Knowledge discovery of Middle East dust sources using Apriori spatial data mining algorithm

Identifying the areas susceptible to dust storm formation is one effective way of dealing with this destructive environmental phenomenon. This study is the first attempt to employ the Apriori spatial data mining algorithm to dust source susceptibility mapping (DSSM). The research process was based o...

Full description

Saved in:
Bibliographic Details
Published inEcological informatics Vol. 72; p. 101867
Main Authors Papi, Ramin, Attarchi, Sara, Darvishi Boloorani, Ali, Neysani Samany, Najmeh
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2022
Subjects
Online AccessGet full text
ISSN1574-9541
DOI10.1016/j.ecoinf.2022.101867

Cover

Abstract Identifying the areas susceptible to dust storm formation is one effective way of dealing with this destructive environmental phenomenon. This study is the first attempt to employ the Apriori spatial data mining algorithm to dust source susceptibility mapping (DSSM). The research process was based on extracting association rules between spatial-temporal patterns of dust drivers (including soil, vegetation, and climate parameters) in the Middle East's hotspots dust sources (HDSs). For this purpose, HDSs were identified using visual interpretation of sub-daily MODIS-Terra/Aqua RGB images from 2000 to 2021. The Middle East's HDSs mainly correspond to desert areas with poor vegetation cover and ephemeral/dried-up water bodies. A total of three million rules were extracted by running the Apriori algorithm. Accordingly, bare and non-vegetated lands, high soil thickness, low soil moisture, very high wind speed, and high temperature were identified as the most common features of HDSs. Using three measures including support, confidence, and lift, 54 frequent, reliable, and logical rules were selected, and the related maps were generated. Then, the susceptible dust sources (SDSs) map of the Middle East was produced in five classes of extreme (13% of the areas), high (14%), moderate (16%), low (17%), and no (40%) susceptibility through the weighted linear combination of the rule maps. The accuracy of the identified SDSs was estimated at 83.7% using the verification points. A sensitivity analysis was performed using the leave-one-out method to determine the isolated effect of the selected rules on the produced SDSs map. The model uncertainty varied between 15.7% and 16.8% for different rules. The variation range of uncertainty was 1.1%, demonstrating that a single rule does not significantly affect the model's performance; however, some rules have a more influential role. Our results revealed that Apriori's ability to provide generalizable association rules is a robust algorithm for DSSM. [Display omitted] •The Apriori algorithm can efficiently identify susceptible dust sources.•Association rules of dust drivers and hotspots are extracted.•Susceptible dust sources in the Middle East are identified with an accuracy of 83.7%.•Non-vegetated areas are the most frequent element in all association rules.•According to sensitivity analysis, uncertainty changes in the rules vary by up to 1.1%.
AbstractList Identifying the areas susceptible to dust storm formation is one effective way of dealing with this destructive environmental phenomenon. This study is the first attempt to employ the Apriori spatial data mining algorithm to dust source susceptibility mapping (DSSM). The research process was based on extracting association rules between spatial-temporal patterns of dust drivers (including soil, vegetation, and climate parameters) in the Middle East's hotspots dust sources (HDSs). For this purpose, HDSs were identified using visual interpretation of sub-daily MODIS-Terra/Aqua RGB images from 2000 to 2021. The Middle East's HDSs mainly correspond to desert areas with poor vegetation cover and ephemeral/dried-up water bodies. A total of three million rules were extracted by running the Apriori algorithm. Accordingly, bare and non-vegetated lands, high soil thickness, low soil moisture, very high wind speed, and high temperature were identified as the most common features of HDSs. Using three measures including support, confidence, and lift, 54 frequent, reliable, and logical rules were selected, and the related maps were generated. Then, the susceptible dust sources (SDSs) map of the Middle East was produced in five classes of extreme (13% of the areas), high (14%), moderate (16%), low (17%), and no (40%) susceptibility through the weighted linear combination of the rule maps. The accuracy of the identified SDSs was estimated at 83.7% using the verification points. A sensitivity analysis was performed using the leave-one-out method to determine the isolated effect of the selected rules on the produced SDSs map. The model uncertainty varied between 15.7% and 16.8% for different rules. The variation range of uncertainty was 1.1%, demonstrating that a single rule does not significantly affect the model's performance; however, some rules have a more influential role. Our results revealed that Apriori's ability to provide generalizable association rules is a robust algorithm for DSSM. [Display omitted] •The Apriori algorithm can efficiently identify susceptible dust sources.•Association rules of dust drivers and hotspots are extracted.•Susceptible dust sources in the Middle East are identified with an accuracy of 83.7%.•Non-vegetated areas are the most frequent element in all association rules.•According to sensitivity analysis, uncertainty changes in the rules vary by up to 1.1%.
Identifying the areas susceptible to dust storm formation is one effective way of dealing with this destructive environmental phenomenon. This study is the first attempt to employ the Apriori spatial data mining algorithm to dust source susceptibility mapping (DSSM). The research process was based on extracting association rules between spatial-temporal patterns of dust drivers (including soil, vegetation, and climate parameters) in the Middle East's hotspots dust sources (HDSs). For this purpose, HDSs were identified using visual interpretation of sub-daily MODIS-Terra/Aqua RGB images from 2000 to 2021. The Middle East's HDSs mainly correspond to desert areas with poor vegetation cover and ephemeral/dried-up water bodies. A total of three million rules were extracted by running the Apriori algorithm. Accordingly, bare and non-vegetated lands, high soil thickness, low soil moisture, very high wind speed, and high temperature were identified as the most common features of HDSs. Using three measures including support, confidence, and lift, 54 frequent, reliable, and logical rules were selected, and the related maps were generated. Then, the susceptible dust sources (SDSs) map of the Middle East was produced in five classes of extreme (13% of the areas), high (14%), moderate (16%), low (17%), and no (40%) susceptibility through the weighted linear combination of the rule maps. The accuracy of the identified SDSs was estimated at 83.7% using the verification points. A sensitivity analysis was performed using the leave-one-out method to determine the isolated effect of the selected rules on the produced SDSs map. The model uncertainty varied between 15.7% and 16.8% for different rules. The variation range of uncertainty was 1.1%, demonstrating that a single rule does not significantly affect the model's performance; however, some rules have a more influential role. Our results revealed that Apriori's ability to provide generalizable association rules is a robust algorithm for DSSM.
ArticleNumber 101867
Author Attarchi, Sara
Darvishi Boloorani, Ali
Papi, Ramin
Neysani Samany, Najmeh
Author_xml – sequence: 1
  givenname: Ramin
  surname: Papi
  fullname: Papi, Ramin
  email: raminpapi@ut.ac.ir
  organization: Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran
– sequence: 2
  givenname: Sara
  surname: Attarchi
  fullname: Attarchi, Sara
  email: satarchi@ut.ac.ir
  organization: Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran
– sequence: 3
  givenname: Ali
  surname: Darvishi Boloorani
  fullname: Darvishi Boloorani, Ali
  email: ali.darvishi@ut.ac.ir
  organization: Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran
– sequence: 4
  givenname: Najmeh
  surname: Neysani Samany
  fullname: Neysani Samany, Najmeh
  email: nneysani@ut.ac.ir
  organization: Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran
BookMark eNqFkLtOAzEQRV2AxPMPKFzSJPixmzgUSCgKDxFEAxWF5Yxng6ONHWxvUP4eR0tFAc2MNHfuHc05IQc-eCTkgrMhZ3x0tRoiBOeboWBC7EdqND4gx7weV4NJXfEjcpLSirFKKiWOyfuTD18t2iVS6xKELcYdDQ19dta2SGcmZWq7UlLoImCiXXJ-SW830YXoaNqY7ExLrcmGrp3fa6ZdFil_rM_IYWPahOc__ZS83c1epw-D-cv94_R2PgApJ3lgZSW4ArWoK6ZkswDGeV1L0UhlDAOGDVSgGKBgFpgcA4PJWE4WIK2wsEB5Si773E0Mnx2mrNflFWxb4zF0SQtVLtRipFRZve5XIYaUIjYaXC4vBJ-jca3mTO8p6pXuKeo9Rd1TLObql7lQWJu4-89209uwMNg6jDqBQw9oXUTI2gb3d8A3MMSThg
CitedBy_id crossref_primary_10_24011_barofd_1329758
crossref_primary_10_3390_rs15040905
crossref_primary_10_1016_j_ecoinf_2023_102355
crossref_primary_10_3390_su15118582
crossref_primary_10_1016_j_ecoinf_2023_102342
crossref_primary_10_3390_atmos15050531
crossref_primary_10_1016_j_acags_2024_100182
crossref_primary_10_1016_j_ecoinf_2024_102544
crossref_primary_10_3390_en17184539
crossref_primary_10_3390_land12091701
crossref_primary_10_1038_s41598_024_70125_y
crossref_primary_10_1061_JPSEA2_PSENG_1589
Cites_doi 10.1371/journal.pone.0169748
10.1016/j.aeolia.2011.12.001
10.1029/2008JD010687
10.1016/j.earscirev.2016.12.010
10.1016/j.atmosres.2019.104716
10.1016/j.ecolind.2021.108287
10.1515/amcs-2016-0033
10.1016/j.envint.2013.10.011
10.1016/j.aap.2016.03.017
10.1080/01431161.2016.1277279
10.1016/j.jaridenv.2020.104335
10.1016/j.atmosres.2022.106152
10.1016/j.scitotenv.2020.143952
10.1002/2014JF003095
10.1016/j.apr.2020.05.009
10.1016/j.aap.2020.105497
10.1016/j.ecoinf.2020.101059
10.1016/j.jhydrol.2021.126485
10.1155/2013/359634
10.1029/2012RG000388
10.1111/1467-8306.9302003
10.1029/2008JD011541
10.1007/s11069-019-03785-z
10.1007/s12665-015-5022-2
10.52547/jgit.8.3.61
10.1029/2000JD000053
10.1029/2006GL026561
10.1016/j.ecoinf.2022.101724
10.1016/j.aeolia.2021.100698
10.1029/2000RG000095
10.1126/science.1105959
10.1007/s10661-015-4806-x
10.1016/j.aeolia.2016.04.002
10.1016/j.enconman.2014.04.028
10.1016/j.aeolia.2011.02.001
10.1080/17538940701782593
10.1007/s13143-013-0027-9
10.1016/j.catena.2021.105795
10.2166/aqua.2019.049
10.1088/0034-4885/75/10/106901
10.1038/sdata.2017.191
10.1002/met.251
10.1002/joc.3370060207
10.1191/0309133304pp416ra
10.1002/jgrd.50554
10.1016/j.scitotenv.2020.139508
10.1002/jgrd.50600
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.ecoinf.2022.101867
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
ExternalDocumentID 10_1016_j_ecoinf_2022_101867
S157495412200317X
GeographicLocations Middle East
GeographicLocations_xml – name: Middle East
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
N~3
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPCBC
SSA
SSJ
SSZ
T5K
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
GROUPED_DOAJ
M~E
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-d34218c8b54083fbc0115532f38aa0c0efc4c80ce20dc037c0c9739bc3d2dcbe3
IEDL.DBID .~1
ISSN 1574-9541
IngestDate Wed Oct 01 14:44:24 EDT 2025
Wed Oct 29 21:43:14 EDT 2025
Thu Apr 24 22:54:45 EDT 2025
Fri Feb 23 02:38:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spatial data mining
Middle East
Dust source susceptibility mapping
Apriori
Remote sensing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-d34218c8b54083fbc0115532f38aa0c0efc4c80ce20dc037c0c9739bc3d2dcbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2834252688
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834252688
crossref_citationtrail_10_1016_j_ecoinf_2022_101867
crossref_primary_10_1016_j_ecoinf_2022_101867
elsevier_sciencedirect_doi_10_1016_j_ecoinf_2022_101867
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Ecological informatics
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hong, Tamakloe, Park (bb0155) 2020; 142
Diaz-Garcia, Ruiz, Martin-Bautista (bb0060) 2022
Kandakji, Gill, Lee (bb0180) 2020; 755
Soleimani, Argany, Papi, Amiri (bb0285) 2021; 53
Heydarizad, Minaei, Ichiyanagi, Sorí (bb0150) 2021; 600
Al-Maolegi, Arkok (bb0015) 2014
Darvishi Boloorani, Kazemi, Sadeghi, Nadizadeh Shorabeh, Argany (bb0040) 2020; 117299
Shepherd, Terradellas, Baklanov, Kang, Sprigg, Nickovic, Boloorani, Al-Dousari, Basart, Benedetti (bb0270) 2016
Pelletier, Broxton, Hazenberg, Zeng, Troch, Niu, Williams, Brunke, Gochis (bb0235) 2016
Gherboudj, Beegum, Ghedira (bb0085) 2017; 165
Kok, Parteli, Michaels, Karam (bb0185) 2012; 75
Hamidi, Kavianpour, Shao (bb0130) 2013; 49
Walker, Liu, Miller, Richardson, Westphal (bb0300) 2009; 114
Emery, Camps (bb0075) 2017
Shao, Wyrwoll, Chappell, Huang, Lin, McTainsh, Mikami, Tanaka, Wang, Yoon (bb0265) 2011; 2
Rahmati, Panahi, Ghiasi, Deo, Tiefenbacher, Pradhan, Jahani, Goshtasb, Kornejady, Shahabi (bb0250) 2020; 117320
Gholami, Rahimi, Fathabadi, Habibi, Collins (bb0105) 2020; 138090
Hastings, Dunbar (bb0140) 1993
Boroughani, Pourhashemi, Hashemi, Salehi, Amirahmadi, Asadi, Berndtsson (bb0030) 2020; 56
Moridnejad, Karimi, Ariya (bb0210) 2015; 187
Weng, Zhu, Yan, Liu (bb0310) 2016; 92
Baddock, Bryant, Acosta, Gill (bb0025) 2021; 184
Sayer, Hsu, Bettenhausen, Jeong (bb0260) 2013; 118
Tang, Chuang, Hsi, Lin, Yang, Chang (bb0290) 2013; 2013
Goudie (bb0120) 2014; 63
Jickells, An, Andersen, Baker, Bergametti, Brooks, Cao, Boyd, Duce, Hunter (bb0175) 2005; 308
Abatzoglou, Dobrowski, Parks, Hegewisch (bb0005) 2018; 5
Gholami, Mohamadifar, Sorooshian, Jansen (bb0095) 2020; 11
Gao, Han, Wang, Pei, Lu (bb0080) 2012; 19
Shi, Yan, Yuan, Nearing (bb0275) 2004; 28
Agrawal, Srikant (bb0010) 1994; 1215
Ashpole, Washington (bb0020) 2013; 118
Huang, Lin, Minnis, Wang, Wang, Hu, Yi, Ayers (bb0165) 2006; 33
Mohammady, Pourghasemi, Amiri (bb0205) 2019; 99
Ginoux, Prospero, Gill, Hsu, Zhao (bb0115) 2012; 50
Darvishi Boloorani, Neysani Samany, Papi, Soleimani (bb0050) 2022; 209
Papi, Kakroodi, Soleimani, Karami, Amiri, Alavipanah (bb0225) 2022; 70
Gholami, Mohamadifar, Collins (bb0090) 2020; 233
Ebrahimi-Khusfi, Taghizadeh-Mehrjardi, Roustaei, Ebrahimi-Khusfi, Mosavi, Heung, Scholten (bb0070) 2021; 132
Darvishi Boloorani, Papi, Soleimani, Karami, Amiri, Neysani Samany (bb0045) 2021; 50
Dolatkordestani, Nosrati, Maddah, Tiefenbacher (bb0065) 2022
Hand, Adams (bb0135) 2014
Hunter, Cervone (bb0170) 2017; 38
Miri, Maleki, Middleton (bb0200) 2021; 757
Prospero, Ginoux, Torres, Nicholson, Gill (bb0240) 2002; 40
Washington, Todd, Middleton, Goudie (bb0305) 2003; 93
Ginoux, Chin, Tegen, Prospero, Holben, Dubovik, Lin (bb0110) 2001; 106
Hengl, Mendes de Jesus, Heuvelink, Ruiperez Gonzalez, Kilibarda, Blagotić, Shangguan, Wright, Geng, Bauer-Marschallinger (bb0145) 2017; 12
Darvishi Boloorani, Najafi, Soleimani, Papi, Torabi (bb0055) 2022; 272
Wu, Zhan, Zhang, Deng (bb0315) 2016; 75
Papi, Argany, Moradipour, Soleimani (bb0220) 2021; 8
Hong, Tamakloe, Park (bb0160) 2020
Parajuli, Yang, Kocurek (bb0230) 2014; 119
Rahmati, Mohammadi, Ghiasi, Tiefenbacher, Moghaddam, Coulon, Nalivan, Tien Bui (bb0245) 2020; 737
Nabavi, Haimberger, Samimi (bb0215) 2016; 21
Rashki, Kaskaoutis, de Rautenbach, Eriksson, Qiang, Gupta (bb0255) 2012; 5
Tsolmon, Ochirkhuyag, Sternberg (bb0295) 2008; 1
Bozorg-Haddad, Zolghadr-Asli, Sarzaeim, Aboutalebi, Chu, Loáiciga (bb0035) 2020; 69
Gholami, Mohammadifar, Pourghasemi, Collins (bb0100) 2020
Guo, Chi, Wu, Zhang (bb0125) 2014; 84
Siwek, Osowski (bb0280) 2016; 26
Middleton (bb0195) 1986; 6
Lee, Sohn (bb0190) 2009; 114
Gholami (10.1016/j.ecoinf.2022.101867_bb0095) 2020; 11
Goudie (10.1016/j.ecoinf.2022.101867_bb0120) 2014; 63
Rahmati (10.1016/j.ecoinf.2022.101867_bb0250) 2020; 117320
Kok (10.1016/j.ecoinf.2022.101867_bb0185) 2012; 75
Ebrahimi-Khusfi (10.1016/j.ecoinf.2022.101867_bb0070) 2021; 132
Parajuli (10.1016/j.ecoinf.2022.101867_bb0230) 2014; 119
Al-Maolegi (10.1016/j.ecoinf.2022.101867_bb0015) 2014
Gao (10.1016/j.ecoinf.2022.101867_bb0080) 2012; 19
Bozorg-Haddad (10.1016/j.ecoinf.2022.101867_bb0035) 2020; 69
Dolatkordestani (10.1016/j.ecoinf.2022.101867_bb0065) 2022
Hong (10.1016/j.ecoinf.2022.101867_bb0160) 2020
Hastings (10.1016/j.ecoinf.2022.101867_bb0140) 1993
Siwek (10.1016/j.ecoinf.2022.101867_bb0280) 2016; 26
Rahmati (10.1016/j.ecoinf.2022.101867_bb0245) 2020; 737
Gherboudj (10.1016/j.ecoinf.2022.101867_bb0085) 2017; 165
Shi (10.1016/j.ecoinf.2022.101867_bb0275) 2004; 28
Kandakji (10.1016/j.ecoinf.2022.101867_bb0180) 2020; 755
Nabavi (10.1016/j.ecoinf.2022.101867_bb0215) 2016; 21
Miri (10.1016/j.ecoinf.2022.101867_bb0200) 2021; 757
Lee (10.1016/j.ecoinf.2022.101867_bb0190) 2009; 114
Agrawal (10.1016/j.ecoinf.2022.101867_bb0010) 1994; 1215
Walker (10.1016/j.ecoinf.2022.101867_bb0300) 2009; 114
Mohammady (10.1016/j.ecoinf.2022.101867_bb0205) 2019; 99
Ginoux (10.1016/j.ecoinf.2022.101867_bb0115) 2012; 50
Papi (10.1016/j.ecoinf.2022.101867_bb0220) 2021; 8
Baddock (10.1016/j.ecoinf.2022.101867_bb0025) 2021; 184
Gholami (10.1016/j.ecoinf.2022.101867_bb0090) 2020; 233
Hong (10.1016/j.ecoinf.2022.101867_bb0155) 2020; 142
Shao (10.1016/j.ecoinf.2022.101867_bb0265) 2011; 2
Abatzoglou (10.1016/j.ecoinf.2022.101867_bb0005) 2018; 5
Boroughani (10.1016/j.ecoinf.2022.101867_bb0030) 2020; 56
Darvishi Boloorani (10.1016/j.ecoinf.2022.101867_bb0050) 2022; 209
Weng (10.1016/j.ecoinf.2022.101867_bb0310) 2016; 92
Tsolmon (10.1016/j.ecoinf.2022.101867_bb0295) 2008; 1
Gholami (10.1016/j.ecoinf.2022.101867_bb0100) 2020
Gholami (10.1016/j.ecoinf.2022.101867_bb0105) 2020; 138090
Tang (10.1016/j.ecoinf.2022.101867_bb0290) 2013; 2013
Guo (10.1016/j.ecoinf.2022.101867_bb0125) 2014; 84
Hengl (10.1016/j.ecoinf.2022.101867_bb0145) 2017; 12
Diaz-Garcia (10.1016/j.ecoinf.2022.101867_bb0060) 2022
Darvishi Boloorani (10.1016/j.ecoinf.2022.101867_bb0045) 2021; 50
Prospero (10.1016/j.ecoinf.2022.101867_bb0240) 2002; 40
Ginoux (10.1016/j.ecoinf.2022.101867_bb0110) 2001; 106
Shepherd (10.1016/j.ecoinf.2022.101867_bb0270) 2016
Sayer (10.1016/j.ecoinf.2022.101867_bb0260) 2013; 118
Ashpole (10.1016/j.ecoinf.2022.101867_bb0020) 2013; 118
Darvishi Boloorani (10.1016/j.ecoinf.2022.101867_bb0040) 2020; 117299
Hunter (10.1016/j.ecoinf.2022.101867_bb0170) 2017; 38
Soleimani (10.1016/j.ecoinf.2022.101867_bb0285) 2021; 53
Huang (10.1016/j.ecoinf.2022.101867_bb0165) 2006; 33
Moridnejad (10.1016/j.ecoinf.2022.101867_bb0210) 2015; 187
Emery (10.1016/j.ecoinf.2022.101867_bb0075) 2017
Jickells (10.1016/j.ecoinf.2022.101867_bb0175) 2005; 308
Hand (10.1016/j.ecoinf.2022.101867_bb0135) 2014
Darvishi Boloorani (10.1016/j.ecoinf.2022.101867_bb0055) 2022; 272
Heydarizad (10.1016/j.ecoinf.2022.101867_bb0150) 2021; 600
Middleton (10.1016/j.ecoinf.2022.101867_bb0195) 1986; 6
Washington (10.1016/j.ecoinf.2022.101867_bb0305) 2003; 93
Rashki (10.1016/j.ecoinf.2022.101867_bb0255) 2012; 5
Papi (10.1016/j.ecoinf.2022.101867_bb0225) 2022; 70
Wu (10.1016/j.ecoinf.2022.101867_bb0315) 2016; 75
Pelletier (10.1016/j.ecoinf.2022.101867_bb0235) 2016
Hamidi (10.1016/j.ecoinf.2022.101867_bb0130) 2013; 49
References_xml – volume: 138090
  year: 2020
  ident: bb0105
  article-title: Mapping the spatial sources of atmospheric dust using GLUE and Monte Carlo simulation
  publication-title: Sci. Total Environ.
– volume: 70
  year: 2022
  ident: bb0225
  article-title: Identifying sand and dust storm sources using spatial-temporal analysis of remote sensing data in Central Iran
  publication-title: Ecol. Inform.
– volume: 50
  year: 2012
  ident: bb0115
  article-title: Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS deep blue aerosol products
  publication-title: Rev. Geophys.
– volume: 114
  year: 2009
  ident: bb0300
  article-title: Development of a dust source database for mesoscale forecasting in Southwest Asia
  publication-title: J. Geophys. Res. Atmos.
– start-page: 1
  year: 2022
  end-page: 14
  ident: bb0065
  article-title: Identification of dust sources in a dust hot-spot area in Iran using multi-spectral Sentinel 2 data and deep learning artificial intelligence machine
  publication-title: Geocarto Int.
– year: 2014
  ident: bb0015
  article-title: An improved Apriori algorithm for association rules
  publication-title: ArXiv Preprint
– volume: 184
  year: 2021
  ident: bb0025
  article-title: Understanding dust sources through remote sensing: making a case for CubeSats
  publication-title: J. Arid Environ.
– volume: 69
  start-page: 85
  year: 2020
  end-page: 98
  ident: bb0035
  article-title: Evaluation of water shortage crisis in the Middle East and possible remedies
  publication-title: J. Water Supply Res. Technol. AQUA
– volume: 5
  year: 2018
  ident: bb0005
  article-title: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015
  publication-title: Sci. Data
– year: 2016
  ident: bb0235
  article-title: Global 1-Km Gridded Thickness of Soil, Regolith, and Sedimentary Deposit Layers
– volume: 28
  start-page: 366
  year: 2004
  end-page: 386
  ident: bb0275
  article-title: Wind erosion research in China: past, present and future
  publication-title: Prog. Phys. Geogr.
– start-page: 2020
  year: 2020
  ident: bb0160
  article-title: Discovering insightful rules among truck crash characteristics using apriori algorithm
  publication-title: J. Adv. Transp.
– volume: 49
  start-page: 279
  year: 2013
  end-page: 286
  ident: bb0130
  article-title: Synoptic analysis of dust storms in the Middle East
  publication-title: Asia-Pac. J. Atmos. Sci.
– volume: 8
  start-page: 61
  year: 2021
  end-page: 82
  ident: bb0220
  article-title: Modeling the potential of sand and dust storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)
  publication-title: Eng. J. Geospatial Inform. Technol.
– volume: 106
  start-page: 20255
  year: 2001
  end-page: 20273
  ident: bb0110
  article-title: Sources and distributions of dust aerosols simulated with the GOCART model
  publication-title: J. Geophys. Res. Atmos.
– volume: 93
  start-page: 297
  year: 2003
  end-page: 313
  ident: bb0305
  article-title: Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations
  publication-title: Ann. Assoc. Am. Geogr.
– start-page: 1
  year: 2014
  end-page: 7
  ident: bb0135
  article-title: Data Mining
– volume: 757
  year: 2021
  ident: bb0200
  article-title: An investigation into climatic and terrestrial drivers of dust storms in the Sistan region of Iran in the early twenty-first century
  publication-title: Sci. Total Environ.
– volume: 209
  year: 2022
  ident: bb0050
  article-title: Dust source susceptibility mapping in Tigris and Euphrates basin using remotely sensed imagery
  publication-title: CATENA
– volume: 84
  start-page: 140
  year: 2014
  end-page: 151
  ident: bb0125
  article-title: A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm
  publication-title: Energy Convers. Manag.
– volume: 12
  year: 2017
  ident: bb0145
  article-title: SoilGrids250m: global gridded soil information based on machine learning
  publication-title: PLoS One
– volume: 26
  start-page: 467
  year: 2016
  end-page: 478
  ident: bb0280
  article-title: Data mining methods for prediction of air pollution
  publication-title: Int. J. Appl. Math. Comput. Sci.
– volume: 118
  start-page: 6981
  year: 2013
  end-page: 6995
  ident: bb0020
  article-title: A new high-resolution central and western Saharan summertime dust source map from automated satellite dust plume tracking
  publication-title: J. Geophys. Res. Atmos.
– volume: 5
  start-page: 51
  year: 2012
  end-page: 62
  ident: bb0255
  article-title: Dust storms and their horizontal dust loading in the Sistan region, Iran
  publication-title: Aeolian Res.
– volume: 142
  year: 2020
  ident: bb0155
  article-title: Application of association rules mining algorithm for hazardous materials transportation crashes on expressway
  publication-title: Accid. Anal. Prev.
– volume: 1
  start-page: 119
  year: 2008
  end-page: 129
  ident: bb0295
  article-title: Monitoring the source of trans-national dust storms in north East Asia
  publication-title: Int. J. Digital Earth
– volume: 63
  start-page: 101
  year: 2014
  end-page: 113
  ident: bb0120
  article-title: Desert dust and human health disorders
  publication-title: Environ. Int.
– year: 1993
  ident: bb0140
  article-title: Global Land One-Kilometer Base Elevation (GLOBE)
– volume: 33
  year: 2006
  ident: bb0165
  article-title: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia
  publication-title: Geophys. Res. Lett.
– volume: 132
  year: 2021
  ident: bb0070
  article-title: Determining the contribution of environmental factors in controlling dust pollution during cold and warm months of western Iran using different data mining algorithms and game theory
  publication-title: Ecol. Indic.
– volume: 117299
  year: 2020
  ident: bb0040
  article-title: Identification of dust sources using long term satellite and climatic data: a case study of Tigris and Euphrates basin
  publication-title: Atmos. Environ.
– volume: 165
  start-page: 342
  year: 2017
  end-page: 355
  ident: bb0085
  article-title: Identifying natural dust source regions over the middle-east and North-Africa: estimation of dust emission potential
  publication-title: Earth Sci. Rev.
– volume: 755
  year: 2020
  ident: bb0180
  article-title: Drought and land use/land cover impact on dust sources in southern Great Plains and Chihuahuan Desert of the US: inferring anthropogenic effect
  publication-title: Sci. Total Environ.
– volume: 92
  start-page: 43
  year: 2016
  end-page: 52
  ident: bb0310
  article-title: Investigation of work zone crash casualty patterns using association rules
  publication-title: Accid. Anal. Prev.
– volume: 40
  start-page: 1
  year: 2002
  end-page: 2
  ident: bb0240
  article-title: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product
  publication-title: Rev. Geophys.
– year: 2016
  ident: bb0270
  article-title: Global Assessment of Sand and Dust Storms
– year: 2017
  ident: bb0075
  article-title: Chapter 8 - Atmosphere Applications (W. Emery & A. B. T.-I. to S. R. S. Camps (eds.); pp. 597–636)
– volume: 233
  year: 2020
  ident: bb0090
  article-title: Spatial mapping of the provenance of storm dust: application of data mining and ensemble modelling
  publication-title: Atmos. Res.
– volume: 119
  start-page: 1977
  year: 2014
  end-page: 1994
  ident: bb0230
  article-title: Mapping erodibility in dust source regions based on geomorphology, meteorology, and remote sensing
  publication-title: J. Geophys. Res. Earth Surf.
– start-page: 1
  year: 2022
  end-page: 26
  ident: bb0060
  article-title: A survey on the use of association rules mining techniques in textual social media
  publication-title: Artif. Intell. Rev.
– volume: 1215
  start-page: 487
  year: 1994
  end-page: 499
  ident: bb0010
  article-title: Fast algorithms for mining association rules
  publication-title: Proc. 20th Int. Conf. Very Large Data Bases, VLDB
– volume: 272
  year: 2022
  ident: bb0055
  article-title: Influence of Hamoun Lakes’ dry conditions on dust emission and radiative forcing over Sistan plain, Iran
  publication-title: Atmos. Res.
– volume: 2013
  year: 2013
  ident: bb0290
  article-title: Identifying the association rules between clinicopathologic factors and higher survival performance in operation-centric oral cancer patients using the Apriori algorithm
  publication-title: Biomed. Res. Int.
– volume: 53
  start-page: 319
  year: 2021
  end-page: 333
  ident: bb0285
  article-title: Satellite aerosol optical depth prediction using data mining of climate parameters
  publication-title: Phys. Geogr. Res. Quart.
– volume: 6
  start-page: 183
  year: 1986
  end-page: 196
  ident: bb0195
  article-title: A geography of dust storms in south-West Asia
  publication-title: J. Climatol.
– volume: 308
  start-page: 67
  year: 2005
  end-page: 71
  ident: bb0175
  article-title: Global iron connections between desert dust, ocean biogeochemistry, and climate
  publication-title: Science
– volume: 50
  year: 2021
  ident: bb0045
  article-title: Water bodies changes in Tigris and Euphrates basin has impacted dust storms phenomena
  publication-title: Aeolian Res.
– volume: 38
  start-page: 1494
  year: 2017
  end-page: 1521
  ident: bb0170
  article-title: Analysing the influence of African dust storms on the prevalence of coral disease in the Caribbean Sea using remote sensing and association rule data mining
  publication-title: Int. J. Remote Sens.
– volume: 737
  year: 2020
  ident: bb0245
  article-title: Identifying sources of dust aerosol using a new framework based on remote sensing and modelling
  publication-title: Sci. Total Environ.
– volume: 118
  start-page: 7864
  year: 2013
  end-page: 7872
  ident: bb0260
  article-title: Validation and uncertainty estimates for MODIS collection 6 “Deep Blue” aerosol data
  publication-title: J. Geophys. Res. Atmos.
– volume: 11
  start-page: 1303
  year: 2020
  end-page: 1315
  ident: bb0095
  article-title: Machine-learning algorithms for predicting land susceptibility to dust emissions: The case of the Jazmurian Basin
  publication-title: Iran. Atmos. Pollut. Res.
– volume: 75
  year: 2012
  ident: bb0185
  article-title: The physics of wind-blown sand and dust
  publication-title: Rep. Prog. Phys.
– volume: 114
  year: 2009
  ident: bb0190
  article-title: Examining the impact of wind and surface vegetation on the Asian dust occurrence over three classified source regions
  publication-title: J. Geophys. Res. Atmos.
– volume: 600
  year: 2021
  ident: bb0150
  article-title: The effects of local and regional parameters on the δ18O and δ2H values of precipitation and surface water resources in the Middle East
  publication-title: J. Hydrol.
– volume: 2
  start-page: 181
  year: 2011
  end-page: 204
  ident: bb0265
  article-title: Dust cycle: An emerging core theme in earth system science
  publication-title: Aeolian Res.
– volume: 19
  start-page: 265
  year: 2012
  end-page: 278
  ident: bb0080
  article-title: Impacts of climate abnormality on remarkable dust storm increase of the Hunshdak Sandy lands in northern China during 2001–2008
  publication-title: Meteorol. Appl.
– volume: 187
  start-page: 582
  year: 2015
  ident: bb0210
  article-title: A new inventory for middle east dust source points
  publication-title: Environ. Monit. Assess.
– volume: 117320
  year: 2020
  ident: bb0250
  article-title: Hybridized neural fuzzy ensembles for dust source modeling and prediction
  publication-title: Atmos. Environ.
– start-page: 1
  year: 2020
  end-page: 18
  ident: bb0100
  article-title: A new integrated data mining model to map spatial variation in the susceptibility of land to act as a source of aeolian dust
  publication-title: Environ. Sci. Pollut. Res.
– volume: 56
  year: 2020
  ident: bb0030
  article-title: Application of remote sensing techniques and machine learning algorithms in dust source detection and dust source susceptibility mapping
  publication-title: Ecol. Inform.
– volume: 75
  start-page: 146
  year: 2016
  ident: bb0315
  article-title: Application of a two-step cluster analysis and the Apriori algorithm to classify the deformation states of two typical colluvial landslides in the Three Gorges, China
  publication-title: Environ. Earth Sci.
– volume: 99
  start-page: 951
  year: 2019
  end-page: 971
  ident: bb0205
  article-title: Assessment of land subsidence susceptibility in Semnan plain (Iran): a comparison of support vector machine and weights of evidence data mining algorithms
  publication-title: Nat. Hazards
– volume: 21
  start-page: 93
  year: 2016
  end-page: 107
  ident: bb0215
  article-title: Climatology of dust distribution over West Asia from homogenized remote sensing data
  publication-title: Aeolian Res.
– volume: 12
  issue: 2
  year: 2017
  ident: 10.1016/j.ecoinf.2022.101867_bb0145
  article-title: SoilGrids250m: global gridded soil information based on machine learning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0169748
– volume: 5
  start-page: 51
  year: 2012
  ident: 10.1016/j.ecoinf.2022.101867_bb0255
  article-title: Dust storms and their horizontal dust loading in the Sistan region, Iran
  publication-title: Aeolian Res.
  doi: 10.1016/j.aeolia.2011.12.001
– volume: 114
  issue: D6
  year: 2009
  ident: 10.1016/j.ecoinf.2022.101867_bb0190
  article-title: Examining the impact of wind and surface vegetation on the Asian dust occurrence over three classified source regions
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2008JD010687
– volume: 165
  start-page: 342
  year: 2017
  ident: 10.1016/j.ecoinf.2022.101867_bb0085
  article-title: Identifying natural dust source regions over the middle-east and North-Africa: estimation of dust emission potential
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2016.12.010
– volume: 233
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101867_bb0090
  article-title: Spatial mapping of the provenance of storm dust: application of data mining and ensemble modelling
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2019.104716
– volume: 132
  year: 2021
  ident: 10.1016/j.ecoinf.2022.101867_bb0070
  article-title: Determining the contribution of environmental factors in controlling dust pollution during cold and warm months of western Iran using different data mining algorithms and game theory
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2021.108287
– volume: 26
  start-page: 467
  issue: 2
  year: 2016
  ident: 10.1016/j.ecoinf.2022.101867_bb0280
  article-title: Data mining methods for prediction of air pollution
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.1515/amcs-2016-0033
– volume: 63
  start-page: 101
  year: 2014
  ident: 10.1016/j.ecoinf.2022.101867_bb0120
  article-title: Desert dust and human health disorders
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2013.10.011
– volume: 92
  start-page: 43
  year: 2016
  ident: 10.1016/j.ecoinf.2022.101867_bb0310
  article-title: Investigation of work zone crash casualty patterns using association rules
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2016.03.017
– volume: 38
  start-page: 1494
  issue: 6
  year: 2017
  ident: 10.1016/j.ecoinf.2022.101867_bb0170
  article-title: Analysing the influence of African dust storms on the prevalence of coral disease in the Caribbean Sea using remote sensing and association rule data mining
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1277279
– volume: 184
  year: 2021
  ident: 10.1016/j.ecoinf.2022.101867_bb0025
  article-title: Understanding dust sources through remote sensing: making a case for CubeSats
  publication-title: J. Arid Environ.
  doi: 10.1016/j.jaridenv.2020.104335
– volume: 272
  year: 2022
  ident: 10.1016/j.ecoinf.2022.101867_bb0055
  article-title: Influence of Hamoun Lakes’ dry conditions on dust emission and radiative forcing over Sistan plain, Iran
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2022.106152
– volume: 117299
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101867_bb0040
  article-title: Identification of dust sources using long term satellite and climatic data: a case study of Tigris and Euphrates basin
  publication-title: Atmos. Environ.
– volume: 1215
  start-page: 487
  year: 1994
  ident: 10.1016/j.ecoinf.2022.101867_bb0010
  article-title: Fast algorithms for mining association rules
– volume: 755
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101867_bb0180
  article-title: Drought and land use/land cover impact on dust sources in southern Great Plains and Chihuahuan Desert of the US: inferring anthropogenic effect
  publication-title: Sci. Total Environ.
– year: 2016
  ident: 10.1016/j.ecoinf.2022.101867_bb0235
– volume: 757
  year: 2021
  ident: 10.1016/j.ecoinf.2022.101867_bb0200
  article-title: An investigation into climatic and terrestrial drivers of dust storms in the Sistan region of Iran in the early twenty-first century
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.143952
– volume: 119
  start-page: 1977
  issue: 9
  year: 2014
  ident: 10.1016/j.ecoinf.2022.101867_bb0230
  article-title: Mapping erodibility in dust source regions based on geomorphology, meteorology, and remote sensing
  publication-title: J. Geophys. Res. Earth Surf.
  doi: 10.1002/2014JF003095
– volume: 11
  start-page: 1303
  issue: 8
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101867_bb0095
  article-title: Machine-learning algorithms for predicting land susceptibility to dust emissions: The case of the Jazmurian Basin
  publication-title: Iran. Atmos. Pollut. Res.
  doi: 10.1016/j.apr.2020.05.009
– volume: 142
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101867_bb0155
  article-title: Application of association rules mining algorithm for hazardous materials transportation crashes on expressway
  publication-title: Accid. Anal. Prev.
  doi: 10.1016/j.aap.2020.105497
– volume: 56
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101867_bb0030
  article-title: Application of remote sensing techniques and machine learning algorithms in dust source detection and dust source susceptibility mapping
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2020.101059
– volume: 600
  year: 2021
  ident: 10.1016/j.ecoinf.2022.101867_bb0150
  article-title: The effects of local and regional parameters on the δ18O and δ2H values of precipitation and surface water resources in the Middle East
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2021.126485
– volume: 2013
  year: 2013
  ident: 10.1016/j.ecoinf.2022.101867_bb0290
  article-title: Identifying the association rules between clinicopathologic factors and higher survival performance in operation-centric oral cancer patients using the Apriori algorithm
  publication-title: Biomed. Res. Int.
  doi: 10.1155/2013/359634
– volume: 53
  start-page: 319
  issue: 3
  year: 2021
  ident: 10.1016/j.ecoinf.2022.101867_bb0285
  article-title: Satellite aerosol optical depth prediction using data mining of climate parameters
  publication-title: Phys. Geogr. Res. Quart.
– volume: 50
  issue: 3
  year: 2012
  ident: 10.1016/j.ecoinf.2022.101867_bb0115
  article-title: Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS deep blue aerosol products
  publication-title: Rev. Geophys.
  doi: 10.1029/2012RG000388
– volume: 93
  start-page: 297
  issue: 2
  year: 2003
  ident: 10.1016/j.ecoinf.2022.101867_bb0305
  article-title: Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations
  publication-title: Ann. Assoc. Am. Geogr.
  doi: 10.1111/1467-8306.9302003
– year: 2016
  ident: 10.1016/j.ecoinf.2022.101867_bb0270
– volume: 114
  issue: D18
  year: 2009
  ident: 10.1016/j.ecoinf.2022.101867_bb0300
  article-title: Development of a dust source database for mesoscale forecasting in Southwest Asia
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2008JD011541
– volume: 99
  start-page: 951
  issue: 2
  year: 2019
  ident: 10.1016/j.ecoinf.2022.101867_bb0205
  article-title: Assessment of land subsidence susceptibility in Semnan plain (Iran): a comparison of support vector machine and weights of evidence data mining algorithms
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-019-03785-z
– volume: 75
  start-page: 146
  issue: 2
  year: 2016
  ident: 10.1016/j.ecoinf.2022.101867_bb0315
  article-title: Application of a two-step cluster analysis and the Apriori algorithm to classify the deformation states of two typical colluvial landslides in the Three Gorges, China
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-5022-2
– volume: 8
  start-page: 61
  issue: 3
  year: 2021
  ident: 10.1016/j.ecoinf.2022.101867_bb0220
  article-title: Modeling the potential of sand and dust storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)
  publication-title: Eng. J. Geospatial Inform. Technol.
  doi: 10.52547/jgit.8.3.61
– volume: 106
  start-page: 20255
  issue: D17
  year: 2001
  ident: 10.1016/j.ecoinf.2022.101867_bb0110
  article-title: Sources and distributions of dust aerosols simulated with the GOCART model
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2000JD000053
– volume: 33
  issue: 19
  year: 2006
  ident: 10.1016/j.ecoinf.2022.101867_bb0165
  article-title: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2006GL026561
– start-page: 1
  year: 2022
  ident: 10.1016/j.ecoinf.2022.101867_bb0060
  article-title: A survey on the use of association rules mining techniques in textual social media
  publication-title: Artif. Intell. Rev.
– volume: 70
  year: 2022
  ident: 10.1016/j.ecoinf.2022.101867_bb0225
  article-title: Identifying sand and dust storm sources using spatial-temporal analysis of remote sensing data in Central Iran
  publication-title: Ecol. Inform.
  doi: 10.1016/j.ecoinf.2022.101724
– volume: 50
  year: 2021
  ident: 10.1016/j.ecoinf.2022.101867_bb0045
  article-title: Water bodies changes in Tigris and Euphrates basin has impacted dust storms phenomena
  publication-title: Aeolian Res.
  doi: 10.1016/j.aeolia.2021.100698
– year: 1993
  ident: 10.1016/j.ecoinf.2022.101867_bb0140
– volume: 40
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.ecoinf.2022.101867_bb0240
  article-title: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product
  publication-title: Rev. Geophys.
  doi: 10.1029/2000RG000095
– volume: 308
  start-page: 67
  issue: 5718
  year: 2005
  ident: 10.1016/j.ecoinf.2022.101867_bb0175
  article-title: Global iron connections between desert dust, ocean biogeochemistry, and climate
  publication-title: Science
  doi: 10.1126/science.1105959
– volume: 187
  start-page: 582
  issue: 9
  year: 2015
  ident: 10.1016/j.ecoinf.2022.101867_bb0210
  article-title: A new inventory for middle east dust source points
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-015-4806-x
– volume: 21
  start-page: 93
  year: 2016
  ident: 10.1016/j.ecoinf.2022.101867_bb0215
  article-title: Climatology of dust distribution over West Asia from homogenized remote sensing data
  publication-title: Aeolian Res.
  doi: 10.1016/j.aeolia.2016.04.002
– volume: 138090
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101867_bb0105
  article-title: Mapping the spatial sources of atmospheric dust using GLUE and Monte Carlo simulation
  publication-title: Sci. Total Environ.
– volume: 84
  start-page: 140
  year: 2014
  ident: 10.1016/j.ecoinf.2022.101867_bb0125
  article-title: A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.04.028
– volume: 2
  start-page: 181
  issue: 4
  year: 2011
  ident: 10.1016/j.ecoinf.2022.101867_bb0265
  article-title: Dust cycle: An emerging core theme in earth system science
  publication-title: Aeolian Res.
  doi: 10.1016/j.aeolia.2011.02.001
– volume: 1
  start-page: 119
  issue: 1
  year: 2008
  ident: 10.1016/j.ecoinf.2022.101867_bb0295
  article-title: Monitoring the source of trans-national dust storms in north East Asia
  publication-title: Int. J. Digital Earth
  doi: 10.1080/17538940701782593
– volume: 49
  start-page: 279
  issue: 3
  year: 2013
  ident: 10.1016/j.ecoinf.2022.101867_bb0130
  article-title: Synoptic analysis of dust storms in the Middle East
  publication-title: Asia-Pac. J. Atmos. Sci.
  doi: 10.1007/s13143-013-0027-9
– start-page: 1
  year: 2022
  ident: 10.1016/j.ecoinf.2022.101867_bb0065
  article-title: Identification of dust sources in a dust hot-spot area in Iran using multi-spectral Sentinel 2 data and deep learning artificial intelligence machine
  publication-title: Geocarto Int.
– volume: 209
  year: 2022
  ident: 10.1016/j.ecoinf.2022.101867_bb0050
  article-title: Dust source susceptibility mapping in Tigris and Euphrates basin using remotely sensed imagery
  publication-title: CATENA
  doi: 10.1016/j.catena.2021.105795
– volume: 117320
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101867_bb0250
  article-title: Hybridized neural fuzzy ensembles for dust source modeling and prediction
  publication-title: Atmos. Environ.
– volume: 69
  start-page: 85
  issue: 1
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101867_bb0035
  article-title: Evaluation of water shortage crisis in the Middle East and possible remedies
  publication-title: J. Water Supply Res. Technol. AQUA
  doi: 10.2166/aqua.2019.049
– volume: 75
  issue: 10
  year: 2012
  ident: 10.1016/j.ecoinf.2022.101867_bb0185
  article-title: The physics of wind-blown sand and dust
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/75/10/106901
– volume: 5
  year: 2018
  ident: 10.1016/j.ecoinf.2022.101867_bb0005
  article-title: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015
  publication-title: Sci. Data
  doi: 10.1038/sdata.2017.191
– start-page: 1
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101867_bb0100
  article-title: A new integrated data mining model to map spatial variation in the susceptibility of land to act as a source of aeolian dust
  publication-title: Environ. Sci. Pollut. Res.
– volume: 19
  start-page: 265
  issue: 3
  year: 2012
  ident: 10.1016/j.ecoinf.2022.101867_bb0080
  article-title: Impacts of climate abnormality on remarkable dust storm increase of the Hunshdak Sandy lands in northern China during 2001–2008
  publication-title: Meteorol. Appl.
  doi: 10.1002/met.251
– start-page: 1
  year: 2014
  ident: 10.1016/j.ecoinf.2022.101867_bb0135
– year: 2014
  ident: 10.1016/j.ecoinf.2022.101867_bb0015
  article-title: An improved Apriori algorithm for association rules
– volume: 6
  start-page: 183
  issue: 2
  year: 1986
  ident: 10.1016/j.ecoinf.2022.101867_bb0195
  article-title: A geography of dust storms in south-West Asia
  publication-title: J. Climatol.
  doi: 10.1002/joc.3370060207
– volume: 28
  start-page: 366
  issue: 3
  year: 2004
  ident: 10.1016/j.ecoinf.2022.101867_bb0275
  article-title: Wind erosion research in China: past, present and future
  publication-title: Prog. Phys. Geogr.
  doi: 10.1191/0309133304pp416ra
– year: 2017
  ident: 10.1016/j.ecoinf.2022.101867_bb0075
– volume: 118
  start-page: 6981
  issue: 13
  year: 2013
  ident: 10.1016/j.ecoinf.2022.101867_bb0020
  article-title: A new high-resolution central and western Saharan summertime dust source map from automated satellite dust plume tracking
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/jgrd.50554
– start-page: 2020
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101867_bb0160
  article-title: Discovering insightful rules among truck crash characteristics using apriori algorithm
  publication-title: J. Adv. Transp.
– volume: 737
  year: 2020
  ident: 10.1016/j.ecoinf.2022.101867_bb0245
  article-title: Identifying sources of dust aerosol using a new framework based on remote sensing and modelling
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2020.139508
– volume: 118
  start-page: 7864
  issue: 14
  year: 2013
  ident: 10.1016/j.ecoinf.2022.101867_bb0260
  article-title: Validation and uncertainty estimates for MODIS collection 6 “Deep Blue” aerosol data
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1002/jgrd.50600
SSID ssj0043882
Score 2.3702133
Snippet Identifying the areas susceptible to dust storm formation is one effective way of dealing with this destructive environmental phenomenon. This study is the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101867
SubjectTerms algorithms
Apriori
climate
dust
Dust source susceptibility mapping
dust storms
Middle East
model uncertainty
Remote sensing
soil depth
soil water
spatial data
Spatial data mining
temperature
vegetation cover
wind speed
Title Knowledge discovery of Middle East dust sources using Apriori spatial data mining algorithm
URI https://dx.doi.org/10.1016/j.ecoinf.2022.101867
https://www.proquest.com/docview/2834252688
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1574-9541
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0043882
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 1574-9541
  databaseCode: .~1
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0043882
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 1574-9541
  databaseCode: ACRLP
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 20231231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0043882
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 1574-9541
  databaseCode: AIKHN
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 20231231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0043882
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1574-9541
  databaseCode: M~E
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: true
  ssIdentifier: ssj0043882
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1574-9541
  databaseCode: AKRWK
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0043882
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DEbyIP_E3EbzGtX3tkh7H2JgOvehg4CEkaasV3cZaD7v4t5uXtgNFGHhsmoTykr73Nf3e-wi5VpHiWEiO-VnMWchDzXSgMgZGGIgSlfmuzuz9Q2c4Du8m0aRFek0uDNIqa99f-XTnreuWdm3N9jzP249-xC26D_0A-VU-n2AGe8hRxeDma0XzCEE4wSjszLB3kz7nOF72C8-uo_1KDAJsEk5t_s_w9MtRu-gz2CU7NWyk3erJ9kgrne6Trb4rOb08IM-j5miMYpot0jKXdJbRe3f8QPuqKClKdNDqrL6gSHd_od35Ip8tclogrdpOj3RR-uEkI6h6f7G3ytePQzIe9J96Q1bLJjADEJcsgdDGbSO0BWMCMm0Q9UUQZCCU8oyXZiY0wjNp4CXGA248E3OItYEkSIxO4YhsTGfT9JhQlCSDRFkY5tloF_kq0iAQVPoJdHisTwg01pKmrimO0hbvsiGPvcnKxhJtLCsbnxC2GjWvamqs6c-bhZA_9oa0bn_NyKtm3aR9bfBfiJqms89CWlRlvVXQEeL037OfkW28qsgt52SjXHymFxailPrS7cFLstm9HQ0fvgHgkuVj
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5VEb2IT3wbwWvsbma3yR5FWuqjXrRQ8BCS7K5WtC3tevDibzeT3S0oguA1L5ZJduZL8mU-Qs50rAUmkmNhnggWicgww3XOwEoLcarz0OeZ7d21uv3oehAPGuSyfguDtMrK95c-3XvrqqRZWbM5GQ6b92EsHLqPQo78qlAMFshSFHOBO7DzzznPIwLpFaOwNcPm9fs5T_JyWzw3kW6byDkWSS83_2t8-uGpffjprJO1CjfSi_LTNkgjG22S5bbPOf2xRR5v6rMxiu9skZf5Qcc57fnzB9rWs4KiRgctD-tnFPnuT_RiMh2Op0M6Q161Gx75ovTNa0ZQ_frkqornt23S77QfLrus0k1gFiApWAqRC9xWGofGJOTGIuyLgecgtQ5skOU2sjKwGQ9SG4CwgU0EJMZCylNrMtghi6PxKNslFDXJINUOhwUu3MWhjg1IRJVhCi2RmD0CtbWUrZKKo7bFq6rZYy-qtLFCG6vSxnuEzXtNyqQaf7QX9USob4tDOb__R8_Tet6U-2_wMkSPsvH7TDlY5dwVb0m5_-_RT8hK96F3q26v7m4OyCrWlEyXQ7JYTN-zI4dXCnPs1-MXQ8jm-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge+discovery+of+Middle+East+dust+sources+using+Apriori+spatial+data+mining+algorithm&rft.jtitle=Ecological+informatics&rft.au=Papi%2C+Ramin&rft.au=Attarchi%2C+Sara&rft.au=Darvishi+Boloorani%2C+Ali&rft.au=Neysani+Samany%2C+Najmeh&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=1574-9541&rft.volume=72&rft_id=info:doi/10.1016%2Fj.ecoinf.2022.101867&rft.externalDocID=S157495412200317X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-9541&client=summon