A new wind turbine icing computational model based on Free Wake Lifting Line Model and Finite Area Method
Based on the Free Wake Lifting Line (FWL) Model and Finite Area Method (FAM), a new wind turbine icing computational model, named FFICE, is developed in this paper. By utilizing the fast calculation characteristics of the FWL model, the 3D flow field of wind turbine can be computed. According to the...
Saved in:
| Published in | Renewable energy Vol. 146; pp. 342 - 358 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.02.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0960-1481 1879-0682 |
| DOI | 10.1016/j.renene.2019.06.109 |
Cover
| Abstract | Based on the Free Wake Lifting Line (FWL) Model and Finite Area Method (FAM), a new wind turbine icing computational model, named FFICE, is developed in this paper. By utilizing the fast calculation characteristics of the FWL model, the 3D flow field of wind turbine can be computed. According to the results, the 3D icing problem is transformed into different 2D conditions along the span of the blade. Then, the Lagrangian Method is applied to calculate the collection efficiency on the surface of the local airfoil. In order to accurately simulate the ice accretion, the heat and mass transfer process in the water film is solved by the modified FAM numerical computational method. All the modules involved in FFICE model is validated according to the numerical or experimental results. After that, the dynamic characters of the water film during the icing process on NACA 0012 airfoil is analyzed. At last the icing analysis of NREL Phase VI wind turbine is performed and the results are discussed in detail. The FFICE model provides an effective way for wind turbine icing analysis, which could be easily incorporated into the Icing Protection System (IPS) design code.
•A new icing computational model of wind turbine blade, named FFICE, is developed.•The FFICE model combines the Free Wake Lifting Line Model and Finite Area Method.•The mass, momentum and energy conservation equations of the water film are solved.•The dynamic behavior of water film and the ice shapes on the blade can be predicted.•This model is more efficient in the icing analysis of wind turbine. |
|---|---|
| AbstractList | Based on the Free Wake Lifting Line (FWL) Model and Finite Area Method (FAM), a new wind turbine icing computational model, named FFICE, is developed in this paper. By utilizing the fast calculation characteristics of the FWL model, the 3D flow field of wind turbine can be computed. According to the results, the 3D icing problem is transformed into different 2D conditions along the span of the blade. Then, the Lagrangian Method is applied to calculate the collection efficiency on the surface of the local airfoil. In order to accurately simulate the ice accretion, the heat and mass transfer process in the water film is solved by the modified FAM numerical computational method. All the modules involved in FFICE model is validated according to the numerical or experimental results. After that, the dynamic characters of the water film during the icing process on NACA 0012 airfoil is analyzed. At last the icing analysis of NREL Phase VI wind turbine is performed and the results are discussed in detail. The FFICE model provides an effective way for wind turbine icing analysis, which could be easily incorporated into the Icing Protection System (IPS) design code.
•A new icing computational model of wind turbine blade, named FFICE, is developed.•The FFICE model combines the Free Wake Lifting Line Model and Finite Area Method.•The mass, momentum and energy conservation equations of the water film are solved.•The dynamic behavior of water film and the ice shapes on the blade can be predicted.•This model is more efficient in the icing analysis of wind turbine. Based on the Free Wake Lifting Line (FWL) Model and Finite Area Method (FAM), a new wind turbine icing computational model, named FFICE, is developed in this paper. By utilizing the fast calculation characteristics of the FWL model, the 3D flow field of wind turbine can be computed. According to the results, the 3D icing problem is transformed into different 2D conditions along the span of the blade. Then, the Lagrangian Method is applied to calculate the collection efficiency on the surface of the local airfoil. In order to accurately simulate the ice accretion, the heat and mass transfer process in the water film is solved by the modified FAM numerical computational method. All the modules involved in FFICE model is validated according to the numerical or experimental results. After that, the dynamic characters of the water film during the icing process on NACA 0012 airfoil is analyzed. At last the icing analysis of NREL Phase VI wind turbine is performed and the results are discussed in detail. The FFICE model provides an effective way for wind turbine icing analysis, which could be easily incorporated into the Icing Protection System (IPS) design code. |
| Author | Yang, Jianjun Wang, Qiang Zhang, Tingting Shi, Yu Xiao, Jingping |
| Author_xml | – sequence: 1 givenname: Qiang orcidid: 0000-0001-9706-8092 surname: Wang fullname: Wang, Qiang email: wangqiang@cardc.cn organization: Low Speed Aerodynamic Institute, China Aerodynamic Research and Development Center, Mianyang, China – sequence: 2 givenname: Jingping surname: Xiao fullname: Xiao, Jingping organization: Low Speed Aerodynamic Institute, China Aerodynamic Research and Development Center, Mianyang, China – sequence: 3 givenname: Tingting surname: Zhang fullname: Zhang, Tingting organization: City College, Southwest University of Science and Technology, Mianyang, China – sequence: 4 givenname: Jianjun surname: Yang fullname: Yang, Jianjun organization: Goldwind Technology Co., Ltd, Beijing, China – sequence: 5 givenname: Yu surname: Shi fullname: Shi, Yu organization: Low Speed Aerodynamic Institute, China Aerodynamic Research and Development Center, Mianyang, China |
| BookMark | eNqFkE1LAzEQhoMoWD_-gYccvWxN9jPxIBSxKlS8CB5DTGZ16japSar4701dTx6UOQwMz_PCvAdk13kHhJxwNuWMt2fLaQCXZ1oyLqeszVe5QyZcdLJgrSh3yYTJlhW8FnyfHMS4ZIw3oqsnBGfUwQf9QGdp2oQndEDRoHumxq_Wm6QTeqcHuvIWBvqkI1jqHZ0HAPqoX4EusE9bfLE1774pnbPm6DABnQXQ9A7Si7dHZK_XQ4Tjn31IHuZXD5c3xeL--vZytihMVclUgGlqbTrBm0oyqKASfWOE7lkvrOFCmEbXNetEK3oBNpO2qhrZSANgSi6qQ3I6xq6Df9tATGqF0cAwaAd-E1VZZlWwruwyej6iJvgYA_TK4PhwChoHxZna1quWaqxXbetVrM1XmeX6l7wOuNLh8z_tYtQgV_COEFQ0CM6AxQAmKevx74AviryZHA |
| CitedBy_id | crossref_primary_10_1016_j_icheatmasstransfer_2024_107307 crossref_primary_10_1016_j_renene_2021_07_114 crossref_primary_10_1016_j_compfluid_2022_105734 crossref_primary_10_1016_j_oceaneng_2022_111593 crossref_primary_10_2139_ssrn_4125017 crossref_primary_10_1016_j_renene_2023_01_065 crossref_primary_10_3390_coatings14080929 crossref_primary_10_1016_j_renene_2024_120495 crossref_primary_10_1063_5_0043444 crossref_primary_10_1016_j_renene_2020_09_107 crossref_primary_10_3390_aerospace12020083 crossref_primary_10_1051_e3sconf_202122901052 crossref_primary_10_2514_1_J062618 |
| Cites_doi | 10.4050/1.3092881 10.1098/rsta.2000.0689 10.1175/1520-0450-34.1.88 10.2514/3.45735 10.2514/2.1312 10.1007/s00348-015-2046-z 10.1175/1520-0450(1989)028<0856:AICBLS>2.0.CO;2 10.2514/2.472 10.2514/8.2520 10.1175/JAMC-D-13-09.1 10.4050/JAHS.52.214 10.1063/1.4831777 10.1016/j.enconman.2014.05.026 10.1002/we.1599 10.1002/we.477 10.1016/j.coldregions.2013.12.008 10.1016/j.compfluid.2011.11.003 10.2514/2.2566 10.2514/2.2646 10.1016/j.compfluid.2018.02.017 10.2514/2.2290 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.renene.2019.06.109 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0682 |
| EndPage | 358 |
| ExternalDocumentID | 10_1016_j_renene_2019_06_109 S0960148119309437 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-ec54ac7815390e3e38f5c8af0f8dc188c5a4407868f8edac7d335959ceec2183 |
| IEDL.DBID | .~1 |
| ISSN | 0960-1481 |
| IngestDate | Sat Sep 27 20:29:36 EDT 2025 Sat Oct 25 04:58:54 EDT 2025 Thu Apr 24 23:12:42 EDT 2025 Fri Feb 23 02:34:19 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Free wake lifting line model Horizontal axis wind turbine Ice accretion Finite area method |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c339t-ec54ac7815390e3e38f5c8af0f8dc188c5a4407868f8edac7d335959ceec2183 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9706-8092 |
| PQID | 2286880727 |
| PQPubID | 24069 |
| PageCount | 17 |
| ParticipantIDs | proquest_miscellaneous_2286880727 crossref_citationtrail_10_1016_j_renene_2019_06_109 crossref_primary_10_1016_j_renene_2019_06_109 elsevier_sciencedirect_doi_10_1016_j_renene_2019_06_109 |
| PublicationCentury | 2000 |
| PublicationDate | February 2020 2020-02-00 20200201 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: February 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Renewable energy |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Jasak (bib22) 2009; 1 Tukovic, Jasak (bib31) 2009 Miller, Bond, Sheldon, Wright, Langhals, Al-Khalil, Broughton (bib41) 1996 Hand, Simms, Fingersh, Jager, Cotrell, Schreck, Larwood (bib39) 2001 Davis, Hahmann, Clausen, Žagar (bib7) 2014; 53 Houston (bib23) 2000 Reid, Baruzzi, Ozcer, Switchenko, Habashi (bib13) 2013 Zhang, Wei, Hu (bib3) 2015; 56 Yelmule, Vsj (bib37) 2013; 3 Hsu, Akkerman, Bazilevs (bib38) 2014; 17 Battisti (bib2) 2015 Hansman, Turnock (bib30) 1989; 26 Bourgault, Beaugendre, Habashi (bib20) 2000; 37 Messinger (bib16) 1953; 20 Politovich (bib4) 1989; 28 Snellen, Boelens, Hoeijmakers, Snellen, Boelens, Hoeijmakers (bib11) 1997 Ramasamy, Leishman (bib24) 2007; 52 Virk, Homola, Nicklasson (bib15) 2012; 3 Yi, Zhu, Wang, Li (bib28) 2002; 20 Anderson, Tannehill, Pletcher (bib34) 2016 Vargas, Tsao (bib5) 2007 Fortin, Luliano, Mingione, Perron (bib42) 2009 Bourgault, Boutanios, Habashi (bib12) 2000; 37 Myers (bib18) 2001; 39 Jeck (bib26) 1997 Kays (bib36) 2012 Li, Tagawa, Feng, Li, He (bib8) 2014; 85 Ville, Rolv, Niels-Erik (bib1) 2017 Wang, Xu, Song, Li, Ren, Xu (bib21) 2013; 5 Olsen, Walker (bib29) 1986 Sant, van Kuik, Van Bussel (bib40) 2006; 9 Cober, Isaac, Strapp (bib44) 1995; 34 Homola, Virk, Nicklasson, Sundsbø (bib14) 2012; 15 Tuković, Jasak (bib32) 2012; 55 Mayer, Ilinca, Fortin, Perron (bib9) 2007; 17 Gent, Dart, Cansdale (bib27) 2000; 358 Lamraoui, Fortin, Benoit, Perron, Masson (bib43) 2014; 100 Myers, Thompson (bib19) 1998; 36 Potapczuk (bib10) 1999 Mingione, Brandi (bib17) 1998; 35 Ramasamy, Leishman (bib25) 2006; 51 Rauter, Tuković (bib33) 2018; 166 Papadakis, Yeong, Vargas, Potapczuk (bib6) 2003 Bergman, Incropera, DeWitt, Lavine (bib35) 2011 Papadakis (10.1016/j.renene.2019.06.109_bib6) 2003 Gent (10.1016/j.renene.2019.06.109_bib27) 2000; 358 Jasak (10.1016/j.renene.2019.06.109_bib22) 2009; 1 Yelmule (10.1016/j.renene.2019.06.109_bib37) 2013; 3 Mingione (10.1016/j.renene.2019.06.109_bib17) 1998; 35 Cober (10.1016/j.renene.2019.06.109_bib44) 1995; 34 Tuković (10.1016/j.renene.2019.06.109_bib32) 2012; 55 Hand (10.1016/j.renene.2019.06.109_bib39) 2001 Myers (10.1016/j.renene.2019.06.109_bib19) 1998; 36 Tukovic (10.1016/j.renene.2019.06.109_bib31) 2009 Vargas (10.1016/j.renene.2019.06.109_bib5) 2007 Rauter (10.1016/j.renene.2019.06.109_bib33) 2018; 166 Anderson (10.1016/j.renene.2019.06.109_bib34) 2016 Miller (10.1016/j.renene.2019.06.109_bib41) 1996 Bourgault (10.1016/j.renene.2019.06.109_bib12) 2000; 37 Bourgault (10.1016/j.renene.2019.06.109_bib20) 2000; 37 Lamraoui (10.1016/j.renene.2019.06.109_bib43) 2014; 100 Politovich (10.1016/j.renene.2019.06.109_bib4) 1989; 28 Ramasamy (10.1016/j.renene.2019.06.109_bib25) 2006; 51 Potapczuk (10.1016/j.renene.2019.06.109_bib10) 1999 Messinger (10.1016/j.renene.2019.06.109_bib16) 1953; 20 Reid (10.1016/j.renene.2019.06.109_bib13) 2013 Hsu (10.1016/j.renene.2019.06.109_bib38) 2014; 17 Virk (10.1016/j.renene.2019.06.109_bib15) 2012; 3 Jeck (10.1016/j.renene.2019.06.109_bib26) 1997 Wang (10.1016/j.renene.2019.06.109_bib21) 2013; 5 Zhang (10.1016/j.renene.2019.06.109_bib3) 2015; 56 Sant (10.1016/j.renene.2019.06.109_bib40) 2006; 9 Davis (10.1016/j.renene.2019.06.109_bib7) 2014; 53 Olsen (10.1016/j.renene.2019.06.109_bib29) 1986 Myers (10.1016/j.renene.2019.06.109_bib18) 2001; 39 Mayer (10.1016/j.renene.2019.06.109_bib9) 2007; 17 Battisti (10.1016/j.renene.2019.06.109_bib2) 2015 Ramasamy (10.1016/j.renene.2019.06.109_bib24) 2007; 52 Bergman (10.1016/j.renene.2019.06.109_bib35) 2011 Snellen (10.1016/j.renene.2019.06.109_bib11) 1997 Homola (10.1016/j.renene.2019.06.109_bib14) 2012; 15 Kays (10.1016/j.renene.2019.06.109_bib36) 2012 Li (10.1016/j.renene.2019.06.109_bib8) 2014; 85 Hansman (10.1016/j.renene.2019.06.109_bib30) 1989; 26 Fortin (10.1016/j.renene.2019.06.109_bib42) 2009 Ville (10.1016/j.renene.2019.06.109_bib1) 2017 Yi (10.1016/j.renene.2019.06.109_bib28) 2002; 20 Houston (10.1016/j.renene.2019.06.109_bib23) 2000 |
| References_xml | – year: 1996 ident: bib41 article-title: Validation of NASA Thermal Ice Protection Computer Codes. Part 1; Program Overview – volume: 17 start-page: 461 year: 2014 end-page: 481 ident: bib38 article-title: Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment publication-title: Wind Energy – year: 2001 ident: bib39 article-title: Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns – start-page: 2206 year: 1997 ident: bib11 article-title: A computational method for numerically simulating ice accretion publication-title: 15th Appl. Aerodyn. Conf. – volume: 358 start-page: 2873 year: 2000 end-page: 2911 ident: bib27 article-title: Aircraft icing publication-title: Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. – volume: 36 start-page: 1010 year: 1998 end-page: 1013 ident: bib19 article-title: Modeling the flow of water on aircraft in icing conditions publication-title: AIAA J. – start-page: 3968 year: 2009 ident: bib42 article-title: CIRAAMIL ice accretion code improvements publication-title: AIAA Atmos. Sp. Environ. Conf. – volume: 28 start-page: 856 year: 1989 end-page: 868 ident: bib4 article-title: Aircraft icing caused by large supercooled droplets publication-title: J. Appl. Meteorol. – volume: 1 start-page: 89 year: 2009 end-page: 94 ident: bib22 article-title: OpenFOAM: open source CFD in research and industry publication-title: Int. J. Nav. Archit. Ocean Eng. – start-page: 900 year: 2007 ident: bib5 article-title: Observations on the growth of roughness elements into icing feathers publication-title: 45th AIAA Aerosp. Sci. Meet. Exhib. – volume: 37 start-page: 640 year: 2000 end-page: 646 ident: bib20 article-title: Development of a shallow-water icing model in FENSAP-ICE publication-title: J. Aircr. – year: 2016 ident: bib34 article-title: Computational Fluid Mechanics and Heat Transfer – year: 2015 ident: bib2 article-title: Wind Turbines in Cold Climates: Icing Impacts and Mitigation Systems – year: 2011 ident: bib35 article-title: Fundamentals of Heat and Mass Transfer – volume: 15 start-page: 379 year: 2012 end-page: 389 ident: bib14 article-title: Performance losses due to ice accretion for a 5 MW wind turbine publication-title: Wind Energy – year: 2000 ident: bib23 article-title: Principles of Helicopter Aerodynamics – year: 1986 ident: bib29 article-title: Experimental Evidence for Modifying the Current Physical Model for Ice Accretion on Aircraft Surfaces – volume: 9 start-page: 549 year: 2006 end-page: 577 ident: bib40 article-title: Estimating the angle of attack from blade pressure measurements on the NREL phase VI rotor using a free wake vortex model: axial conditions publication-title: Wind Energy An Int. J. Prog. Appl. Wind Power Convers. Technol. – year: 1997 ident: bib26 article-title: Meteorological Data for Use in Simulation Icing Conditions in Ice Accretion Simulation – volume: 51 start-page: 92 year: 2006 end-page: 103 ident: bib25 article-title: A generalized model for transitional blade tip vortices publication-title: J. Am. Helicopter Soc. – volume: 56 start-page: 173 year: 2015 ident: bib3 article-title: An experimental investigation on the surface water transport process over an airfoil by using a digital image projection technique publication-title: Exp. Fluid – volume: 3 start-page: 261 year: 2013 end-page: 269 ident: bib37 article-title: CFD predictions of NREL phase VI rotor experiments in NASA/AMES wind tunnel publication-title: Int. J. Renew. Energy Res. – volume: 100 start-page: 36 year: 2014 end-page: 49 ident: bib43 article-title: Atmospheric icing impact on wind turbine production publication-title: Cold Reg. Sci. Technol. – year: 2017 ident: bib1 article-title: Wind Energy Projects in Cold Climates – volume: 20 start-page: 29 year: 1953 end-page: 42 ident: bib16 article-title: Equilibrium temperature of an unheated icing surface as a function of air speed publication-title: J. Aeronaut. Sci. – volume: 52 start-page: 214 year: 2007 end-page: 223 ident: bib24 article-title: A Reynolds number-based blade tip vortex model publication-title: J. Am. Helicopter Soc. – year: 2012 ident: bib36 article-title: Convective Heat and Mass Transfer – volume: 20 start-page: 428 year: 2002 end-page: 433 ident: bib28 article-title: Numerical simulation of ice accretion on airfoil publication-title: Acta Aerodyn. Sin. – volume: 5 start-page: 63106 year: 2013 ident: bib21 article-title: 3D stall delay effect modeling and aerodynamic analysis of swept-blade wind turbine publication-title: J. Renew. Sustain. Energy – volume: 26 start-page: 140 year: 1989 end-page: 147 ident: bib30 article-title: Investigation of surface water behavior during glaze ice accretion publication-title: J. Aircr. – volume: 166 start-page: 184 year: 2018 end-page: 199 ident: bib33 article-title: A finite area scheme for shallow granular flows on three-dimensional surfaces publication-title: Comput. Fluids – start-page: 243 year: 1999 ident: bib10 article-title: A review of NASA Lewis' development plans for computational simulation of aircraft icing publication-title: 37th Aerosp. Sci. Meet. Exhib. – start-page: 731 year: 2003 ident: bib6 article-title: Aerodynamic performance of a swept wing with ice accretions publication-title: 41st Aerosp. Sci. Meet. Exhib. – volume: 53 start-page: 262 year: 2014 end-page: 281 ident: bib7 article-title: Forecast of icing events at a wind farm in Sweden publication-title: J. Appl. Meteorol. Climatol. – start-page: 750 year: 2013 ident: bib13 article-title: FENSAP-ICE simulation of icing on wind turbine blades, part 1: performance degradation publication-title: 51st AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo. – volume: 35 start-page: 240 year: 1998 end-page: 246 ident: bib17 article-title: Ice accretion prediction on multielement airfoils publication-title: J. Aircr. – volume: 3 start-page: 1 year: 2012 end-page: 8 ident: bib15 article-title: Atmospheric icing on large wind turbine blades publication-title: Int. J. Energy Env. – volume: 55 start-page: 70 year: 2012 end-page: 84 ident: bib32 article-title: A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow publication-title: Comput. Fluids – volume: 37 start-page: 95 year: 2000 end-page: 103 ident: bib12 article-title: Three-dimensional Eulerian approach to droplet impingement simulation using FENSAP-ICE, Part 1: model, algorithm, and validation publication-title: J. Aircr. – volume: 85 start-page: 591 year: 2014 end-page: 595 ident: bib8 article-title: A wind tunnel experimental study of icing on wind turbine blade airfoil publication-title: Energy Convers. Manag. – volume: 17 year: 2007 ident: bib9 article-title: Wind tunnel study of electro-thermal de-icing of wind turbine blades publication-title: Int. J. Offshore Polar Eng. – volume: 39 start-page: 211 year: 2001 end-page: 218 ident: bib18 article-title: Extension to the Messinger model for aircraft icing publication-title: AIAA J. – year: 2009 ident: bib31 article-title: Simulation of thin liquid film flow using openfoam finite area method publication-title: 4th OpenFOAM Work. Montr. Canada – volume: 34 start-page: 88 year: 1995 end-page: 100 ident: bib44 article-title: Aircraft icing measurements in East Coast winter storms publication-title: J. Appl. Meteorol. – volume: 17 year: 2007 ident: 10.1016/j.renene.2019.06.109_bib9 article-title: Wind tunnel study of electro-thermal de-icing of wind turbine blades publication-title: Int. J. Offshore Polar Eng. – volume: 3 start-page: 1 year: 2012 ident: 10.1016/j.renene.2019.06.109_bib15 article-title: Atmospheric icing on large wind turbine blades publication-title: Int. J. Energy Env. – volume: 20 start-page: 428 year: 2002 ident: 10.1016/j.renene.2019.06.109_bib28 article-title: Numerical simulation of ice accretion on airfoil publication-title: Acta Aerodyn. Sin. – volume: 51 start-page: 92 year: 2006 ident: 10.1016/j.renene.2019.06.109_bib25 article-title: A generalized model for transitional blade tip vortices publication-title: J. Am. Helicopter Soc. doi: 10.4050/1.3092881 – volume: 3 start-page: 261 year: 2013 ident: 10.1016/j.renene.2019.06.109_bib37 article-title: CFD predictions of NREL phase VI rotor experiments in NASA/AMES wind tunnel publication-title: Int. J. Renew. Energy Res. – start-page: 900 year: 2007 ident: 10.1016/j.renene.2019.06.109_bib5 article-title: Observations on the growth of roughness elements into icing feathers – start-page: 2206 year: 1997 ident: 10.1016/j.renene.2019.06.109_bib11 article-title: A computational method for numerically simulating ice accretion – year: 1986 ident: 10.1016/j.renene.2019.06.109_bib29 – year: 2001 ident: 10.1016/j.renene.2019.06.109_bib39 – volume: 9 start-page: 549 year: 2006 ident: 10.1016/j.renene.2019.06.109_bib40 article-title: Estimating the angle of attack from blade pressure measurements on the NREL phase VI rotor using a free wake vortex model: axial conditions publication-title: Wind Energy An Int. J. Prog. Appl. Wind Power Convers. Technol. – volume: 358 start-page: 2873 year: 2000 ident: 10.1016/j.renene.2019.06.109_bib27 article-title: Aircraft icing publication-title: Philos. Trans. R. Soc. London A Math. Phys. Eng. Sci. doi: 10.1098/rsta.2000.0689 – volume: 34 start-page: 88 year: 1995 ident: 10.1016/j.renene.2019.06.109_bib44 article-title: Aircraft icing measurements in East Coast winter storms publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450-34.1.88 – year: 1996 ident: 10.1016/j.renene.2019.06.109_bib41 – start-page: 3968 year: 2009 ident: 10.1016/j.renene.2019.06.109_bib42 article-title: CIRAAMIL ice accretion code improvements – volume: 26 start-page: 140 year: 1989 ident: 10.1016/j.renene.2019.06.109_bib30 article-title: Investigation of surface water behavior during glaze ice accretion publication-title: J. Aircr. doi: 10.2514/3.45735 – year: 2012 ident: 10.1016/j.renene.2019.06.109_bib36 – year: 2015 ident: 10.1016/j.renene.2019.06.109_bib2 – volume: 39 start-page: 211 year: 2001 ident: 10.1016/j.renene.2019.06.109_bib18 article-title: Extension to the Messinger model for aircraft icing publication-title: AIAA J. doi: 10.2514/2.1312 – volume: 56 start-page: 173 year: 2015 ident: 10.1016/j.renene.2019.06.109_bib3 article-title: An experimental investigation on the surface water transport process over an airfoil by using a digital image projection technique publication-title: Exp. Fluid doi: 10.1007/s00348-015-2046-z – volume: 28 start-page: 856 year: 1989 ident: 10.1016/j.renene.2019.06.109_bib4 article-title: Aircraft icing caused by large supercooled droplets publication-title: J. Appl. Meteorol. doi: 10.1175/1520-0450(1989)028<0856:AICBLS>2.0.CO;2 – year: 2017 ident: 10.1016/j.renene.2019.06.109_bib1 – volume: 36 start-page: 1010 year: 1998 ident: 10.1016/j.renene.2019.06.109_bib19 article-title: Modeling the flow of water on aircraft in icing conditions publication-title: AIAA J. doi: 10.2514/2.472 – volume: 20 start-page: 29 year: 1953 ident: 10.1016/j.renene.2019.06.109_bib16 article-title: Equilibrium temperature of an unheated icing surface as a function of air speed publication-title: J. Aeronaut. Sci. doi: 10.2514/8.2520 – year: 2011 ident: 10.1016/j.renene.2019.06.109_bib35 – volume: 53 start-page: 262 year: 2014 ident: 10.1016/j.renene.2019.06.109_bib7 article-title: Forecast of icing events at a wind farm in Sweden publication-title: J. Appl. Meteorol. Climatol. doi: 10.1175/JAMC-D-13-09.1 – volume: 52 start-page: 214 year: 2007 ident: 10.1016/j.renene.2019.06.109_bib24 article-title: A Reynolds number-based blade tip vortex model publication-title: J. Am. Helicopter Soc. doi: 10.4050/JAHS.52.214 – start-page: 750 year: 2013 ident: 10.1016/j.renene.2019.06.109_bib13 article-title: FENSAP-ICE simulation of icing on wind turbine blades, part 1: performance degradation – start-page: 731 year: 2003 ident: 10.1016/j.renene.2019.06.109_bib6 article-title: Aerodynamic performance of a swept wing with ice accretions – volume: 5 start-page: 63106 year: 2013 ident: 10.1016/j.renene.2019.06.109_bib21 article-title: 3D stall delay effect modeling and aerodynamic analysis of swept-blade wind turbine publication-title: J. Renew. Sustain. Energy doi: 10.1063/1.4831777 – volume: 1 start-page: 89 year: 2009 ident: 10.1016/j.renene.2019.06.109_bib22 article-title: OpenFOAM: open source CFD in research and industry publication-title: Int. J. Nav. Archit. Ocean Eng. – volume: 85 start-page: 591 year: 2014 ident: 10.1016/j.renene.2019.06.109_bib8 article-title: A wind tunnel experimental study of icing on wind turbine blade airfoil publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.05.026 – year: 2009 ident: 10.1016/j.renene.2019.06.109_bib31 article-title: Simulation of thin liquid film flow using openfoam finite area method – volume: 17 start-page: 461 year: 2014 ident: 10.1016/j.renene.2019.06.109_bib38 article-title: Finite element simulation of wind turbine aerodynamics: validation study using NREL Phase VI experiment publication-title: Wind Energy doi: 10.1002/we.1599 – volume: 15 start-page: 379 year: 2012 ident: 10.1016/j.renene.2019.06.109_bib14 article-title: Performance losses due to ice accretion for a 5 MW wind turbine publication-title: Wind Energy doi: 10.1002/we.477 – year: 2000 ident: 10.1016/j.renene.2019.06.109_bib23 – year: 2016 ident: 10.1016/j.renene.2019.06.109_bib34 – volume: 100 start-page: 36 year: 2014 ident: 10.1016/j.renene.2019.06.109_bib43 article-title: Atmospheric icing impact on wind turbine production publication-title: Cold Reg. Sci. Technol. doi: 10.1016/j.coldregions.2013.12.008 – volume: 55 start-page: 70 year: 2012 ident: 10.1016/j.renene.2019.06.109_bib32 article-title: A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2011.11.003 – volume: 37 start-page: 95 year: 2000 ident: 10.1016/j.renene.2019.06.109_bib12 article-title: Three-dimensional Eulerian approach to droplet impingement simulation using FENSAP-ICE, Part 1: model, algorithm, and validation publication-title: J. Aircr. doi: 10.2514/2.2566 – volume: 37 start-page: 640 year: 2000 ident: 10.1016/j.renene.2019.06.109_bib20 article-title: Development of a shallow-water icing model in FENSAP-ICE publication-title: J. Aircr. doi: 10.2514/2.2646 – volume: 166 start-page: 184 year: 2018 ident: 10.1016/j.renene.2019.06.109_bib33 article-title: A finite area scheme for shallow granular flows on three-dimensional surfaces publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2018.02.017 – start-page: 243 year: 1999 ident: 10.1016/j.renene.2019.06.109_bib10 article-title: A review of NASA Lewis' development plans for computational simulation of aircraft icing – volume: 35 start-page: 240 year: 1998 ident: 10.1016/j.renene.2019.06.109_bib17 article-title: Ice accretion prediction on multielement airfoils publication-title: J. Aircr. doi: 10.2514/2.2290 – year: 1997 ident: 10.1016/j.renene.2019.06.109_bib26 |
| SSID | ssj0015874 |
| Score | 2.365302 |
| Snippet | Based on the Free Wake Lifting Line (FWL) Model and Finite Area Method (FAM), a new wind turbine icing computational model, named FFICE, is developed in this... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 342 |
| SubjectTerms | Finite area method Free wake lifting line model heat Horizontal axis wind turbine ice Ice accretion mass transfer model validation renewable energy sources wind turbines |
| Title | A new wind turbine icing computational model based on Free Wake Lifting Line Model and Finite Area Method |
| URI | https://dx.doi.org/10.1016/j.renene.2019.06.109 https://www.proquest.com/docview/2286880727 |
| Volume | 146 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] - access via UTK customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0682 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: AKRWK dateStart: 19910101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBW8xuaxSTbHUgz10V6s2Nuy2exKVNJSW7z5253ZJEVFEDwlhJlNso-Zb3bnQcgFgBAwZXXm-MxIhxm4y5gKHaZhBuV-FDO7dTEaR8MHdjMNpy0yaGJh0K2ylv2VTLfSun7Sq3uzNy-K3j2CbwDzHkAQdI_DiHLGYqxicPmxdvPwQl5lYgZiB6mb8Dnr44VZI0tMluklmMXTuiX-rp5-CGqrfdIdsl3DRtqvvmyXtHS5R7a-JBPcJ0WfAkSm72BkU9AjYPFqisfmT1TZyg31rh-1tW8oaq-czkqaLrSmj_JF07vCoA80XIFzZKkktJUWCEvh1VrSka03fUAm6dVkMHTqQgqOCoJk6WgVMqliDtItcXWgA25CxaVxDc-Vx7kKJcPzvIgbrnOgzAOM101AgSqEUIekXc5KfUQoALQ897PMM7CODfczGSauzENg8RLjeR0SNN0nVJ1kHGtdvIrGm-xZVJ0usNOFG-EReIc4a655lWTjD_q4GRnxbbII0AN_cJ43AylgHeHhiCz1bPUmfB9-n7sA547_3foJ2fTRHLdO3aekvVys9BlglmXWtZOySzb617fD8Sf-3Ovx |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI7GOAAHxFO8CRLXsj6SNj1OE9OAlQtDcIvSNEEF1CEY4sZvx05bBAgJiVOryklbJ7E_x45NyDGAEDBlTe6FzCqPWbjLmeYeMzCDijBOmNu6yC7j0TU7v-W3HTJoz8JgWGUj-2uZ7qR186TXcLP3VJa9KwTfAOYDgCAYHpfMkXnGwwQtsJP3zziPgIs6FTNQe0jenp9zQV6YNrLCbJlBimk8XVzi7_rph6R26me4QpYb3Ej79aetko6p1sjSl2yC66TsU8DI9A2sbAqKBExeQ9Fvfke1K93QbPtRV_yGovoq6LSiw2dj6I16MHRcWgyChiu0zByVgr6GJeJSeLVRNHMFpzfIZHg6GYy8ppKCp6MonXlGc6Z0IkC8pb6JTCQs10JZ34pCB0Jorhg69GJhhSmAsojwwG4KGlQjhtok3WpamS1CAaEVRZjngYWFbEWYK576quDQJEhtEGyTqGWf1E2WcSx28SjbcLJ7WTNdItOlH6MPfJt4n62e6iwbf9An7cjIb7NFgiL4o-VRO5ASFhJ6R1Rlpq8vMgzh94UPeG7n370fkoXRJBvL8dnlxS5ZDNE2dxHee6Q7e341-wBgZvmBm6Aff-zthg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+wind+turbine+icing+computational+model+based+on+Free+Wake+Lifting+Line+Model+and+Finite+Area+Method&rft.jtitle=Renewable+energy&rft.au=Wang%2C+Qiang&rft.au=Xiao%2C+Jingping&rft.au=Zhang%2C+Tingting&rft.au=Yang%2C+Jianjun&rft.date=2020-02-01&rft.pub=Elsevier+Ltd&rft.issn=0960-1481&rft.eissn=1879-0682&rft.volume=146&rft.spage=342&rft.epage=358&rft_id=info:doi/10.1016%2Fj.renene.2019.06.109&rft.externalDocID=S0960148119309437 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |