FWNNet: Presentation of a New Classifier of Brain Tumor Diagnosis Based on Fuzzy Logic and the Wavelet-Based Neural Network Using Machine-Learning Methods
In this paper, we present a novel classifier based on fuzzy logic and wavelet transformation in the form of a neural network. This classifier includes a layer to predict the numerical feature corresponded to labels or classes. The presented classifier is implemented in brain tumor diagnosis. For fea...
Saved in:
| Published in | Computational intelligence and neuroscience Vol. 2021; no. 1; p. 8542637 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Hindawi
2021
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-5265 1687-5273 1687-5273 |
| DOI | 10.1155/2021/8542637 |
Cover
| Abstract | In this paper, we present a novel classifier based on fuzzy logic and wavelet transformation in the form of a neural network. This classifier includes a layer to predict the numerical feature corresponded to labels or classes. The presented classifier is implemented in brain tumor diagnosis. For feature extraction, a fractal model with four Gaussian functions is used. The classification is performed on 2000 MRI images. Regarding the results, the accuracy of the DT, KNN, LDA, NB, MLP, and SVM is 93.5%, 87.6%, 61.5%, 57.5%, 68.5%, and 43.6%, respectively. Based on the results, the presented FWNNet illustrates the highest accuracy of 100% with the fractal feature extraction method and brain tumor diagnosis based on MRI images. Based on the results, the best classifier for diagnosis of the brain tumor is FWNNet architecture. However, the second and third high-performance classifiers are the DT and KNN, respectively. Moreover, the presented FWNNet method is implemented for the segmentation of brain tumors. In this paper, we present a novel supervised segmentation method based on the FWNNet layer. In the training process, input images with a sweeping filter should be reshaped to vectors that correspond to reshaped ground truth images. In the training process, we performed a PSO algorithm to optimize the gradient descent algorithm. For this purpose, 80 MRI images are used to segment the brain tumor. Based on the results of the ROC curve, it can be estimated that the presented layer can segment the brain tumor with a high true-positive rate. |
|---|---|
| AbstractList | In this paper, we present a novel classifier based on fuzzy logic and wavelet transformation in the form of a neural network. This classifier includes a layer to predict the numerical feature corresponded to labels or classes. The presented classifier is implemented in brain tumor diagnosis. For feature extraction, a fractal model with four Gaussian functions is used. The classification is performed on 2000 MRI images. Regarding the results, the accuracy of the DT, KNN, LDA, NB, MLP, and SVM is 93.5%, 87.6%, 61.5%, 57.5%, 68.5%, and 43.6%, respectively. Based on the results, the presented FWNNet illustrates the highest accuracy of 100% with the fractal feature extraction method and brain tumor diagnosis based on MRI images. Based on the results, the best classifier for diagnosis of the brain tumor is FWNNet architecture. However, the second and third high-performance classifiers