC0015775; SC0018125; SC0018127
USDOE Office of Science (SC)
ORCID 0000-0001-5889-3751
0000-0003-0026-3049
0000000158893751
0000000300263049
PageCount 33
ParticipantIDs iop_journals_10_1088_1361_6668_aafc82
osti_scitechconnect_1610958
crossref_citationtrail_10_1088_1361_6668_aafc82
crossref_primary_10_1088_1361_6668_aafc82
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-12
PublicationDateYYYYMMDD 2019-02-12
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-12
  day: 12
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Superconductor science & technology
PublicationTitleAbbrev SUST
PublicationTitleAlternate Supercond. Sci. Technol
PublicationYear 2019
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References van der Laan D C (26) 2016; 29
45
Bayer C M (55) 2016; 29
49
van der Laan D C (50) 2013; 26
Sundaram A (29) 2016; 29
van der Laan D C (20) 2011; 24
Tixador P (60) 2012; 25
Sugano M (24) 2008; 21
53
11
12
57
59
Weijers H W (10) 2018
18
19
Yanagisawa Y (4) 2015; 28
Mulder T (64) 2018
Wang X (70) 2018
1
2
3
5
6
Goldacker W (42) 2006; 43
7
van der Laan D C (15) 2011; 24
van der Laan D C (25) 2010; 23
8
Hazelton D (27) 2018
van der Laan D C (58) 2018
62
21
65
22
Fleiter J (52) 2013; 26
66
Yanagi N (38) 2015; 55
van der Laan D C (54) 2019; 32
67
68
69
28
van der Laan D C (51) 2015; 28
Wang X (16) 2018; 31
van der Laan D C (17) 2018; 31
Uglietti D (33) 2015; 28
71
Willering G P (47) 2015; 28
30
van der Laan D C (13) 2009; 22
31
32
34
Otten S (56) 2015; 28
35
Mulder T (63) 2017; 279
36
37
39
van der Laan D C (23) 2011; 24
Yoon S (9) 2016; 29
Goldacker W (44) 2014; 27
Kario A (46) 2013; 26
van der Laan D (48) 2017
Weiss J D (61) 2019; 32
40
41
Weiss J D (14) 2017; 30
43
References_xml – ident: 22
  doi: 10.1109/77.620990
– year: 2018
  ident: 58
  publication-title: Supercond. Sci. Technol.
– volume: 29
  issn: 0953-2048
  year: 2016
  ident: 29
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/29/10/104007
– volume: 28
  issn: 0953-2048
  year: 2015
  ident: 47
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/28/3/035001
– ident: 18
  doi: 10.1109/TASC.2016.2535202
– ident: 49
  doi: 10.1109/TASC.2017.2774362
– ident: 3
  doi: 10.1109/TASC.2009.2018313
– ident: 57
  doi: 10.1109/TASC.2016.2517187
– volume: 32
  issn: 0953-2048
  year: 2019
  ident: 61
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/1361-6668/aafaa7
– ident: 12
  doi: 10.1109/TASC.2016.2515988
– ident: 65
– ident: 45
  doi: 10.1109/TASC.2017.2653204
– volume: 24
  issn: 0953-2048
  year: 2011
  ident: 20
  publication-title: Supercond. Sci. Technol.
– ident: 69
– volume: 26
  issn: 0953-2048
  year: 2013
  ident: 50
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/26/4/045005
– ident: 5
  doi: 10.1109/TASC.2017.2652378
– volume: 24
  issn: 0953-2048
  year: 2011
  ident: 23
  publication-title: Supercond. Sci. Technol.
– volume: 29
  issn: 0953-2048
  year: 2016
  ident: 26
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/29/5/055009
– volume: 26
  issn: 0953-2048
  year: 2013
  ident: 46
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/26/8/085019
– ident: 1
  doi: 10.1109/TASC.2007.897842
– volume: 24
  issn: 0953-2048
  year: 2011
  ident: 15
  publication-title: Supercond. Sci. Technol.
– year: 2018
  ident: 27
– ident: 8
  doi: 10.1109/TASC.2009.2018791
– volume: 22
  issn: 0953-2048
  year: 2009
  ident: 13
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/22/6/065013
– ident: 53
  doi: 10.1109/TASC.2014.2367162
– ident: 2
  doi: 10.1109/TASC.2007.899828
– volume: 31
  issn: 0953-2048
  year: 2018
  ident: 16
  publication-title: Supercond. Sci. Technol.
– volume: 23
  issn: 0953-2048
  year: 2010
  ident: 25
  publication-title: Supercond. Sci. Technol.
– volume: 30
  issn: 0953-2048
  year: 2017
  ident: 14
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/30/1/014002
– volume: 28
  issn: 0953-2048
  year: 2015
  ident: 33
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/28/12/124005
– volume: 29
  issn: 0953-2048
  year: 2016
  ident: 9
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/29/4/04LT04
– ident: 66
– ident: 31
  doi: 10.1109/TASC.2012.2234182
– volume: 25
  issn: 0953-2048
  year: 2012
  ident: 60
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/25/1/014009
– ident: 7
  doi: 10.1109/TASC.2018.2818278
– ident: 34
  doi: 10.1109/TASC.2013.2287910
– year: 2018
  ident: 64
– ident: 21
  doi: 10.1063/1.2435612
– year: 2018
  ident: 70
  publication-title: Supercond. Sci. Technol.
– volume: 27
  issn: 0953-2048
  year: 2014
  ident: 44
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/27/9/093001
– ident: 35
  doi: 10.1109/TASC.2014.2364391
– ident: 37
  doi: 10.1109/TASC.2018.2815767
– ident: 19
  doi: 10.1063/1.1628818
– year: 2018
  ident: 10
  publication-title: MST Seminar NHMFL
– volume: 43
  start-page: 901
  issn: 1742-6596
  year: 2006
  ident: 42
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/43/1/220
– year: 2017
  ident: 48
  publication-title: US Patent
– ident: 6
  doi: 10.1038/nmat3887
– volume: 279
  issn: 1757-899X
  year: 2017
  ident: 63
  publication-title: IOP Conf. Ser.: Mater. Sci. Eng.
  doi: 10.1088/1757-899X/279/1/012033
– ident: 28
– volume: 28
  issn: 0953-2048
  year: 2015
  ident: 4
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/28/12/125005
– volume: 28
  issn: 0953-2048
  year: 2015
  ident: 51
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/28/12/124001
– ident: 62
  doi: 10.1109/TASC.2016.2527241
– ident: 30
  doi: 10.1109/TASC.2010.2094176
– volume: 26
  issn: 0953-2048
  year: 2013
  ident: 52
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/26/6/065014
– ident: 36
  doi: 10.1109/TASC.2016.2521323
– volume: 32
  start-page: 015002
  issn: 0953-2048
  year: 2019
  ident: 54
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/1361-6668/aae8bf
– ident: 67
– volume: 55
  issn: 0029-5515
  year: 2015
  ident: 38
  publication-title: Nucl. Fusion
  doi: 10.1088/0029-5515/55/5/053021
– ident: 40
  doi: 10.1109/TASC.2016.2521827
– ident: 39
  doi: 10.1109/TASC.2014.2377793
– volume: 31
  issn: 0953-2048
  year: 2018
  ident: 17
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/1361-6668/aacf6b
– ident: 71
  doi: 10.1109/TASC.2016.2637163
– ident: 32
  doi: 10.1109/TASC.2013.2281783
– volume: 29
  issn: 0953-2048
  year: 2016
  ident: 55
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/29/2/025007
– ident: 41
  doi: 10.1109/TASC.2017.2788402
– ident: 43
  doi: 10.1109/TASC.2009.2019065
– ident: 68
  doi: 10.1109/TASC.2013.2284722
– ident: 11
  doi: 10.1109/TASC.2009.2018825
– ident: 59
  doi: 10.1109/TASC.2009.2018310
– volume: 21
  issn: 0953-2048
  year: 2008
  ident: 24
  publication-title: Supercond. Sci. Technol.
– volume: 28
  issn: 0953-2048
  year: 2015
  ident: 56
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/28/6/065014
SSID ssj0011832
Score 2.6098146
SecondaryResourceType review_article
Snippet High-field, low-inductance superconducting magnets in particle accelerators and fusion machines require high operating currents, often in combination with high...
Not provided.
SourceID osti
crossref
iop
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 33001
SubjectTerms CORC cable
CORC wire
Physics
REBCO cables
Title Status of CORC cables and wires for use in high-field magnets and power systems a decade after their introduction
URI https://iopscience.iop.org/article/10.1088/1361-6668/aafc82
https://www.osti.gov/biblio/1610958
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: AUTh Library subscriptions: IOP Publishing
  customDbUrl:
  eissn: 1361-6668
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011832
  issn: 0953-2048
  databaseCode: IOP
  dateStart: 19880601
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEB5qRbQP_jgVr1VZQR982LvkdpNs8EkOSxG0Ihb6ICzJZFJEzZ0meelf35ls7mhFivgWwmw2mZ2dfMvMfAPwsioNUm5JR0lVaosRb6k0d7omHuGI0rqUeucPH9OjE_v-NDndgTfbWpjVenT9M74MRMFBhWNCnJvHJo01o243L4oaHfvfm8bxuUKq944_bUMIYquBaM9oYacdY5R_e8KVf9INnpf984p32KU_zeE9-Lp5x5Bg8n3Wd-UMz_-gb_zPj7gPd0cEqt4G0QewQ80Ebi83jd8msHeJo3ACt4YcUWwfwi8Bpn2rVrVaHn9eKpSqq1YVTaWE8LhVjH9V35L61ihhQdZDdpz6WZw11AW5tfRkU4E9mu-oiiQ9Xw2NytUQs-DBXSChZYN5BCeH774sj_TYsUGjsVGnFwlSnUURG0aGggxrPl_GWFEcVSZOKCkwrWIiU2KENi0LdjFoswUt2PM4l5rHsNusGnoCiv2MLRlM5YlFdjImRzImqTNeaZvlVTaF-WbNPI505tJV44cfwurOeVGxFxX7oOIpvN6OWAcqj2tkX_HK-XE_t9fIvbgi1_Zt583CGx8Zw0bo11U9hQMxJs8mIby8KAlM2PlYiO4Tt_-PMx3AHcZquR560TyF3e53T88YD3Xl88HuLwAG8gLD
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIl4HHguIpTyMBAcO3k3iOHGOaGHV8mgrRKXe3GTsIARkF5Jc-PXMxNmqRahC4hZF4zgZz4wnmvH3ATx3lUJfpF5G2lUyxYhcKiuMrD2NMN5ndcXnnT_sZ7tH6dtjfTzynA5nYVbrMfTP6DIABQcVjg1xZh6rLJaUdZt5WdZokvna1VtwWSudM3fD3sHhaRmB7TWA7SnJCLVjnfJvTzm3L23R3BSjV-RlZ3ab5S042bxnaDL5Ouu7aoa__oBw_I8PuQ03x0xUvArid-CSbyZwbbEhgJvAjTNYhRO4MvSKYnsXfnCC2rdiVYvFwceFQD591YqycYKBj1tBebDoWy--NILRkOXQJSe-l58b3wW5NXOziYAiTXeE89ymLwbCcjHULmhwF8BoyXDuwdHyzafFrhyZGySqNOpkotHXeRSRgeTIGWJN_5kxOh9HTsXa6xIzF3uvKowwzaqSQg2meeITikDGZOo-bDerxj8AQfEmrSipKnSKFGxUgV4pXecmY3B8l09hvlk3iyOsObNrfLNDed0Yy2q2rGYb1DyFl6cj1gHS4wLZF7R6dvTr9gK5Z-fk2r7trEqsspFSZIiWlnYKO2xQlsyC8XmRG5mwszED3mvz8B9negpXD18v7fu9_Xc7cJ3St0IO9DSPYLv72fvHlCJ11ZPBDX4DyDsILQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Status+of+CORC+cables+and+wires+for+use+in+high-field+magnets+and+power+systems+a+decade+after+their+introduction&rft.jtitle=Superconductor+science+%26+technology&rft.au=van+der+Laan%2C+D+C&rft.au=Weiss%2C+J+D&rft.au=McRae%2C+D+M&rft.date=2019-02-12&rft.pub=IOP+Publishing&rft.issn=0953-2048&rft.eissn=1361-6668&rft.volume=32&rft.issue=3&rft_id=info:doi/10.1088%2F1361-6668%2Faafc82&rft.externalDocID=sustaafc82
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-2048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-2048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-2048&client=summon