Channel measurements and models for 6G: current status and future outlook

With the commercialization of fifth generation networks worldwide, research into sixth generation (6G) networks has been launched to meet the demands for high data rates and low latency for future services. A wireless propagation channel is the transmission medium to transfer information between the...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of information technology & electronic engineering Vol. 21; no. 1; pp. 39 - 61
Main Authors Zhang, Jian-hua, Tang, Pan, Yu, Li, Jiang, Tao, Tian, Lei
Format Journal Article
LanguageEnglish
Published Hangzhou Zhejiang University Press 01.01.2020
Springer Nature B.V
State Key Lab of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China
Subjects
Online AccessGet full text
ISSN2095-9184
2095-9230
DOI10.1631/FITEE.1900450

Cover

Abstract With the commercialization of fifth generation networks worldwide, research into sixth generation (6G) networks has been launched to meet the demands for high data rates and low latency for future services. A wireless propagation channel is the transmission medium to transfer information between the transmitter and the receiver. Moreover, channel properties determine the ultimate performance limit of wireless communication systems. Thus, conducting channel research is a prerequisite to designing 6G wireless communication systems. In this paper, we first introduce several emerging technologies and applications for 6G, such as terahertz communication, industrial Internet of Things, space-air-ground integrated network, and machine learning, and point out the developing trends of 6G channel models. Then, we give a review of channel measurements and models for the technologies and applications. Finally, the outlook for 6G channel measurements and models is discussed.
AbstractList With the commercialization of fifth generation networks worldwide, research into sixth generation (6G) networks has been launched to meet the demands for high data rates and low latency for future services. A wireless propagation channel is the transmission medium to transfer information between the transmitter and the receiver. Moreover, channel properties determine the ultimate performance limit of wireless communication systems. Thus, conducting channel research is a prerequisite to designing 6G wireless communication systems. In this paper, we first introduce several emerging technologies and applications for 6G, such as terahertz communication, industrial Internet of Things, space-air-ground integrated network, and machine learning, and point out the developing trends of 6G channel models. Then, we give a review of channel measurements and models for the technologies and applications. Finally, the outlook for 6G channel measurements and models is discussed.
TN929.5; With the commercialization of fifth generation networks worldwide, research into sixth generation (6G) networks has been launched to meet the demands for high data rates and low latency for future services. A wireless propagation channel is the transmission medium to transfer information between the transmitter and the receiver.Moreover, channel properties determine the ultimate performance limit of wireless communication systems. Thus, conducting channel research is a prerequisite to designing 6G wireless communication systems. In this paper, we first introduce several emerging technologies and applications for 6G, such as terahertz communication, industrial Internet of Things, space-air-ground integrated network, and machine learning, and point out the developing trends of 6G channel models. Then, we give a review of channel measurements and models for the technologies and applications. Finally, the outlook for 6G channel measurements and models is discussed.
Author Tang, Pan
Yu, Li
Jiang, Tao
Zhang, Jian-hua
Tian, Lei
AuthorAffiliation State Key Lab of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China
AuthorAffiliation_xml – name: State Key Lab of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China
Author_xml – sequence: 1
  givenname: Jian-hua
  orcidid: 0000-0002-6492-3846
  surname: Zhang
  fullname: Zhang, Jian-hua
  organization: State Key Lab of Networking and Switching Technology, Beijing University of Posts and Telecommunications
– sequence: 2
  givenname: Pan
  orcidid: 0000-0003-0432-7361
  surname: Tang
  fullname: Tang, Pan
  email: tangpan27@bupt.edu.cn
  organization: State Key Lab of Networking and Switching Technology, Beijing University of Posts and Telecommunications
– sequence: 3
  givenname: Li
  surname: Yu
  fullname: Yu, Li
  organization: State Key Lab of Networking and Switching Technology, Beijing University of Posts and Telecommunications
– sequence: 4
  givenname: Tao
  surname: Jiang
  fullname: Jiang, Tao
  organization: State Key Lab of Networking and Switching Technology, Beijing University of Posts and Telecommunications
– sequence: 5
  givenname: Lei
  surname: Tian
  fullname: Tian, Lei
  organization: State Key Lab of Networking and Switching Technology, Beijing University of Posts and Telecommunications
BookMark eNp1kM1LAzEQxYNUsNYevS94E7bmYz8Sb1LaWhC81HNIN0ndupvUJIvVv97oVgqipxmY35t5887BwFijALhEcIIKgm7my9VsNkEMwiyHJ2CIIctThgkc_PSIZmdg7P0WQogKxEpGh2A5fRbGqCZplfCdU60ywSfCyKS1UjU-0dYlxeI2qTrn4izxQYSuJ3QXoiKxXWisfbkAp1o0Xo0PdQSe5rPV9D59eFwsp3cPaUUIC6lkCEmZQSHZOkdK0rygTEuSqRIjCnU0hvOqYkyRksK1xJkQIqeaIi0zqTAZget-75swWpgN39rOmXiRf2zlfr-uuMIQxxchzCN81cM7Z1875cORxjGQEhe4QJEiPVU5671Tmld1fLO2JjhRNxxB_pUx_86YHzKOqvSXaufqVrj3f_lJz_vImY1yRy9_Cz4BBnaM_A
CitedBy_id crossref_primary_10_3390_electronics11050820
crossref_primary_10_23919_ICN_2024_0019
crossref_primary_10_1109_COMST_2022_3182539
crossref_primary_10_1049_iet_com_2020_0531
crossref_primary_10_1109_LWC_2024_3397839
crossref_primary_10_1109_JSAC_2024_3492720
crossref_primary_10_1007_s10776_021_00546_3
crossref_primary_10_1631_FITEE_2200290
crossref_primary_10_1109_COMST_2022_3205505
crossref_primary_10_1016_j_compeleceng_2023_108581
crossref_primary_10_1109_MCOM_001_2200486
crossref_primary_10_1109_LWC_2022_3192516
crossref_primary_10_1109_LWC_2023_3262691
crossref_primary_10_1029_2021RS007385
crossref_primary_10_1109_ACCESS_2021_3069707
crossref_primary_10_1109_TAP_2022_3218759
crossref_primary_10_1109_TITS_2024_3465014
crossref_primary_10_1007_s11277_024_11349_z
crossref_primary_10_1109_COMST_2022_3184049
crossref_primary_10_1016_j_ijleo_2021_166415
crossref_primary_10_1109_JIOT_2020_3048992
crossref_primary_10_3390_photonics9040228
crossref_primary_10_1002_mop_33662
crossref_primary_10_3390_ma15186364
crossref_primary_10_1016_j_comcom_2020_07_025
crossref_primary_10_1007_s11276_022_03189_1
crossref_primary_10_1109_TCCN_2024_3391318
crossref_primary_10_1109_TVT_2022_3143500
crossref_primary_10_3390_photonics9030184
crossref_primary_10_3390_electronics12245036
crossref_primary_10_3390_telecom4040037
crossref_primary_10_3390_electronics11010065
crossref_primary_10_1049_tje2_12156
crossref_primary_10_1007_s11468_024_02291_8
crossref_primary_10_1109_TVT_2024_3371029
crossref_primary_10_3390_electronics12244959
crossref_primary_10_1109_TIV_2022_3195635
crossref_primary_10_1109_LWC_2023_3272974
crossref_primary_10_3390_electronics12143129
crossref_primary_10_1109_TWC_2024_3357071
crossref_primary_10_3390_s21062015
crossref_primary_10_1631_FITEE_2000443
crossref_primary_10_1109_TVT_2023_3337648
crossref_primary_10_1631_FITEE_2400464
crossref_primary_10_3390_electronics13152981
crossref_primary_10_1007_s11036_020_01670_9
crossref_primary_10_1016_j_comnet_2024_110697
crossref_primary_10_1109_ACCESS_2021_3054833
crossref_primary_10_1587_elex_18_20210429
Cites_doi 10.2514/3.25422
10.1109/JIOT.2018.2848295
10.1109/ETFA.2005.1612506
10.1109/VTCFall.2015.7390797
10.1109/TBDATA.2018.2840696
10.1109/JSAC.2003.810294
10.1109/TVT.2016.2585504
10.1049/el:19931092
10.1109/EuCAP.2012.6206356
10.1155/2015/372124
10.1109/infcomw.2017.8116491
10.1049/iet-map.2018.6187
10.1109/JSAC.2017.2710758
10.1109/TVT.2018.2851783
10.1109/MAP.2014.7011023
10.1109/TVT.2016.2530306
10.1109/TVT.2018.2878352
10.1007/s11432-016-9144-x
10.1007/978-3-540-28650-9_4
10.1155/2013/378407
10.1109/WCNC.2016.7564890
10.1109/PIMRC.2018.8580938
10.1016/j.dsp.2016.08.014
10.1109/TVT.2016.2563038
10.1115/1.3662552
10.1109/WCNC.2009.4917538
10.23919/EuCAP.2017.7928124
10.1109/TMTT.2011.2178859
10.1109/CC.2016.7833457
10.1109/COMST.2018.2862141
10.1631/FITEE.1601817
10.1109/WCNC.2018.8377337
10.1109/glocomw.2018.8644245
10.1109/JIOT.2018.2874816
10.1109/EuCAP.2014.6902475
10.1109/VETEC.1996.501466
10.1109/GLOCOM.2014.7037248
10.1109/DASC.2014.6979495
10.1109/ACCESS.2017.2652983
10.1109/RWS.2011.5725435
10.1109/25.289418
10.1109/ACCESS.2018.2793298
10.1109/MILCOM.2005.1606122
10.1109/JSTSP.2017.2788405
10.1109/TVT.2016.2542106
10.1049/el:20052444
10.1109/SICON.2005.257875
10.1109/TWC.2008.070143
10.1109/EuCAP.2016.7481470
10.1109/MWC.001.1900323
10.1162/neco.1997.9.8.1735
10.1109/25.845094
10.1109/JSYST.2015.2477503
10.1214/aoms/1177699147
10.1109/IMCCC.2016.123
10.1049/el:19870712
10.1109/8.1081
10.1109/JSAC.2017.2679660
10.1109/MCOM.2014.6979985
10.1109/COMST.2019.2915069
10.1109/T-VT.1980.23854
10.1109/COMST.2018.2841996
10.1109/ICUMT.2017.8255203
10.1109/4234.922757
10.1109/MILCOM.2003.1290436
10.1109/MCOM.2018.1700846
10.1049/cp.2018.0453
10.23919/ICACT.2018.8323708
10.1109/MWC.2016.1500356WC
10.1109/TAP.1987.1144137
10.1109/TAP.2011.2122294
10.1109/25.994803
10.1631/FITEE.1700021
10.1109/TWC.2007.051050
10.1109/PIMRC.2014.7136161
10.1049/iet-map.2017.0711
10.1049/iet-com.2012.0028
10.1109/MCOM.2014.6829967
10.1109/GLOCOM.2016.7842372
10.1109/JCN.2013.000103
10.1109/TAP.1986.1143781
10.1007/s41650-017-0004-z
10.1002/2013RS005292
10.1109/PIMRC.2018.8580992
10.1109/ICC.2018.8422221
10.1109/GLOCOMW.2011.6162389
10.1109/TVT.2015.2419738
10.1109/WiCOM.2012.6478340
10.1109/TVT.2017.2659651
10.1109/TWC.2013.072313.121581
10.1109/TAP.2008.922651
10.1109/GLOCOMW.2015.7414180
10.1109/VTCFall.2016.7881093
10.1109/TMC.2017.2742949
10.1364/OL.20.001716
10.1109/JSTQE.2007.910984
10.1109/GLOCOMW.2014.7063445
10.1109/LWC.2015.2417559
10.1155/2018/9783863
10.1109/DASC.2011.6095912
10.1109/TAP.2017.2734243
10.1109/TVT.2014.2358191
10.1109/VETECF.2009.5379031
10.1109/ICC.2016.7511280
10.1109/VETECS.2006.1683399
10.1109/TTHZ.2011.2153610
10.1109/TWC.2010.092810.091092
ClassificationCodes TN929.5
ContentType Journal Article
Copyright Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Zhejiang University and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1631/FITEE.1900450
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList

Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2095-9230
EndPage 61
ExternalDocumentID zjdxxbc_e202001005
10_1631_FITEE_1900450
GrantInformation_xml – fundername: the National Key R&D Program of China; the National Science Fund for Distinguished Young Scholars, China; the Key Project of State Key Lab of Networking and Switching Technology, China; Huawei, and ZTE Corporation
  funderid: (2018YFB1801101); (61925102); (NST20180105); Huawei, and ZTE Corporation
GroupedDBID -EM
-SI
-S~
0R~
2KG
4.4
406
5VR
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAXDM
AAYIU
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFUIB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
ANMIH
AOCGG
ARAPS
AXYYD
BENPR
BGLVJ
BGNMA
CAJEI
CCEZO
CCPQU
CHBEP
CUBFJ
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
FA0
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
HCIFZ
IKXTQ
IWAJR
J-C
JUIAU
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9J
PT4
PTHSS
Q--
R-I
RLLFE
ROL
RSV
S..
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TCJ
TGT
TSG
U1G
U5S
UG4
UOJIU
UTJUX
UZXMN
VFIZW
Z7R
Z7X
Z7Z
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
L6V
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
2B.
4A8
92I
93N
PMFND
PSX
ID FETCH-LOGICAL-c339t-d911dd40ad9b51ed85689fd34e72180f61925cc99e3780bd24aaa58f81fd4de23
IEDL.DBID AGYKE
ISSN 2095-9184
IngestDate Thu May 29 04:06:16 EDT 2025
Wed Sep 24 02:49:48 EDT 2025
Thu Apr 24 23:11:41 EDT 2025
Tue Jul 01 03:03:18 EDT 2025
Fri Feb 21 02:35:18 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Machine learning
Channel measurements
Sixth generation
Terahertz
Channel models
TN929.5
Space-air-ground integrated network
Industrial Internet of Things
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-d911dd40ad9b51ed85689fd34e72180f61925cc99e3780bd24aaa58f81fd4de23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6492-3846
0000-0003-0432-7361
PQID 2918726261
PQPubID 2044401
PageCount 23
ParticipantIDs wanfang_journals_zjdxxbc_e202001005
proquest_journals_2918726261
crossref_citationtrail_10_1631_FITEE_1900450
crossref_primary_10_1631_FITEE_1900450
springer_journals_10_1631_FITEE_1900450
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200100
2020-01-00
20200101
2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 1
  year: 2020
  text: 20200100
PublicationDecade 2020
PublicationPlace Hangzhou
PublicationPlace_xml – name: Hangzhou
– name: Heidelberg
PublicationTitle Frontiers of information technology & electronic engineering
PublicationTitleAbbrev Front Inform Technol Electron Eng
PublicationTitle_FL Frontiers of Information Technology & Electronic Engineering
PublicationYear 2020
Publisher Zhejiang University Press
Springer Nature B.V
State Key Lab of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China
Publisher_xml – name: Zhejiang University Press
– name: Springer Nature B.V
– name: State Key Lab of Networking and Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China
References Pometcu L, D’Errico R, 2018. Large scale and clusters characteristics in indoor sub-THz channels. Proc 29th Annual Int Symp Personal Indoor and Mobile Radio Communications, p.1405–1409. https://doi.org/10.1109/PIMRC.2018.8580938
WillinkTJSquiresCCColmanGWMeasurement and characterization of low-altitude air-to-ground MIMO channelsIEEE Trans Veh Technol20156542637264810.1109/TVT.2015.2419738
Khalid N, Akan OB, 2016. Wideband THz communication channel measurements for 5G indoor wireless networks. IEEE Int Conf on Communications. https://doi.org/10.1109/ICC.2016.7511280
Richter F, Fehske AJ, Fettweis GP, 2009. Energy efficiency aspects of base station deployment strategies for cellular networks. IEEE 70th Vehicular Technology Conf, p.1–5. https://doi.org/10.1109/VETECF.2009.5379031
MatolakDWSunRYAir-ground channel characterization for unmanned aircraft systems. Part I: methods, measurements, and models for over-water settingsIEEE Trans Veh Technol2017661264410.1109/TVT.2016.2530306
PriebeSKuernerTStochastic modeling of THz indoor radio channelsIEEE Trans Wirel Commun20131294445445510.1109/TWC.2013.072313.121581
Holfeld B, Wieruch D, Raschkowski L, et al., 2016. Radio channel characterization at 5.85 GHz for wireless M2M communication of industrial robots. IEEE Wireless Communications and Networking Conf, p.1–7. https://doi.org/10.1109/WCNC.2016.7564890
Nikolaidis V, Moraitis N, Kanatas AG, 2016. Dual polarized MIMO LMS channel measurements and characterization in a pedestrian environment. 10th European Conf on Antennas and Propagation, p.1–5. https://doi.org/10.1109/EuCAP.2016.7481470
CMCC, BUPT, 2018a. New Measurements and Modelling on Fast Fading in IIOT Scenarios. Proposal RP-1904743, 3GPP.
HochreiterSSchmidhuberJLong short-term memoryNeur Comput1997971735178010.1162/neco.1997.9.8.1735
Berardinelli G, Mahmood NH, Rodriguez I, et al., 2018. Beyond 5G wireless IRT for Industry 4.0: design principles and spectrum aspects. IEEE Globecom Workshops, p.1–6. https://doi.org/10.1109/glocomw.2018.8644245
PiesiewiczRJacobMKochMPerformance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environmentsIEEE J Sel Top Quant Electron200814242143010.1109/JSTQE.2007.910984
LiuGYHouXYWangFAchieving 3D-MIMO with massive antennas from theory to practice with evaluation and field trial resultsIEEE Syst J2016111627110.1109/JSYST.2015.2477503
DahlmanEMildhGParkvallS5G wireless access: requirements and realizationIEEE Commun Mag20145212424710.1109/MCOM.2014.6979985
LuBWangCXJieHPredicting wireless mmwave massive MIMO channel characteristics using machine learning algorithmsWirel Commun Mob Comput201820189783863
Ferrer-CollJÄngskogPChiloJCharacterisation of highly absorbent and highly reflective radio wave propagation environments in industrial applicationsIET Commun20126152404241210.1049/iet-com.2012.0028
Li YP, Zhang JH, Ma ZY, et al., 2018. Clustering analysis in the wireless propagation channel with a variational Gaussian mixture model. IEEE Trans Big Data, online. https://doi.org/10.1109/TBDATA.2018.2840696
JansenCPiesiewiczRMittlemanDThe impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systemsIEEE Trans Antenn Propag20085651413141910.1109/TAP.2008.922651
Rey S, Eckhardt JM, Peng B, et al., 2017. Channel sounding techniques for applications in THz communications: a first correlation based channel sounder for ultrawideband dynamic channel measurements at 300 GHz. Proc 9th Int Con gress on Ultra Modern Telecommunications and Control Systems and Workshops, p.449–453. https://doi.org/10.1109/ICUMT.2017.8255203
LuanFYZhangYXiaoLMFading characteristics of wireless channel on high-speed railway in hilly terrain scenarioInt J Antenn Propag2013201337840710.1155/2013/378407
QuinlanJRInduction of decision treesMach Learn19861181106
Navabi S, Wang CW, Bursalioglu OY, et al., 2018. Predicting wireless channel features using neural networks. IEEE Int Conf on Communications, p.1–6. https://doi.org/10.1109/ICC.2018.8422221
RiecheMIhlowAArndtDModeling of the land mobile satellite channel considering the terminal’s driving directionInt J Antenn Propag2015201537212410.1155/2015/372124
CerwallPJonssonPMöllerREricsson Mobility Report2015Stockholm, SwedenTelefonaktiebolaget LM Ericsson
LiuJJShiYPFadlullahZMSpace-air-ground integrated network: a surveyIEEE Commun Surv Tutor20182042714274110.1109/COMST.2018.2841996
ChengXLiYRA 3-D geometry-based stochastic model for UAV-MIMO wideband nonstationary channelsIEEE Int Things J2019621654166210.1109/JIOT.2018.2874816
GoldhirshJVogelWRoadside tree attenuation measurements at UHF for land mobile satellite systemsIEEE Trans Antenn Propag198735558959610.1109/TAP.1987.1144137
WangCXBianJSunJA survey of 5G channel measurements and modelsIEEE Commun Surv Tutor20182043142316810.1109/COMST.2018.2862141
Zhang C, Hui YN, 2011. Broadband air-to-ground communications with adaptive MIMO datalinks. IEEE/AIAA 30th Digital Avionics Systems Conf, p.4D4-1. https://doi.org/10.1109/DASC.2011.6095912
PriebeSJastrowCJacobMChannel and propagation measurements at 300 GHzIEEE Trans Antenn Propag20115951688169810.1109/TAP.2011.2122294
Arndt D, Ihlow A, Heuberger A, et al., 2011. Antenna diversity for mobile satellite applications: performance evaluation based on measurements. Proc 5th European Conf on Antennas and Propagation, p.3729–3733.
HaasEAeronautical channel modelingIEEE Trans Veh Technol2002512254264162075710.1109/25.994803
3GPP, 2019. Study on Evaluation Methodology of New Vehicle-to-Everything (V2X) Use Cases for LTE and NR. Technical Report TR 37.885, 3GPP.
Ai Y, Cheffena M, Li Q, 2015. Radio frequency measurements and capacity analysis for industrial indoor environments. Proc 9th European Conf on Antennas and Propagation, p.1–5.
WangZYShenCSmall cell transmit power assignment based on correlated bandit learningIEEE J Sel Area Commun20173551030104510.1109/JSAC.2017.2679660
WangZLiLXuYHandover control in wireless systems via asynchronous multiuser deep reinforcement learningIEEE Int Thing J2018564296430710.1109/JIOT.2018.2848295
Dai L, Zhang H, Zhuang Y, 2018. Propagation-model-free coverage evaluation via machine learning for future 5G networks. IEEE 29th Annual Int Symp on Personal, Indoor and Mobile Radio Communications, p.1–5. https://doi.org/10.1109/PIMRC.2018.8580992
Martínez ÀO, de Carvalho E, Nielsen JØ, 2014. Towards very large aperture massive MIMO: a measurement based study. IEEE Globecom Workshops, p.281–286. https://doi.org/10.1109/GLOCOMW.2014.7063445
ZhangPNiuKTianHThe outlook for 6G mobile communication technologiesJ Commun201941145152
LiHHLiYZZhouSDWireless channel feature extraction via GMM and CNN in the tomographic channel modelJ Commun Inform Netw201721415110.1007/s41650-017-0004-z
Chen XB, Tian L, Tang P, et al., 2016. Modelling of human body shadowing based on 28 GHz indoor measurement results. IEEE 84th Vehicular Technology Conf, p.1–5. https://doi.org/10.1109/VTCFall.2016.7881093
ZhangJPanCPeiFThree-dimensional fading channel models: a survey of elevation angle researchIEEE Commun Mag201452621822610.1109/MCOM.2014.6829967
JiangCXZhangHJRenYMachine learning paradigms for next-generation wireless networksIEEE Wirel Commun20162429810510.1109/MWC.2016.1500356WC
Liu L, Zhang K, Tao C, et al., 2018. Channel measurements and characterizations for automobile factory environments. 20th Int Conf on Advanced Communication Technology, p.234–238. https://doi.org/10.23919/ICACT.2018.8323708
KhawajaWGuvencIMatolakDWA survey of air-to-ground propagation channel modeling for unmanned aerial vehiclesIEEE Commun Surv Tutor20192132361239110.1109/COMST.2019.2915069
VogelWJGoldhirshJTree attenuation at 869 MHz derived from remotely piloted aircraft measurementsIEEE Trans Antenn Propag198634121460146410.1109/TAP.1986.1143781
JacobMPriebeSDickhoffRDiffraction in mm and sub-mm wave indoor propagation channelsIEEE Trans Microw Theory Technol201260383384410.1109/TMTT.2011.2178859
LutzECyganDDippoldMThe land mobile satellite communication channel-recording, statistics, and channel modelIEEE Trans Veh Technol199140237538610.1109/25.289418
Strinati EC, Barbarossa S, Gonzalez-Jimenez JL, et al., 2019. 6G: the next frontier. https://arxiv.org/abs/1901.03239
Ono F, Takizawa K, Tsuji H, et al., 2015. S-band radio propagation characteristics in urban environment for unmanned aircraft systems. Int Symp on Antennas and Propagation, p.1–4.
Ericsson, 2019b. Views on Additional Modelling Components. Proposal RP-1905203, 3GPP.
Matolak DW, Sen I, Xiong WH, et al., 2005. 5 GHz wireless channel characterization for vehicle to vehicle communications. IEEE Military Communications Conf, p.3016–3022. https://doi.org/10.1109/MILCOM.2005.1606122
LiWZLawCLDubeyVKKa-band land mobile satellite channel model incorporating weather effectsIEEE Commun Lett20015519419610.1109/4234.922757
Luo SP, Polu N, Chen ZX, et al., 2011. RF channel modeling of a WSN testbed for industrial environment. IEEE Radio and Wireless Symp, p.375–378. https://doi.org/10.1109/RWS.2011.5725435
Miaoudakis A, Lekkas A, Kalivas G, et al., 2005. Radio channel characterization in industrial environments and spread spectrum modem performance. IEEE Conf on Emerging Technologies and Factory Automation, p.87–93. https://doi.org/10.1109/ETFA.2005.1612506
LinLZhuMEfficient tracking of moving target based on an improved fast differential evolution algorithmIEEE Access201866820682810.1109/ACCESS.2018.2793298
HuangHJYangJSongYDeep learning for super-resolution channel estimation and DOA estimation based massive MIMO systemIEEE Trans Veh Technol20186798549856010.1109/TVT.2018.2851783
MatolakDWSunRYAir-ground channel characterization for unmanned aircraft systems. Part III: the suburban and near-urban environmentsIEEE Trans Veh Technol20176686607661810.1109/TVT.2017.2659651
WP5D IGuidelines for Evaluation of Radio Interface Technologies for IMT-20202017Geneva, SwitzerlandITU-R
DreyfusSEArtificial neural
WZ Li (1480_CR67) 2001; 5
1480_CR34
1480_CR35
HJ Huang (1480_CR45) 2018; 67
1480_CR30
1480_CR112
R Piesiewicz (1480_CR101) 2008; 14
1480_CR39
S Priebe (1480_CR105) 2013; 15
J Karedal (1480_CR56) 2007; 6
B Lu (1480_CR76) 2018; 2018
1480_CR102
WP5D I (1480_CR135) 2017
TS Rappaport (1480_CR109) 1987; 23
L Lin (1480_CR70) 2018; 6
JZ Li (1480_CR65) 2017; 18
Y Freund (1480_CR32) 1999; 14
S Hochreiter (1480_CR41) 1997; 9
1480_CR25
PD Moral (1480_CR91) 1996; 2
1480_CR21
GS Yang (1480_CR137) 2019; 13
1480_CR22
1480_CR20
1480_CR120
1480_CR121
C Jansen (1480_CR51) 2008; 56
1480_CR29
SJ Darak (1480_CR26) 2017; 60
J Goldhirsh (1480_CR36) 1987; 35
CX Jiang (1480_CR53) 2016; 24
1480_CR28
M Jacob (1480_CR50) 2012; 60
1480_CR117
1480_CR118
CE Rasmussen (1480_CR111) 2003
JJ Chen (1480_CR14) 2017; 5
1480_CR113
SE Dreyfus (1480_CR27) 2012; 13
C Cortes (1480_CR23) 1995; 20
W Li (1480_CR66) 2019; 16
JR Quinlan (1480_CR107) 1986; 1
S Priebe (1480_CR106) 2014; 49
1480_CR15
1480_CR98
1480_CR11
MK Samimi (1480_CR115) 2015; 4
1480_CR96
1480_CR97
Z Wang (1480_CR130) 2018; 5
E Nachmani (1480_CR93) 2018; 12
E Dahlman (1480_CR24) 2014; 52
E Ali (1480_CR5) 2017; 18
BB Hu (1480_CR43) 1995; 20
CX Wang (1480_CR129) 2018; 20
LE Baum (1480_CR10) 1966; 37
1480_CR17
DW Matolak (1480_CR85) 2017; 66
S Kim (1480_CR60) 2015; 64
1480_CR94
ITU-R (1480_CR47) 2013
1480_CR95
TS Rappaport (1480_CR110) 2017; 65
1480_CR92
E Tanghe (1480_CR124) 2008; 7
1480_CR89
1480_CR87
1480_CR88
R Piesiewicz (1480_CR100) 2005; 41
Cisco (1480_CR19) 2019
JJ Liu (1480_CR72) 2018; 20
J Zhang (1480_CR141) 2014; 52
JH Zhang (1480_CR143) 2017; 35
J Zhang (1480_CR140) 2016; 13
TJ Willink (1480_CR134) 2015; 65
ITU-R (1480_CR48) 2015
RY Sun (1480_CR122) 2017; 66
XF Chen (1480_CR16) 2018; 17
E Lutz (1480_CR79) 1991; 40
XQ Liu (1480_CR74) 2017; 66
EM Joo (1480_CR54) 2009
1480_CR83
1480_CR84
W Khawaja (1480_CR59) 2019; 21
1480_CR81
1480_CR80
C Jansen (1480_CR52) 2011; 1
FY Luan (1480_CR77) 2013; 2013
1480_CR2
1480_CR78
1480_CR1
WJ Vogel (1480_CR127) 1988; 36
X Gao (1480_CR33) 2013; 10
1480_CR75
GY Liu (1480_CR71) 2016; 11
DW Matolak (1480_CR86) 2017; 66
M Series (1480_CR116) 2015
J Ferrer-Coll (1480_CR31) 2012; 6
YJ Xie (1480_CR136) 2000; 49
1480_CR73
GC Hess (1480_CR40) 1980; 29
X Cheng (1480_CR18) 2019; 6
1480_CR69
A Goldsmith (1480_CR37) 2003; 21
1480_CR68
TL Marzetta (1480_CR82) 2010; 9
1480_CR63
HH Li (1480_CR64) 2017; 2
P Zhang (1480_CR145) 2019; 4
1480_CR61
1480_CR62
RE Kalman (1480_CR55) 1960; 82
P Tang (1480_CR123) 2018; 68
JH Zhang (1480_CR142) 2017; 60
1480_CR58
CM Bishop (1480_CR12) 2006
AM Al-Saegh (1480_CR8) 2017; 66
1480_CR57
C Watkins (1480_CR132) 1989
WJ Vogel (1480_CR126) 1986; 34
1480_CR133
P Petropoulou (1480_CR99) 2014; 56
S Priebe (1480_CR103) 2013; 12
P Cerwall (1480_CR13) 2015
1480_CR125
M Simunek (1480_CR119) 2011; 20
ZY Wang (1480_CR131) 2017; 35
M Rieche (1480_CR114) 2015; 2015
S Priebe (1480_CR104) 2011; 59
1480_CR46
ITU-T (1480_CR49) 2019
1480_CR44
1480_CR42
WJ Vogel (1480_CR128) 1993; 29
E Haas (1480_CR38) 2002; 51
AF Molisch (1480_CR90) 2012
1480_CR139
1480_CR138
1480_CR7
1480_CR9
1480_CR4
X Raimundo (1480_CR108) 2018; 12
1480_CR3
1480_CR6
JH Zhang (1480_CR144) 2018; 56
References_xml – reference: CerwallPJonssonPMöllerREricsson Mobility Report2015Stockholm, SwedenTelefonaktiebolaget LM Ericsson
– reference: TangPZhangJMolischAFEstimation of the K-factor for temporal fading from single-snapshot wideband measurementsIEEE Trans Veh Technol2018681496310.1109/TVT.2018.2878352
– reference: Berardinelli G, Mahmood NH, Rodriguez I, et al., 2018. Beyond 5G wireless IRT for Industry 4.0: design principles and spectrum aspects. IEEE Globecom Workshops, p.1–6. https://doi.org/10.1109/glocomw.2018.8644245
– reference: AliEIsmailMNordinRBeamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future researchFront Inform Technol Electron Eng201718675377210.1631/FITEE.1601817
– reference: WatkinsCLearning from Delayed Rewards1989Cambridge, UKUniversity of Cambridge
– reference: Chen XB, Tian L, Tang P, et al., 2016. Modelling of human body shadowing based on 28 GHz indoor measurement results. IEEE 84th Vehicular Technology Conf, p.1–5. https://doi.org/10.1109/VTCFall.2016.7881093
– reference: Ono F, Takizawa K, Tsuji H, et al., 2015. S-band radio propagation characteristics in urban environment for unmanned aircraft systems. Int Symp on Antennas and Propagation, p.1–4.
– reference: WangCXBianJSunJA survey of 5G channel measurements and modelsIEEE Commun Surv Tutor20182043142316810.1109/COMST.2018.2862141
– reference: Strinati EC, Barbarossa S, Gonzalez-Jimenez JL, et al., 2019. 6G: the next frontier. https://arxiv.org/abs/1901.03239
– reference: Lei MY, Zhang JH, Lei T, et al., 2015. 28-GHz indoor channel measurements and analysis of propagation characteristics. IEEE 25th Annual Int SymponPersonal, Indoor, and Mobile Radio Communication. https://doi.org/10.1109/PIMRC.2014.7136161
– reference: XieYJFangYGA general statistical channel model for mobile satellite systemsIEEE Trans Veh Technol200049374475210.1109/25.845094
– reference: SunRYMatolakDWAir-ground channel characterization for unmanned aircraft systems. Part II: hilly and mountainous settingsIEEE Trans Veh Technol20176631913192510.1109/TVT.2016.2585504
– reference: CiscoCisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022 White Paper2019CA, USACisco Systems, Inc.
– reference: QuinlanJRInduction of decision treesMach Learn19861181106
– reference: Solomitckii D, Orsino A, Andreev S, et al., 2018. Characterization of mmWave channel properties at 28 and 60 GHz in factory automation deployments. IEEE Wireless Communications and Networking Conf, p.1–6. https://doi.org/10.1109/WCNC.2018.8377337
– reference: LutzECyganDDippoldMThe land mobile satellite communication channel-recording, statistics, and channel modelIEEE Trans Veh Technol199140237538610.1109/25.289418
– reference: DarakSJZhangHGPalicotJDecision making policy for RF energy harvesting enabled cognitive radios in decentralized wireless networksDig Signal Process201760334510.1016/j.dsp.2016.08.014
– reference: LiuJJShiYPFadlullahZMSpace-air-ground integrated network: a surveyIEEE Commun Surv Tutor20182042714274110.1109/COMST.2018.2841996
– reference: Almeida JJH, Lopes PB, Akamine C, et al., 2018. An application of neural networks to channel estimation of the ISDB-TB FBMC system. https://arxiv.org/abs/1803.01141
– reference: CMCC, BUPT, 2018b. New Measurements and Modelling on Pathloss in IIOT Scenarios. Proposal RP-1904742, 3GPP.
– reference: PiesiewiczRKleine-OstmannTKrumbholzNTerahertz characterisation of building materialsElectron Lett200541181002100410.1049/el:20052444
– reference: Sexton D, Mahony M, Lapinski M, et al., 2005. Radio channel quality in industrial wireless sensor networks. Sensors for Industry Conf, p.88–94. https://doi.org/10.1109/SICON.2005.257875
– reference: Yanmaz E, Kuschnig R, Bettstetter C, 2011. Channel measurements over 802.11a-based UAV-to-ground links. IEEE GLOBECOM Workshops, p.1280–1284. https://doi.org/10.1109/GLOCOMW.2011.6162389
– reference: MolischAFWireless Communications2012New YorkJohn Wiley & Sons
– reference: RappaportTSMcGillemCDCharacterising the UHF factory radio channelElectron Lett198723191015101710.1049/el:19870712
– reference: MarzettaTLNoncooperative cellular wireless with unlimited numbers of base station antennasIEEE Trans Wirel Commun20109113590360010.1109/TWC.2010.092810.091092
– reference: Khawaja W, Guvenc I, Matolak D, 2016. UWB channel sounding and modeling for UAV air-to-ground propagation channels. IEEE Global Communications Conf, p.1–7. https://doi.org/10.1109/GLOCOM.2016.7842372
– reference: LinLZhuMEfficient tracking of moving target based on an improved fast differential evolution algorithmIEEE Access201866820682810.1109/ACCESS.2018.2793298
– reference: WangZYShenCSmall cell transmit power assignment based on correlated bandit learningIEEE J Sel Area Commun20173551030104510.1109/JSAC.2017.2679660
– reference: MatolakDWSunRYAir-ground channel characterization for unmanned aircraft systems. Part I: methods, measurements, and models for over-water settingsIEEE Trans Veh Technol2017661264410.1109/TVT.2016.2530306
– reference: CMRI, 2019. The Outlook and Demand Report for 2030+. China Mobile Resesrch Institute, Bejing (in Chinese). https://cmri.chinamobile.com/news/5985.html [Accessed on Jan. 4, 2020].
– reference: KaredalJWyneSAlmersPA measurement-based statistical model for industrial ultra-wideband channelsIEEE Trans Wirel Commun2007683028303710.1109/TWC.2007.051050
– reference: PriebeSKuernerTStochastic modeling of THz indoor radio channelsIEEE Trans Wirel Commun20131294445445510.1109/TWC.2013.072313.121581
– reference: Goddemeier N, Wietfeld C, 2015. Investigation of air-to-air channel characteristics and a UAV specific extension to the rice model. IEEE Globecom Workshops, p.1–5. https://doi.org/10.1109/GLOCOMW.2015.7414180
– reference: Li Y, Zhao L, Wang H, 2012. A novel mobility model for clustered MANET. 8th Int Conf on Wireless Communications, Networking and Mobile Computing, p.1–4. https://doi.org/10.1109/WiCOM.2012.6478340
– reference: Newhall WG, Mostafa R, Dietrich C, et al., 2003. Wideband air-to-ground radio channel measurements using an antenna array at 2 GHz for low-altitude operations. IEEE Military Communications Conf, p.1422–1427. https://doi.org/10.1109/MILCOM.2003.1290436
– reference: Lacoste F, Lemorton J, Casadebaig L, et al., 2012. Measurements of the land mobile and nomadic satellite channels at 2.2 GHz and 3.8 GHz. 6th European Conf on Antennas and Propagation, p.2422–2426. https://doi.org/10.1109/EuCAP.2012.6206356
– reference: VogelWJGoldhirshJFade measurements at L-band and UHF in mountainous terrain for land mobile satellite systemsIEEE Trans Antenn Propag198836110411310.1109/8.1081
– reference: LiWZhangJHMaXCThe way to apply machine learning to IoT driven wireless network from channel perspectiveChina Commun2019161148164
– reference: Pometcu L, D’Errico R, 2018. Large scale and clusters characteristics in indoor sub-THz channels. Proc 29th Annual Int Symp Personal Indoor and Mobile Radio Communications, p.1405–1409. https://doi.org/10.1109/PIMRC.2018.8580938
– reference: Zhang C, Hui YN, 2011. Broadband air-to-ground communications with adaptive MIMO datalinks. IEEE/AIAA 30th Digital Avionics Systems Conf, p.4D4-1. https://doi.org/10.1109/DASC.2011.6095912
– reference: HessGCLand-mobile satellite excess path loss measurementsIEEE Trans Veh Technol198029229029710.1109/T-VT.1980.23854
– reference: RaimundoXSalousSCheemaAIndoor dual polarised radio channel characterisation in the 54 and 70 GHz bandsIET Microw Antenn Propag20181281287129210.1049/iet-map.2017.0711
– reference: Ferrer-CollJÄngskogPChiloJCharacterisation of highly absorbent and highly reflective radio wave propagation environments in industrial applicationsIET Commun20126152404241210.1049/iet-com.2012.0028
– reference: 3GPP, 2018. Study on Channel Model for Frequencies from 0.5 to 100 GHz. Technical Report TR 38.901, 3GPP.
– reference: Miaoudakis A, Lekkas A, Kalivas G, et al., 2005. Radio channel characterization in industrial environments and spread spectrum modem performance. IEEE Conf on Emerging Technologies and Factory Automation, p.87–93. https://doi.org/10.1109/ETFA.2005.1612506
– reference: SimunekMPechacPFontanFPExcess loss model for low elevation links in urban areas for UAVsRadioengineering2011203561568
– reference: GaoXChenZHuYAnalysis ofunmanned aerial vehicle MIMO channel capacity based on aircraft attitudeWSEAS Trans Inform Sci Appl20131025867
– reference: Wentz M, Stojanovic M, 2015. A MIMO radio channel model for low-altitude air-to-ground communication systems. IEEE 82nd Vehicular Technology Conf, p.1–6. https://doi.org/10.1109/VTCFall.2015.7390797
– reference: KalmanREA new approach to linear filtering and prediction problemsJ Bas Eng19608213545393199310.1115/1.3662552
– reference: RiecheMIhlowAArndtDModeling of the land mobile satellite channel considering the terminal’s driving directionInt J Antenn Propag2015201537212410.1155/2015/372124
– reference: TangheEJosephWVerloockLThe industrial indoor channel: large-scale and temporal fading at 900, 2400, and 5200 MHzIEEE Trans Wirel Commun2008772740275110.1109/TWC.2008.070143
– reference: PriebeSKannichtMJacobMUltra broadband indoor channel measurements and calibrated ray tracing propagation modeling at THz frequenciesJ Commun Netw201315654755810.1109/JCN.2013.000103
– reference: Ericsson, 2019a. Summary of e]Discussion on Additional Modelling Components. Proposal RP-1905197, 3GPP.
– reference: Giordani M, Polese M, Mezzavilla M, et al., 2019. Towards 6G networks: use cases and technologies. https://arxiv.org/abs/1903.12216
– reference: Alpaydin E, 2006. Introduction to Machine Learning. MIT Press, USA. Al-Hourani A, Kandeepan S, Jamalipour A, 2014. Modeling air-to-ground path loss for low altitude platforms in urban environments. IEEE Global Communications Conf, p.2898–2904. https://doi.org/10.1109/GLOCOM.2014.7037248
– reference: Holfeld B, Wieruch D, Raschkowski L, et al., 2016. Radio channel characterization at 5.85 GHz for wireless M2M communication of industrial robots. IEEE Wireless Communications and Networking Conf, p.1–7. https://doi.org/10.1109/WCNC.2016.7564890
– reference: 3GPP, 2019. Study on Evaluation Methodology of New Vehicle-to-Everything (V2X) Use Cases for LTE and NR. Technical Report TR 37.885, 3GPP.
– reference: MatolakDWSunRYAir-ground channel characterization for unmanned aircraft systems. Part III: the suburban and near-urban environmentsIEEE Trans Veh Technol20176686607661810.1109/TVT.2017.2659651
– reference: PriebeSJacobMKuernerTAngular and RMS delay spread modeling in view of THz indoor communication systemsRadio Sci201449324225110.1002/2013RS005292
– reference: LiuGYHouXYWangFAchieving 3D-MIMO with massive antennas from theory to practice with evaluation and field trial resultsIEEE Syst J2016111627110.1109/JSYST.2015.2477503
– reference: LuBWangCXJieHPredicting wireless mmwave massive MIMO channel characteristics using machine learning algorithmsWirel Commun Mob Comput201820189783863
– reference: ZhangPNiuKTianHThe outlook for 6G mobile communication technologiesJ Commun201941145152
– reference: ITU-TArchitectural Framework for Machine Learning in Future Networks Including IMT-2020. Recommendation Y.31722019Geneva, SwitzerlandITU-T
– reference: PetropoulouPMichailidisETPanagopoulosADRadio propagation channel measurements for multi-antenna satellite communication systems: a surveyIEEE Antenn Propag Mag201456610212210.1109/MAP.2014.7011023
– reference: GoldhirshJVogelWRoadside tree attenuation measurements at UHF for land mobile satellite systemsIEEE Trans Antenn Propag198735558959610.1109/TAP.1987.1144137
– reference: LiuXQChenHHChenSYSymbol cyclic-shift equalization algorithm—a CP-free OFDM/OFDMA system designIEEE Trans Veh Technol20176612822943597004
– reference: Nikolaidis V, Moraitis N, Kanatas AG, 2016. Dual polarized MIMO LMS channel measurements and characterization in a pedestrian environment. 10th European Conf on Antennas and Propagation, p.1–5. https://doi.org/10.1109/EuCAP.2016.7481470
– reference: Tu HD, Shimamoto S, 2009. A proposal of wide-band air-to-ground communication at airports employing 5-GHz band. IEEE Wireless Communications and Networking Conf, p.1–6. https://doi.org/10.1109/WCNC.2009.4917538
– reference: LuanFYZhangYXiaoLMFading characteristics of wireless channel on high-speed railway in hilly terrain scenarioInt J Antenn Propag2013201337840710.1155/2013/378407
– reference: 5G-ACIA, 2018. LS on Channel Model for Indoor Industrial Scenarios. Proposal RP-181521, 5G-ACIA.
– reference: DreyfusSEArtificial neural networks, back propagation, and the Kelley-Bryson gradient procedureJ Guid Contr Dynam2012135926928106866910.2514/3.25422
– reference: Li YP, Zhang JH, Ma ZY, et al., 2018. Clustering analysis in the wireless propagation channel with a variational Gaussian mixture model. IEEE Trans Big Data, online. https://doi.org/10.1109/TBDATA.2018.2840696
– reference: RappaportTSXingYCMacCartneyGROverview of millimeter wave communications for fifth-generation (5G) wireless networks: with a focus on propagation modelsIEEE Trans Antenn Propag201765126213623010.1109/TAP.2017.2734243
– reference: WillinkTJSquiresCCColmanGWMeasurement and characterization of low-altitude air-to-ground MIMO channelsIEEE Trans Veh Technol20156542637264810.1109/TVT.2015.2419738
– reference: YangGSZhangYHeZWMachine-learning-based prediction methods for path loss and delay spread in air-to-ground millimetre-wave channelsIET Microw Antenn Propag20191381113112110.1049/iet-map.2018.6187
– reference: Ai Y, Cheffena M, Li Q, 2015. Radio frequency measurements and capacity analysis for industrial indoor environments. Proc 9th European Conf on Antennas and Propagation, p.1–5.
– reference: BaumLEPetrieTStatistical inference for probabilistic functions of finite state Markov chainsAnn Math Stat1966376155415632022640144.4090210.1214/aoms/1177699147
– reference: SeriesMIMT Vision-Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond. Report M.2083–02015Geneva, SwitzerlandITU-R
– reference: JansenCPiesiewiczRMittlemanDThe impact of reflections from stratified building materials on the wave propagation in future indoor terahertz communication systemsIEEE Trans Antenn Propag20085651413141910.1109/TAP.2008.922651
– reference: Martínez ÀO, de Carvalho E, Nielsen JØ, 2014. Towards very large aperture massive MIMO: a measurement based study. IEEE Globecom Workshops, p.281–286. https://doi.org/10.1109/GLOCOMW.2014.7063445
– reference: Lacoste F, Carvalho F, Fontan FP, et al., 2010. MISO and SIMO measurements of the land mobile satellite propagation channel at S-band. Proc 4th European Conf on Antennas and Propagation, p.1–5.
– reference: Meredith J, 2016. Study on Channel Model for Frequency Spectrum above 6 GHz. Technical Report TR 38900, 3GPP.
– reference: O’Shea TJ, Hoydis J, 2017. An introduction to machine learning communications systems. https://arxiv.org/abs/1702.00832v1
– reference: PiesiewiczRJacobMKochMPerformance analysis of future multigigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environmentsIEEE J Sel Top Quant Electron200814242143010.1109/JSTQE.2007.910984
– reference: RasmussenCEBousquetOLuxburgURätschGGaussian processes in machine learningAdvanced Lectures on Machine Learning2003Berlin HeidelbergSpringer6371
– reference: Huang C, Huang KW, Wen Y, et al., 2016. A propose of the ISS space-to-space communication system by multiplexing ground mobile communication frequency resources. 6th Int Conf on Instrumentation & Measurement, Computer, Communication and Control, p.567–569. https://doi.org/10.1109/IMCCC.2016.123
– reference: MoralPDNon-linear filtering: interacting particle resolutionMarkov Process Rel Field1996245555810879.60042
– reference: HuangHJYangJSongYDeep learning for super-resolution channel estimation and DOA estimation based massive MIMO systemIEEE Trans Veh Technol20186798549856010.1109/TVT.2018.2851783
– reference: Loo C, 1996. Statistical models for land mobile and fixed satellite communications at Ka band. Proc Vehicular Technology Conf, p.1023–1027. https://doi.org/10.1109/VETEC.1996.501466
– reference: Rey S, Eckhardt JM, Peng B, et al., 2017. Channel sounding techniques for applications in THz communications: a first correlation based channel sounder for ultrawideband dynamic channel measurements at 300 GHz. Proc 9th Int Con gress on Ultra Modern Telecommunications and Control Systems and Workshops, p.449–453. https://doi.org/10.1109/ICUMT.2017.8255203
– reference: Arndt D, Ihlow A, Heuberger A, et al., 2011. Antenna diversity for mobile satellite applications: performance evaluation based on measurements. Proc 5th European Conf on Antennas and Propagation, p.3729–3733.
– reference: Shafin R, Liu LJ, Chandrasekhar V, et al., 2019. Artificial intelligence-enabled cellular networks: a critical path to beyond-5G and 6G. https://arxiv.org/abs/1907.07862
– reference: ChenJJYinXFCaiXSMeasurement-based massive MIMO channel modeling for outdoor LoS and NLoS environmentsIEEE Access201752126214010.1109/ACCESS.2017.2652983
– reference: VogelWJGoldhirshJEarth-satellite tree attenuation at 20 GHz: foliage effectsElectron Lett199329181640164110.1049/el:19931092
– reference: HochreiterSSchmidhuberJLong short-term memoryNeur Comput1997971735178010.1162/neco.1997.9.8.1735
– reference: Richter F, Fehske AJ, Fettweis GP, 2009. Energy efficiency aspects of base station deployment strategies for cellular networks. IEEE 70th Vehicular Technology Conf, p.1–5. https://doi.org/10.1109/VETECF.2009.5379031
– reference: FreundYSchapireRAbeNA short introduction to boostingJJpn Soc Artif Intell1999145771780
– reference: CortesCVapnikVSupport-vector networksMach Learn19952032732970831.68098
– reference: Ma XC, Zhang JH, Zhang YX, et al., 2017. A PCA-based modeling method for wireless MIMO channel. IEEE Conf on Computer Communications Workshops, p.874–879. https://doi.org/10.1109/infcomw.2017.8116491
– reference: Nachmani E, Marciano E, Burshtein D, et al., 2017. RNN decoding of linear block codes. https://arxiv.org/abs/1702.07560
– reference: WangZLiLXuYHandover control in wireless systems via asynchronous multiuser deep reinforcement learningIEEE Int Thing J2018564296430710.1109/JIOT.2018.2848295
– reference: ChengXLiYRA 3-D geometry-based stochastic model for UAV-MIMO wideband nonstationary channelsIEEE Int Things J2019621654166210.1109/JIOT.2018.2874816
– reference: KhawajaWGuvencIMatolakDWA survey of air-to-ground propagation channel modeling for unmanned aerial vehiclesIEEE Commun Surv Tutor20192132361239110.1109/COMST.2019.2915069
– reference: Liu L, Zhang K, Tao C, et al., 2018. Channel measurements and characterizations for automobile factory environments. 20th Int Conf on Advanced Communication Technology, p.234–238. https://doi.org/10.23919/ICACT.2018.8323708
– reference: JacobMPriebeSDickhoffRDiffraction in mm and sub-mm wave indoor propagation channelsIEEE Trans Microw Theory Technol201260383384410.1109/TMTT.2011.2178859
– reference: Matolak DW, Sun RY, 2014. Antenna and frequency diversity in the unmanned aircraft systems bands for the over-sea setting. IEEE/AIAA 33rd Digital Avionics Systems Conf, p.1–10. https://doi.org/10.1109/DASC.2014.6979495
– reference: HuBBNussMCImaging with terahertz wavesOpt Lett199520161716171810.1364/OL.20.001716
– reference: ZhangJHTangPTianL6-100 GHz research progress and challenges for fifth generation (5G) and future wireless communication from channel perspectiveSci China Inform Sci201760808030110.1007/s11432-016-9144-x
– reference: SamimiMKRappaportTSMacCartneyGRProbabilistic omnidirectional path loss models for millimeter-wave outdoor communicationsIEEE Wirel Commun Lett20154435736010.1109/LWC.2015.2417559
– reference: HaasEAeronautical channel modelingIEEE Trans Veh Technol2002512254264162075710.1109/25.994803
– reference: ZhangJHZhengZZhangYX3D MIMO for 5G NR: several observations from 32 to massive 256 antennas based on channel measurementIEEE Commun Mag2018563627010.1109/MCOM.2018.1700846
– reference: PriebeSJastrowCJacobMChannel and propagation measurements at 300 GHzIEEE Trans Antenn Propag20115951688169810.1109/TAP.2011.2122294
– reference: GoldsmithAJafarSAJindalNCapacity limits of MIMO channelsIEEE J Sel Areas Commun200321568470210.1109/JSAC.2003.810294
– reference: ITU-RAttenuation by Atmospheric GasesRecommendation2013Geneva, SwitzerlandITU-R676–10
– reference: Cheng CL, Kim S, Zajić A, 2017. Comparison of path loss models for indoor 30 GHz, 140 GHz, and 300 GHz channels. Proc 11th European Conf on Antennas and Propagation, p.716–720. https://doi.org/10.23919/EuCAP.2017.7928124
– reference: LiJZAiBHeRSIndoor massive multiple-input multiple-output channel characterization and performance evaluationFront Inform Technol Electron Eng201718677378710.1631/FITEE.1700021
– reference: Matolak DW, 2015. Channel characterization for unmanned aircraft systems. 9th European Conf on Antennas and Propagation, p.1–5.
– reference: ZhangJHZhangYXYuYW3D MIMO: how much does it meet our expectations observed from channel measurements?IEEE J Sel Areas Commun20173581887190310.1109/JSAC.2017.2710758
– reference: Feng QX, McGeehan J, Tameh EK, et al., 2006. Path loss models for air-to-ground radio channels in urban environments. IEEE 63rd Vehicular Technology Conf, p.2901–2905. https://doi.org/10.1109/VETECS.2006.1683399
– reference: Hanssens B, Kshetri SR, Tanghe E, et al., 2018. Measurement-based analysis of dense multipath components in a large industrial warehouse. 12th European Conf on Antennas and Propagation, p.1–5. https://doi.org/10.1049/cp.2018.0453
– reference: ZhangJThe interdisciplinary research of big data and wireless channel: a cluster-nuclei based channel modelChina Commun201613S2142610.1109/CC.2016.7833457
– reference: WP5D IGuidelines for Evaluation of Radio Interface Technologies for IMT-20202017Geneva, SwitzerlandITU-R
– reference: JooEMZhouYTheory and Novel Applications of Machine Learning2009London, UKIntechOpen
– reference: LiWZLawCLDubeyVKKa-band land mobile satellite channel model incorporating weather effectsIEEE Commun Lett20015519419610.1109/4234.922757
– reference: Matolak DW, Sen I, Xiong WH, et al., 2005. 5 GHz wireless channel characterization for vehicle to vehicle communications. IEEE Military Communications Conf, p.3016–3022. https://doi.org/10.1109/MILCOM.2005.1606122
– reference: Ericsson, 2019b. Views on Additional Modelling Components. Proposal RP-1905203, 3GPP.
– reference: JiangCXZhangHJRenYMachine learning paradigms for next-generation wireless networksIEEE Wirel Commun20162429810510.1109/MWC.2016.1500356WC
– reference: Luo SP, Polu N, Chen ZX, et al., 2011. RF channel modeling of a WSN testbed for industrial environment. IEEE Radio and Wireless Symp, p.375–378. https://doi.org/10.1109/RWS.2011.5725435
– reference: LiHHLiYZZhouSDWireless channel feature extraction via GMM and CNN in the tomographic channel modelJ Commun Inform Netw201721415110.1007/s41650-017-0004-z
– reference: Navabi S, Wang CW, Bursalioglu OY, et al., 2018. Predicting wireless channel features using neural networks. IEEE Int Conf on Communications, p.1–6. https://doi.org/10.1109/ICC.2018.8422221
– reference: NachmaniEMarcianoELugoschLDeep learning methods for improved decoding of linear codesIEEE J Sel Top Signal Process201812111913110.1109/JSTSP.2017.2788405
– reference: BishopCMPattern Recognition and Machine Learning2006New YorkSpringer1107.68072
– reference: ChenXFHanZZhangHGWireless resource scheduling in virtualized radio access networks using stochastic learningIEEE Trans Mob Comput201817496197410.1109/TMC.2017.2742949
– reference: CMCC, BUPT, 2018a. New Measurements and Modelling on Fast Fading in IIOT Scenarios. Proposal RP-1904743, 3GPP.
– reference: Khalid N, Akan OB, 2016. Wideband THz communication channel measurements for 5G indoor wireless networks. IEEE Int Conf on Communications. https://doi.org/10.1109/ICC.2016.7511280
– reference: ZhangJPanCPeiFThree-dimensional fading channel models: a survey of elevation angle researchIEEE Commun Mag201452621822610.1109/MCOM.2014.6829967
– reference: Al-SaeghAMSaliAMandeepJSChannel measurements, characterization, and modeling for land mobile satellite terminals in tropical regions at KubandIEEE Trans Veh Technol201766289791110.1109/TVT.2016.2563038
– reference: ITU-RIMT Traffic Estimates for the Years 2020 to 20302015Geneva, SwitzerlandITU-R
– reference: DahlmanEMildhGParkvallS5G wireless access: requirements and realizationIEEE Commun Mag20145212424710.1109/MCOM.2014.6979985
– reference: Dai L, Zhang H, Zhuang Y, 2018. Propagation-model-free coverage evaluation via machine learning for future 5G networks. IEEE 29th Annual Int Symp on Personal, Indoor and Mobile Radio Communications, p.1–5. https://doi.org/10.1109/PIMRC.2018.8580992
– reference: Huawei, HiSilicon, 2018. Preliminary Channel Measurement on Large-Scale Propagation Loss for Indoor Factory Environment. Proposal RP-1904706, 3GPP.
– reference: JansenCPriebeSMollerCDiffuse scattering from rough surfaces in THz communication channelsIEEE Trans Terahertz Sci Technol20111246247210.1109/TTHZ.2011.2153610
– reference: VogelWJGoldhirshJTree attenuation at 869 MHz derived from remotely piloted aircraft measurementsIEEE Trans Antenn Propag198634121460146410.1109/TAP.1986.1143781
– reference: KimSZajićAGStatistical characterization of 300-GHz propagation on a desktopIEEE Trans Veh Technol20156483330333810.1109/TVT.2014.2358191
– volume: 13
  start-page: 926
  issue: 5
  year: 2012
  ident: 1480_CR27
  publication-title: J Guid Contr Dynam
  doi: 10.2514/3.25422
– volume: 5
  start-page: 4296
  issue: 6
  year: 2018
  ident: 1480_CR130
  publication-title: IEEE Int Thing J
  doi: 10.1109/JIOT.2018.2848295
– ident: 1480_CR28
– volume: 14
  start-page: 771
  issue: 5
  year: 1999
  ident: 1480_CR32
  publication-title: JJpn Soc Artif Intell
– ident: 1480_CR2
– ident: 1480_CR34
– ident: 1480_CR89
  doi: 10.1109/ETFA.2005.1612506
– volume: 10
  start-page: 58
  issue: 2
  year: 2013
  ident: 1480_CR33
  publication-title: WSEAS Trans Inform Sci Appl
– ident: 1480_CR121
– ident: 1480_CR133
  doi: 10.1109/VTCFall.2015.7390797
– ident: 1480_CR69
  doi: 10.1109/TBDATA.2018.2840696
– volume: 21
  start-page: 684
  issue: 5
  year: 2003
  ident: 1480_CR37
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2003.810294
– volume: 66
  start-page: 1913
  issue: 3
  year: 2017
  ident: 1480_CR122
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2016.2585504
– ident: 1480_CR92
– volume: 29
  start-page: 1640
  issue: 18
  year: 1993
  ident: 1480_CR128
  publication-title: Electron Lett
  doi: 10.1049/el:19931092
– ident: 1480_CR62
  doi: 10.1109/EuCAP.2012.6206356
– volume: 2015
  start-page: 372124
  year: 2015
  ident: 1480_CR114
  publication-title: Int J Antenn Propag
  doi: 10.1155/2015/372124
– ident: 1480_CR80
  doi: 10.1109/infcomw.2017.8116491
– volume: 13
  start-page: 1113
  issue: 8
  year: 2019
  ident: 1480_CR137
  publication-title: IET Microw Antenn Propag
  doi: 10.1049/iet-map.2018.6187
– volume: 35
  start-page: 1887
  issue: 8
  year: 2017
  ident: 1480_CR143
  publication-title: IEEE J Sel Areas Commun
  doi: 10.1109/JSAC.2017.2710758
– volume: 67
  start-page: 8549
  issue: 9
  year: 2018
  ident: 1480_CR45
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2018.2851783
– volume-title: Theory and Novel Applications of Machine Learning
  year: 2009
  ident: 1480_CR54
– volume: 56
  start-page: 102
  issue: 6
  year: 2014
  ident: 1480_CR99
  publication-title: IEEE Antenn Propag Mag
  doi: 10.1109/MAP.2014.7011023
– volume: 66
  start-page: 26
  issue: 1
  year: 2017
  ident: 1480_CR85
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2016.2530306
– volume: 68
  start-page: 49
  issue: 1
  year: 2018
  ident: 1480_CR123
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2018.2878352
– volume: 60
  start-page: 080301
  issue: 8
  year: 2017
  ident: 1480_CR142
  publication-title: Sci China Inform Sci
  doi: 10.1007/s11432-016-9144-x
– start-page: 63
  volume-title: Advanced Lectures on Machine Learning
  year: 2003
  ident: 1480_CR111
  doi: 10.1007/978-3-540-28650-9_4
– volume: 2013
  start-page: 378407
  year: 2013
  ident: 1480_CR77
  publication-title: Int J Antenn Propag
  doi: 10.1155/2013/378407
– volume: 16
  start-page: 148
  issue: 1
  year: 2019
  ident: 1480_CR66
  publication-title: China Commun
– volume-title: Learning from Delayed Rewards
  year: 1989
  ident: 1480_CR132
– volume-title: Wireless Communications
  year: 2012
  ident: 1480_CR90
– ident: 1480_CR42
  doi: 10.1109/WCNC.2016.7564890
– ident: 1480_CR102
  doi: 10.1109/PIMRC.2018.8580938
– volume: 60
  start-page: 33
  year: 2017
  ident: 1480_CR26
  publication-title: Dig Signal Process
  doi: 10.1016/j.dsp.2016.08.014
– ident: 1480_CR22
– volume: 66
  start-page: 897
  issue: 2
  year: 2017
  ident: 1480_CR8
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2016.2563038
– volume: 82
  start-page: 35
  issue: 1
  year: 1960
  ident: 1480_CR55
  publication-title: J Bas Eng
  doi: 10.1115/1.3662552
– ident: 1480_CR125
  doi: 10.1109/WCNC.2009.4917538
– ident: 1480_CR17
  doi: 10.23919/EuCAP.2017.7928124
– volume-title: IMT Traffic Estimates for the Years 2020 to 2030
  year: 2015
  ident: 1480_CR48
– volume: 60
  start-page: 833
  issue: 3
  year: 2012
  ident: 1480_CR50
  publication-title: IEEE Trans Microw Theory Technol
  doi: 10.1109/TMTT.2011.2178859
– volume: 13
  start-page: 14
  issue: S2
  year: 2016
  ident: 1480_CR140
  publication-title: China Commun
  doi: 10.1109/CC.2016.7833457
– volume: 20
  start-page: 3142
  issue: 4
  year: 2018
  ident: 1480_CR129
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/COMST.2018.2862141
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: 1480_CR107
  publication-title: Mach Learn
– volume: 18
  start-page: 753
  issue: 6
  year: 2017
  ident: 1480_CR5
  publication-title: Front Inform Technol Electron Eng
  doi: 10.1631/FITEE.1601817
– ident: 1480_CR120
  doi: 10.1109/WCNC.2018.8377337
– ident: 1480_CR11
  doi: 10.1109/glocomw.2018.8644245
– volume: 6
  start-page: 1654
  issue: 2
  year: 2019
  ident: 1480_CR18
  publication-title: IEEE Int Things J
  doi: 10.1109/JIOT.2018.2874816
– ident: 1480_CR97
  doi: 10.1109/EuCAP.2014.6902475
– ident: 1480_CR61
– ident: 1480_CR75
  doi: 10.1109/VETEC.1996.501466
– ident: 1480_CR7
  doi: 10.1109/GLOCOM.2014.7037248
– ident: 1480_CR84
  doi: 10.1109/DASC.2014.6979495
– ident: 1480_CR88
– volume: 5
  start-page: 2126
  year: 2017
  ident: 1480_CR14
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2652983
– ident: 1480_CR46
– ident: 1480_CR78
  doi: 10.1109/RWS.2011.5725435
– volume: 40
  start-page: 375
  issue: 2
  year: 1991
  ident: 1480_CR79
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/25.289418
– volume: 6
  start-page: 6820
  year: 2018
  ident: 1480_CR70
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2793298
– ident: 1480_CR87
  doi: 10.1109/MILCOM.2005.1606122
– volume: 12
  start-page: 119
  issue: 1
  year: 2018
  ident: 1480_CR93
  publication-title: IEEE J Sel Top Signal Process
  doi: 10.1109/JSTSP.2017.2788405
– volume: 66
  start-page: 282
  issue: 1
  year: 2017
  ident: 1480_CR74
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2016.2542106
– volume: 41
  start-page: 1002
  issue: 18
  year: 2005
  ident: 1480_CR100
  publication-title: Electron Lett
  doi: 10.1049/el:20052444
– ident: 1480_CR3
– volume-title: Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022 White Paper
  year: 2019
  ident: 1480_CR19
– ident: 1480_CR117
  doi: 10.1109/SICON.2005.257875
– volume: 7
  start-page: 2740
  issue: 7
  year: 2008
  ident: 1480_CR124
  publication-title: IEEE Trans Wirel Commun
  doi: 10.1109/TWC.2008.070143
– ident: 1480_CR96
  doi: 10.1109/EuCAP.2016.7481470
– ident: 1480_CR118
  doi: 10.1109/MWC.001.1900323
– volume: 9
  start-page: 1735
  issue: 7
  year: 1997
  ident: 1480_CR41
  publication-title: Neur Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 49
  start-page: 744
  issue: 3
  year: 2000
  ident: 1480_CR136
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/25.845094
– volume: 11
  start-page: 62
  issue: 1
  year: 2016
  ident: 1480_CR71
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2015.2477503
– ident: 1480_CR83
– volume-title: Recommendation
  year: 2013
  ident: 1480_CR47
– volume: 20
  start-page: 561
  issue: 3
  year: 2011
  ident: 1480_CR119
  publication-title: Radioengineering
– volume: 37
  start-page: 1554
  issue: 6
  year: 1966
  ident: 1480_CR10
  publication-title: Ann Math Stat
  doi: 10.1214/aoms/1177699147
– ident: 1480_CR44
  doi: 10.1109/IMCCC.2016.123
– volume: 23
  start-page: 1015
  issue: 19
  year: 1987
  ident: 1480_CR109
  publication-title: Electron Lett
  doi: 10.1049/el:19870712
– volume: 36
  start-page: 104
  issue: 1
  year: 1988
  ident: 1480_CR127
  publication-title: IEEE Trans Antenn Propag
  doi: 10.1109/8.1081
– volume: 35
  start-page: 1030
  issue: 5
  year: 2017
  ident: 1480_CR131
  publication-title: IEEE J Sel Area Commun
  doi: 10.1109/JSAC.2017.2679660
– volume: 52
  start-page: 42
  issue: 12
  year: 2014
  ident: 1480_CR24
  publication-title: IEEE Commun Mag
  doi: 10.1109/MCOM.2014.6979985
– volume: 21
  start-page: 2361
  issue: 3
  year: 2019
  ident: 1480_CR59
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/COMST.2019.2915069
– volume: 29
  start-page: 290
  issue: 2
  year: 1980
  ident: 1480_CR40
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/T-VT.1980.23854
– volume: 20
  start-page: 2714
  issue: 4
  year: 2018
  ident: 1480_CR72
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/COMST.2018.2841996
– ident: 1480_CR6
– ident: 1480_CR112
  doi: 10.1109/ICUMT.2017.8255203
– volume: 5
  start-page: 194
  issue: 5
  year: 2001
  ident: 1480_CR67
  publication-title: IEEE Commun Lett
  doi: 10.1109/4234.922757
– ident: 1480_CR95
  doi: 10.1109/MILCOM.2003.1290436
– volume: 56
  start-page: 62
  issue: 3
  year: 2018
  ident: 1480_CR144
  publication-title: IEEE Commun Mag
  doi: 10.1109/MCOM.2018.1700846
– ident: 1480_CR39
  doi: 10.1049/cp.2018.0453
– ident: 1480_CR21
– ident: 1480_CR73
  doi: 10.23919/ICACT.2018.8323708
– volume: 24
  start-page: 98
  issue: 2
  year: 2016
  ident: 1480_CR53
  publication-title: IEEE Wirel Commun
  doi: 10.1109/MWC.2016.1500356WC
– volume: 35
  start-page: 589
  issue: 5
  year: 1987
  ident: 1480_CR36
  publication-title: IEEE Trans Antenn Propag
  doi: 10.1109/TAP.1987.1144137
– volume: 59
  start-page: 1688
  issue: 5
  year: 2011
  ident: 1480_CR104
  publication-title: IEEE Trans Antenn Propag
  doi: 10.1109/TAP.2011.2122294
– volume-title: Guidelines for Evaluation of Radio Interface Technologies for IMT-2020
  year: 2017
  ident: 1480_CR135
– volume: 51
  start-page: 254
  issue: 2
  year: 2002
  ident: 1480_CR38
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/25.994803
– volume: 18
  start-page: 773
  issue: 6
  year: 2017
  ident: 1480_CR65
  publication-title: Front Inform Technol Electron Eng
  doi: 10.1631/FITEE.1700021
– ident: 1480_CR29
– volume: 6
  start-page: 3028
  issue: 8
  year: 2007
  ident: 1480_CR56
  publication-title: IEEE Trans Wirel Commun
  doi: 10.1109/TWC.2007.051050
– ident: 1480_CR63
  doi: 10.1109/PIMRC.2014.7136161
– ident: 1480_CR1
– volume: 12
  start-page: 1287
  issue: 8
  year: 2018
  ident: 1480_CR108
  publication-title: IET Microw Antenn Propag
  doi: 10.1049/iet-map.2017.0711
– ident: 1480_CR9
– volume: 6
  start-page: 2404
  issue: 15
  year: 2012
  ident: 1480_CR31
  publication-title: IET Commun
  doi: 10.1049/iet-com.2012.0028
– volume: 52
  start-page: 218
  issue: 6
  year: 2014
  ident: 1480_CR141
  publication-title: IEEE Commun Mag
  doi: 10.1109/MCOM.2014.6829967
– volume-title: Ericsson Mobility Report
  year: 2015
  ident: 1480_CR13
– ident: 1480_CR58
  doi: 10.1109/GLOCOM.2016.7842372
– volume: 15
  start-page: 547
  issue: 6
  year: 2013
  ident: 1480_CR105
  publication-title: J Commun Netw
  doi: 10.1109/JCN.2013.000103
– ident: 1480_CR4
– volume: 34
  start-page: 1460
  issue: 12
  year: 1986
  ident: 1480_CR126
  publication-title: IEEE Trans Antenn Propag
  doi: 10.1109/TAP.1986.1143781
– volume-title: Architectural Framework for Machine Learning in Future Networks Including IMT-2020. Recommendation Y.3172
  year: 2019
  ident: 1480_CR49
– volume: 2
  start-page: 41
  issue: 1
  year: 2017
  ident: 1480_CR64
  publication-title: J Commun Inform Netw
  doi: 10.1007/s41650-017-0004-z
– volume: 49
  start-page: 242
  issue: 3
  year: 2014
  ident: 1480_CR106
  publication-title: Radio Sci
  doi: 10.1002/2013RS005292
– ident: 1480_CR25
  doi: 10.1109/PIMRC.2018.8580992
– ident: 1480_CR94
  doi: 10.1109/ICC.2018.8422221
– ident: 1480_CR138
  doi: 10.1109/GLOCOMW.2011.6162389
– volume: 65
  start-page: 2637
  issue: 4
  year: 2015
  ident: 1480_CR134
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2015.2419738
– ident: 1480_CR68
  doi: 10.1109/WiCOM.2012.6478340
– volume: 4
  start-page: 145
  issue: 1
  year: 2019
  ident: 1480_CR145
  publication-title: J Commun
– volume: 66
  start-page: 6607
  issue: 8
  year: 2017
  ident: 1480_CR86
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2017.2659651
– volume-title: Pattern Recognition and Machine Learning
  year: 2006
  ident: 1480_CR12
– ident: 1480_CR98
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 1480_CR23
  publication-title: Mach Learn
– volume: 12
  start-page: 4445
  issue: 9
  year: 2013
  ident: 1480_CR103
  publication-title: IEEE Trans Wirel Commun
  doi: 10.1109/TWC.2013.072313.121581
– volume: 56
  start-page: 1413
  issue: 5
  year: 2008
  ident: 1480_CR51
  publication-title: IEEE Trans Antenn Propag
  doi: 10.1109/TAP.2008.922651
– volume-title: IMT Vision-Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond. Report M.2083–0
  year: 2015
  ident: 1480_CR116
– ident: 1480_CR35
  doi: 10.1109/GLOCOMW.2015.7414180
– ident: 1480_CR15
  doi: 10.1109/VTCFall.2016.7881093
– volume: 17
  start-page: 961
  issue: 4
  year: 2018
  ident: 1480_CR16
  publication-title: IEEE Trans Mob Comput
  doi: 10.1109/TMC.2017.2742949
– volume: 20
  start-page: 1716
  issue: 16
  year: 1995
  ident: 1480_CR43
  publication-title: Opt Lett
  doi: 10.1364/OL.20.001716
– volume: 14
  start-page: 421
  issue: 2
  year: 2008
  ident: 1480_CR101
  publication-title: IEEE J Sel Top Quant Electron
  doi: 10.1109/JSTQE.2007.910984
– ident: 1480_CR81
  doi: 10.1109/GLOCOMW.2014.7063445
– volume: 4
  start-page: 357
  issue: 4
  year: 2015
  ident: 1480_CR115
  publication-title: IEEE Wirel Commun Lett
  doi: 10.1109/LWC.2015.2417559
– ident: 1480_CR20
– volume: 2018
  start-page: 9783863
  year: 2018
  ident: 1480_CR76
  publication-title: Wirel Commun Mob Comput
  doi: 10.1155/2018/9783863
– volume: 2
  start-page: 555
  issue: 4
  year: 1996
  ident: 1480_CR91
  publication-title: Markov Process Rel Field
– ident: 1480_CR139
  doi: 10.1109/DASC.2011.6095912
– volume: 65
  start-page: 6213
  issue: 12
  year: 2017
  ident: 1480_CR110
  publication-title: IEEE Trans Antenn Propag
  doi: 10.1109/TAP.2017.2734243
– volume: 64
  start-page: 3330
  issue: 8
  year: 2015
  ident: 1480_CR60
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2014.2358191
– ident: 1480_CR113
  doi: 10.1109/VETECF.2009.5379031
– ident: 1480_CR57
  doi: 10.1109/ICC.2016.7511280
– ident: 1480_CR30
  doi: 10.1109/VETECS.2006.1683399
– volume: 1
  start-page: 462
  issue: 2
  year: 2011
  ident: 1480_CR52
  publication-title: IEEE Trans Terahertz Sci Technol
  doi: 10.1109/TTHZ.2011.2153610
– volume: 9
  start-page: 3590
  issue: 11
  year: 2010
  ident: 1480_CR82
  publication-title: IEEE Trans Wirel Commun
  doi: 10.1109/TWC.2010.092810.091092
SSID ssj0001619798
Score 2.5059123
SecondaryResourceType review_article
Snippet With the commercialization of fifth generation networks worldwide, research into sixth generation (6G) networks has been launched to meet the demands for high...
TN929.5; With the commercialization of fifth generation networks worldwide, research into sixth generation (6G) networks has been launched to meet the demands...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 39
SubjectTerms 6G mobile communication
Commercialization
Communications Engineering
Communications networks
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Electrical Engineering
Electronics and Microelectronics
Industrial applications
Industrial Internet of Things
Instrumentation
Internet of Things
Machine learning
Network latency
Networks
New technology
Propagation
R&D
Research & development
Review
Technology
Trends
Wireless communication systems
Wireless communications
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED7m9qIP4k-cTgko-mK1SZs2FURUNqfgEHGwt5I2iSCzm26D4V9v0qZWH-Zzjxbu0rvvLnf3ARxRSajpTnQ0umCOzzl3OA2VI5OQYkUZF3nB7bEXdPv-w4AOatArZ2FMW2XpE3NHLUapqZGfkwizkGj4ja_GH45hjTK3qyWFBrfUCuIyXzG2BA3tkqlbh8ZNu_f0XFVddL4Q5gS5xM1JCplvF28GHj7vaG_RPtMhUuMc92-gqtDnz4VpPuaTKZ69_opInTVYtVASXRe2X4eazDZg5deCwU24N8MDmRyi96oUOEE8EyhnwJkgDVlRcHeB0mJNEzLzRbNCotg2gkzHkAbiW9DvtF9uu44lT3BSz4umjtBeTAjf5SJKKJaC0YBFSni-1Dkfc5VJnGiaRpH0QuYmghg7UaYYVsIXknjbUM9GmdwB5EupgQUj0uRTJFSRFyQeVjgI3cRw3DThtNRUnNrN4obgYhibDEMrNs4VG1vFNuH4R3xcrNRYJNgq1R7bP2sSV-egCSelKarHC150aC1VCX69ifk8SWNJXNNWpp3R7v-f24NlI1qUX1pQn37O5L4GJNPkwJ6yb6C52zk
  priority: 102
  providerName: ProQuest
Title Channel measurements and models for 6G: current status and future outlook
URI https://link.springer.com/article/10.1631/FITEE.1900450
https://www.proquest.com/docview/2918726261
https://d.wanfangdata.com.cn/periodical/zjdxxbc-e202001005
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60XvTgW6yPsqDoxdRkk0023qw09YFFREFPIcnuClqj2Bakv97ZZGOrIugph2yWZGdm9_sm8wDYZZIyHZ1oIbrglpckiZWwQFkyDZijGE9E4XC77Pqnt975HbubgsMqF6aIdq9-SRY7tTZr33UOIzTldhPPLwQhyNFnGHITtMSZ4879xYRbBQlBUHTApXbRhZB7prLmjzm-nkRjePn5R7TI48lVkj9MHDnRAlxVL1tGmjw1h4O0mY2-1XH8x9cswryBn-S41JclmJL5MixUrR2IsfRlmJuoU7gCZzoHIZc98jz2KPZJkgtSNNLpE0S-xO8ckays9kR0mtKwHFEWLSE68Ajx_CrcRu2bk1PL9GCwMtcNB5bAzVAIz05EmDJHCs58HirhehKpI7eV5l8sy8JQugG3U0G1uBlX3FHCE5K6a1DLX3K5DsSTEvEJp1LTMhqo0PVT11GOH9ipbpVTh4NKHnFmCpTrPhm9WBMVXLS4WLTYLFod9j6Hv5aVOX4buFUJNzYG2o8pakZAkc05ddivJDS-_ctEO0YfxgNHj-L9Pc1iSW0dnYZ72saf59uEWf1U6dDZgtrgbSi3EeIM0gZM86jTQOWOWq1uwyg5Xlvt7tX1B9Bp9g4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB6h5UB7QPSlLtBiqQ8uBBInThwkhCjd7W6BVYVA4hac2EZCEB67qNAf19_GTOIQeqA3zrETZWzPfDOemQ_gszBcUHaih-hCepFSylMisZ7JExFYIZWuAm57o3hwGP08EkdT8LephaG0ykYnVopaXxQUI1_jaSATjvA72Ly88og1im5XGwoN5agV9EbVYswVduyYu9_owo03ht9xvb9w3u8dbA88xzLgFWGYTjyNx13ryFc6zUVgtBSxTK0OI4POkfQteRiiKNLUhIn0c83ph4S0MrA60oYaH6AJmI4ogNKB6W-90a_9NsqDs5OKkJf7FSmijFyjzzgM1vqonXqraJIRV_n_GsYW7T5c0FZlRaVV5ckjC9ifg1kHXdlWvddewZQpX8PLRw0N38CQihVKc8bO29DjmKlSs4pxZ8wQIrP4xzor6rZQjOqZbuoRdXcTRhlKCPzfwuGziPEddMqL0rwHFhmDQEZyQ_4bT2waxnkY2CBO_Jw4dbqw0kgqK1wncyLUOMvIo0HBZpVgMyfYLnx9GH5Zt_B4auBiI_bMneRx1u67Liw3S9E-fuJFn9xKtQP_nOrb27zIDPcpjQ2V3_z_P7cEM4ODvd1sdzjaWYAXNK0O_SxCZ3J9Yz4gGJrkH92OY3D83Jv8HlckGH8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED7GBqIP_hbnz4CiL3Zr06ZN9Wno5uZ0-KCgIJS2SQSddbgOxL_epE3dVAbic4_QJpfku-vd9wHsE46Jqk40JLqghhOGoRESTxg88oglCA1ZlnC76rntW-fijtyV4KTohcmq3YtfknlPg2JpStL6gIlsi7u2VW_Jbd2sybtMAhIZr1ccJR9Rhkrj_L47kWKRwYGXqeFiM1MkpI5m2fw1xvdbaQw1v_6OZj09iQiTx4nrp7UAD8WL51Unz7VRGtXijx-cjv_8skWY17AUNXI_WoIST5ZhoZB8QPoEWIa5Cf7CFeio3oSE99HLONM4RGHCUCawM0QSESP3_BjFOQsUUu1Lo9wiJzNBqiBJ4vxVuG01b07bhtZmMGLb9lODyUOSMccMmR8RizNKXOoLZjtchpTUFCouI3Hs-9z2qBkxrNyAUEEtwRzGsb0G5eQ14euAHM4lbqGYq3ANe8K33ci2hOV6ZqQkdKpwVKxNEGvicqWf0Q9UACMnLcgmLdCTVoWDL_NBztgxzXCrWOhAb9xhgKWXeFhGeVYVDovVGj-eMtCe9o2x4ccTe3-P4oBjU1WtybNu48_j7cLM9VkruOz0upswqwbIcz5bUE7fRnxboqA02tHe_gm0IP3e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Channel+measurements+and+models+for+6G%3Acurrent+status+and+future+outlook&rft.jtitle=%E4%BF%A1%E6%81%AF%E4%B8%8E%E7%94%B5%E5%AD%90%E5%B7%A5%E7%A8%8B%E5%89%8D%E6%B2%BF%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Jian-hua+ZHANG&rft.au=Pan+TANG&rft.au=Li+YU&rft.au=Tao+JIANG&rft.date=2020&rft.pub=State+Key+Lab+of+Networking+and+Switching+Technology%2CBeijing+University+of+Posts+and+Telecommunications%2CBeijing+100876%2CChina&rft.issn=2095-9184&rft.volume=21&rft.issue=1&rft.spage=39&rft.epage=61&rft_id=info:doi/10.1631%2FFITEE.1900450&rft.externalDocID=zjdxxbc_e202001005
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzjdxxbc-e%2Fzjdxxbc-e.jpg