are the DT and KNN, respectively. Moreover, the presented FWNNet method is implemented for the segmentation of brain tumors. In this paper, we present a novel supervised segmentation method based on the FWNNet layer. In the training process, input images with a sweeping filter should be reshaped to vectors that correspond to reshaped ground truth images. In the training process, we performed a PSO algorithm to optimize the gradient descent algorithm. For this purpose, 80 MRI images are used to segment the brain tumor. Based on the results of the ROC curve, it can be estimated that the presented layer can segment the brain tumor with a high true-positive rate. In this paper, we present a novel classifier based on fuzzy logic and wavelet transformation in the form of a neural network. This classifier includes a layer to predict the numerical feature corresponded to labels or classes. The presented classifier is implemented in brain tumor diagnosis. For feature extraction, a fractal model with four Gaussian functions is used. The classification is performed on 2000 MRI images. Regarding the results, the accuracy of the DT, KNN, LDA, NB, MLP, and SVM is 93.5%, 87.6%, 61.5%, 57.5%, 68.5%, and 43.6%, respectively. Based on the results, the presented FWNNet illustrates the highest accuracy of 100% with the fractal feature extraction method and brain tumor diagnosis based on MRI images. Based on the results, the best classifier for diagnosis of the brain tumor is FWNNet architecture. However, the second and third high-performance classifiers are the DT and KNN, respectively. Moreover, the presented FWNNet method is implemented for the segmentation of brain tumors. In this paper, we present a novel supervised segmentation method based on the FWNNet layer. In the training process, input images with a sweeping filter should be reshaped to vectors that correspond to reshaped ground truth images. In the training process, we performed a PSO algorithm to optimize the gradient descent algorithm. For this purpose, 80 MRI images are used to segment the brain tumor. Based on the results of the ROC curve, it can be estimated that the presented layer can segment the brain tumor with a high true-positive rate.In this paper, we present a novel classifier based on fuzzy logic and wavelet transformation in the form of a neural network. This classifier includes a layer to predict the numerical feature corresponded to labels or classes. The presented classifier is implemented in brain tumor diagnosis. For feature extraction, a fractal model with four Gaussian functions is used. The classification is performed on 2000 MRI images. Regarding the results, the accuracy of the DT, KNN, LDA, NB, MLP, and SVM is 93.5%, 87.6%, 61.5%, 57.5%, 68.5%, and 43.6%, respectively. Based on the results, the presented FWNNet illustrates the highest accuracy of 100% with the fractal feature extraction method and brain tumor diagnosis based on MRI images. Based on the results, the best classifier for diagnosis of the brain tumor is FWNNet architecture. However, the second and third high-performance classifiers are the DT and KNN, respectively. Moreover, the presented FWNNet method is implemented for the segmentation of