A new wind turbine icing computational model based on Free Wake Lifting Line Model and Finite Area Method

Based on the Free Wake Lifting Line (FWL) Model and Finite Area Method (FAM), a new wind turbine icing computational model, named FFICE, is developed in this paper. By utilizing the fast calculation characteristics of the FWL model, the 3D flow field of wind turbine can be computed. According to the...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 146; pp. 342 - 358
Main Authors Wang, Qiang, Xiao, Jingping, Zhang, Tingting, Yang, Jianjun, Shi, Yu
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2020
Subjects
Online AccessGet full text
ISSN0960-1481
1879-0682
DOI10.1016/j.renene.2019.06.109

Cover

Abstract Based on the Free Wake Lifting Line (FWL) Model and Finite Area Method (FAM), a new wind turbine icing computational model, named FFICE, is developed in this paper. By utilizing the fast calculation characteristics of the FWL model, the 3D flow field of wind turbine can be computed. According to the results, the 3D icing problem is transformed into different 2D conditions along the span of the blade. Then, the Lagrangian Method is applied to calculate the collection efficiency on the surface of the local airfoil. In order to accurately simulate the ice accretion, the heat and mass transfer process in the water film is solved by the modified FAM numerical computational method. All the modules involved in FFICE model is validated according to the numerical or experimental results. After that, the dynamic characters of the water film during the icing process on NACA 0012 airfoil is analyzed. At last the icing analysis of NREL Phase VI wind turbine is performed and the results are discussed in detail. The FFICE model provides an effective way for wind turbine icing analysis, which could be easily incorporated into the Icing Protection System (IPS) design code. •A new icing computational model of wind turbine blade, named FFICE, is developed.•The FFICE model combines the Free Wake Lifting Line Model and Finite Area Method.•The mass, momentum and energy conservation equations of the water film are solved.•The dynamic behavior of water film and the ice shapes on the blade can be predicted.•This model is more efficient in the icing analysis of wind turbine.
AbstractList Based on the Free Wake Lifting Line (FWL) Model and Finite Area Method (FAM), a new wind turbine icing computational model, named FFICE, is developed in this paper. By utilizing the fast calculation characteristics of the FWL model, the 3D flow field of wind turbine can be computed. According to the results, the 3D icing problem is transformed into different 2D conditions along the span of the blade. Then, the Lagrangian Method is applied to calculate the collection efficiency on the surface of the local airfoil. In order to accurately simulate the ice accretion, the heat and mass transfer process in the water film is solved by the modified FAM numerical computational method. All the modules involved in FFICE model is validated according to the numerical or experimental results. After that, the dynamic characters of the water film during the icing process on NACA 0012 airfoil is analyzed. At last the icing analysis of NREL Phase VI wind turbine is performed and the results are discussed in detail. The FFICE model provides an effective way for wind turbine icing analysis, which could be easily incorporated into the Icing Protection System (IPS) design code. •A new icing computational model of wind turbine blade, named FFICE, is developed.•The FFICE model combines the Free Wake Lifting Line Model and Finite Area Method.•The mass, momentum and energy conservation equations of the water film are solved.•The dynamic behavior of water film and the ice shapes on the blade can be predicted.•This model is more efficient in the icing analysis of wind turbine.
Based on the Free Wake Lifting Line (FWL) Model and Finite Area Method (FAM), a new wind turbine icing computational model, named FFICE, is developed in this paper. By utilizing the fast calculation characteristics of the FWL model, the 3D flow field of wind turbine can be computed. According to the results, the 3D icing problem is transformed into different 2D conditions along the span of the blade. Then, the Lagrangian Method is applied to calculate the collection efficiency on the surface of the local airfoil. In order to accurately simulate the ice accretion, the heat and mass transfer process in the water film is solved by the modified FAM numerical computational method. All the modules involved in FFICE model is validated according to the numerical or experimental results. After that, the dynamic characters of the water film during the icing process on NACA 0012 airfoil is analyzed. At last the icing analysis of NREL Phase VI wind turbine is performed and the results are discussed in detail. The FFICE model provides an effective way for wind turbine icing analysis, which could be easily incorporated into the Icing Protection System (IPS) design code.
Author Yang, Jianjun
Wang, Qiang
Zhang, Tingting
Shi, Yu
Xiao, Jingping
Author_xml – sequence: 1
  givenname: Qiang
  orcidid: 0000-0001-9706-8092
  surname: Wang
  fullname: Wang, Qiang
  email: wangqiang@cardc.cn
  organization: Low Speed Aerodynamic Institute, China Aerodynamic Research and Development Center, Mianyang, China
– sequence: 2
  givenname: Jingping
  surname: Xiao
  fullname: Xiao, Jingping
  organization: Low Speed Aerodynamic Institute, China Aerodynamic Research and Development Center, Mianyang, China
– sequence: 3
  givenname: Tingting
  surname: Zhang
  fullname: Zhang, Tingting
  organization: City College, Southwest University of Science and Technology, Mianyang, China
– sequence: 4
  givenname: Jianjun
  surname: Yang
  fullname: Yang, Jianjun
  organization: Goldwind Technology Co., Ltd, Beijing, China
– sequence: 5
  givenname: Yu
  surname: Shi
  fullname: Shi, Yu
  organization: Low Speed Aerodynamic Institute, China Aerodynamic Research and Development Center, Mianyang, China
BookMark eNqFkE1LAzEQhoMoWD_-gYccvWxN9jPxIBSxKlS8CB5DTGZ16japSar4701dTx6UOQwMz_PCvAdk13kHhJxwNuWMt2fLaQCXZ1oyLqeszVe5QyZcdLJgrSh3yYTJlhW8FnyfHMS4ZIw3oqsnBGfUwQf9QGdp2oQndEDRoHumxq_Wm6QTeqcHuvIWBvqkI1jqHZ0HAPqoX4EusE9bfLE1774pnbPm6DABnQXQ9A7Si7dHZK_XQ4Tjn31IHuZXD5c3xeL--vZytihMVclUgGlqbTrBm0oyqKASfWOE7lkvrOFCmEbXNetEK3oBNpO2qhrZSANgSi6qQ3I6xq6Df9tATGqF0cAwaAd-E1VZZlWwruwyej6iJvgYA_TK4PhwChoHxZna1quWaqxXbetVrM1XmeX6l7wOuNLh8z_tYtQgV_COEFQ0CM6AxQAmKevx74AviryZHA
CitedBy_id crossref_primary_10_1016_j_icheatmasstransfer_2024_107307
crossref_primary_10_1016_j_renene_2021_07_114
crossref_primary_10_1016_j_compfluid_2022_105734
crossref_primary_10_1016_j_oceaneng_2022_111593
crossref_primary_10_2139_ssrn_4125017
crossref_primary_10_1016_j_renene_2023_01_065
crossref_primary_10_3390_coatings14080929
crossref_primary_10_1016_j_renene_2024_120495
crossref_primary_10_1063_5_0043444
crossref_primary_10_1016_j_renene_2020_09_107
crossref_primary_10_3390_aerospace12020083
crossref_primary_10_1051_e3sconf_202122901052
crossref_primary_10_2514_1_J062618
Cites_doi 10.4050/1.3092881
10.1098/rsta.2000.0689
10.1175/1520-0450-34.1.88
10.2514/3.45735
10.2514/2.1312
10.1007/s00348-015-2046-z
10.1175/1520-0450(1989)028<0856:AICBLS>2.0.CO;2
10.2514/2.472
10.2514/8.2520
10.1175/JAMC-D-13-09.1
10.4050/JAHS.52.214
10.1063/1.4831777
10.1016/j.enconman.2014.05.026
10.1002/we.1599
10.1002/we.477
10.1016/j.coldregions.2013.12.008
10.1016/j.compfluid.2011.11.003
10.2514/2.2566
10.2514/2.2646
10.1016/j.compfluid.2018.02.017
10.2514/2.2290
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2019.06.109
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
EndPage 358
ExternalDocumentID 10_1016_j_renene_2019_06_109
S0960148119309437
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-ec54ac7815390e3e38f5c8af0f8dc188c5a4407868f8edac7d335959ceec2183
IEDL.DBID .~1
ISSN 0960-1481
IngestDate Sat Sep 27 20:29:36 EDT 2025
Sat Oct 25 04:58:54 EDT 2025
Thu Apr 24 23:12:42 EDT 2025
Fri Feb 23 02:34:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Free wake lifting line model
Horizontal axis wind turbine
Ice accretion
Finite area method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-ec54ac7815390e3e38f5c8af0f8dc188c5a4407868f8edac7d335959ceec2183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9706-8092
PQID 2286880727
PQPubID 24069
PageCount 17
ParticipantIDs proquest_miscellaneous_2286880727
crossref_citationtrail_10_1016_j_renene_2019_06_109
crossref_primary_10_1016_j_renene_2019_06_109
elsevier_sciencedirect_doi_10_1016_j_renene_2019_06_109
PublicationCentury 2000
PublicationDate February 2020
2020-02-00
20200201
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: February 2020
PublicationDecade 2020
PublicationTitle Renewable energy
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jasak (bib22) 2009; 1
Tukovic, Jasak (bib31) 2009
Miller, Bond, Sheldon, Wright, Langhals, Al-Khalil, Broughton (bib41) 1996
Hand, Simms, Fingersh, Jager, Cotrell, Schreck, Larwood (bib39) 2001
Davis, Hahmann, Clausen, Žagar (bib7) 2014; 53
Houston (bib23) 2000
Reid, Baruzzi, Ozcer, Switchenko, Habashi (bib13) 2013
Zhang, Wei, Hu (bib3) 2015; 56
Yelmule, Vsj (bib37) 2013; 3
Hsu, Akkerman, Bazilevs (bib38) 2014; 17
Battisti (bib2) 2015
Hansman, Turnock (bib30) 1989; 26
Bourgault, Beaugendre, Habashi (bib20) 2000; 37
Messinger (bib16) 1953; 20
Politovich (bib4) 1989; 28
Snellen, Boelens, Hoeijmakers, Snellen, Boelens, Hoeijmakers (bib11) 1997
Ramasamy, Leishman (bib24) 2007; 52
Virk, Homola, Nicklasson (bib15) 2012; 3
Yi, Zhu, Wang, Li (bib28) 2002; 20
Anderson, Tannehill, Pletcher (bib34) 2016
Vargas, Tsao (bib5) 2007
Fortin, Luliano, Mingione, Perron (bib42) 2009
Bourgault, Boutanios, Habashi (bib12) 2000; 37
Myers (bib18) 2001; 39
Jeck (bib26) 1997
Kays (bib36) 2012
Li, Tagawa, Feng, Li, He (bib8) 2014; 85
Ville, Rolv, Niels-Erik (bib1) 2017
Wang, Xu, Song, Li, Ren, Xu (bib21) 2013; 5
Olsen, Walker (bib29) 1986
Sant, van Kuik, Van Bussel (bib40) 2006; 9
Cober, Isaac, Strapp (bib44) 1995; 34
Homola, Virk, Nicklasson, Sundsbø (bib14) 2012; 15
Tuković, Jasak (bib32) 2012; 55
Mayer, Ilinca, Fortin, Perron (bib9) 2007; 17
Gent, Dart, Cansdale (bib27) 2000; 358
Lamraoui, Fortin, Benoit, Perron, Masson (bib43) 2014; 100
Myers, Thompson (bib19) 1998; 36
Potapczuk (bib10) 1999
Mingione, Brandi (bib17) 1998; 35
Ramasamy, Leishman (bib25) 2006; 51
Rauter, Tuković (bib33) 2018; 166
Papadakis, Yeong, Vargas, Potapczuk (bib6) 2003
Bergman, Incropera, DeWitt, Lavine (bib35) 2011
Papadakis (10.1016/j.renene.2019.06.109_bib6) 2003
Gent (10.1016/j.renene.2019.06.109_bib27) 2000; 358
Jasak (10.1016/j.renene.2019.06.109_bib22) 2009; 1
Yelmule (10.1016/j.renene.2019.06.109_bib37) 2013; 3
Mingione (10.1016/j.renene.2019.06.109_bib17) 1998; 35
Cober (10.1016/j.renene.2019.06.109_bib44) 1995; 34
Tuković (10.1016/j.renene.2019.06.109_bib32) 2012; 55
Hand (10.1016/j.renene.2019.06.109_bib39) 2001
Myers (10.1016/j.renene.2019.06.109_bib19) 1998; 36
Tukovic (10.1016/j.renene.2019.06.109_bib31) 2009
Vargas (10.1016/j.renene.2019.06.109_bib5) 2007
Rauter (10.1016/j.renene.2019.06.109_bib33) 2018; 166
Anderson (10.1016/j.renene.2019.06.109_bib34) 2016
Miller (10.1016/j.renene.2019.06.109_bib41) 1996
Bourgault (10.1016/j.renene.2019.06.109_bib12) 2000; 37
Bourgault (10.1016/j.renene.2019.06.109_bib20) 2000; 37
Lamraoui (10.1016/j.renene.2019.06.109_bib43) 2014; 100
Politovich (10.1016/j.renene.2019.06.109_bib4) 1989; 28
Ramasamy (10.1016/j.renene.2019.06.109_bib25) 2006; 51
Potapczuk (10.1016/j.renene.2019.06.109_bib10) 1999
Messinger (10.1016/j.renene.2019.06.109_bib16) 1953; 20
Reid (10.1016/j.renene.2019.06.109_bib13) 2013
Hsu (10.1016/j.renene.2019.06.109_bib38) 2014; 17
Virk (10.1016/j.renene.2019.06.109_bib15) 2012; 3
Jeck (10.1016/j.renene.2019.06.109_bib26) 1997
Wang (10.1016/j.renene.2019.06.109_bib21) 2013; 5
Zhang (10.1016/j.renene.2019.06.109_bib3) 2015; 56
Sant (10.1016/j.renene.2019.06.109_bib40) 2006; 9
Davis (10.1016/j.renene.2019.06.109_bib7) 2014; 53
Olsen (10.1016/j.renene.2019.06.109_bib29) 1986
Myers (10.1016/j.renene.2019.06.109_bib18) 2001; 39
Mayer (10.1016/j.renene.2019.06.109_bib9) 2007; 17
Battisti (10.1016/j.renene.2019.06.109_bib2) 2015
Ramasamy (10.1016/j.renene.2019.06.109_bib24) 2007; 52
Bergman (10.1016/j.renene.2019.06.109_bib35) 2011
Snellen (10.1016/j.renene.2019.06.109_bib11) 1997
Homola (10.1016/j.renene.2019.06.109_bib14) 2012; 15
Kays (10.1016/j.renene.2019.06.109_bib36) 2012
Li (10.1016/j.renene.2019.06.109_bib8) 2014; 85
Hansman (10.1016/j.renene.2019.06.109_bib30) 1989; 26
Fortin (10.1016/j.renene.2019.06.109_bib42) 2009
Ville (10.1016/j.renene.2019.06.109_bib1) 2017
Yi (10.1016/j.renene.2019.06.109_bib28) 2002; 20
Houston (10.1016/j.renene.2019.06.109_bib23) 2000
References_xml – year: 1996
  ident: bib41
  article-title: Validation of NASA Thermal Ice Protection Computer Codes. Part 1; Program Overview
– volume: 17
  start-page: 461
  year: 2014
  end-page: 481
  ident: bib38
  article-title: Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment
  publication-title: Wind Energy
– year: 2001
  ident: bib39
  article-title: Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns
– start-page: 2206
  year: 1997
  ident: bib11
  article-title: A computational method for numerically simulating ice accretion
  publication-title: 15th Appl. Aerodyn. Conf.
– volume: 358
  start-page: 2873
  year: 2000
  end-page: 2911
  ident: bib27
  article-title: Aircraft icing
  publication-title: Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci.
– volume: 36
  start-page: 1010
  year: 1998
  end-page: 1013
  ident: bib19
  article-title: Modeling the flow of water on aircraft in icing conditions
  publication-title: AIAA J.
– start-page: 3968
  year: 2009
  ident: bib42
  article-title: CIRAAMIL ice accretion code improvements
  publication-title: AIAA Atmos. Sp. Environ. Conf.
– volume: 28
  start-page: 856
  year: 1989
  end-page: 868
  ident: bib4
  article-title: Aircraft icing caused by large supercooled droplets
  publication-title: J. Appl. Meteorol.
– volume: 1
  start-page: 89
  year: 2009
  end-page: 94
  ident: bib22
  article-title: OpenFOAM: open source CFD in research and industry
  publication-title: Int. J. Nav. Archit. Ocean Eng.
– start-page: 900
  year: 2007
  ident: bib5
  article-title: Observations on the growth of roughness elements into icing feathers
  publication-title: 45th AIAA Aerosp. Sci. Meet. Exhib.
– volume: 37
  start-page: 640
  year: 2000
  end-page: 646
  ident: bib20
  article-title: Development of a shallow-water icing model in FENSAP-ICE
  publication-title: J. Aircr.
– year: 2016
  ident: bib34
  article-title: Computational Fluid Mechanics and Heat Transfer
– year: 2015
  ident: bib2
  article-title: Wind Turbines in Cold Climates: Icing Impacts and Mitigation Systems
– year: 2011
  ident: bib35
  article-title: Fundamentals of Heat and Mass Transfer
– volume: 15
  start-page: 379
  year: 2012
  end-page: 389
  ident: bib14
  article-title: Performance losses due to ice accretion for a 5 MW wind turbine
  publication-title: Wind Energy
– year: 2000
  ident: bib23
  article-title: Principles of Helicopter Aerodynamics
– year: 1986
  ident: bib29
  article-title: Experimental Evidence for Modifying the Current Physical Model for Ice Accretion on Aircraft Surfaces
– volume: 9
  start-page: 549
  year: 2006
  end-page: 577
  ident: bib40
  article-title: Estimating the angle of attack from blade pressure measurements on the NREL phase VI rotor using a free wake vortex model: axial conditions
  publication-title: Wind Energy An Int. J. Prog. Appl. Wind Power Convers. Technol.
– year: 1997
  ident: bib26
  article-title: Meteorological Data for Use in Simulation Icing Conditions in Ice Accretion Simulation
– volume: 51
  start-page: 92
  year: 2006
  end-page: 103
  ident: bib25
  article-title: A generalized model for transitional blade tip vortices
  publication-title: J. Am. Helicopter Soc.
– volume: 56
  start-page: 173
  year: 2015
  ident: bib3
  article-title: An experimental investigation on the surface water transport process over an airfoil by using a digital image projection technique
  publication-title: Exp. Fluid
– volume: 3
  start-page: 261
  year: 2013
  end-page: 269
  ident: bib37
  article-title: CFD predictions of NREL phase VI rotor experiments in NASA/AMES wind tunnel
  publication-title: Int. J. Renew. Energy Res.
– volume: 100
  start-page: 36
  year: 2014
  end-page: 49
  ident: bib43
  article-title: Atmospheric icing impact on wind turbine production
  publication-title: Cold Reg. Sci. Technol.
– year: 2017
  ident: bib1
  article-title: Wind Energy Projects in Cold Climates
– volume: 20
  start-page: 29
  year: 1953
  end-page: 42
  ident: bib16
  article-title: Equilibrium temperature of an unheated icing surface as a function of air speed
  publication-title: J. Aeronaut. Sci.
– volume: 52
  start-page: 214
  year: 2007
  end-page: 223
  ident: bib24
  article-title: A Reynolds number-based blade tip vortex model
  publication-title: J. Am. Helicopter Soc.
– year: 2012
  ident: bib36
  article-title: Convective Heat and Mass Transfer
– volume: 20
  start-page: 428
  year: 2002
  end-page: 433
  ident: bib28
  article-title: Numerical simulation of ice accretion on airfoil
  publication-title: Acta Aerodyn. Sin.
– volume: 5
  start-page: 63106
  year: 2013
  ident: bib21
  article-title: 3D stall delay effect modeling and aerodynamic analysis of swept-blade wind turbine
  publication-title: J. Renew. Sustain. Energy
– volume: 26
  start-page: 140
  year: 1989
  end-page: 147
  ident: bib30
  article-title: Investigation of surface water behavior during glaze ice accretion
  publication-title: J. Aircr.
– volume: 166
  start-page: 184
  year: 2018
  end-page: 199
  ident: bib33
  article-title: A finite area scheme for shallow granular flows on three-dimensional surfaces
  publication-title: Comput. Fluids
– start-page: 243
  year: 1999
  ident: bib10
  article-title: A review of NASA Lewis' development plans for computational simulation of aircraft icing
  publication-title: 37th Aerosp. Sci. Meet. Exhib.
– start-page: 731
  year: 2003
  ident: bib6
  article-title: Aerodynamic performance of a swept wing with ice accretions
  publication-title: 41st Aerosp. Sci. Meet. Exhib.
– volume: 53
  start-page: 262
  year: 2014
  end-page: 281
  ident: bib7
  article-title: Forecast of icing events at a wind farm in Sweden
  publication-title: J. Appl. Meteorol. Climatol.
– start-page: 750
  year: 2013
  ident: bib13
  article-title: FENSAP-ICE simulation of icing on wind turbine blades, part 1: performance degradation
  publication-title: 51st AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo.
– volume: 35
  start-page: 240
  year: 1998
  end-page: 246
  ident: bib17
  article-title: Ice accretion prediction on multielement airfoils
  publication-title: J. Aircr.
– volume: 3
  start-page: 1
  year: 2012
  end-page: 8
  ident: bib15
  article-title: Atmospheric icing on large wind turbine blades
  publication-title: Int. J. Energy Env.
– volume: 55
  start-page: 70
  year: 2012
  end-page: 84
  ident: bib32
  article-title: A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow
  publication-title: Comput. Fluids
– volume: 37
  start-page: 95
  year: 2000
  end-page: 103
  ident: bib12
  article-title: Three-dimensional Eulerian approach to droplet impingement simulation using FENSAP-ICE, Part 1: model, algorithm, and validation
  publication-title: J. Aircr.
– volume: 85
  start-page: 591
  year: 2014
  end-page: 595
  ident: bib8
  article-title: A wind tunnel experimental study of icing on wind turbine blade airfoil
  publication-title: Energy Convers. Manag.
– volume: 17
  year: 2007
  ident: bib9
  article-title: Wind tunnel study of electro-thermal de-icing of wind turbine blades
  publication-title: Int. J. Offshore Polar Eng.
– volume: 39
  start-page: 211
  year: 2001
  end-page: 218
  ident: bib18
  article-title: Extension to the Messinger model for aircraft icing
  publication-title: AIAA J.
– year: 2009
  ident: bib31
  article-title: Simulation of thin liquid film flow using openfoam finite area method
  publication-title: 4th OpenFOAM Work. Montr. Canada
– volume: 34
  start-page: 88
  year: 1995
  end-page: 100
  ident: bib44
  article-title: Aircraft icing measurements in East Coast winter storms
  publication-title: J. Appl. Meteorol.
– volume: 17
  year: 2007
  ident: 10.1016/j.renene.2019.06.109_bib9
  article-title: Wind tunnel study of electro-thermal de-icing of wind turbine blades
  publication-title: Int. J. Offshore Polar Eng.
– volume: 3
  start-page: 1
  year: 2012
  ident: 10.1016/j.renene.2019.06.109_bib15
  article-title: Atmospheric icing on large wind turbine blades
  publication-title: Int. J. Energy Env.
– volume: 20
  start-page: 428
  year: 2002
  ident: 10.1016/j.renene.2019.06.109_bib28
  article-title: Numerical simulation of ice accretion on airfoil
  publication-title: Acta Aerodyn. Sin.
– volume: 51
  start-page: 92
  year: 2006
  ident: 10.1016/j.renene.2019.06.109_bib25
  article-title: A generalized model for transitional blade tip vortices
  publication-title: J. Am. Helicopter Soc.
  doi: 10.4050/1.3092881
– volume: 3
  start-page: 261
  year: 2013
  ident: 10.1016/j.renene.2019.06.109_bib37
  article-title: CFD predictions of NREL phase VI rotor experiments in NASA/AMES wind tunnel
  publication-title: Int. J. Renew. Energy Res.
– start-page: 900
  year: 2007
  ident: 10.1016/j.renene.2019.06.109_bib5
  article-title: Observations on the growth of roughness elements into icing feathers
– start-page: 2206
  year: 1997
  ident: 10.1016/j.renene.2019.06.109_bib11
  article-title: A computational method for numerically simulating ice accretion
– year: 1986
  ident: 10.1016/j.renene.2019.06.109_bib29
– year: 2001
  ident: 10.1016/j.renene.2019.06.109_bib39
– volume: 9
  start-page: 549
  year: 2006
  ident: 10.1016/j.renene.2019.06.109_bib40
  article-title: Estimating the angle of attack from blade pressure measurements on the NREL phase VI rotor using a free wake vortex model: axial conditions
  publication-title: Wind Energy An Int. J. Prog. Appl. Wind Power Convers. Technol.
– volume: 358
  start-page: 2873
  year: 2000
  ident: 10.1016/j.renene.2019.06.109_bib27
  article-title: Aircraft icing
  publication-title: Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.2000.0689
– volume: 34
  start-page: 88
  year: 1995
  ident: 10.1016/j.renene.2019.06.109_bib44
  article-title: Aircraft icing measurements in East Coast winter storms
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450-34.1.88
– year: 1996
  ident: 10.1016/j.renene.2019.06.109_bib41
– start-page: 3968
  year: 2009
  ident: 10.1016/j.renene.2019.06.109_bib42
  article-title: CIRAAMIL ice accretion code improvements
– volume: 26
  start-page: 140
  year: 1989
  ident: 10.1016/j.renene.2019.06.109_bib30
  article-title: Investigation of surface water behavior during glaze ice accretion
  publication-title: J. Aircr.
  doi: 10.2514/3.45735
– year: 2012
  ident: 10.1016/j.renene.2019.06.109_bib36
– year: 2015
  ident: 10.1016/j.renene.2019.06.109_bib2
– volume: 39
  start-page: 211
  year: 2001
  ident: 10.1016/j.renene.2019.06.109_bib18
  article-title: Extension to the Messinger model for aircraft icing
  publication-title: AIAA J.
  doi: 10.2514/2.1312
– volume: 56
  start-page: 173
  year: 2015
  ident: 10.1016/j.renene.2019.06.109_bib3
  article-title: An experimental investigation on the surface water transport process over an airfoil by using a digital image projection technique
  publication-title: Exp. Fluid
  doi: 10.1007/s00348-015-2046-z
– volume: 28
  start-page: 856
  year: 1989
  ident: 10.1016/j.renene.2019.06.109_bib4
  article-title: Aircraft icing caused by large supercooled droplets
  publication-title: J. Appl. Meteorol.
  doi: 10.1175/1520-0450(1989)028<0856:AICBLS>2.0.CO;2
– year: 2017
  ident: 10.1016/j.renene.2019.06.109_bib1
– volume: 36
  start-page: 1010
  year: 1998
  ident: 10.1016/j.renene.2019.06.109_bib19
  article-title: Modeling the flow of water on aircraft in icing conditions
  publication-title: AIAA J.
  doi: 10.2514/2.472
– volume: 20
  start-page: 29
  year: 1953
  ident: 10.1016/j.renene.2019.06.109_bib16
  article-title: Equilibrium temperature of an unheated icing surface as a function of air speed
  publication-title: J. Aeronaut. Sci.
  doi: 10.2514/8.2520
– year: 2011
  ident: 10.1016/j.renene.2019.06.109_bib35
– volume: 53
  start-page: 262
  year: 2014
  ident: 10.1016/j.renene.2019.06.109_bib7
  article-title: Forecast of icing events at a wind farm in Sweden
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/JAMC-D-13-09.1
– volume: 52
  start-page: 214
  year: 2007
  ident: 10.1016/j.renene.2019.06.109_bib24
  article-title: A Reynolds number-based blade tip vortex model
  publication-title: J. Am. Helicopter Soc.
  doi: 10.4050/JAHS.52.214
– start-page: 750
  year: 2013
  ident: 10.1016/j.renene.2019.06.109_bib13
  article-title: FENSAP-ICE simulation of icing on wind turbine blades, part 1: performance degradation
– start-page: 731
  year: 2003
  ident: 10.1016/j.renene.2019.06.109_bib6
  article-title: Aerodynamic performance of a swept wing with ice accretions
– volume: 5
  start-page: 63106
  year: 2013
  ident: 10.1016/j.renene.2019.06.109_bib21
  article-title: 3D stall delay effect modeling and aerodynamic analysis of swept-blade wind turbine
  publication-title: J. Renew. Sustain. Energy
  doi: 10.1063/1.4831777
– volume: 1
  start-page: 89
  year: 2009
  ident: 10.1016/j.renene.2019.06.109_bib22
  article-title: OpenFOAM: open source CFD in research and industry
  publication-title: Int. J. Nav. Archit. Ocean Eng.
– volume: 85
  start-page: 591
  year: 2014
  ident: 10.1016/j.renene.2019.06.109_bib8
  article-title: A wind tunnel experimental study of icing on wind turbine blade airfoil
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.05.026
– year: 2009
  ident: 10.1016/j.renene.2019.06.109_bib31
  article-title: Simulation of thin liquid film flow using openfoam finite area method
– volume: 17
  start-page: 461
  year: 2014
  ident: 10.1016/j.renene.2019.06.109_bib38
  article-title: Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment
  publication-title: Wind Energy
  doi: 10.1002/we.1599
– volume: 15
  start-page: 379
  year: 2012
  ident: 10.1016/j.renene.2019.06.109_bib14
  article-title: Performance losses due to ice accretion for a 5 MW wind turbine
  publication-title: Wind Energy
  doi: 10.1002/we.477
– year: 2000
  ident: 10.1016/j.renene.2019.06.109_bib23
– year: 2016
  ident: 10.1016/j.renene.2019.06.109_bib34
– volume: 100
  start-page: 36
  year: 2014
  ident: 10.1016/j.renene.2019.06.109_bib43
  article-title: Atmospheric icing impact on wind turbine production
  publication-title: Cold Reg. Sci. Technol.
  doi: 10.1016/j.coldregions.2013.12.008
– volume: 55
  start-page: 70
  year: 2012
  ident: 10.1016/j.renene.2019.06.109_bib32
  article-title: A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2011.11.003
– volume: 37
  start-page: 95
  year: 2000
  ident: 10.1016/j.renene.2019.06.109_bib12
  article-title: Three-dimensional Eulerian approach to droplet impingement simulation using FENSAP-ICE, Part 1: model, algorithm, and validation
  publication-title: J. Aircr.
  doi: 10.2514/2.2566
– volume: 37
  start-page: 640
  year: 2000
  ident: 10.1016/j.renene.2019.06.109_bib20
  article-title: Development of a shallow-water icing model in FENSAP-ICE
  publication-title: J. Aircr.
  doi: 10.2514/2.2646
– volume: 166
  start-page: 184
  year: 2018
  ident: 10.1016/j.renene.2019.06.109_bib33
  article-title: A finite area scheme for shallow granular flows on three-dimensional surfaces
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2018.02.017
– start-page: 243
  year: 1999
  ident: 10.1016/j.renene.2019.06.109_bib10
  article-title: A review of NASA Lewis' development plans for computational simulation of aircraft icing
– volume: 35
  start-page: 240
  year: 1998
  ident: 10.1016/j.renene.2019.06.109_bib17
  article-title: Ice accretion prediction on multielement airfoils
  publication-title: J. Aircr.
  doi: 10.2514/2.2290
– year: 1997
  ident: 10.1016/j.renene.2019.06.109_bib26
SSID ssj0015874
Score 2.365302
Snippet Based on the Free Wake Lifting Line (FWL) Model and Finite Area Method (FAM), a new wind turbine icing computational model, named FFICE, is developed in this...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 342
SubjectTerms Finite area method
Free wake lifting line model
heat
Horizontal axis wind turbine
ice
Ice accretion
mass transfer
model validation
renewable energy sources
wind turbines
Title A new wind turbine icing computational model based on Free Wake Lifting Line Model and Finite Area Method
URI https://dx.doi.org/10.1016/j.renene.2019.06.109
https://www.proquest.com/docview/2286880727
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - access via UTK
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: AKRWK
  dateStart: 19910101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBW8xuaxSTbHUgz10V6s2Nuy2exKVNJSW7z5253ZJEVFEDwlhJlNso-Zb3bnQcgFgBAwZXXm-MxIhxm4y5gKHaZhBuV-FDO7dTEaR8MHdjMNpy0yaGJh0K2ylv2VTLfSun7Sq3uzNy-K3j2CbwDzHkAQdI_DiHLGYqxicPmxdvPwQl5lYgZiB6mb8Dnr44VZI0tMluklmMXTuiX-rp5-CGqrfdIdsl3DRtqvvmyXtHS5R7a-JBPcJ0WfAkSm72BkU9AjYPFqisfmT1TZyg31rh-1tW8oaq-czkqaLrSmj_JF07vCoA80XIFzZKkktJUWCEvh1VrSka03fUAm6dVkMHTqQgqOCoJk6WgVMqliDtItcXWgA25CxaVxDc-Vx7kKJcPzvIgbrnOgzAOM101AgSqEUIekXc5KfUQoALQ897PMM7CODfczGSauzENg8RLjeR0SNN0nVJ1kHGtdvIrGm-xZVJ0usNOFG-EReIc4a655lWTjD_q4GRnxbbII0AN_cJ43AylgHeHhiCz1bPUmfB9-n7sA547_3foJ2fTRHLdO3aekvVys9BlglmXWtZOySzb617fD8Sf-3Ovx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GOAAHxFO8CRLXsj6SNj1OE9OAlQtDcIvSNEEF1CEY4sZvx05bBAgJiVOryklbJ7E_x45NyDGAEDBlTe6FzCqPWbjLmeYeMzCDijBOmNu6yC7j0TU7v-W3HTJoz8JgWGUj-2uZ7qR186TXcLP3VJa9KwTfAOYDgCAYHpfMkXnGwwQtsJP3zziPgIs6FTNQe0jenp9zQV6YNrLCbJlBimk8XVzi7_rph6R26me4QpYb3Ej79aetko6p1sjSl2yC66TsU8DI9A2sbAqKBExeQ9Fvfke1K93QbPtRV_yGovoq6LSiw2dj6I16MHRcWgyChiu0zByVgr6GJeJSeLVRNHMFpzfIZHg6GYy8ppKCp6MonXlGc6Z0IkC8pb6JTCQs10JZ34pCB0Jorhg69GJhhSmAsojwwG4KGlQjhtok3WpamS1CAaEVRZjngYWFbEWYK576quDQJEhtEGyTqGWf1E2WcSx28SjbcLJ7WTNdItOlH6MPfJt4n62e6iwbf9An7cjIb7NFgiL4o-VRO5ASFhJ6R1Rlpq8vMgzh94UPeG7n370fkoXRJBvL8dnlxS5ZDNE2dxHee6Q7e341-wBgZvmBm6Aff-zthg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+wind+turbine+icing+computational+model+based+on+Free+Wake+Lifting+Line+Model+and+Finite+Area+Method&rft.jtitle=Renewable+energy&rft.au=Wang%2C+Qiang&rft.au=Xiao%2C+Jingping&rft.au=Zhang%2C+Tingting&rft.au=Yang%2C+Jianjun&rft.date=2020-02-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=146&rft.spage=342&rft.epage=358&rft_id=info:doi/10.1016%2Fj.renene.2019.06.109&rft.externalDocID=S0960148119309437
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon