Knowledge discovery of Middle East dust sources using Apriori spatial data mining algorithm
Identifying the areas susceptible to dust storm formation is one effective way of dealing with this destructive environmental phenomenon. This study is the first attempt to employ the Apriori spatial data mining algorithm to dust source susceptibility mapping (DSSM). The research process was based o...
Saved in:
| Published in | Ecological informatics Vol. 72; p. 101867 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.12.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1574-9541 |
| DOI | 10.1016/j.ecoinf.2022.101867 |
Cover
| Abstract | Identifying the areas susceptible to dust storm formation is one effective way of dealing with this destructive environmental phenomenon. This study is the first attempt to employ the Apriori spatial data mining algorithm to dust source susceptibility mapping (DSSM). The research process was based on extracting association rules between spatial-temporal patterns of dust drivers (including soil, vegetation, and climate parameters) in the Middle East's hotspots dust sources (HDSs). For this purpose, HDSs were identified using visual interpretation of sub-daily MODIS-Terra/Aqua RGB images from 2000 to 2021. The Middle East's HDSs mainly correspond to desert areas with poor vegetation cover and ephemeral/dried-up water bodies. A total of three million rules were extracted by running the Apriori algorithm. Accordingly, bare and non-vegetated lands, high soil thickness, low soil moisture, very high wind speed, and high temperature were identified as the most common features of HDSs. Using three measures including support, confidence, and lift, 54 frequent, reliable, and logical rules were selected, and the related maps were generated. Then, the susceptible dust sources (SDSs) map of the Middle East was produced in five classes of extreme (13% of the areas), high (14%), moderate (16%), low (17%), and no (40%) susceptibility through the weighted linear combination of the rule maps. The accuracy of the identified SDSs was estimated at 83.7% using the verification points. A sensitivity analysis was performed using the leave-one-out method to determine the isolated effect of the selected rules on the produced SDSs map. The model uncertainty varied between 15.7% and 16.8% for different rules. The variation range of uncertainty was 1.1%, demonstrating that a single rule does not significantly affect the model's performance; however, some rules have a more influential role. Our results revealed that Apriori's ability to provide generalizable association rules is a robust algorithm for DSSM.
[Display omitted]
•The Apriori algorithm can efficiently identify susceptible dust sources.•Association rules of dust drivers and hotspots are extracted.•Susceptible dust sources in the Middle East are identified with an accuracy of 83.7%.•Non-vegetated areas are the most frequent element in all association rules.•According to sensitivity analysis, uncertainty changes in the rules vary by up to 1.1%. |
|---|---|
| AbstractList | Identifying the areas susceptible to dust storm formation is one effective way of dealing with this destructive environmental phenomenon. This study is the first attempt to employ the Apriori spatial data mining algorithm to dust source susceptibility mapping (DSSM). The research process was based on extracting association rules between spatial-temporal patterns of dust drivers (including soil, vegetation, and climate parameters) in the Middle East's hotspots dust sources (HDSs). For this purpose, HDSs were identified using visual interpretation of sub-daily MODIS-Terra/Aqua RGB images from 2000 to 2021. The Middle East's HDSs mainly correspond to desert areas with poor vegetation cover and ephemeral/dried-up water bodies. A total of three million rules were extracted by running the Apriori algorithm. Accordingly, bare and non-vegetated lands, high soil thickness, low soil moisture, very high wind speed, and high temperature were identified as the most common features of HDSs. Using three measures including support, confidence, and lift, 54 frequent, reliable, and logical rules were selected, and the related maps were generated. Then, the susceptible dust sources (SDSs) map of the Middle East was produced in five classes of extreme (13% of the areas), high (14%), moderate (16%), low (17%), and no (40%) susceptibility through the weighted linear combination of the rule maps. The accuracy of the identified SDSs was estimated at 83.7% using the verification points. A sensitivity analysis was performed using the leave-one-out method to determine the isolated effect of the selected rules on the produced SDSs map. The model uncertainty varied between 15.7% and 16.8% for different rules. The variation range of uncertainty was 1.1%, demonstrating that a single rule does not significantly affect the model's performance; however, some rules have a more influential role. Our results revealed that Apriori's ability to provide generalizable association rules is a robust algorithm for DSSM.
[Display omitted]
•The Apriori algorithm can efficiently identify susceptible dust sources.•Association rules of dust drivers and hotspots are extracted.•Susceptible dust sources in the Middle East are identified with an accuracy of 83.7%.•Non-vegetated areas are the most frequent element in all association rules.•According to sensitivity analysis, uncertainty changes in the rules vary by up to 1.1%. Identifying the areas susceptible to dust storm formation is one effective way of dealing with this destructive environmental phenomenon. This study is the first attempt to employ the Apriori spatial data mining algorithm to dust source susceptibility mapping (DSSM). The research process was based on extracting association rules between spatial-temporal patterns of dust drivers (including soil, vegetation, and climate parameters) in the Middle East's hotspots dust sources (HDSs). For this purpose, HDSs were identified using visual interpretation of sub-daily MODIS-Terra/Aqua RGB images from 2000 to 2021. The Middle East's HDSs mainly correspond to desert areas with poor vegetation cover and ephemeral/dried-up water bodies. A total of three million rules were extracted by running the Apriori algorithm. Accordingly, bare and non-vegetated lands, high soil thickness, low soil moisture, very high wind speed, and high temperature were identified as the most common features of HDSs. Using three measures including support, confidence, and lift, 54 frequent, reliable, and logical rules were selected, and the related maps were generated. Then, the susceptible dust sources (SDSs) map of the Middle East was produced in five classes of extreme (13% of the areas), high (14%), moderate (16%), low (17%), and no (40%) susceptibility through the weighted linear combination of the rule maps. The accuracy of the identified SDSs was estimated at 83.7% using the verification points. A sensitivity analysis was performed using the leave-one-out method to determine the isolated effect of the selected rules on the produced SDSs map. The model uncertainty varied between 15.7% and 16.8% for different rules. The variation range of uncertainty was 1.1%, demonstrating that a single rule does not significantly affect the model's performance; however, some rules have a more influential role. Our results revealed that Apriori's ability to provide generalizable association rules is a robust algorithm for DSSM. |
| ArticleNumber | 101867 |
| Author | Attarchi, Sara Darvishi Boloorani, Ali Papi, Ramin Neysani Samany, Najmeh |
| Author_xml | – sequence: 1 givenname: Ramin surname: Papi fullname: Papi, Ramin email: raminpapi@ut.ac.ir organization: Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran – sequence: 2 givenname: Sara surname: Attarchi fullname: Attarchi, Sara email: satarchi@ut.ac.ir organization: Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran – sequence: 3 givenname: Ali surname: Darvishi Boloorani fullname: Darvishi Boloorani, Ali email: ali.darvishi@ut.ac.ir organization: Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran – sequence: 4 givenname: Najmeh surname: Neysani Samany fullname: Neysani Samany, Najmeh email: nneysani@ut.ac.ir organization: Department of Remote Sensing and GIS, Faculty of Geography, University of Tehran, Tehran, Iran |
| BookMark | eNqFkLtOAzEQRV2AxPMPKFzSJPixmzgUSCgKDxFEAxWF5Yxng6ONHWxvUP4eR0tFAc2MNHfuHc05IQc-eCTkgrMhZ3x0tRoiBOeboWBC7EdqND4gx7weV4NJXfEjcpLSirFKKiWOyfuTD18t2iVS6xKELcYdDQ19dta2SGcmZWq7UlLoImCiXXJ-SW830YXoaNqY7ExLrcmGrp3fa6ZdFil_rM_IYWPahOc__ZS83c1epw-D-cv94_R2PgApJ3lgZSW4ArWoK6ZkswDGeV1L0UhlDAOGDVSgGKBgFpgcA4PJWE4WIK2wsEB5Si773E0Mnx2mrNflFWxb4zF0SQtVLtRipFRZve5XIYaUIjYaXC4vBJ-jca3mTO8p6pXuKeo9Rd1TLObql7lQWJu4-89209uwMNg6jDqBQw9oXUTI2gb3d8A3MMSThg |
| CitedBy_id | crossref_primary_10_24011_barofd_1329758 crossref_primary_10_3390_rs15040905 crossref_primary_10_1016_j_ecoinf_2023_102355 crossref_primary_10_3390_su15118582 crossref_primary_10_1016_j_ecoinf_2023_102342 crossref_primary_10_3390_atmos15050531 crossref_primary_10_1016_j_acags_2024_100182 crossref_primary_10_1016_j_ecoinf_2024_102544 crossref_primary_10_3390_en17184539 crossref_primary_10_3390_land12091701 crossref_primary_10_1038_s41598_024_70125_y crossref_primary_10_1061_JPSEA2_PSENG_1589 |
| Cites_doi | 10.1371/journal.pone.0169748 10.1016/j.aeolia.2011.12.001 10.1029/2008JD010687 10.1016/j.earscirev.2016.12.010 10.1016/j.atmosres.2019.104716 10.1016/j.ecolind.2021.108287 10.1515/amcs-2016-0033 10.1016/j.envint.2013.10.011 10.1016/j.aap.2016.03.017 10.1080/01431161.2016.1277279 10.1016/j.jaridenv.2020.104335 10.1016/j.atmosres.2022.106152 10.1016/j.scitotenv.2020.143952 10.1002/2014JF003095 10.1016/j.apr.2020.05.009 10.1016/j.aap.2020.105497 10.1016/j.ecoinf.2020.101059 10.1016/j.jhydrol.2021.126485 10.1155/2013/359634 10.1029/2012RG000388 10.1111/1467-8306.9302003 10.1029/2008JD011541 10.1007/s11069-019-03785-z 10.1007/s12665-015-5022-2 10.52547/jgit.8.3.61 10.1029/2000JD000053 10.1029/2006GL026561 10.1016/j.ecoinf.2022.101724 10.1016/j.aeolia.2021.100698 10.1029/2000RG000095 10.1126/science.1105959 10.1007/s10661-015-4806-x 10.1016/j.aeolia.2016.04.002 10.1016/j.enconman.2014.04.028 10.1016/j.aeolia.2011.02.001 10.1080/17538940701782593 10.1007/s13143-013-0027-9 10.1016/j.catena.2021.105795 10.2166/aqua.2019.049 10.1088/0034-4885/75/10/106901 10.1038/sdata.2017.191 10.1002/met.251 10.1002/joc.3370060207 10.1191/0309133304pp416ra 10.1002/jgrd.50554 10.1016/j.scitotenv.2020.139508 10.1002/jgrd.50600 |
| ContentType | Journal Article |
| Copyright | 2022 |
| Copyright_xml | – notice: 2022 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.ecoinf.2022.101867 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Ecology |
| ExternalDocumentID | 10_1016_j_ecoinf_2022_101867 S157495412200317X |
| GeographicLocations | Middle East |
| GeographicLocations_xml | – name: Middle East |
| GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFNM ABFYP ABGRD ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KCYFY KOM M41 MO0 N9A N~3 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPCBC SSA SSJ SSZ T5K ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS GROUPED_DOAJ M~E ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-d34218c8b54083fbc0115532f38aa0c0efc4c80ce20dc037c0c9739bc3d2dcbe3 |
| IEDL.DBID | .~1 |
| ISSN | 1574-9541 |
| IngestDate | Wed Oct 01 14:44:24 EDT 2025 Wed Oct 29 21:43:14 EDT 2025 Thu Apr 24 22:54:45 EDT 2025 Fri Feb 23 02:38:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Spatial data mining Middle East Dust source susceptibility mapping Apriori Remote sensing |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c339t-d34218c8b54083fbc0115532f38aa0c0efc4c80ce20dc037c0c9739bc3d2dcbe3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2834252688 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2834252688 crossref_citationtrail_10_1016_j_ecoinf_2022_101867 crossref_primary_10_1016_j_ecoinf_2022_101867 elsevier_sciencedirect_doi_10_1016_j_ecoinf_2022_101867 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Ecological informatics |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hong, Tamakloe, Park (bb0155) 2020; 142 Diaz-Garcia, Ruiz, Martin-Bautista (bb0060) 2022 Kandakji, Gill, Lee (bb0180) 2020; 755 Soleimani, Argany, Papi, Amiri (bb0285) 2021; 53 Heydarizad, Minaei, Ichiyanagi, Sorí (bb0150) 2021; 600 Al-Maolegi, Arkok (bb0015) 2014 Darvishi Boloorani, Kazemi, Sadeghi, Nadizadeh Shorabeh, Argany (bb0040) 2020; 117299 Shepherd, Terradellas, Baklanov, Kang, Sprigg, Nickovic, Boloorani, Al-Dousari, Basart, Benedetti (bb0270) 2016 Pelletier, Broxton, Hazenberg, Zeng, Troch, Niu, Williams, Brunke, Gochis (bb0235) 2016 Gherboudj, Beegum, Ghedira (bb0085) 2017; 165 Kok, Parteli, Michaels, Karam (bb0185) 2012; 75 Hamidi, Kavianpour, Shao (bb0130) 2013; 49 Walker, Liu, Miller, Richardson, Westphal (bb0300) 2009; 114 Emery, Camps (bb0075) 2017 Shao, Wyrwoll, Chappell, Huang, Lin, McTainsh, Mikami, Tanaka, Wang, Yoon (bb0265) 2011; 2 Rahmati, Panahi, Ghiasi, Deo, Tiefenbacher, Pradhan, Jahani, Goshtasb, Kornejady, Shahabi (bb0250) 2020; 117320 Gholami, Rahimi, Fathabadi, Habibi, Collins (bb0105) 2020; 138090 Hastings, Dunbar (bb0140) 1993 Boroughani, Pourhashemi, Hashemi, Salehi, Amirahmadi, Asadi, Berndtsson (bb0030) 2020; 56 Moridnejad, Karimi, Ariya (bb0210) 2015; 187 Weng, Zhu, Yan, Liu (bb0310) 2016; 92 Baddock, Bryant, Acosta, Gill (bb0025) 2021; 184 Sayer, Hsu, Bettenhausen, Jeong (bb0260) 2013; 118 Tang, Chuang, Hsi, Lin, Yang, Chang (bb0290) 2013; 2013 Goudie (bb0120) 2014; 63 Jickells, An, Andersen, Baker, Bergametti, Brooks, Cao, Boyd, Duce, Hunter (bb0175) 2005; 308 Abatzoglou, Dobrowski, Parks, Hegewisch (bb0005) 2018; 5 Gholami, Mohamadifar, Sorooshian, Jansen (bb0095) 2020; 11 Gao, Han, Wang, Pei, Lu (bb0080) 2012; 19 Shi, Yan, Yuan, Nearing (bb0275) 2004; 28 Agrawal, Srikant (bb0010) 1994; 1215 Ashpole, Washington (bb0020) 2013; 118 Huang, Lin, Minnis, Wang, Wang, Hu, Yi, Ayers (bb0165) 2006; 33 Mohammady, Pourghasemi, Amiri (bb0205) 2019; 99 Ginoux, Prospero, Gill, Hsu, Zhao (bb0115) 2012; 50 Darvishi Boloorani, Neysani Samany, Papi, Soleimani (bb0050) 2022; 209 Papi, Kakroodi, Soleimani, Karami, Amiri, Alavipanah (bb0225) 2022; 70 Gholami, Mohamadifar, Collins (bb0090) 2020; 233 Ebrahimi-Khusfi, Taghizadeh-Mehrjardi, Roustaei, Ebrahimi-Khusfi, Mosavi, Heung, Scholten (bb0070) 2021; 132 Darvishi Boloorani, Papi, Soleimani, Karami, Amiri, Neysani Samany (bb0045) 2021; 50 Dolatkordestani, Nosrati, Maddah, Tiefenbacher (bb0065) 2022 Hand, Adams (bb0135) 2014 Hunter, Cervone (bb0170) 2017; 38 Miri, Maleki, Middleton (bb0200) 2021; 757 Prospero, Ginoux, Torres, Nicholson, Gill (bb0240) 2002; 40 Washington, Todd, Middleton, Goudie (bb0305) 2003; 93 Ginoux, Chin, Tegen, Prospero, Holben, Dubovik, Lin (bb0110) 2001; 106 Hengl, Mendes de Jesus, Heuvelink, Ruiperez Gonzalez, Kilibarda, Blagotić, Shangguan, Wright, Geng, Bauer-Marschallinger (bb0145) 2017; 12 Darvishi Boloorani, Najafi, Soleimani, Papi, Torabi (bb0055) 2022; 272 Wu, Zhan, Zhang, Deng (bb0315) 2016; 75 Papi, Argany, Moradipour, Soleimani (bb0220) 2021; 8 Hong, Tamakloe, Park (bb0160) 2020 Parajuli, Yang, Kocurek (bb0230) 2014; 119 Rahmati, Mohammadi, Ghiasi, Tiefenbacher, Moghaddam, Coulon, Nalivan, Tien Bui (bb0245) 2020; 737 Nabavi, Haimberger, Samimi (bb0215) 2016; 21 Rashki, Kaskaoutis, de Rautenbach, Eriksson, Qiang, Gupta (bb0255) 2012; 5 Tsolmon, Ochirkhuyag, Sternberg (bb0295) 2008; 1 Bozorg-Haddad, Zolghadr-Asli, Sarzaeim, Aboutalebi, Chu, Loáiciga (bb0035) 2020; 69 Gholami, Mohammadifar, Pourghasemi, Collins (bb0100) 2020 Guo, Chi, Wu, Zhang (bb0125) 2014; 84 Siwek, Osowski (bb0280) 2016; 26 Middleton (bb0195) 1986; 6 Lee, Sohn (bb0190) 2009; 114 Gholami (10.1016/j.ecoinf.2022.101867_bb0095) 2020; 11 Goudie (10.1016/j.ecoinf.2022.101867_bb0120) 2014; 63 Rahmati (10.1016/j.ecoinf.2022.101867_bb0250) 2020; 117320 Kok (10.1016/j.ecoinf.2022.101867_bb0185) 2012; 75 Ebrahimi-Khusfi (10.1016/j.ecoinf.2022.101867_bb0070) 2021; 132 Parajuli (10.1016/j.ecoinf.2022.101867_bb0230) 2014; 119 Al-Maolegi (10.1016/j.ecoinf.2022.101867_bb0015) 2014 Gao (10.1016/j.ecoinf.2022.101867_bb0080) 2012; 19 Bozorg-Haddad (10.1016/j.ecoinf.2022.101867_bb0035) 2020; 69 Dolatkordestani (10.1016/j.ecoinf.2022.101867_bb0065) 2022 Hong (10.1016/j.ecoinf.2022.101867_bb0160) 2020 Hastings (10.1016/j.ecoinf.2022.101867_bb0140) 1993 Siwek (10.1016/j.ecoinf.2022.101867_bb0280) 2016; 26 Rahmati (10.1016/j.ecoinf.2022.101867_bb0245) 2020; 737 Gherboudj (10.1016/j.ecoinf.2022.101867_bb0085) 2017; 165 Shi (10.1016/j.ecoinf.2022.101867_bb0275) 2004; 28 Kandakji (10.1016/j.ecoinf.2022.101867_bb0180) 2020; 755 Nabavi (10.1016/j.ecoinf.2022.101867_bb0215) 2016; 21 Miri (10.1016/j.ecoinf.2022.101867_bb0200) 2021; 757 Lee (10.1016/j.ecoinf.2022.101867_bb0190) 2009; 114 Agrawal (10.1016/j.ecoinf.2022.101867_bb0010) 1994; 1215 Walker (10.1016/j.ecoinf.2022.101867_bb0300) 2009; 114 Mohammady (10.1016/j.ecoinf.2022.101867_bb0205) 2019; 99 Ginoux (10.1016/j.ecoinf.2022.101867_bb0115) 2012; 50 Papi (10.1016/j.ecoinf.2022.101867_bb0220) 2021; 8 Baddock (10.1016/j.ecoinf.2022.101867_bb0025) 2021; 184 Gholami (10.1016/j.ecoinf.2022.101867_bb0090) 2020; 233 Hong (10.1016/j.ecoinf.2022.101867_bb0155) 2020; 142 Shao (10.1016/j.ecoinf.2022.101867_bb0265) 2011; 2 Abatzoglou (10.1016/j.ecoinf.2022.101867_bb0005) 2018; 5 Boroughani (10.1016/j.ecoinf.2022.101867_bb0030) 2020; 56 Darvishi Boloorani (10.1016/j.ecoinf.2022.101867_bb0050) 2022; 209 Weng (10.1016/j.ecoinf.2022.101867_bb0310) 2016; 92 Tsolmon (10.1016/j.ecoinf.2022.101867_bb0295) 2008; 1 Gholami (10.1016/j.ecoinf.2022.101867_bb0100) 2020 Gholami (10.1016/j.ecoinf.2022.101867_bb0105) 2020; 138090 Tang (10.1016/j.ecoinf.2022.101867_bb0290) 2013; 2013 Guo (10.1016/j.ecoinf.2022.101867_bb0125) 2014; 84 Hengl (10.1016/j.ecoinf.2022.101867_bb0145) 2017; 12 Diaz-Garcia (10.1016/j.ecoinf.2022.101867_bb0060) 2022 Darvishi Boloorani (10.1016/j.ecoinf.2022.101867_bb0045) 2021; 50 Prospero (10.1016/j.ecoinf.2022.101867_bb0240) 2002; 40 Ginoux (10.1016/j.ecoinf.2022.101867_bb0110) 2001; 106 Shepherd (10.1016/j.ecoinf.2022.101867_bb0270) 2016 Sayer (10.1016/j.ecoinf.2022.101867_bb0260) 2013; 118 Ashpole (10.1016/j.ecoinf.2022.101867_bb0020) 2013; 118 Darvishi Boloorani (10.1016/j.ecoinf.2022.101867_bb0040) 2020; 117299 Hunter (10.1016/j.ecoinf.2022.101867_bb0170) 2017; 38 Soleimani (10.1016/j.ecoinf.2022.101867_bb0285) 2021; 53 Huang (10.1016/j.ecoinf.2022.101867_bb0165) 2006; 33 Moridnejad (10.1016/j.ecoinf.2022.101867_bb0210) 2015; 187 Emery (10.1016/j.ecoinf.2022.101867_bb0075) 2017 Jickells (10.1016/j.ecoinf.2022.101867_bb0175) 2005; 308 Hand (10.1016/j.ecoinf.2022.101867_bb0135) 2014 Darvishi Boloorani (10.1016/j.ecoinf.2022.101867_bb0055) 2022; 272 Heydarizad (10.1016/j.ecoinf.2022.101867_bb0150) 2021; 600 Middleton (10.1016/j.ecoinf.2022.101867_bb0195) 1986; 6 Washington (10.1016/j.ecoinf.2022.101867_bb0305) 2003; 93 Rashki (10.1016/j.ecoinf.2022.101867_bb0255) 2012; 5 Papi (10.1016/j.ecoinf.2022.101867_bb0225) 2022; 70 Wu (10.1016/j.ecoinf.2022.101867_bb0315) 2016; 75 Pelletier (10.1016/j.ecoinf.2022.101867_bb0235) 2016 Hamidi (10.1016/j.ecoinf.2022.101867_bb0130) 2013; 49 |
| References_xml | – volume: 138090 year: 2020 ident: bb0105 article-title: Mapping the spatial sources of atmospheric dust using GLUE and Monte Carlo simulation publication-title: Sci. Total Environ. – volume: 70 year: 2022 ident: bb0225 article-title: Identifying sand and dust storm sources using spatial-temporal analysis of remote sensing data in Central Iran publication-title: Ecol. Inform. – volume: 50 year: 2012 ident: bb0115 article-title: Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS deep blue aerosol products publication-title: Rev. Geophys. – volume: 114 year: 2009 ident: bb0300 article-title: Development of a dust source database for mesoscale forecasting in Southwest Asia publication-title: J. Geophys. Res. Atmos. – start-page: 1 year: 2022 end-page: 14 ident: bb0065 article-title: Identification of dust sources in a dust hot-spot area in Iran using multi-spectral Sentinel 2 data and deep learning artificial intelligence machine publication-title: Geocarto Int. – year: 2014 ident: bb0015 article-title: An improved Apriori algorithm for association rules publication-title: ArXiv Preprint – volume: 184 year: 2021 ident: bb0025 article-title: Understanding dust sources through remote sensing: making a case for CubeSats publication-title: J. Arid Environ. – volume: 69 start-page: 85 year: 2020 end-page: 98 ident: bb0035 article-title: Evaluation of water shortage crisis in the Middle East and possible remedies publication-title: J. Water Supply Res. Technol. AQUA – volume: 5 year: 2018 ident: bb0005 article-title: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015 publication-title: Sci. Data – year: 2016 ident: bb0235 article-title: Global 1-Km Gridded Thickness of Soil, Regolith, and Sedimentary Deposit Layers – volume: 28 start-page: 366 year: 2004 end-page: 386 ident: bb0275 article-title: Wind erosion research in China: past, present and future publication-title: Prog. Phys. Geogr. – start-page: 2020 year: 2020 ident: bb0160 article-title: Discovering insightful rules among truck crash characteristics using apriori algorithm publication-title: J. Adv. Transp. – volume: 49 start-page: 279 year: 2013 end-page: 286 ident: bb0130 article-title: Synoptic analysis of dust storms in the Middle East publication-title: Asia-Pac. J. Atmos. Sci. – volume: 8 start-page: 61 year: 2021 end-page: 82 ident: bb0220 article-title: Modeling the potential of sand and dust storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin) publication-title: Eng. J. Geospatial Inform. Technol. – volume: 106 start-page: 20255 year: 2001 end-page: 20273 ident: bb0110 article-title: Sources and distributions of dust aerosols simulated with the GOCART model publication-title: J. Geophys. Res. Atmos. – volume: 93 start-page: 297 year: 2003 end-page: 313 ident: bb0305 article-title: Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations publication-title: Ann. Assoc. Am. Geogr. – start-page: 1 year: 2014 end-page: 7 ident: bb0135 article-title: Data Mining – volume: 757 year: 2021 ident: bb0200 article-title: An investigation into climatic and terrestrial drivers of dust storms in the Sistan region of Iran in the early twenty-first century publication-title: Sci. Total Environ. – volume: 209 year: 2022 ident: bb0050 article-title: Dust source susceptibility mapping in Tigris and Euphrates basin using remotely sensed imagery publication-title: CATENA – volume: 84 start-page: 140 year: 2014 end-page: 151 ident: bb0125 article-title: A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm publication-title: Energy Convers. Manag. – volume: 12 year: 2017 ident: bb0145 article-title: SoilGrids250m: global gridded soil information based on machine learning publication-title: PLoS One – volume: 26 start-page: 467 year: 2016 end-page: 478 ident: bb0280 article-title: Data mining methods for prediction of air pollution publication-title: Int. J. Appl. Math. Comput. Sci. – volume: 118 start-page: 6981 year: 2013 end-page: 6995 ident: bb0020 article-title: A new high-resolution central and western Saharan summertime dust source map from automated satellite dust plume tracking publication-title: J. Geophys. Res. Atmos. – volume: 5 start-page: 51 year: 2012 end-page: 62 ident: bb0255 article-title: Dust storms and their horizontal dust loading in the Sistan region, Iran publication-title: Aeolian Res. – volume: 142 year: 2020 ident: bb0155 article-title: Application of association rules mining algorithm for hazardous materials transportation crashes on expressway publication-title: Accid. Anal. Prev. – volume: 1 start-page: 119 year: 2008 end-page: 129 ident: bb0295 article-title: Monitoring the source of trans-national dust storms in north East Asia publication-title: Int. J. Digital Earth – volume: 63 start-page: 101 year: 2014 end-page: 113 ident: bb0120 article-title: Desert dust and human health disorders publication-title: Environ. Int. – year: 1993 ident: bb0140 article-title: Global Land One-Kilometer Base Elevation (GLOBE) – volume: 33 year: 2006 ident: bb0165 article-title: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia publication-title: Geophys. Res. Lett. – volume: 132 year: 2021 ident: bb0070 article-title: Determining the contribution of environmental factors in controlling dust pollution during cold and warm months of western Iran using different data mining algorithms and game theory publication-title: Ecol. Indic. – volume: 117299 year: 2020 ident: bb0040 article-title: Identification of dust sources using long term satellite and climatic data: a case study of Tigris and Euphrates basin publication-title: Atmos. Environ. – volume: 165 start-page: 342 year: 2017 end-page: 355 ident: bb0085 article-title: Identifying natural dust source regions over the middle-east and North-Africa: estimation of dust emission potential publication-title: Earth Sci. Rev. – volume: 755 year: 2020 ident: bb0180 article-title: Drought and land use/land cover impact on dust sources in southern Great Plains and Chihuahuan Desert of the US: inferring anthropogenic effect publication-title: Sci. Total Environ. – volume: 92 start-page: 43 year: 2016 end-page: 52 ident: bb0310 article-title: Investigation of work zone crash casualty patterns using association rules publication-title: Accid. Anal. Prev. – volume: 40 start-page: 1 year: 2002 end-page: 2 ident: bb0240 article-title: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product publication-title: Rev. Geophys. – year: 2016 ident: bb0270 article-title: Global Assessment of Sand and Dust Storms – year: 2017 ident: bb0075 article-title: Chapter 8 - Atmosphere Applications (W. Emery & A. B. T.-I. to S. R. S. Camps (eds.); pp. 597–636) – volume: 233 year: 2020 ident: bb0090 article-title: Spatial mapping of the provenance of storm dust: application of data mining and ensemble modelling publication-title: Atmos. Res. – volume: 119 start-page: 1977 year: 2014 end-page: 1994 ident: bb0230 article-title: Mapping erodibility in dust source regions based on geomorphology, meteorology, and remote sensing publication-title: J. Geophys. Res. Earth Surf. – start-page: 1 year: 2022 end-page: 26 ident: bb0060 article-title: A survey on the use of association rules mining techniques in textual social media publication-title: Artif. Intell. Rev. – volume: 1215 start-page: 487 year: 1994 end-page: 499 ident: bb0010 article-title: Fast algorithms for mining association rules publication-title: Proc. 20th Int. Conf. Very Large Data Bases, VLDB – volume: 272 year: 2022 ident: bb0055 article-title: Influence of Hamoun Lakes’ dry conditions on dust emission and radiative forcing over Sistan plain, Iran publication-title: Atmos. Res. – volume: 2013 year: 2013 ident: bb0290 article-title: Identifying the association rules between clinicopathologic factors and higher survival performance in operation-centric oral cancer patients using the Apriori algorithm publication-title: Biomed. Res. Int. – volume: 53 start-page: 319 year: 2021 end-page: 333 ident: bb0285 article-title: Satellite aerosol optical depth prediction using data mining of climate parameters publication-title: Phys. Geogr. Res. Quart. – volume: 6 start-page: 183 year: 1986 end-page: 196 ident: bb0195 article-title: A geography of dust storms in south-West Asia publication-title: J. Climatol. – volume: 308 start-page: 67 year: 2005 end-page: 71 ident: bb0175 article-title: Global iron connections between desert dust, ocean biogeochemistry, and climate publication-title: Science – volume: 50 year: 2021 ident: bb0045 article-title: Water bodies changes in Tigris and Euphrates basin has impacted dust storms phenomena publication-title: Aeolian Res. – volume: 38 start-page: 1494 year: 2017 end-page: 1521 ident: bb0170 article-title: Analysing the influence of African dust storms on the prevalence of coral disease in the Caribbean Sea using remote sensing and association rule data mining publication-title: Int. J. Remote Sens. – volume: 737 year: 2020 ident: bb0245 article-title: Identifying sources of dust aerosol using a new framework based on remote sensing and modelling publication-title: Sci. Total Environ. – volume: 118 start-page: 7864 year: 2013 end-page: 7872 ident: bb0260 article-title: Validation and uncertainty estimates for MODIS collection 6 “Deep Blue” aerosol data publication-title: J. Geophys. Res. Atmos. – volume: 11 start-page: 1303 year: 2020 end-page: 1315 ident: bb0095 article-title: Machine-learning algorithms for predicting land susceptibility to dust emissions: The case of the Jazmurian Basin publication-title: Iran. Atmos. Pollut. Res. – volume: 75 year: 2012 ident: bb0185 article-title: The physics of wind-blown sand and dust publication-title: Rep. Prog. Phys. – volume: 114 year: 2009 ident: bb0190 article-title: Examining the impact of wind and surface vegetation on the Asian dust occurrence over three classified source regions publication-title: J. Geophys. Res. Atmos. – volume: 600 year: 2021 ident: bb0150 article-title: The effects of local and regional parameters on the δ18O and δ2H values of precipitation and surface water resources in the Middle East publication-title: J. Hydrol. – volume: 2 start-page: 181 year: 2011 end-page: 204 ident: bb0265 article-title: Dust cycle: An emerging core theme in earth system science publication-title: Aeolian Res. – volume: 19 start-page: 265 year: 2012 end-page: 278 ident: bb0080 article-title: Impacts of climate abnormality on remarkable dust storm increase of the Hunshdak Sandy lands in northern China during 2001–2008 publication-title: Meteorol. Appl. – volume: 187 start-page: 582 year: 2015 ident: bb0210 article-title: A new inventory for middle east dust source points publication-title: Environ. Monit. Assess. – volume: 117320 year: 2020 ident: bb0250 article-title: Hybridized neural fuzzy ensembles for dust source modeling and prediction publication-title: Atmos. Environ. – start-page: 1 year: 2020 end-page: 18 ident: bb0100 article-title: A new integrated data mining model to map spatial variation in the susceptibility of land to act as a source of aeolian dust publication-title: Environ. Sci. Pollut. Res. – volume: 56 year: 2020 ident: bb0030 article-title: Application of remote sensing techniques and machine learning algorithms in dust source detection and dust source susceptibility mapping publication-title: Ecol. Inform. – volume: 75 start-page: 146 year: 2016 ident: bb0315 article-title: Application of a two-step cluster analysis and the Apriori algorithm to classify the deformation states of two typical colluvial landslides in the Three Gorges, China publication-title: Environ. Earth Sci. – volume: 99 start-page: 951 year: 2019 end-page: 971 ident: bb0205 article-title: Assessment of land subsidence susceptibility in Semnan plain (Iran): a comparison of support vector machine and weights of evidence data mining algorithms publication-title: Nat. Hazards – volume: 21 start-page: 93 year: 2016 end-page: 107 ident: bb0215 article-title: Climatology of dust distribution over West Asia from homogenized remote sensing data publication-title: Aeolian Res. – volume: 12 issue: 2 year: 2017 ident: 10.1016/j.ecoinf.2022.101867_bb0145 article-title: SoilGrids250m: global gridded soil information based on machine learning publication-title: PLoS One doi: 10.1371/journal.pone.0169748 – volume: 5 start-page: 51 year: 2012 ident: 10.1016/j.ecoinf.2022.101867_bb0255 article-title: Dust storms and their horizontal dust loading in the Sistan region, Iran publication-title: Aeolian Res. doi: 10.1016/j.aeolia.2011.12.001 – volume: 114 issue: D6 year: 2009 ident: 10.1016/j.ecoinf.2022.101867_bb0190 article-title: Examining the impact of wind and surface vegetation on the Asian dust occurrence over three classified source regions publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2008JD010687 – volume: 165 start-page: 342 year: 2017 ident: 10.1016/j.ecoinf.2022.101867_bb0085 article-title: Identifying natural dust source regions over the middle-east and North-Africa: estimation of dust emission potential publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2016.12.010 – volume: 233 year: 2020 ident: 10.1016/j.ecoinf.2022.101867_bb0090 article-title: Spatial mapping of the provenance of storm dust: application of data mining and ensemble modelling publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2019.104716 – volume: 132 year: 2021 ident: 10.1016/j.ecoinf.2022.101867_bb0070 article-title: Determining the contribution of environmental factors in controlling dust pollution during cold and warm months of western Iran using different data mining algorithms and game theory publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.108287 – volume: 26 start-page: 467 issue: 2 year: 2016 ident: 10.1016/j.ecoinf.2022.101867_bb0280 article-title: Data mining methods for prediction of air pollution publication-title: Int. J. Appl. Math. Comput. Sci. doi: 10.1515/amcs-2016-0033 – volume: 63 start-page: 101 year: 2014 ident: 10.1016/j.ecoinf.2022.101867_bb0120 article-title: Desert dust and human health disorders publication-title: Environ. Int. doi: 10.1016/j.envint.2013.10.011 – volume: 92 start-page: 43 year: 2016 ident: 10.1016/j.ecoinf.2022.101867_bb0310 article-title: Investigation of work zone crash casualty patterns using association rules publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2016.03.017 – volume: 38 start-page: 1494 issue: 6 year: 2017 ident: 10.1016/j.ecoinf.2022.101867_bb0170 article-title: Analysing the influence of African dust storms on the prevalence of coral disease in the Caribbean Sea using remote sensing and association rule data mining publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1277279 – volume: 184 year: 2021 ident: 10.1016/j.ecoinf.2022.101867_bb0025 article-title: Understanding dust sources through remote sensing: making a case for CubeSats publication-title: J. Arid Environ. doi: 10.1016/j.jaridenv.2020.104335 – volume: 272 year: 2022 ident: 10.1016/j.ecoinf.2022.101867_bb0055 article-title: Influence of Hamoun Lakes’ dry conditions on dust emission and radiative forcing over Sistan plain, Iran publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2022.106152 – volume: 117299 year: 2020 ident: 10.1016/j.ecoinf.2022.101867_bb0040 article-title: Identification of dust sources using long term satellite and climatic data: a case study of Tigris and Euphrates basin publication-title: Atmos. Environ. – volume: 1215 start-page: 487 year: 1994 ident: 10.1016/j.ecoinf.2022.101867_bb0010 article-title: Fast algorithms for mining association rules – volume: 755 year: 2020 ident: 10.1016/j.ecoinf.2022.101867_bb0180 article-title: Drought and land use/land cover impact on dust sources in southern Great Plains and Chihuahuan Desert of the US: inferring anthropogenic effect publication-title: Sci. Total Environ. – year: 2016 ident: 10.1016/j.ecoinf.2022.101867_bb0235 – volume: 757 year: 2021 ident: 10.1016/j.ecoinf.2022.101867_bb0200 article-title: An investigation into climatic and terrestrial drivers of dust storms in the Sistan region of Iran in the early twenty-first century publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.143952 – volume: 119 start-page: 1977 issue: 9 year: 2014 ident: 10.1016/j.ecoinf.2022.101867_bb0230 article-title: Mapping erodibility in dust source regions based on geomorphology, meteorology, and remote sensing publication-title: J. Geophys. Res. Earth Surf. doi: 10.1002/2014JF003095 – volume: 11 start-page: 1303 issue: 8 year: 2020 ident: 10.1016/j.ecoinf.2022.101867_bb0095 article-title: Machine-learning algorithms for predicting land susceptibility to dust emissions: The case of the Jazmurian Basin publication-title: Iran. Atmos. Pollut. Res. doi: 10.1016/j.apr.2020.05.009 – volume: 142 year: 2020 ident: 10.1016/j.ecoinf.2022.101867_bb0155 article-title: Application of association rules mining algorithm for hazardous materials transportation crashes on expressway publication-title: Accid. Anal. Prev. doi: 10.1016/j.aap.2020.105497 – volume: 56 year: 2020 ident: 10.1016/j.ecoinf.2022.101867_bb0030 article-title: Application of remote sensing techniques and machine learning algorithms in dust source detection and dust source susceptibility mapping publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2020.101059 – volume: 600 year: 2021 ident: 10.1016/j.ecoinf.2022.101867_bb0150 article-title: The effects of local and regional parameters on the δ18O and δ2H values of precipitation and surface water resources in the Middle East publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2021.126485 – volume: 2013 year: 2013 ident: 10.1016/j.ecoinf.2022.101867_bb0290 article-title: Identifying the association rules between clinicopathologic factors and higher survival performance in operation-centric oral cancer patients using the Apriori algorithm publication-title: Biomed. Res. Int. doi: 10.1155/2013/359634 – volume: 53 start-page: 319 issue: 3 year: 2021 ident: 10.1016/j.ecoinf.2022.101867_bb0285 article-title: Satellite aerosol optical depth prediction using data mining of climate parameters publication-title: Phys. Geogr. Res. Quart. – volume: 50 issue: 3 year: 2012 ident: 10.1016/j.ecoinf.2022.101867_bb0115 article-title: Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS deep blue aerosol products publication-title: Rev. Geophys. doi: 10.1029/2012RG000388 – volume: 93 start-page: 297 issue: 2 year: 2003 ident: 10.1016/j.ecoinf.2022.101867_bb0305 article-title: Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations publication-title: Ann. Assoc. Am. Geogr. doi: 10.1111/1467-8306.9302003 – year: 2016 ident: 10.1016/j.ecoinf.2022.101867_bb0270 – volume: 114 issue: D18 year: 2009 ident: 10.1016/j.ecoinf.2022.101867_bb0300 article-title: Development of a dust source database for mesoscale forecasting in Southwest Asia publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2008JD011541 – volume: 99 start-page: 951 issue: 2 year: 2019 ident: 10.1016/j.ecoinf.2022.101867_bb0205 article-title: Assessment of land subsidence susceptibility in Semnan plain (Iran): a comparison of support vector machine and weights of evidence data mining algorithms publication-title: Nat. Hazards doi: 10.1007/s11069-019-03785-z – volume: 75 start-page: 146 issue: 2 year: 2016 ident: 10.1016/j.ecoinf.2022.101867_bb0315 article-title: Application of a two-step cluster analysis and the Apriori algorithm to classify the deformation states of two typical colluvial landslides in the Three Gorges, China publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-5022-2 – volume: 8 start-page: 61 issue: 3 year: 2021 ident: 10.1016/j.ecoinf.2022.101867_bb0220 article-title: Modeling the potential of sand and dust storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin) publication-title: Eng. J. Geospatial Inform. Technol. doi: 10.52547/jgit.8.3.61 – volume: 106 start-page: 20255 issue: D17 year: 2001 ident: 10.1016/j.ecoinf.2022.101867_bb0110 article-title: Sources and distributions of dust aerosols simulated with the GOCART model publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2000JD000053 – volume: 33 issue: 19 year: 2006 ident: 10.1016/j.ecoinf.2022.101867_bb0165 article-title: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia publication-title: Geophys. Res. Lett. doi: 10.1029/2006GL026561 – start-page: 1 year: 2022 ident: 10.1016/j.ecoinf.2022.101867_bb0060 article-title: A survey on the use of association rules mining techniques in textual social media publication-title: Artif. Intell. Rev. – volume: 70 year: 2022 ident: 10.1016/j.ecoinf.2022.101867_bb0225 article-title: Identifying sand and dust storm sources using spatial-temporal analysis of remote sensing data in Central Iran publication-title: Ecol. Inform. doi: 10.1016/j.ecoinf.2022.101724 – volume: 50 year: 2021 ident: 10.1016/j.ecoinf.2022.101867_bb0045 article-title: Water bodies changes in Tigris and Euphrates basin has impacted dust storms phenomena publication-title: Aeolian Res. doi: 10.1016/j.aeolia.2021.100698 – year: 1993 ident: 10.1016/j.ecoinf.2022.101867_bb0140 – volume: 40 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.ecoinf.2022.101867_bb0240 article-title: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product publication-title: Rev. Geophys. doi: 10.1029/2000RG000095 – volume: 308 start-page: 67 issue: 5718 year: 2005 ident: 10.1016/j.ecoinf.2022.101867_bb0175 article-title: Global iron connections between desert dust, ocean biogeochemistry, and climate publication-title: Science doi: 10.1126/science.1105959 – volume: 187 start-page: 582 issue: 9 year: 2015 ident: 10.1016/j.ecoinf.2022.101867_bb0210 article-title: A new inventory for middle east dust source points publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-015-4806-x – volume: 21 start-page: 93 year: 2016 ident: 10.1016/j.ecoinf.2022.101867_bb0215 article-title: Climatology of dust distribution over West Asia from homogenized remote sensing data publication-title: Aeolian Res. doi: 10.1016/j.aeolia.2016.04.002 – volume: 138090 year: 2020 ident: 10.1016/j.ecoinf.2022.101867_bb0105 article-title: Mapping the spatial sources of atmospheric dust using GLUE and Monte Carlo simulation publication-title: Sci. Total Environ. – volume: 84 start-page: 140 year: 2014 ident: 10.1016/j.ecoinf.2022.101867_bb0125 article-title: A new wind speed forecasting strategy based on the chaotic time series modelling technique and the Apriori algorithm publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.04.028 – volume: 2 start-page: 181 issue: 4 year: 2011 ident: 10.1016/j.ecoinf.2022.101867_bb0265 article-title: Dust cycle: An emerging core theme in earth system science publication-title: Aeolian Res. doi: 10.1016/j.aeolia.2011.02.001 – volume: 1 start-page: 119 issue: 1 year: 2008 ident: 10.1016/j.ecoinf.2022.101867_bb0295 article-title: Monitoring the source of trans-national dust storms in north East Asia publication-title: Int. J. Digital Earth doi: 10.1080/17538940701782593 – volume: 49 start-page: 279 issue: 3 year: 2013 ident: 10.1016/j.ecoinf.2022.101867_bb0130 article-title: Synoptic analysis of dust storms in the Middle East publication-title: Asia-Pac. J. Atmos. Sci. doi: 10.1007/s13143-013-0027-9 – start-page: 1 year: 2022 ident: 10.1016/j.ecoinf.2022.101867_bb0065 article-title: Identification of dust sources in a dust hot-spot area in Iran using multi-spectral Sentinel 2 data and deep learning artificial intelligence machine publication-title: Geocarto Int. – volume: 209 year: 2022 ident: 10.1016/j.ecoinf.2022.101867_bb0050 article-title: Dust source susceptibility mapping in Tigris and Euphrates basin using remotely sensed imagery publication-title: CATENA doi: 10.1016/j.catena.2021.105795 – volume: 117320 year: 2020 ident: 10.1016/j.ecoinf.2022.101867_bb0250 article-title: Hybridized neural fuzzy ensembles for dust source modeling and prediction publication-title: Atmos. Environ. – volume: 69 start-page: 85 issue: 1 year: 2020 ident: 10.1016/j.ecoinf.2022.101867_bb0035 article-title: Evaluation of water shortage crisis in the Middle East and possible remedies publication-title: J. Water Supply Res. Technol. AQUA doi: 10.2166/aqua.2019.049 – volume: 75 issue: 10 year: 2012 ident: 10.1016/j.ecoinf.2022.101867_bb0185 article-title: The physics of wind-blown sand and dust publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/75/10/106901 – volume: 5 year: 2018 ident: 10.1016/j.ecoinf.2022.101867_bb0005 article-title: TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015 publication-title: Sci. Data doi: 10.1038/sdata.2017.191 – start-page: 1 year: 2020 ident: 10.1016/j.ecoinf.2022.101867_bb0100 article-title: A new integrated data mining model to map spatial variation in the susceptibility of land to act as a source of aeolian dust publication-title: Environ. Sci. Pollut. Res. – volume: 19 start-page: 265 issue: 3 year: 2012 ident: 10.1016/j.ecoinf.2022.101867_bb0080 article-title: Impacts of climate abnormality on remarkable dust storm increase of the Hunshdak Sandy lands in northern China during 2001–2008 publication-title: Meteorol. Appl. doi: 10.1002/met.251 – start-page: 1 year: 2014 ident: 10.1016/j.ecoinf.2022.101867_bb0135 – year: 2014 ident: 10.1016/j.ecoinf.2022.101867_bb0015 article-title: An improved Apriori algorithm for association rules – volume: 6 start-page: 183 issue: 2 year: 1986 ident: 10.1016/j.ecoinf.2022.101867_bb0195 article-title: A geography of dust storms in south-West Asia publication-title: J. Climatol. doi: 10.1002/joc.3370060207 – volume: 28 start-page: 366 issue: 3 year: 2004 ident: 10.1016/j.ecoinf.2022.101867_bb0275 article-title: Wind erosion research in China: past, present and future publication-title: Prog. Phys. Geogr. doi: 10.1191/0309133304pp416ra – year: 2017 ident: 10.1016/j.ecoinf.2022.101867_bb0075 – volume: 118 start-page: 6981 issue: 13 year: 2013 ident: 10.1016/j.ecoinf.2022.101867_bb0020 article-title: A new high-resolution central and western Saharan summertime dust source map from automated satellite dust plume tracking publication-title: J. Geophys. Res. Atmos. doi: 10.1002/jgrd.50554 – start-page: 2020 year: 2020 ident: 10.1016/j.ecoinf.2022.101867_bb0160 article-title: Discovering insightful rules among truck crash characteristics using apriori algorithm publication-title: J. Adv. Transp. – volume: 737 year: 2020 ident: 10.1016/j.ecoinf.2022.101867_bb0245 article-title: Identifying sources of dust aerosol using a new framework based on remote sensing and modelling publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139508 – volume: 118 start-page: 7864 issue: 14 year: 2013 ident: 10.1016/j.ecoinf.2022.101867_bb0260 article-title: Validation and uncertainty estimates for MODIS collection 6 “Deep Blue” aerosol data publication-title: J. Geophys. Res. Atmos. doi: 10.1002/jgrd.50600 |
| SSID | ssj0043882 |
| Score | 2.3702133 |
| Snippet | Identifying the areas susceptible to dust storm formation is one effective way of dealing with this destructive environmental phenomenon. This study is the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 101867 |
| SubjectTerms | algorithms Apriori climate dust Dust source susceptibility mapping dust storms Middle East model uncertainty Remote sensing soil depth soil water spatial data Spatial data mining temperature vegetation cover wind speed |
| Title | Knowledge discovery of Middle East dust sources using Apriori spatial data mining algorithm |
| URI | https://dx.doi.org/10.1016/j.ecoinf.2022.101867 https://www.proquest.com/docview/2834252688 |
| Volume | 72 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1574-9541 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0043882 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1574-9541 databaseCode: .~1 dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0043882 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 1574-9541 databaseCode: ACRLP dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 20231231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0043882 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 1574-9541 databaseCode: AIKHN dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 20231231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0043882 providerName: Elsevier – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources issn: 1574-9541 databaseCode: M~E dateStart: 20060101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://road.issn.org omitProxy: true ssIdentifier: ssj0043882 providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1574-9541 databaseCode: AKRWK dateStart: 20060101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0043882 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DEbyIP_E3EbzGtX3tkh7H2JgOvehg4CEkaasV3cZaD7v4t5uXtgNFGHhsmoTykr73Nf3e-wi5VpHiWEiO-VnMWchDzXSgMgZGGIgSlfmuzuz9Q2c4Du8m0aRFek0uDNIqa99f-XTnreuWdm3N9jzP249-xC26D_0A-VU-n2AGe8hRxeDma0XzCEE4wSjszLB3kz7nOF72C8-uo_1KDAJsEk5t_s_w9MtRu-gz2CU7NWyk3erJ9kgrne6Trb4rOb08IM-j5miMYpot0jKXdJbRe3f8QPuqKClKdNDqrL6gSHd_od35Ip8tclogrdpOj3RR-uEkI6h6f7G3ytePQzIe9J96Q1bLJjADEJcsgdDGbSO0BWMCMm0Q9UUQZCCU8oyXZiY0wjNp4CXGA248E3OItYEkSIxO4YhsTGfT9JhQlCSDRFkY5tloF_kq0iAQVPoJdHisTwg01pKmrimO0hbvsiGPvcnKxhJtLCsbnxC2GjWvamqs6c-bhZA_9oa0bn_NyKtm3aR9bfBfiJqms89CWlRlvVXQEeL037OfkW28qsgt52SjXHymFxailPrS7cFLstm9HQ0fvgHgkuVj |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5VEb2IT3wbwWvsbma3yR5FWuqjXrRQ8BCS7K5WtC3tevDibzeT3S0oguA1L5ZJduZL8mU-Qs50rAUmkmNhnggWicgww3XOwEoLcarz0OeZ7d21uv3oehAPGuSyfguDtMrK95c-3XvrqqRZWbM5GQ6b92EsHLqPQo78qlAMFshSFHOBO7DzzznPIwLpFaOwNcPm9fs5T_JyWzw3kW6byDkWSS83_2t8-uGpffjprJO1CjfSi_LTNkgjG22S5bbPOf2xRR5v6rMxiu9skZf5Qcc57fnzB9rWs4KiRgctD-tnFPnuT_RiMh2Op0M6Q161Gx75ovTNa0ZQ_frkqornt23S77QfLrus0k1gFiApWAqRC9xWGofGJOTGIuyLgecgtQ5skOU2sjKwGQ9SG4CwgU0EJMZCylNrMtghi6PxKNslFDXJINUOhwUu3MWhjg1IRJVhCi2RmD0CtbWUrZKKo7bFq6rZYy-qtLFCG6vSxnuEzXtNyqQaf7QX9USob4tDOb__R8_Tet6U-2_wMkSPsvH7TDlY5dwVb0m5_-_RT8hK96F3q26v7m4OyCrWlEyXQ7JYTN-zI4dXCnPs1-MXQ8jm-A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Knowledge+discovery+of+Middle+East+dust+sources+using+Apriori+spatial+data+mining+algorithm&rft.jtitle=Ecological+informatics&rft.au=Papi%2C+Ramin&rft.au=Attarchi%2C+Sara&rft.au=Darvishi+Boloorani%2C+Ali&rft.au=Neysani+Samany%2C+Najmeh&rft.date=2022-12-01&rft.pub=Elsevier+B.V&rft.issn=1574-9541&rft.volume=72&rft_id=info:doi/10.1016%2Fj.ecoinf.2022.101867&rft.externalDocID=S157495412200317X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-9541&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-9541&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-9541&client=summon |