brain tumors. In this paper, we present a novel supervised segmentation method based on the FWNNet layer. In the training process, input images with a sweeping filter should be reshaped to vectors that correspond to reshaped ground truth images. In the training process, we performed a PSO algorithm to optimize the gradient descent algorithm. For this purpose, 80 MRI images are used to segment the brain tumor. Based on the results of the ROC curve, it can be estimated that the presented layer can segment the brain tumor with a high true-positive rate. |
| Author | Astaraki, Nikoo Dashti Ahangar, Fatemeh Abbasi, Mohammad Babaei, Behzad Ahmadi, Mohsen |
| AuthorAffiliation | 5 School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia 1 Department of Industrial Engineering, Urmia University of Technology, Urmia, Iran 2 Department of Electrical Engineering, Golestan University, Gorgan, Iran 4 Department of Biomedical Engineering, School of Biological and Health Sciences, Arizona State University, Tempe, AZ, USA 3 Department of Computer Engineering, Shahid Beheshti University, Tehran, Iran |
| AuthorAffiliation_xml | – name: 5 School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia – name: 3 Department of Computer Engineering, Shahid Beheshti University, Tehran, Iran – name: 4 Department of Biomedical Engineering, School of Biological and Health Sciences, Arizona State University, Tempe, AZ, USA – name: 2 Department of Electrical Engineering, Golestan University, Gorgan, Iran – name: 1 Department of Industrial Engineering, Urmia University of Technology, Urmia, Iran |
| Author_xml | – sequence: 1 givenname: Mohsen orcidid: 0000-0003-1550-110X surname: Ahmadi fullname: Ahmadi, Mohsen organization: Department of Industrial EngineeringUrmia University of TechnologyUrmiaIranuut.ac.ir – sequence: 2 givenname: Fatemeh surname: Dashti Ahangar fullname: Dashti Ahangar, Fatemeh organization: Department of Electrical EngineeringGolestan UniversityGorganIrangu.ac.ir – sequence: 3 givenname: Nikoo surname: Astaraki fullname: Astaraki, Nikoo organization: Department of Computer EngineeringShahid Beheshti UniversityTehranIransbu.ac.ir – sequence: 4 givenname: Mohammad orcidid: 0000-0001-6279-9135 surname: Abbasi fullname: Abbasi, Mohammad organization: Department of Biomedical EngineeringSchool of Biological and Health SciencesArizona State UniversityTempeAZUSAasu.edu – sequence: 5 givenname: Behzad surname: Babaei fullname: Babaei, Behzad organization: School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNSW 2052Australiaunsw.edu.au |
| BookMark | eNqFkc9uEzEQxleoiP6BGw9giQsSLLW9ttfhUImmDSCFwKFVj9bEO0lcNnawdxulj8LTsstGlagEnMYa_74Zfd8cZwc-eMyyl4y-Y0zKU045O9VScFWUT7IjpnSZS14WBw9vJQ-z45RuKZWlpPxZdlgILQup1VH2c3Izm2HznnyLmNA30LjgSVgQIDPcknENKbmFw9j3ziM4T67adYjkwsHSh-QSOYeEFelUk_b-fkemYeksAV-RZoXkBu6wxiYfoBm2EequNNsQv5Pr5PySfAG7ch7zKUL0vxvYrEKVnmdPF1AnfLGvJ9n15PJq_Cmffv34efxhmttC0DJXls4VU2LOQGttha7YXAgmlC2p1mVBK03BWs6BobKiBKppUTKxqDQDzmhxkuXD3NZvYLeFujab6NYQd4ZR02ds-ozNPuOOPxv4TTtfY2W71DpTD5oAzvz5493KLMOd0YqPVMm7Aa_3A2L40WJqzNoli3UNHkObDFdUypEeqR599Qi9DW30XRw9pZTUTIiO4gNlY0gp4sJYN1yy2-_qv9l4-0j0H9dvBry7VQVb92_6F9V-yh4 |
| CitedBy_id | crossref_primary_10_1155_2022_5667264 crossref_primary_10_1155_2022_1128217 crossref_primary_10_1016_j_csite_2021_101719 crossref_primary_10_1155_2022_1938719 crossref_primary_10_1155_2022_7543429 crossref_primary_10_1155_2022_9554768 crossref_primary_10_7759_cureus_71148 crossref_primary_10_1007_s11831_024_10209_0 crossref_primary_10_1155_2022_2375702 crossref_primary_10_1016_j_csite_2022_101901 crossref_primary_10_1155_2022_1680507 crossref_primary_10_1080_13682199_2023_2200060 crossref_primary_10_1016_j_compeleceng_2023_108765 crossref_primary_10_3390_mca29030040 crossref_primary_10_1016_j_neucom_2024_127654 crossref_primary_10_1016_j_csite_2022_101926 crossref_primary_10_1016_j_est_2022_104837 crossref_primary_10_1016_j_csite_2022_102275 crossref_primary_10_26599_FIE_2024_9270043 crossref_primary_10_1016_j_csite_2022_101980 crossref_primary_10_1038_s41598_024_82019_0 crossref_primary_10_3390_diagnostics12081850 crossref_primary_10_1016_j_neucom_2022_11_045 crossref_primary_10_1155_2022_1493847 crossref_primary_10_1080_13682199_2023_2166805 crossref_primary_10_1016_j_jbi_2023_104428 crossref_primary_10_1155_2022_4761989 crossref_primary_10_1109_TNANO_2023_3287235 crossref_primary_10_1007_s00500_023_08390_8 crossref_primary_10_1016_j_asoc_2024_111284 crossref_primary_10_3389_fmed_2023_1232496 crossref_primary_10_1016_j_neucom_2023_01_082 crossref_primary_10_1007_s11042_024_19553_6 crossref_primary_10_1016_j_neucom_2025_129885 crossref_primary_10_1016_j_advengsoft_2024_103814 crossref_primary_10_1109_ACCESS_2023_3283299 crossref_primary_10_1016_j_csite_2022_102006 |
| Cites_doi | 10.1016/j.fss.2020.05.001 10.1016/j.jfranklin.2013.04.020 10.1016/j.still.2017.08.012 10.1016/j.jenvman.2021.112438 10.1109/TNNLS.2017.2729589 10.1109/TIE.2008.924018 10.1109/91.917126 10.1016/j.eswa.2021.114708 10.1016/j.energy.2021.120052 10.1109/TNNLS.2012.2231436 10.1016/j.jfranklin.2013.02.016 10.1016/j.fss.2017.12.006 10.1002/acs.3195 10.3390/rs9080799 10.1007/s11071-021-06330-5 10.1109/TNN.2010.2066285 10.1016/j.oceaneng.2020.108415 10.1016/j.jvcir.2016.09.008 10.1016/j.fss.2020.08.005 10.1007/s00521-010-0414-4 10.1201/9781482281767-20 10.1109/ICIT.2016.7474971 10.1016/j.jngse.2021.104175 10.1007/s12555-014-0428-2 10.1002/er.7293 10.1016/j.isatra.2017.04.010 10.1016/j.chaos.2020.110170 10.1109/TIE.2013.2288196 10.1007/s11071-018-4651-x 10.1097/npt.0b013e3182563795 10.1016/j.asoc.2017.03.043 10.1007/s00500-021-05873-4 10.1016/j.ijepes.2014.07.067 10.1177/10775463211005903 10.1109/TNN.2005.849842 10.1016/j.asoc.2017.12.028 |
| ContentType | Journal Article |
| Copyright | Copyright © 2021 Mohsen Ahmadi et al. Copyright © 2021 Mohsen Ahmadi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2021 Mohsen Ahmadi et al. 2021 |
| Copyright_xml | – notice: Copyright © 2021 Mohsen Ahmadi et al. – notice: Copyright © 2021 Mohsen Ahmadi et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2021 Mohsen Ahmadi et al. 2021 |
| DBID | RHU RHW RHX AAYXX CITATION 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID CWDGH DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KR7 L6V L7M LK8 L~C L~D M0N M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1155/2021/8542637 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College Coronavirus Research Database Middle East & Africa Database ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1687-5273 |
| Editor | Singal, Gaurav |
| Editor_xml | – sequence: 1 givenname: Gaurav surname: Singal fullname: Singal, Gaurav |
| ExternalDocumentID | 10.1155/2021/8542637 PMC8629672 10_1155_2021_8542637 |
| GroupedDBID | --- 188 29F 2WC 3V. 4.4 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFWJ AAJEY AAKPC ABDBF ABIVO ABJCF ABUWG ACGFO ACIWK ACM ACPRK ADBBV ADRAZ AENEX AFKRA AHMBA AINHJ ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DIK DWQXO E3Z EBD EBS EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO ICD INH INR IPY ITC K6V K7- KQ8 L6V LK8 M0N M1P M48 M7P M7S MK~ O5R O5S OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO PSYQQ PTHSS Q2X RHU RHW RHX RNS RPM SV3 TR2 TUS UKHRP XH6 ~8M 0R~ 24P 2UF AAMMB AAYXX ACCMX ACUHS AEFGJ AGXDD AIDQK AIDYY C1A CITATION EJD H13 IHR IL9 OVT PGMZT PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO UZ4 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK COVID F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c3407-6c0b6164b1a888c48d1b44146c7088730d80acc22a1e6c47a0803714fd81a2103 |
| IEDL.DBID | M48 |
| ISSN | 1687-5265 1687-5273 |
| IngestDate | Sun Oct 26 04:17:15 EDT 2025 Tue Sep 30 15:45:50 EDT 2025 Thu Oct 02 04:45:47 EDT 2025 Tue Oct 07 06:09:16 EDT 2025 Thu Apr 24 23:03:27 EDT 2025 Wed Oct 01 02:22:15 EDT 2025 Sun Jun 02 18:51:56 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3407-6c0b6164b1a888c48d1b44146c7088730d80acc22a1e6c47a0803714fd81a2103 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Gaurav Singal |
| ORCID | 0000-0003-1550-110X 0000-0001-6279-9135 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1155/2021/8542637 |
| PMID | 34853586 |
| PQID | 2606658144 |
| PQPubID | 237303 |
| ParticipantIDs | unpaywall_primary_10_1155_2021_8542637 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8629672 proquest_miscellaneous_2605598962 proquest_journals_2606658144 crossref_citationtrail_10_1155_2021_8542637 crossref_primary_10_1155_2021_8542637 hindawi_primary_10_1155_2021_8542637 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Computational intelligence and neuroscience |
| PublicationYear | 2021 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | e_1_2_8_27_2 e_1_2_8_28_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_24_2 e_1_2_8_25_2 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_1_2 e_1_2_8_4_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_21_2 e_1_2_8_22_2 e_1_2_8_16_2 e_1_2_8_17_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_13_2 e_1_2_8_34_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_31_2 e_1_2_8_30_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_11_2 e_1_2_8_32_2 |
| References_xml | – ident: e_1_2_8_31_2 doi: 10.1016/j.fss.2020.05.001 – ident: e_1_2_8_1_2 doi: 10.1016/j.jfranklin.2013.04.020 – ident: e_1_2_8_5_2 doi: 10.1016/j.still.2017.08.012 – ident: e_1_2_8_4_2 doi: 10.1016/j.jenvman.2021.112438 – ident: e_1_2_8_27_2 doi: 10.1109/TNNLS.2017.2729589 – ident: e_1_2_8_10_2 doi: 10.1109/TIE.2008.924018 – ident: e_1_2_8_9_2 doi: 10.1109/91.917126 – ident: e_1_2_8_26_2 doi: 10.1016/j.eswa.2021.114708 – ident: e_1_2_8_29_2 doi: 10.1016/j.energy.2021.120052 – ident: e_1_2_8_17_2 doi: 10.1109/TNNLS.2012.2231436 – ident: e_1_2_8_13_2 doi: 10.1016/j.jfranklin.2013.02.016 – ident: e_1_2_8_28_2 doi: 10.1016/j.fss.2017.12.006 – ident: e_1_2_8_24_2 doi: 10.1002/acs.3195 – ident: e_1_2_8_8_2 doi: 10.3390/rs9080799 – ident: e_1_2_8_32_2 doi: 10.1007/s11071-021-06330-5 – ident: e_1_2_8_34_2 – ident: e_1_2_8_12_2 doi: 10.1109/TNN.2010.2066285 – ident: e_1_2_8_11_2 doi: 10.1016/j.oceaneng.2020.108415 – ident: e_1_2_8_36_2 doi: 10.1016/j.jvcir.2016.09.008 – ident: e_1_2_8_30_2 doi: 10.1016/j.fss.2020.08.005 – ident: e_1_2_8_18_2 doi: 10.1007/s00521-010-0414-4 – ident: e_1_2_8_19_2 doi: 10.1201/9781482281767-20 – ident: e_1_2_8_23_2 doi: 10.1109/ICIT.2016.7474971 – ident: e_1_2_8_6_2 doi: 10.1016/j.jngse.2021.104175 – ident: e_1_2_8_3_2 doi: 10.1007/s12555-014-0428-2 – ident: e_1_2_8_7_2 doi: 10.1002/er.7293 – ident: e_1_2_8_21_2 doi: 10.1016/j.isatra.2017.04.010 – ident: e_1_2_8_37_2 doi: 10.1016/j.chaos.2020.110170 – ident: e_1_2_8_16_2 doi: 10.1109/TIE.2013.2288196 – ident: e_1_2_8_20_2 doi: 10.1007/s11071-018-4651-x – ident: e_1_2_8_35_2 doi: 10.1097/npt.0b013e3182563795 – ident: e_1_2_8_15_2 doi: 10.1016/j.asoc.2017.03.043 – ident: e_1_2_8_33_2 doi: 10.1007/s00500-021-05873-4 – ident: e_1_2_8_14_2 doi: 10.1016/j.ijepes.2014.07.067 – ident: e_1_2_8_25_2 doi: 10.1177/10775463211005903 – ident: e_1_2_8_2_2 doi: 10.1109/TNN.2005.849842 – ident: e_1_2_8_22_2 doi: 10.1016/j.asoc.2017.12.028 |
| SSID | ssj0057502 |
| Score | 2.427525 |
| Snippet | In this paper, we present a novel classifier based on fuzzy logic and wavelet transformation in the form of a neural network. This classifier includes a layer... |
| SourceID | unpaywall pubmedcentral proquest crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8542637 |
| SubjectTerms | Accuracy Algorithms Brain Brain architecture Brain cancer Brain tumors Classifiers Controllers Diagnosis Feature extraction Fractal models Fuzzy logic Fuzzy sets Image classification Image filters Image segmentation Learning algorithms Machine learning Magnetic resonance imaging Medical imaging Neural networks Neurons Numerical prediction Training Tumors Wavelet transforms Wind power |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA46EH0RrzidcgT1RYpt16adb97GEBwiinsraZLiYGbiVmT-FH-t56TddIqXt15OaMppcs6XfP0OY3sySBFUSO24eOQEIgudVNMueya5Ctx6Q_n0c_JVm7fugstO2ClFkgbft_Ax2hE8947ikJTFo1k2G3Nibt20OuMJFxOOglrIcbyQ2vuY3_6l7VTkmXsgyPvSnUosv9Ii53PzJEYvotf7FHOaS2yxTBbhpPDuMpvRZoWtnhgEyo8jOABL37Tr4qvsrXnfbuvhMVx__FBkoJ-BAJzIwBa_7GYYBOnaKRWGgNv8sf8M5wXZrjuAU4xoCrBVM399HQGVYZYgjAJMEuFeUImKoVMYkaYH9qxdkMjBEg_gyhIztVNqtuIFW556sMbumhe3Zy2nLLzgyDoCPIdLN-WIo1JPIECWQay8FNOmgMuIJqW6q2JXSOn7wtNcBpHAtJOU_zIVewIxZH2dVUzf6A0GoW7EIdfEYlVBSsWrVOZFaUbFimI386vscOyURJaq5FQco5dYdBKGCbkwKV1YZfsT66dCjeMHu73Sv3-Y1cbOT8qhO0h8gnRhjECzynYnt3HQ0U6KMLqfWxsStm9w7H809dFMnkey3dN3TPfByncjhmzwCFseTD6vX3u5-b-X2WILdFosD9VYZfic621MmIbpjh0u76WRDN4 priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Ra9swEBZdytheyrZuLGs3btD1ZYjajiU7gzGaraEMaspoad-MLMk0kNpZE1PSn7JfuztZTpfBujdjn7DgpNOd9On7GNvTcYFFhbY8wCceq1LwwtIpe6mliYPB0ER0Ofkkk8fn8fdLcbnBsu4uDMEqu5joArWpNe2RH0SUaYsU8_8vs5-cVKPodLWT0FBeWsF8dhRjj9hmRMxYPbY5OspOf3SxGXOTFoUocWoRMXwHhReCdgHCg1QQgXmytkg9vqLq-HayloP-jaB80lQztbxV0-kfy9P4GdvyeSUctgPhOduw1Qu2fVhhTX29hH1wSE-3hb7Nfo0vsswuPsHp_d2jCuoSFGDMA6eTOSlxvaR3I9KQgLPmur6Bby0ubzKHES5-BrDVuLm7WwIpNmtQlQHMJ-FCkZrFgrdGRP-BPctavDk4jAKcOAyn5Z7eFV84Jev5S3Y-Pjr7esy9RgPXA6wFudRBIbHkKkKFtbSOUxMWmGHFUicUvwaBSQN0ThSp0EodJwozVCIJLE0aKvTQ4BXrVXVlXzMQdpgKaQnwauKCdK5MGSZFSbpGaVBGffaxc0quPYE56WhMc1fICJGTC3Pvwj77sLKetcQd_7Db8_79j9lu5_zcz_J5fj8m--z96jPOTzp0UZWtG2dDHPhDif1P1gbN6n_E8L3-pZpcOaZvLDeHMsGW-6vh9WAv3zzcyx32lKzbHaRd1lvcNPYt5lSL4p2fKL8BLpkdng priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtNAFB2VVAhe2EpFoKBBKn1BTr3N2IGnFIgqpFp9aNQiIVmzWY1I7aixVSVPfAJfwMfxJdw7tlNciUW8ebn2jH1nuce-cw4huyqUACqUcVzYckKRMUca_MueKa5DNxhqHxcnHyX8cBJ-PGNnG-RtuxZGI0V8IfRicI6Y9GpqR-vmvS72FaBFgOvefsyQaTwazHV2i2xyBoF4j2xOkuPRJ4RYHLoOEr9fb0dBm_bOWOcWnQnpdlNqJ968mS15p8rnYnklZrNfpqLxffK5fYg6A-XLoCrlQK1u8Dv-51M-IPeaEJWO6jb1kGyY_BHZGuUAzy-WdI_apFH7NX6LfB-fJokp39Dj62VMOS0yKigMn9RKbk4zmHrx2AHKUdCT6qK4pO_rFL_pgh7APKopXDWuVqslRfFnRUWuKYSm9FSgMEb54-u32gy5RKBuSZ28Tm3CAz2yCaEGjBq2WDhkhbEXj8lk_OHk3aHTSD44KgBo6XDlSg4ITnoCoLkKY-1JCNhCriIcDgNXx65QyveFZ7gKIwEBL3IOZjr2BKDXYJv08iI3TwhlZhgzbjB_VocSZbN05kUyQ5mk2M38Pnnd-j1VDR86ynLMUouLGEvRBWnjgj55tbae1zwgv7HbbVz6F7Odtn2lrdtTH8EkiwHi9snL9Wno7vgPR-SmqKwNUuoPOdQ_6rTLdXlIGN49k0_PLXE4oNchj-DKvXUL_mMtn_6r4TNyF3frT1M7pFdeVuY5BGulfNF0yp_Zjzx0 priority: 102 providerName: Unpaywall |
| Title | FWNNet: Presentation of a New Classifier of Brain Tumor Diagnosis Based on Fuzzy Logic and the Wavelet-Based Neural Network Using Machine-Learning Methods |
| URI | https://dx.doi.org/10.1155/2021/8542637 https://www.proquest.com/docview/2606658144 https://www.proquest.com/docview/2605598962 https://pubmed.ncbi.nlm.nih.gov/PMC8629672 https://downloads.hindawi.com/journals/cin/2021/8542637.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2021 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070625 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCO Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-5273 dateEnd: 20230628 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: ABDBF dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: Open access medical journals (GFMER) customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 7X7 dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1687-5273 dateEnd: 20250430 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: M48 dateStart: 20070101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 24P dateStart: 20070101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ta9swEBZ9YVu_jG3dWNouaND1y_DqN8n2YIxkqxsGMaE01PtkZFmmgdTpkpgu_Sn7tbuTX9aUvcC-GNs6xSKn891jne4h5FC6KYAKqQwTzgxX5MxIFa6y55JnrukEmY2bk4cRH4zdLzGLN0jDNlr_gYvfQjvkkxrPp---f1t9BIP_oA2eMcTv1rHPsPS4t0m2wUcFSOIwdNv1BIhJquxDDiaFBeGbFPh7vXfIQ8cFB8Zwa_UdP_XgEgHyzWQtDL2fRPmoLK7F6kZMp3c8VPiEPK5DS9qr5sJTsqGKZ2S3VwCsvlrRI6qTPfVX9F3yI7yIIrV8T0e_th8VdJZTQeG1RzVV5iQHl4n3-kgjQc_Lq9mcfq5S8yYL2gf_l1HoFZa3tyuKpM2SiiKjEFLSC4GEFkujEsIKIDCyqEo5pzpNgQ51Gqcy6gqvcEOTWS-ek3F4cv5pYNQ0DYZ0AA4aXJopB9SVWgLgtHT9zEohyHK59PAV5piZbwopbVtYikvXExCkYp3APPMtAYjTeUG2ilmhXhLKVOAzrjDnNXNTpLrKcstLc6Q28s3c7pC3jVISWdcwRyqNaaKxDGMJajOptdkhb1rp66p2xx_kDmv9_kPsoFF-0szTxEYAyHyApR3yum0GE8V1F1GoWallsAx-wGH83tqkaZ-HRb7XW4rJpS72DYgz4B70PGqn119Hufffj9gnO_hD1felA7K1nJfqFURcy7RLNr3Yg6MfnnbJdv8kGp3B1WlsdbWZwfFsEEPLOBr1vv4EESotVQ |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFLZGJzRu-BuIwgAjbb1B2ZI0cVIkLraV0rG14qJTd5c5tqNVdElZE1Xto_AQvAqvxDmO09FJjKtdcFcldmu55xx_x_58PkK2hRdDUiGUZcMny-OJb8UKT9kTwaRnN1vSxcvJvT7rnnpfzvyzNfKzuguDtMoqJupALTOBe-R7LiJtPwT8bxiUx2o-g_xs-vGoDX_mjut2Pg0Ou5aRELBEE1IViwk7ZpARxA6HVE94oXRiAAAeEwG6V9OWoc2FcF3uKCa8gAOAwhp2iQwdDtlQE763MfluoUoVnuYayY57ZB3s3HFrZP1w2P7crWI_YJ-S5cjAdbHwfEW1933cZXD2Qh8LpAcri-D9C8y-Z6MVjHuToblRpBM-n_Hx-I_lr_OI_KomrmS9fNst8nhXLG7UlPx_ZvYxeWiQON0vXecJWVPpU7K5n_I8u5zTBtXcWH3osEl-dIb9vso_0K_Xt7VSmiWUU1glqFYWHSWAMPDZAapu0EFxmV3RdslkHE3pAcAFSaFXp1gs5hQ1rgXlqaSAwOmQo_5HbpWNsGAKjKxfMvSpZnXQnma9KssUxIUHWvt7-oyc3snEPSe1NEvVC0J91Qp9ppAiLL0YlcFk4gRxgkpQoZ24dfK-MrNImJLvqDwyjnTq5_sRGmVkjLJOdpatJ2Wpk7-02zYW-49mW5W5RSYuTqNrW6uTd8vXENHwmIqnKit0G1QNaDEYf7DiBsvfw5roq2_S0YWujQ4JeosF0LOxdJhbR_ny9lG-JRvdQe8kOjnqH78iD7Bnuf-2RWr5VaFeAyLN4zcmDFByftcu8xumbZPx |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dbtMwFLbGJn5u-BtohQFG2naDsiZp7KRICG0rpWMs2sWm7i44tqNV65KyJqraR-FReBVehnOcpKOTGFe74K5K7NZyzzn-jv35fIRsSC-GpEJqy4ZPlicSZsUaT9kTyZVnt9rKxcvJhyHvnXhfTtnpEvlZ34VBWmUdE02gVpnEPfKmi0ibBYD_m0lFizjqdD-OvluoIIUnrbWcRmkiB3o6gfRt_GG_A__1put2Px3v9axKYcCSLchkLC7tmEPCEDsCMkHpBcqJAR94XProfS1bBbaQ0nWFo7n0fAH4CkvcJSpwBCRLLfjeO2Ql4D6HoLCy1-987tXrAOCgkvHIwY2xCH1Nu2cMdxycZsCwWLq_sCDePcNMfDJYwLvX2Zr3i3QkphMxHP6xFHYfkV_1JJYMmPPtIo-35exafcn_c5Yfk4cVQqc7pUs9IUs6fUpWd1KRZxdTukUNZ9YcRqySH91-GOr8PT26usWV0iyhgsLqQY3i6CAB5IHPdlGNgx4XF9kl7ZQMx8GY7gKMUBR6dYvZbEpR-1pSkSoKyJz2BeqC5FbZCAupwMjCkrlPDduDHho2rLaqQrnwwGiCj5-Rk1uZpedkOc1SvUYo0-2AcY3UYeXFqBimEsePE1SICuzEbZB3tclFsioFj4okw8ikhIxFaKBRZaANsjlvPSpLoPyl3UZlvf9otl6bXlTFy3F0ZXcN8nb-GiIdHl-JVGeFaYNqAm0O4_cXXGL-e1grffFNOjgzNdMhcW9zH3puzZ3nxlG-uHmUb8g98Ivo63548JI8wI7lttw6Wc4vC_0KgGoev64iAiXfbts9fgMgrJy5 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ZbtNAFB2VVAhe2EpFoKBBKn1BTr3N2IGnFIgqpFp9aNQiIVmzWY1I7aixVSVPfAJfwMfxJdw7tlNciUW8ebn2jH1nuce-cw4huyqUACqUcVzYckKRMUca_MueKa5DNxhqHxcnHyX8cBJ-PGNnG-RtuxZGI0V8IfRicI6Y9GpqR-vmvS72FaBFgOvefsyQaTwazHV2i2xyBoF4j2xOkuPRJ4RYHLoOEr9fb0dBm_bOWOcWnQnpdlNqJ968mS15p8rnYnklZrNfpqLxffK5fYg6A-XLoCrlQK1u8Dv-51M-IPeaEJWO6jb1kGyY_BHZGuUAzy-WdI_apFH7NX6LfB-fJokp39Dj62VMOS0yKigMn9RKbk4zmHrx2AHKUdCT6qK4pO_rFL_pgh7APKopXDWuVqslRfFnRUWuKYSm9FSgMEb54-u32gy5RKBuSZ28Tm3CAz2yCaEGjBq2WDhkhbEXj8lk_OHk3aHTSD44KgBo6XDlSg4ITnoCoLkKY-1JCNhCriIcDgNXx65QyveFZ7gKIwEBL3IOZjr2BKDXYJv08iI3TwhlZhgzbjB_VocSZbN05kUyQ5mk2M38Pnnd-j1VDR86ynLMUouLGEvRBWnjgj55tbae1zwgv7HbbVz6F7Odtn2lrdtTH8EkiwHi9snL9Wno7vgPR-SmqKwNUuoPOdQ_6rTLdXlIGN49k0_PLXE4oNchj-DKvXUL_mMtn_6r4TNyF3frT1M7pFdeVuY5BGulfNF0yp_Zjzx0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FWNNet%3A+Presentation+of+a+New+Classifier+of+Brain+Tumor+Diagnosis+Based+on+Fuzzy+Logic+and+the+Wavelet-Based+Neural+Network+Using+Machine-Learning+Methods&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Ahmadi%2C+Mohsen&rft.au=Dashti+Ahangar%2C+Fatemeh&rft.au=Astaraki%2C+Nikoo&rft.au=Abbasi%2C+Mohammad&rft.date=2021&rft.pub=Hindawi&rft.issn=1687-5265&rft.eissn=1687-5273&rft.volume=2021&rft_id=info:doi/10.1155%2F2021%2F8542637&rft_id=info%3Apmid%2F34853586&rft.externalDocID=PMC8629672 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon |