Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: A hybrid feature extraction approach
Human eye is one of the most sophisticated organ, with retina, pupil, iris cornea, lens and optic nerve. Automatic retinal image analysis is emerging as an important screening tool for early detection of eye diseases. Uncontrolled diabetes retinopathy (DR) and glaucoma may lead to blindness. DR is c...
Saved in:
| Published in | Knowledge-based systems Vol. 39; pp. 9 - 22 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.02.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0950-7051 1872-7409 |
| DOI | 10.1016/j.knosys.2012.09.008 |
Cover
| Abstract | Human eye is one of the most sophisticated organ, with retina, pupil, iris cornea, lens and optic nerve. Automatic retinal image analysis is emerging as an important screening tool for early detection of eye diseases. Uncontrolled diabetes retinopathy (DR) and glaucoma may lead to blindness. DR is caused by damage to the small blood vessels of the retina in the posterior part of the eye of the diabetic patient. The main stages of DR are non-proliferate diabetes retinopathy (NPDR) and proliferate diabetes retinopathy (PDR). The retinal fundus photographs are widely used in the diagnosis and treatment of various eye diseases in clinics. It is also one of the main resources used for mass screening of DR. We present an automatic screening system for the detection of normal and DR stages (NPDR and PDR). The proposed systems involves processing of fundus images for extraction of abnormal signs, such as area of hard exudates, area of blood vessels, bifurcation points, texture and entropies. Our protocol uses total of 156 subjects consisting of two stages of DR and normal. In this work, we have fed thirteen statistically significant (p<0.0001) features for Probabilistic Neural Network (PNN), Decision Tree (DT) C4.5, and Support Vector Machine (SVM) to select the best classifier. The best model parameter (σ) for which the PNN classifier performed best was identified using global optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). We demonstrated an average classification accuracy of 96.15%, sensitivity of 96.27% and specificity of 96.08% for σ=0.0104 using threefold cross validation using PNN classifier. The computer-aided diagnosis (CAD) results were validated by comparing with expert ophthalmologists. The proposed automated system can aid clinicians to make a faster DR diagnosis during the mass screening of normal/DR images. |
|---|---|
| AbstractList | Human eye is one of the most sophisticated organ, with retina, pupil, iris cornea, lens and optic nerve. Automatic retinal image analysis is emerging as an important screening tool for early detection of eye diseases. Uncontrolled diabetes retinopathy (DR) and glaucoma may lead to blindness. DR is caused by damage to the small blood vessels of the retina in the posterior part of the eye of the diabetic patient. The main stages of DR are non-proliferate diabetes retinopathy (NPDR) and proliferate diabetes retinopathy (PDR). The retinal fundus photographs are widely used in the diagnosis and treatment of various eye diseases in clinics. It is also one of the main resources used for mass screening of DR. We present an automatic screening system for the detection of normal and DR stages (NPDR and PDR). The proposed systems involves processing of fundus images for extraction of abnormal signs, such as area of hard exudates, area of blood vessels, bifurcation points, texture and entropies. Our protocol uses total of 156 subjects consisting of two stages of DR and normal. In this work, we have fed thirteen statistically significant (p<0.0001) features for Probabilistic Neural Network (PNN), Decision Tree (DT) C4.5, and Support Vector Machine (SVM) to select the best classifier. The best model parameter (σ) for which the PNN classifier performed best was identified using global optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). We demonstrated an average classification accuracy of 96.15%, sensitivity of 96.27% and specificity of 96.08% for σ=0.0104 using threefold cross validation using PNN classifier. The computer-aided diagnosis (CAD) results were validated by comparing with expert ophthalmologists. The proposed automated system can aid clinicians to make a faster DR diagnosis during the mass screening of normal/DR images. Human eye is one of the most sophisticated organ, with retina, pupil, iris cornea, lens and optic nerve. Automatic retinal image analysis is emerging as an important screening tool for early detection of eye diseases. Uncontrolled diabetes retinopathy (DR) and glaucoma may lead to blindness. DR is caused by damage to the small blood vessels of the retina in the posterior part of the eye of the diabetic patient. The main stages of DR are non-proliferate diabetes retinopathy (NPDR) and proliferate diabetes retinopathy (PDR). The retinal fundus photographs are widely used in the diagnosis and treatment of various eye diseases in clinics. It is also one of the main resources used for mass screening of DR. We present an automatic screening system for the detection of normal and DR stages (NPDR and PDR). The proposed systems involves processing of fundus images for extraction of abnormal signs, such as area of hard exudates, area of blood vessels, bifurcation points, texture and entropies. Our protocol uses total of 156 subjects consisting of two stages of DR and normal. In this work, we have fed thirteen statistically significant (p < 0.0001) features for Probabilistic Neural Network (PNN), Decision Tree (DT) C4.5, and Support Vector Machine (SVM) to select the best classifier. The best model parameter (I) for which the PNN classifier performed best was identified using global optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). We demonstrated an average classification accuracy of 96.15%, sensitivity of 96.27% and specificity of 96.08% for I = 0.0104 using threefold cross validation using PNN classifier. The computer-aided diagnosis (CAD) results were validated by comparing with expert ophthalmologists. The proposed automated system can aid clinicians to make a faster DR diagnosis during the mass screening of normal/DR images. |
| Author | Mookiah, M.R.K. Martis, Roshan Joy Laude, Augustinus Acharya, U. Rajendra Chua, Chua Kuang Lim, C.M. Ng, E.Y.K. |
| Author_xml | – sequence: 1 givenname: M.R.K. surname: Mookiah fullname: Mookiah, M.R.K. email: mkm2@np.edu.sg organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 2 givenname: U. Rajendra surname: Acharya fullname: Acharya, U. Rajendra organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 3 givenname: Roshan Joy surname: Martis fullname: Martis, Roshan Joy organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 4 givenname: Chua Kuang surname: Chua fullname: Chua, Chua Kuang organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 5 givenname: C.M. surname: Lim fullname: Lim, C.M. organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 6 givenname: E.Y.K. surname: Ng fullname: Ng, E.Y.K. organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore – sequence: 7 givenname: Augustinus surname: Laude fullname: Laude, Augustinus organization: National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore |
| BookMark | eNqFkE9v1DAQxS3USmxbvgEHH7kk2PnnpAekqmopUiUucLYm48mulyQOtlOxH4FvjaPtiQNcZt7hvXma3xW7mN1MjL2XIpdCNh-P-Y_ZhVPICyGLXHS5EO0btpOtKjJVie6C7URXi0yJWr5lVyEchRBFIdsd-_3w4sY1WjeDP3EY987beJh4D4EMxxFCsIMlzxfwMFFMKq6znfd8cJ7DGt0E0SI3FnrahE9zdgvEw4nvPZhkveV3_HDqvTV8IIirJ06_ogfcajksi3eAhxt2OcAY6N3rvmbfHx--3T9lz18_f7m_e86wLLuYYVvKFlGWrShNhWgQVWPqpqlqI43o2q4vyqFWUhoFAGVPPUnTIymoa9H05TX7cL6ban-uFKKebEAaR5jJrUHLStV1UammStbqbEXvQvA06MXbKYHSUuiNvD7qM3m9kdei04l8it3-FUMbYXs2PW3H_4U_ncOUGLwk8jqgpRnJWE8YtXH23wf-AEF7qUE |
| CitedBy_id | crossref_primary_10_3233_JIFS_220772 crossref_primary_10_1142_S0218339014500156 crossref_primary_10_1016_j_compeleceng_2018_11_024 crossref_primary_10_1016_j_compeleceng_2015_01_013 crossref_primary_10_1002_ima_22574 crossref_primary_10_1007_s12652_020_02727_z crossref_primary_10_32604_iasc_2023_038165 crossref_primary_10_1016_j_compbiomed_2013_10_007 crossref_primary_10_1109_ACCESS_2022_3217216 crossref_primary_10_1016_j_bbe_2019_02_004 crossref_primary_10_1016_j_compbiomed_2022_105302 crossref_primary_10_1515_jisys_2016_0354 crossref_primary_10_1007_s11517_014_1180_8 crossref_primary_10_1007_s10916_019_1432_0 crossref_primary_10_1007_s11831_022_09720_z crossref_primary_10_1016_j_compbiomed_2016_04_015 crossref_primary_10_1109_ACCESS_2018_2888639 crossref_primary_10_1016_j_compbiomed_2021_104453 crossref_primary_10_1142_S0219519419400049 crossref_primary_10_1007_s42600_019_00011_4 crossref_primary_10_1007_s10916_017_0853_x crossref_primary_10_1007_s10916_019_1313_6 crossref_primary_10_1007_s11517_014_1167_5 crossref_primary_10_1016_j_compbiomed_2018_11_028 crossref_primary_10_3390_diagnostics11081405 crossref_primary_10_1007_s11042_022_12642_4 crossref_primary_10_1016_j_measurement_2019_02_089 crossref_primary_10_1016_j_compbiomed_2017_03_008 crossref_primary_10_1016_j_compbiomed_2019_103387 crossref_primary_10_1016_j_knosys_2016_10_019 crossref_primary_10_1109_JBHI_2019_2912668 crossref_primary_10_1007_s12065_020_00400_0 crossref_primary_10_1016_j_neucom_2018_10_098 crossref_primary_10_1142_S0219519415500451 crossref_primary_10_3390_diagnostics13193116 crossref_primary_10_1007_s11517_016_1563_0 crossref_primary_10_1007_s12652_020_02882_3 crossref_primary_10_1016_j_ijleo_2019_163328 crossref_primary_10_3390_s20041005 crossref_primary_10_3390_diagnostics13071212 crossref_primary_10_1007_s10916_019_1203_y crossref_primary_10_1142_S0219519419400037 crossref_primary_10_3390_electronics9060914 crossref_primary_10_1016_j_bspc_2014_09_004 crossref_primary_10_3233_JIFS_169226 crossref_primary_10_1007_s12065_018_0158_0 crossref_primary_10_3390_diagnostics13101664 crossref_primary_10_1016_j_compbiomed_2014_07_015 crossref_primary_10_1080_03091902_2020_1791986 crossref_primary_10_1142_S0219467820500308 crossref_primary_10_1007_s12652_020_02647_y crossref_primary_10_1007_s13246_021_01012_3 crossref_primary_10_1007_s11760_020_01816_y crossref_primary_10_1007_s12065_021_00581_2 crossref_primary_10_1007_s10489_017_1048_3 crossref_primary_10_3390_app11093944 crossref_primary_10_1049_iet_cvi_2018_5263 crossref_primary_10_1007_s13246_020_00929_5 crossref_primary_10_1142_S0219519419500301 crossref_primary_10_1166_jmihi_2022_3932 crossref_primary_10_1166_jmihi_2022_3933 crossref_primary_10_1007_s12652_019_01617_3 crossref_primary_10_1007_s00138_018_00998_3 crossref_primary_10_1007_s00354_023_00215_4 crossref_primary_10_1016_j_compmedimag_2018_08_008 crossref_primary_10_1016_j_neucom_2018_03_023 crossref_primary_10_1016_j_imu_2021_100596 crossref_primary_10_1142_S0219519419400025 crossref_primary_10_1016_j_media_2019_101561 crossref_primary_10_3390_diagnostics11112025 crossref_primary_10_1007_s11831_018_9281_4 crossref_primary_10_1016_j_bspc_2018_02_008 crossref_primary_10_1016_j_compbiomed_2015_09_012 crossref_primary_10_1016_j_compmedimag_2016_08_005 crossref_primary_10_32604_iasc_2023_026243 crossref_primary_10_3390_app8091632 crossref_primary_10_1007_s00774_017_0836_5 crossref_primary_10_1080_03091902_2019_1576790 crossref_primary_10_1515_bmt_2016_0112 crossref_primary_10_1016_j_compbiomed_2015_05_019 crossref_primary_10_4015_S1016237216500460 crossref_primary_10_2174_1573405615666190219102427 crossref_primary_10_1016_j_bspc_2020_102115 crossref_primary_10_1007_s11517_015_1278_7 crossref_primary_10_1177_0954411919835856 crossref_primary_10_1515_bmt_2015_0188 crossref_primary_10_1016_j_compbiomed_2017_06_017 crossref_primary_10_1016_j_procs_2020_03_429 crossref_primary_10_1038_s41598_023_36311_0 crossref_primary_10_1109_JBHI_2015_2490798 crossref_primary_10_1142_S0218001418500349 crossref_primary_10_1016_j_compbiomed_2018_09_028 crossref_primary_10_1016_j_bbe_2018_07_005 crossref_primary_10_1016_j_compbiomed_2017_11_019 |
| Cites_doi | 10.1142/S0219519411004101 10.1016/j.infrared.2009.05.002 10.1109/TITB.2007.910453 10.1109/83.217222 10.1109/72.668893 10.2337/diacare.16.5.844a 10.1001/archopht.123.6.759 10.1016/1350-9462(94)00011-4 10.1109/TIP.2009.2015682 10.1109/TMI.2005.843738 10.1007/978-1-4471-0513-8_10 10.1007/s10916-008-9154-8 10.1243/09544119JEIM486 10.1016/j.micron.2011.03.003 10.1016/j.ins.2007.07.020 10.1109/TPAMI.2002.1017623 10.1016/j.eswa.2012.02.157 10.1016/j.eswa.2012.02.040 10.1007/s10916-009-9337-y 10.1016/j.patcog.2006.08.003 10.1016/j.ins.2007.03.027 10.1109/ICNN.1995.488968 10.1136/bjo.83.8.902 10.1016/j.knosys.2012.02.010 10.1007/s10916-007-9113-9 10.1109/ICCCE.2008.4580604 10.1001/archopht.119.4.509 10.1109/ICCV.2003.1238371 10.1016/S0895-6111(00)00011-2 10.1167/iovs.02-0418 10.1007/s10916-008-9195-z 10.1088/0031-9155/40/5/009 10.1109/TITB.2011.2119322 10.1111/j.1444-0938.2006.00071.x 10.1109/ISPA.2003.1296409 10.1177/0954411912458740 10.1109/TIP.2009.2035882 10.1155/IJBI/2006/45806 10.1007/BF00166760 10.1109/LSP.2008.2010820 10.1167/iovs.02-0417 10.1007/s00347-004-1098-x 10.1016/j.eswa.2011.07.115 10.1016/0893-6080(90)90049-Q 10.1109/ICIP.2001.958624 10.1016/j.eswa.2011.12.046 10.1046/j.1464-5491.2003.01085.x |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier B.V. |
| Copyright_xml | – notice: 2012 Elsevier B.V. |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.knosys.2012.09.008 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| EndPage | 22 |
| ExternalDocumentID | 10_1016_j_knosys_2012_09_008 S0950705112002651 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K UHS WH7 WUQ XPP ZMT ~02 ~G- 77I AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c339t-c8318cc13803d4ccdcc76d56645d1d0989b23f5711d7aaa3bebe1dbce7a5506b3 |
| IEDL.DBID | .~1 |
| ISSN | 0950-7051 |
| IngestDate | Sun Sep 28 09:41:02 EDT 2025 Sat Oct 25 05:18:38 EDT 2025 Thu Apr 24 23:09:19 EDT 2025 Fri Feb 23 02:28:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Bifurcation point Laws texture energy Diabetic retinopathy Local binary pattern Evolutionary algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c339t-c8318cc13803d4ccdcc76d56645d1d0989b23f5711d7aaa3bebe1dbce7a5506b3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 1475524764 |
| PQPubID | 23500 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_1475524764 crossref_primary_10_1016_j_knosys_2012_09_008 crossref_citationtrail_10_1016_j_knosys_2012_09_008 elsevier_sciencedirect_doi_10_1016_j_knosys_2012_09_008 |
| PublicationCentury | 2000 |
| PublicationDate | February 2013 2013-02-00 20130201 |
| PublicationDateYYYYMMDD | 2013-02-01 |
| PublicationDate_xml | – month: 02 year: 2013 text: February 2013 |
| PublicationDecade | 2010 |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2013 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Pharwaha, Singh (b0245) 2009; vol. 2179 Acharya, Lim, Ng, Chee, Tamura (b0010) 2009; 223 A. Hunter, J. Lowell, J. Owens, L. Kennedy, Quantification of diabetic retinopathy using neural networks and sensitivity analysis, in: Artificial Neural Networks in Medicine and Biology, 2000, pp. 81–86. Wareham (b0345) 1993; 16 Ravindran, Ragsdell, Reklaitis (b0260) 2006 M.I. Iqbal, A.M. Aibinu, M. Nilsson, I.B. Tijani, M. Salami, Detection of vascular intersection in retina fundus image using modified cross point number and neural network technique, in: ICCCE 2008. International Conference on Computer and Communication Engineering, 2008, pp. 241–246. L. Huiqi, O. Chutatape, Automatic location of optic disk in retinal images, in: Proceedings of 2001 International Conference on Image Processing, 2001, vol. 832, 2001, pp. 837–840. Larsen, Godt, Grunkin, Lund-Andersen, Larsen (b0145) 2003; 44 Ng, Acharya, Keith, Lockwood (b0210) 2007; 177 Raghu, Yegnanarayana (b0255) 1998; 9 Acharya, Dua, Xian, Vinitha Sree, Chua Kuang (b0015) 2011; 15 B.M. Ege, O.V. Larsen, O.K. Hejlesen, Detection of abnormalities in retinal images using digital image analysis, in: 11th Scandinavian Conference on Image Processing, 1999, pp. 833–840. Gupta, Undrill (b0090) 1995; 40 Mookiah, Rajendra Acharya, Lim, Petznick, Suri (b0385) 2012; 33 A.M. Aibinu, M.I. Iqbal, M. Nilsson, M.J.E. Salami, Automatic Diagnosis of diabetic retinopathy from fundus images using digital signal and image processing techniques, in: International Conference on Robotics, Vision, Information, and Signal Processing, Penang, Malaysia, 2007, pp. 510–515. Frank (b0070) 1995; 14 Tan, Ng, Acharya, Chee (b0310) 2009; 52 M.M.R. Krishnan, U.R. Acharya, Chua Kuang Chua, E.Y.K. Ng, L.C. Min, M.M. Mushrif, A. Laude, Application of intuitionistic fuzzy histon segmentation for the automated detection of optic disc in digital fundus images, in: IEEE-EMBS International Conference on Biomedical and Health Informatics, Hong Kong, Shenzhen, 2012. W. Huan, H. Wynne, G. Kheng Guan, L. Mong Li, An effective approach to detect lesions in color retinal images, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2000, vol. 182, 2000, pp. 181–186. Larsen, Godt, Larsen, Lund-Andersen, Sjølie, Agardh, Kalm, Grunkin, Owens (b0140) 2003; 44 Gonzalez, Woods (b0080) 2002 Fogel (b0065) 2006 . Krishnan, Choudhary, Chakraborty, Ray, Paul (b0190) 2011; 42 Quinlan (b0250) 1992 C. Sinthanayothin, Image Analysis for Automatic Diagnosis of Diabetic Retinopathy, PhD thesis, King’s College of London, 1999a. Mushrif, Ray (b0185) 2009; 16 Ojala, Pietikäinen, Maenpaa (b0220) 2002; 24 Ronald, Peng (b0280) 2003 Weka. WEKA (Data Mining Software), 2006. T.S. Korting, Technical Report on C4.5 Algorithm and Multivariate Decision Trees, Image Processing Division, National Institute for Space Research, Brazil, 2006. Yun, Rajendra Acharya, Venkatesh, Chee, Min, Ng (b0365) 2008; 178 Osareh, Mirmehdi, Thomas, Markham (b0230) 2002 Ramlugun, Nagarajan, Chakraborty (b0270) 2012; 39 Hsiao, Liu, Yu, Kuo, Yu (b0380) 2012; 39 Kahai, Namuduri, Thompson (b0125) 2006 Chong, Zak (b0035) 2001 Petrou, Sevilla (b0240) 2006 Vincent (b0340) 1993; 2 Lee, Lee, Kingsley, Wang, Russell, Klein, Warn (b0150) 2001; 119 Gun, Gupta, Dasgupta (b0085) 2005 Sinthanayothin, Boyce, Cook, Williamson (b0290) 1999; 83 Yen, Wen-Fung (b0360) 2008; 12 Lee, Lee, Wang, Klein, Kingsley, Warn (b0155) 2005; 123 Specht (b0300) 1990; 3 Vince, Dixon, Cothren, Cornhill (b0335) 2000; 24 Martis, Chakraborty (b0180) 2011; 11 Nayak, Acharya, Bhat, Shetty, Lim (b0200) 2009; 33 Liao, Law, Chung (b0170) 2009; 18 Acharya, Sree, Alvin, Suri (b0265) 2012; 39 Englmeier, Schmid, Hildebrand, Bichler, Porta, Maurino, Bek (b0060) 2004; 9 Jelinek, Cree, Worsley, Luckie, Nixon (b0120) 2006; 89 Reza, Eswaran (b0275) 2011; 35 Chaudhuri, Samal (b0030) 2007; 40 Usher, Dumskyj, Himaga, Williamson, Nussey, Boyce (b0320) 2004; 21 Goldberg (b0075) 1989 Nayak, Bhat, Acharya U, Lim, Kagathi (b0195) 2008; 32 Verma, Prakash, Tewari (b0330) 2002; 80 Li, You, Zhang (b0165) 2012; 39 A. Osareh, M. Mirmehdi, B. Thomas, R. Markham, Medical Image Understanding and Analysis, Surrey, UK, 2001. Emily (b0055) 2003 M.R.K. Mookiah, U.R. Acharya, C.K. Chua, L.C. Min, E.Y.K. Ng, M.M. Mushrif, A. Laude, Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, (2012), In Press Acharya, Chua, Ng, Yu, Chee (b0005) 2008; 32 Neubauer, Chryssafis, Thiel, Priglinger, Welge-Lussen, Kampik (b0205) 2005; 102 Niemeijer, van Ginneken, Staal, Suttorp-Schulten, Abramoff (b0215) 2005; 24 C. Sinthanayothin, V. Kongbunkiat, S. Phoojaruenchanachai, A. Singalavanija, Automated screening system for diabetic retinopathy, in: ISPA 2003, Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, 2003. vol. 912, 2003, pp. 915–920. Vapnik (b0325) 1998 Christianini, Taylor (b0040) 2000 Spencer, Phillips, Sharp, Forrester (b0305) 1992; 230 X. Zhang, A. Chutatape, Detection and classification of bright lesions in color fundus images, in: ICIP ’04, 2004 International Conference on Image Processing, 2004, vol. 131, 2004, pp. 139–142. J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, 1995, vol. 1944, 1995, pp. 1942–1948. M.J. Cree, J.J.G. Leandro, J.V.B. Soares, R.M.J.C. Jr, H.F. Jelinek, D. Cornforth, Comparison of various methods to delineate blood vessels in retinal images, in: 16th Australian Institute of Physics Congress, Canberra, 2005. Z. Xiaohui, O. Chutatape, Top-down and bottom-up strategies in lesion detection of background diabetic retinopathy, in: CVPR 2005, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, vol. 422, 2005, pp. 422–428. Baochang, Yongsheng, Sanqiang, Jianzhuang (b0025) 2010; 19 Osareh, Mirmehdi, Thomas, Markham (b0235) 2002 H. Li, O. Chutatape, A model-based approach for automated feature extraction in fundus images, in: Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, vol. 391, 2003, pp. 394–399. Raghu (10.1016/j.knosys.2012.09.008_b0255) 1998; 9 Baochang (10.1016/j.knosys.2012.09.008_b0025) 2010; 19 Emily (10.1016/j.knosys.2012.09.008_b0055) 2003 Pharwaha (10.1016/j.knosys.2012.09.008_b0245) 2009; vol. 2179 Ramlugun (10.1016/j.knosys.2012.09.008_b0270) 2012; 39 Usher (10.1016/j.knosys.2012.09.008_b0320) 2004; 21 Nayak (10.1016/j.knosys.2012.09.008_b0200) 2009; 33 Ronald (10.1016/j.knosys.2012.09.008_b0280) 2003 Nayak (10.1016/j.knosys.2012.09.008_b0195) 2008; 32 Chaudhuri (10.1016/j.knosys.2012.09.008_b0030) 2007; 40 10.1016/j.knosys.2012.09.008_b0355 10.1016/j.knosys.2012.09.008_b0110 10.1016/j.knosys.2012.09.008_b0315 10.1016/j.knosys.2012.09.008_b0115 Mushrif (10.1016/j.knosys.2012.09.008_b0185) 2009; 16 10.1016/j.knosys.2012.09.008_b0390 10.1016/j.knosys.2012.09.008_b0350 Englmeier (10.1016/j.knosys.2012.09.008_b0060) 2004; 9 Li (10.1016/j.knosys.2012.09.008_b0165) 2012; 39 Vapnik (10.1016/j.knosys.2012.09.008_b0325) 1998 Vince (10.1016/j.knosys.2012.09.008_b0335) 2000; 24 Christianini (10.1016/j.knosys.2012.09.008_b0040) 2000 Tan (10.1016/j.knosys.2012.09.008_b0310) 2009; 52 Acharya (10.1016/j.knosys.2012.09.008_b0265) 2012; 39 Verma (10.1016/j.knosys.2012.09.008_b0330) 2002; 80 Osareh (10.1016/j.knosys.2012.09.008_b0235) 2002 Krishnan (10.1016/j.knosys.2012.09.008_b0190) 2011; 42 10.1016/j.knosys.2012.09.008_b0045 Lee (10.1016/j.knosys.2012.09.008_b0155) 2005; 123 Acharya (10.1016/j.knosys.2012.09.008_b0010) 2009; 223 Goldberg (10.1016/j.knosys.2012.09.008_b0075) 1989 10.1016/j.knosys.2012.09.008_b0160 Specht (10.1016/j.knosys.2012.09.008_b0300) 1990; 3 Acharya (10.1016/j.knosys.2012.09.008_b0005) 2008; 32 Larsen (10.1016/j.knosys.2012.09.008_b0145) 2003; 44 Spencer (10.1016/j.knosys.2012.09.008_b0305) 1992; 230 Liao (10.1016/j.knosys.2012.09.008_b0170) 2009; 18 10.1016/j.knosys.2012.09.008_b0285 Vincent (10.1016/j.knosys.2012.09.008_b0340) 1993; 2 Acharya (10.1016/j.knosys.2012.09.008_b0015) 2011; 15 Petrou (10.1016/j.knosys.2012.09.008_b0240) 2006 Ravindran (10.1016/j.knosys.2012.09.008_b0260) 2006 Ng (10.1016/j.knosys.2012.09.008_b0210) 2007; 177 Martis (10.1016/j.knosys.2012.09.008_b0180) 2011; 11 Kahai (10.1016/j.knosys.2012.09.008_b0125) 2006 10.1016/j.knosys.2012.09.008_b0135 Yen (10.1016/j.knosys.2012.09.008_b0360) 2008; 12 Niemeijer (10.1016/j.knosys.2012.09.008_b0215) 2005; 24 10.1016/j.knosys.2012.09.008_b0050 Yun (10.1016/j.knosys.2012.09.008_b0365) 2008; 178 Wareham (10.1016/j.knosys.2012.09.008_b0345) 1993; 16 10.1016/j.knosys.2012.09.008_b0130 Ojala (10.1016/j.knosys.2012.09.008_b0220) 2002; 24 10.1016/j.knosys.2012.09.008_b0295 Neubauer (10.1016/j.knosys.2012.09.008_b0205) 2005; 102 10.1016/j.knosys.2012.09.008_b0370 Mookiah (10.1016/j.knosys.2012.09.008_b0385) 2012; 33 Quinlan (10.1016/j.knosys.2012.09.008_b0250) 1992 Chong (10.1016/j.knosys.2012.09.008_b0035) 2001 Sinthanayothin (10.1016/j.knosys.2012.09.008_b0290) 1999; 83 Osareh (10.1016/j.knosys.2012.09.008_b0230) 2002 Jelinek (10.1016/j.knosys.2012.09.008_b0120) 2006; 89 Gun (10.1016/j.knosys.2012.09.008_b0085) 2005 Gonzalez (10.1016/j.knosys.2012.09.008_b0080) 2002 Gupta (10.1016/j.knosys.2012.09.008_b0090) 1995; 40 Lee (10.1016/j.knosys.2012.09.008_b0150) 2001; 119 10.1016/j.knosys.2012.09.008_b0100 10.1016/j.knosys.2012.09.008_b0105 Larsen (10.1016/j.knosys.2012.09.008_b0140) 2003; 44 Frank (10.1016/j.knosys.2012.09.008_b0070) 1995; 14 10.1016/j.knosys.2012.09.008_b0225 Reza (10.1016/j.knosys.2012.09.008_b0275) 2011; 35 Fogel (10.1016/j.knosys.2012.09.008_b0065) 2006 10.1016/j.knosys.2012.09.008_b0020 Hsiao (10.1016/j.knosys.2012.09.008_b0380) 2012; 39 |
| References_xml | – volume: 16 start-page: 844 year: 1993 ident: b0345 article-title: Cost-effectiveness of alternative methods for diabetic retinopathy screening publication-title: Diabetes Care – reference: B.M. Ege, O.V. Larsen, O.K. Hejlesen, Detection of abnormalities in retinal images using digital image analysis, in: 11th Scandinavian Conference on Image Processing, 1999, pp. 833–840. – year: 2006 ident: b0065 article-title: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence – reference: T.S. Korting, Technical Report on C4.5 Algorithm and Multivariate Decision Trees, Image Processing Division, National Institute for Space Research, Brazil, 2006. – reference: M.I. Iqbal, A.M. Aibinu, M. Nilsson, I.B. Tijani, M. Salami, Detection of vascular intersection in retina fundus image using modified cross point number and neural network technique, in: ICCCE 2008. International Conference on Computer and Communication Engineering, 2008, pp. 241–246. – start-page: 413 year: 2002 end-page: 420 ident: b0235 article-title: Comparative exudate classification using support vector machines and neural networks publication-title: Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention – Part II – volume: 21 start-page: 84 year: 2004 end-page: 90 ident: b0320 article-title: Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening publication-title: Diabetic Med. – year: 2005 ident: b0085 article-title: An Outline of Statistical Theory – year: 1998 ident: b0325 article-title: Statistical Learning Theory – reference: Weka. WEKA (Data Mining Software), 2006. < – volume: 83 start-page: 902 year: 1999 end-page: 910 ident: b0290 article-title: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images publication-title: British Journal of Ophthalmology – reference: A. Hunter, J. Lowell, J. Owens, L. Kennedy, Quantification of diabetic retinopathy using neural networks and sensitivity analysis, in: Artificial Neural Networks in Medicine and Biology, 2000, pp. 81–86. – volume: 11 start-page: 897 year: 2011 end-page: 915 ident: b0180 article-title: Arrhythmia disease diagnosis using neural network, SVM and genetic algorithm optimized publication-title: J. Mech. Med. Biol. – volume: 35 start-page: 17 year: 2011 end-page: 24 ident: b0275 article-title: A decision support system for automatic screening of non-proliferative diabetic retinopathy publication-title: J. Med. Syst. – volume: 2 start-page: 176 year: 1993 end-page: 201 ident: b0340 article-title: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms publication-title: IEEE Trans. Image Process. – reference: A. Osareh, M. Mirmehdi, B. Thomas, R. Markham, Medical Image Understanding and Analysis, Surrey, UK, 2001. – year: 2000 ident: b0040 article-title: An Introduction to Support Vector Machines and Other Kernel based Learning Methods – year: 2003 ident: b0055 article-title: Diabetic Retinopathy Preferred Practice Patterns – volume: 16 start-page: 168 year: 2009 end-page: 171 ident: b0185 article-title: A-IFS histon based multithresholding algorithm for color image segmentation publication-title: IEEE Signal Process. Lett. – volume: 89 start-page: 299 year: 2006 end-page: 305 ident: b0120 article-title: An automated microaneurysm detector as a tool for identification of diabetic retinopathy in rural optometric practice publication-title: Clin. Exp. Optom. – volume: 19 start-page: 533 year: 2010 end-page: 544 ident: b0025 article-title: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor publication-title: IEEE Transactions on Image Processing – volume: 42 start-page: 632 year: 2011 end-page: 641 ident: b0190 article-title: Texture based segmentation of epithelial layer from oral histological images publication-title: Micron – reference: M.R.K. Mookiah, U.R. Acharya, C.K. Chua, L.C. Min, E.Y.K. Ng, M.M. Mushrif, A. Laude, Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, (2012), In Press, < – year: 2006 ident: b0125 article-title: A decision support framework for automated screening of diabetic retinopathy publication-title: Int. J. Biomed. Imag. – reference: M.J. Cree, J.J.G. Leandro, J.V.B. Soares, R.M.J.C. Jr, H.F. Jelinek, D. Cornforth, Comparison of various methods to delineate blood vessels in retinal images, in: 16th Australian Institute of Physics Congress, Canberra, 2005. – start-page: 502 year: 2002 end-page: 516 ident: b0230 article-title: Classification and localisation of diabetic-related eye disease publication-title: Proceedings of the 7th European Conference on Computer Vision – Part IV – year: 2006 ident: b0260 article-title: Engineering Optimization Methods and Applications – volume: 44 start-page: 767 year: 2003 end-page: 771 ident: b0145 article-title: Automated detection of diabetic retinopathy in a fundus photographic screening population publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 178 start-page: 106 year: 2008 end-page: 121 ident: b0365 article-title: Identification of different stages of diabetic retinopathy using retinal optical images publication-title: Informat. Sci. – volume: 119 start-page: 509 year: 2001 end-page: 515 ident: b0150 article-title: Comparison of diagnosis of early retinal lesions of diabetic retinopathy between a computer system and human experts publication-title: Arch. Ophthalmol. – volume: 14 start-page: 2361 year: 1995 end-page: 2392 ident: b0070 article-title: Diabetic retinopathy publication-title: Progr. Retinal Eye Res. – year: 1992 ident: b0250 article-title: C 4. 5: Programs for Machine Learning – volume: 12 start-page: 118 year: 2008 end-page: 130 ident: b0360 article-title: A sorting system for hierarchical grading of diabetic fundus images: a preliminary study publication-title: IEEE Trans. Informat. Technol. Biomed. – reference: W. Huan, H. Wynne, G. Kheng Guan, L. Mong Li, An effective approach to detect lesions in color retinal images, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2000, vol. 182, 2000, pp. 181–186. – volume: 39 start-page: 10600 year: 2012 end-page: 10606 ident: b0380 article-title: A novel optic disc detection scheme on retinal images publication-title: Expert Syst. Appl. – volume: 44 start-page: 761 year: 2003 end-page: 766 ident: b0140 article-title: Automated detection of fundus photographic red lesions in diabetic retinopathy publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 102 start-page: 251 year: 2005 end-page: 258 ident: b0205 article-title: Screening for diabetic retinopathy and optic disc topography with the “retinal thickness analyzer” (RTA) publication-title: Ophthalmologe – volume: 80 start-page: 419 year: 2002 end-page: 420 ident: b0330 article-title: Diabetic retinopathy: time for action. No complacency please! publication-title: Bull. World Health Organizat. – volume: 18 start-page: 1107 year: 2009 end-page: 1118 ident: b0170 article-title: Dominant local binary patterns for texture classification publication-title: IEEE Trans. Image Process. – volume: 33 start-page: 73 year: 2012 end-page: 82 ident: b0385 article-title: Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features publication-title: Knowl. Based Syst. – volume: 24 start-page: 584 year: 2005 end-page: 592 ident: b0215 article-title: Automatic detection of red lesions in digital color fundus photographs publication-title: IEEE Trans. Med. Imag. – reference: L. Huiqi, O. Chutatape, Automatic location of optic disk in retinal images, in: Proceedings of 2001 International Conference on Image Processing, 2001, vol. 832, 2001, pp. 837–840. – reference: Z. Xiaohui, O. Chutatape, Top-down and bottom-up strategies in lesion detection of background diabetic retinopathy, in: CVPR 2005, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, vol. 422, 2005, pp. 422–428. – volume: 123 start-page: 759 year: 2005 end-page: 764 ident: b0155 article-title: Computer classification of non-proliferative diabetic retinopathy publication-title: Arch. Ophthalmol. – volume: 230 start-page: 36 year: 1992 end-page: 41 ident: b0305 article-title: Automated detection and quantification of microaneurysms in fluorescein angiograms publication-title: Graefe’s Arch. Clin. Exp. Ophthalmol. – volume: 9 start-page: 473 year: 2004 end-page: 478 ident: b0060 article-title: Early detection of diabetes retinopathy by new algorithms for automatic recognition of vascular changes publication-title: Eur. J. Med. Res. – volume: 9 start-page: 516 year: 1998 end-page: 522 ident: b0255 article-title: Supervised texture classification using a probabilistic neural network and constraint satisfaction model publication-title: IEEE Transactions on Neural Networks – year: 2003 ident: b0280 article-title: A Textbook of Clinical Ophthalmology: A Practical Guide to Disorders of the Eyes and their Management – volume: 32 start-page: 481 year: 2008 end-page: 488 ident: b0005 article-title: Application of higher order spectra for the identification of diabetes retinopathy stages publication-title: J. Med. Syst. – volume: 40 start-page: 1981 year: 2007 end-page: 1989 ident: b0030 article-title: A simple method for fitting of bounding rectangle to closed regions publication-title: Pattern Recognition – volume: 223 start-page: 545 year: 2009 end-page: 553 ident: b0010 article-title: Computer-based detection of diabetes retinopathy stages using digital fundus images publication-title: Proc. Inst. Mech. Eng. H – reference: X. Zhang, A. Chutatape, Detection and classification of bright lesions in color fundus images, in: ICIP ’04, 2004 International Conference on Image Processing, 2004, vol. 131, 2004, pp. 139–142. – volume: vol. 2179 year: 2009 ident: b0245 publication-title: Shannon and Non-Shannon Measures of Entropy for Statistical Texture Feature Extraction in Digitized Mammograms – reference: H. Li, O. Chutatape, A model-based approach for automated feature extraction in fundus images, in: Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, vol. 391, 2003, pp. 394–399. – year: 2002 ident: b0080 article-title: Digital Image Processing – volume: 39 start-page: 9072 year: 2012 end-page: 9078 ident: b0265 article-title: Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework publication-title: Expert Syst. Appl. – volume: 33 start-page: 337 year: 2009 end-page: 346 ident: b0200 article-title: Automated diagnosis of glaucoma using digital fundus images publication-title: J. Med. Syst. – year: 2001 ident: b0035 article-title: An Introduction to Optimization – volume: 32 start-page: 107 year: 2008 end-page: 115 ident: b0195 article-title: Automated identification of diabetic retinopathy stages using digital fundus images publication-title: J. Med. Syst. – year: 2006 ident: b0240 article-title: Image Processing–Dealing with Texture – volume: 177 start-page: 4526 year: 2007 end-page: 4538 ident: b0210 article-title: Detection and differentiation of breast cancer using neural classifiers with first warning thermal sensors publication-title: Inform. Sci. – volume: 39 start-page: 1141 year: 2012 end-page: 1146 ident: b0270 article-title: Small retinal vessels extraction towards proliferative diabetic retinopathy screening publication-title: Expert Syst. Appl. – volume: 40 start-page: 835 year: 1995 end-page: 855 ident: b0090 article-title: The use of texture analysis to delineate suspicious masses in mammography publication-title: Phys. Med. Biol. – year: 1989 ident: b0075 article-title: Genetic Algorithms in Search, Optimization, and Machine Learning – reference: >. – volume: 39 start-page: 7600 year: 2012 end-page: 7610 ident: b0165 article-title: Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses publication-title: Expert Syst. Appl. – reference: M.M.R. Krishnan, U.R. Acharya, Chua Kuang Chua, E.Y.K. Ng, L.C. Min, M.M. Mushrif, A. Laude, Application of intuitionistic fuzzy histon segmentation for the automated detection of optic disc in digital fundus images, in: IEEE-EMBS International Conference on Biomedical and Health Informatics, Hong Kong, Shenzhen, 2012. – reference: C. Sinthanayothin, Image Analysis for Automatic Diagnosis of Diabetic Retinopathy, PhD thesis, King’s College of London, 1999a. – volume: 3 start-page: 109 year: 1990 end-page: 118 ident: b0300 article-title: Probabilistic neural networks publication-title: J. Neural Networks – volume: 15 start-page: 449 year: 2011 end-page: 455 ident: b0015 article-title: Automated diagnosis of glaucoma using texture and higher order spectra features publication-title: IEEE Trans. Inform. Technol. Biomed. – reference: C. Sinthanayothin, V. Kongbunkiat, S. Phoojaruenchanachai, A. Singalavanija, Automated screening system for diabetic retinopathy, in: ISPA 2003, Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, 2003. vol. 912, 2003, pp. 915–920. – reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, 1995, vol. 1944, 1995, pp. 1942–1948. – volume: 24 start-page: 221 year: 2000 end-page: 229 ident: b0335 article-title: Comparison of texture analysis methods for the characterization of coronary plaques in intravascular ultrasound images publication-title: Comput. Med. Imag. Graph. – reference: A.M. Aibinu, M.I. Iqbal, M. Nilsson, M.J.E. Salami, Automatic Diagnosis of diabetic retinopathy from fundus images using digital signal and image processing techniques, in: International Conference on Robotics, Vision, Information, and Signal Processing, Penang, Malaysia, 2007, pp. 510–515. – volume: 52 start-page: 97 year: 2009 end-page: 108 ident: b0310 article-title: Infrared thermography on ocular surface temperature: a review publication-title: Infrared Phys. Technol. – volume: 24 start-page: 971 year: 2002 end-page: 987 ident: b0220 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 413 year: 2002 ident: 10.1016/j.knosys.2012.09.008_b0235 article-title: Comparative exudate classification using support vector machines and neural networks – volume: 11 start-page: 897 year: 2011 ident: 10.1016/j.knosys.2012.09.008_b0180 article-title: Arrhythmia disease diagnosis using neural network, SVM and genetic algorithm optimized k-means clustering publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519411004101 – volume: 52 start-page: 97 issue: 4 year: 2009 ident: 10.1016/j.knosys.2012.09.008_b0310 article-title: Infrared thermography on ocular surface temperature: a review publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2009.05.002 – start-page: 502 year: 2002 ident: 10.1016/j.knosys.2012.09.008_b0230 article-title: Classification and localisation of diabetic-related eye disease – volume: 12 start-page: 118 year: 2008 ident: 10.1016/j.knosys.2012.09.008_b0360 article-title: A sorting system for hierarchical grading of diabetic fundus images: a preliminary study publication-title: IEEE Trans. Informat. Technol. Biomed. doi: 10.1109/TITB.2007.910453 – volume: 2 start-page: 176 year: 1993 ident: 10.1016/j.knosys.2012.09.008_b0340 article-title: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms publication-title: IEEE Trans. Image Process. doi: 10.1109/83.217222 – ident: 10.1016/j.knosys.2012.09.008_b0050 – volume: 9 start-page: 516 year: 1998 ident: 10.1016/j.knosys.2012.09.008_b0255 article-title: Supervised texture classification using a probabilistic neural network and constraint satisfaction model publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.668893 – volume: 9 start-page: 473 year: 2004 ident: 10.1016/j.knosys.2012.09.008_b0060 article-title: Early detection of diabetes retinopathy by new algorithms for automatic recognition of vascular changes publication-title: Eur. J. Med. Res. – volume: 16 start-page: 844 year: 1993 ident: 10.1016/j.knosys.2012.09.008_b0345 article-title: Cost-effectiveness of alternative methods for diabetic retinopathy screening publication-title: Diabetes Care doi: 10.2337/diacare.16.5.844a – ident: 10.1016/j.knosys.2012.09.008_b0285 – volume: 123 start-page: 759 year: 2005 ident: 10.1016/j.knosys.2012.09.008_b0155 article-title: Computer classification of non-proliferative diabetic retinopathy publication-title: Arch. Ophthalmol. doi: 10.1001/archopht.123.6.759 – volume: 14 start-page: 2361 year: 1995 ident: 10.1016/j.knosys.2012.09.008_b0070 article-title: Diabetic retinopathy publication-title: Progr. Retinal Eye Res. doi: 10.1016/1350-9462(94)00011-4 – volume: 18 start-page: 1107 year: 2009 ident: 10.1016/j.knosys.2012.09.008_b0170 article-title: Dominant local binary patterns for texture classification publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2009.2015682 – volume: 24 start-page: 584 year: 2005 ident: 10.1016/j.knosys.2012.09.008_b0215 article-title: Automatic detection of red lesions in digital color fundus photographs publication-title: IEEE Trans. Med. Imag. doi: 10.1109/TMI.2005.843738 – ident: 10.1016/j.knosys.2012.09.008_b0110 doi: 10.1007/978-1-4471-0513-8_10 – volume: 32 start-page: 481 year: 2008 ident: 10.1016/j.knosys.2012.09.008_b0005 article-title: Application of higher order spectra for the identification of diabetes retinopathy stages publication-title: J. Med. Syst. doi: 10.1007/s10916-008-9154-8 – year: 1998 ident: 10.1016/j.knosys.2012.09.008_b0325 – volume: 223 start-page: 545 year: 2009 ident: 10.1016/j.knosys.2012.09.008_b0010 article-title: Computer-based detection of diabetes retinopathy stages using digital fundus images publication-title: Proc. Inst. Mech. Eng. H doi: 10.1243/09544119JEIM486 – volume: 42 start-page: 632 year: 2011 ident: 10.1016/j.knosys.2012.09.008_b0190 article-title: Texture based segmentation of epithelial layer from oral histological images publication-title: Micron doi: 10.1016/j.micron.2011.03.003 – ident: 10.1016/j.knosys.2012.09.008_b0355 – volume: 80 start-page: 419 year: 2002 ident: 10.1016/j.knosys.2012.09.008_b0330 article-title: Diabetic retinopathy: time for action. No complacency please! publication-title: Bull. World Health Organizat. – ident: 10.1016/j.knosys.2012.09.008_b0225 – volume: 178 start-page: 106 year: 2008 ident: 10.1016/j.knosys.2012.09.008_b0365 article-title: Identification of different stages of diabetic retinopathy using retinal optical images publication-title: Informat. Sci. doi: 10.1016/j.ins.2007.07.020 – volume: 24 start-page: 971 year: 2002 ident: 10.1016/j.knosys.2012.09.008_b0220 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1017623 – year: 2002 ident: 10.1016/j.knosys.2012.09.008_b0080 – volume: 39 start-page: 10600 year: 2012 ident: 10.1016/j.knosys.2012.09.008_b0380 article-title: A novel optic disc detection scheme on retinal images publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.02.157 – year: 2000 ident: 10.1016/j.knosys.2012.09.008_b0040 – year: 1992 ident: 10.1016/j.knosys.2012.09.008_b0250 – volume: 39 start-page: 9072 year: 2012 ident: 10.1016/j.knosys.2012.09.008_b0265 article-title: Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.02.040 – volume: 35 start-page: 17 year: 2011 ident: 10.1016/j.knosys.2012.09.008_b0275 article-title: A decision support system for automatic screening of non-proliferative diabetic retinopathy publication-title: J. Med. Syst. doi: 10.1007/s10916-009-9337-y – year: 2003 ident: 10.1016/j.knosys.2012.09.008_b0280 – year: 2003 ident: 10.1016/j.knosys.2012.09.008_b0055 – volume: 40 start-page: 1981 year: 2007 ident: 10.1016/j.knosys.2012.09.008_b0030 article-title: A simple method for fitting of bounding rectangle to closed regions publication-title: Pattern Recognition doi: 10.1016/j.patcog.2006.08.003 – volume: 177 start-page: 4526 year: 2007 ident: 10.1016/j.knosys.2012.09.008_b0210 article-title: Detection and differentiation of breast cancer using neural classifiers with first warning thermal sensors publication-title: Inform. Sci. doi: 10.1016/j.ins.2007.03.027 – ident: 10.1016/j.knosys.2012.09.008_b0130 doi: 10.1109/ICNN.1995.488968 – volume: 83 start-page: 902 year: 1999 ident: 10.1016/j.knosys.2012.09.008_b0290 article-title: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images publication-title: British Journal of Ophthalmology doi: 10.1136/bjo.83.8.902 – year: 2006 ident: 10.1016/j.knosys.2012.09.008_b0240 – ident: 10.1016/j.knosys.2012.09.008_b0020 – volume: 33 start-page: 73 year: 2012 ident: 10.1016/j.knosys.2012.09.008_b0385 article-title: Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2012.02.010 – ident: 10.1016/j.knosys.2012.09.008_b0045 – year: 2005 ident: 10.1016/j.knosys.2012.09.008_b0085 – year: 1989 ident: 10.1016/j.knosys.2012.09.008_b0075 – ident: 10.1016/j.knosys.2012.09.008_b0350 – volume: 32 start-page: 107 year: 2008 ident: 10.1016/j.knosys.2012.09.008_b0195 article-title: Automated identification of diabetic retinopathy stages using digital fundus images publication-title: J. Med. Syst. doi: 10.1007/s10916-007-9113-9 – ident: 10.1016/j.knosys.2012.09.008_b0115 doi: 10.1109/ICCCE.2008.4580604 – volume: 119 start-page: 509 year: 2001 ident: 10.1016/j.knosys.2012.09.008_b0150 article-title: Comparison of diagnosis of early retinal lesions of diabetic retinopathy between a computer system and human experts publication-title: Arch. Ophthalmol. doi: 10.1001/archopht.119.4.509 – ident: 10.1016/j.knosys.2012.09.008_b0160 doi: 10.1109/ICCV.2003.1238371 – volume: 24 start-page: 221 year: 2000 ident: 10.1016/j.knosys.2012.09.008_b0335 article-title: Comparison of texture analysis methods for the characterization of coronary plaques in intravascular ultrasound images publication-title: Comput. Med. Imag. Graph. doi: 10.1016/S0895-6111(00)00011-2 – year: 2006 ident: 10.1016/j.knosys.2012.09.008_b0065 – volume: 44 start-page: 761 year: 2003 ident: 10.1016/j.knosys.2012.09.008_b0140 article-title: Automated detection of fundus photographic red lesions in diabetic retinopathy publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.02-0418 – volume: 33 start-page: 337 year: 2009 ident: 10.1016/j.knosys.2012.09.008_b0200 article-title: Automated diagnosis of glaucoma using digital fundus images publication-title: J. Med. Syst. doi: 10.1007/s10916-008-9195-z – year: 2001 ident: 10.1016/j.knosys.2012.09.008_b0035 – volume: 40 start-page: 835 year: 1995 ident: 10.1016/j.knosys.2012.09.008_b0090 article-title: The use of texture analysis to delineate suspicious masses in mammography publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/40/5/009 – volume: vol. 2179 year: 2009 ident: 10.1016/j.knosys.2012.09.008_b0245 – volume: 15 start-page: 449 year: 2011 ident: 10.1016/j.knosys.2012.09.008_b0015 article-title: Automated diagnosis of glaucoma using texture and higher order spectra features publication-title: IEEE Trans. Inform. Technol. Biomed. doi: 10.1109/TITB.2011.2119322 – volume: 89 start-page: 299 year: 2006 ident: 10.1016/j.knosys.2012.09.008_b0120 article-title: An automated microaneurysm detector as a tool for identification of diabetic retinopathy in rural optometric practice publication-title: Clin. Exp. Optom. doi: 10.1111/j.1444-0938.2006.00071.x – ident: 10.1016/j.knosys.2012.09.008_b0135 – ident: 10.1016/j.knosys.2012.09.008_b0295 doi: 10.1109/ISPA.2003.1296409 – ident: 10.1016/j.knosys.2012.09.008_b0390 doi: 10.1177/0954411912458740 – volume: 19 start-page: 533 year: 2010 ident: 10.1016/j.knosys.2012.09.008_b0025 article-title: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2009.2035882 – ident: 10.1016/j.knosys.2012.09.008_b0370 – ident: 10.1016/j.knosys.2012.09.008_b0100 – ident: 10.1016/j.knosys.2012.09.008_b0315 – year: 2006 ident: 10.1016/j.knosys.2012.09.008_b0125 article-title: A decision support framework for automated screening of diabetic retinopathy publication-title: Int. J. Biomed. Imag. doi: 10.1155/IJBI/2006/45806 – volume: 230 start-page: 36 year: 1992 ident: 10.1016/j.knosys.2012.09.008_b0305 article-title: Automated detection and quantification of microaneurysms in fluorescein angiograms publication-title: Graefe’s Arch. Clin. Exp. Ophthalmol. doi: 10.1007/BF00166760 – volume: 16 start-page: 168 year: 2009 ident: 10.1016/j.knosys.2012.09.008_b0185 article-title: A-IFS histon based multithresholding algorithm for color image segmentation publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2008.2010820 – volume: 44 start-page: 767 year: 2003 ident: 10.1016/j.knosys.2012.09.008_b0145 article-title: Automated detection of diabetic retinopathy in a fundus photographic screening population publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.02-0417 – volume: 102 start-page: 251 year: 2005 ident: 10.1016/j.knosys.2012.09.008_b0205 article-title: Screening for diabetic retinopathy and optic disc topography with the “retinal thickness analyzer” (RTA) publication-title: Ophthalmologe doi: 10.1007/s00347-004-1098-x – volume: 39 start-page: 1141 year: 2012 ident: 10.1016/j.knosys.2012.09.008_b0270 article-title: Small retinal vessels extraction towards proliferative diabetic retinopathy screening publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.07.115 – volume: 3 start-page: 109 year: 1990 ident: 10.1016/j.knosys.2012.09.008_b0300 article-title: Probabilistic neural networks publication-title: J. Neural Networks doi: 10.1016/0893-6080(90)90049-Q – ident: 10.1016/j.knosys.2012.09.008_b0105 doi: 10.1109/ICIP.2001.958624 – volume: 39 start-page: 7600 year: 2012 ident: 10.1016/j.knosys.2012.09.008_b0165 article-title: Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.12.046 – volume: 21 start-page: 84 year: 2004 ident: 10.1016/j.knosys.2012.09.008_b0320 article-title: Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening publication-title: Diabetic Med. doi: 10.1046/j.1464-5491.2003.01085.x – year: 2006 ident: 10.1016/j.knosys.2012.09.008_b0260 |
| SSID | ssj0002218 |
| Score | 2.4309773 |
| Snippet | Human eye is one of the most sophisticated organ, with retina, pupil, iris cornea, lens and optic nerve. Automatic retinal image analysis is emerging as an... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 9 |
| SubjectTerms | Bifurcation point Blood vessels Diabetic retinopathy Evolutionary algorithm Laws texture energy Local binary pattern |
| Title | Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: A hybrid feature extraction approach |
| URI | https://dx.doi.org/10.1016/j.knosys.2012.09.008 https://www.proquest.com/docview/1475524764 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AKRWK dateStart: 19871201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWcOHS0tKKV9FU4ppuEjtxwm2FQEsr9kKRuFmO7ewujwQtWaS9cO-_7oyTgIqEkHqLIjuJPO_JzDeMHUoUZmNlHFiuZSDKMg-0iyzBVubCpSLRCXUjn0_S8aX4eZVcDdhx3wtDZZWd7m91utfW3Z1hd5rD-_l8eIHOAfIrOQwUSPg2aiEkTTH48fRS5hHHPsdHiwNa3bfP-Rqvm6p-WBFoN2UECbgye8s8vVLU3vqcbrIPndsIo_bLPrGBqz6zj_1IBugkdIv9OXnseEkvVqBvpzUG_7M7IGNlwZCrPC_xVUCQ33dUCgPNklIjgM4r6GVTewhXaFOyeEFNjlVNc4tXMF34gvsjGMFsRZ1eUDqPCwqo4RdthwT0IOVf2OXpye_jcdBNWwgM53kTmAzF25iIZyG3AglojEwtensisZEN8ywvYl4mMoqs1FrzAskf2cI4qTHKSQv-la1VdeW2GUTab6VYyuGTQnSBtJYutJYi0IzvMN4fsjIdFDlNxLhVfc3ZtWpJo4g0KswVkmaHBc-77lsojnfWy55-6h-WUmgt3tn5vSe3QmmjXyi6cvXyAQMlmSSxkKnY_e-n77GN2M_UoJqYfbbWLJbuG3o2TXHgWfeArY_Ofo0nfwF5NP5h |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHMqlPAoqrzKVek03iZ044bZCoKU8LgWJm-XYDmwLCdrNIu2FO_-aGSdpRSWE1FsU2UnkeU9mvmHsm0RhNlbGgeVaBqIs80C7yBJsZS5cKhKdUDfy-UU6uhI_rpPrBXbY98JQWWWn-1ud7rV1d2fQnebgYTwe_ETnAPmVHAYKJKiNekkksaQI7PvT3zqPOPZJPlod0PK-f84Xef2u6umcULspJUjIldlb9ukfTe3Nz_Eq-9j5jTBsP22NLbhqna30MxmgE9FP7PnosWMmPZmDvrupMfq_vQeyVhYM-crjEl8FhPl9T7Uw0MwoNwLovYKeNbXHcIU2J4sX1OVY1TS4eA43E19xfwBDuJ1TqxeUzgODAqr4SdsiAT1K-Qa7Oj66PBwF3biFwHCeN4HJUL6NiXgWciuQgsbI1KK7JxIb2TDP8iLmZSKjyEqtNS-Q_pEtjJMaw5y04Jtssaor95lBpP1WCqYcPilEH0hr6UJrKQTN-Bbj_SEr02GR00iMO9UXnf1SLWkUkUaFuULSbLHgz66HFovjnfWyp596xVMKzcU7O7_25FYobvQPRVeunk0xUpJJEguZiu3_fvo--zC6PD9TZycXpztsOfYDNqhAZpctNpOZ20M3pym-eDZ-AU0cAAU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+algorithm+based+classifier+parameter+tuning+for+automatic+diabetic+retinopathy+grading%3A+A+hybrid+feature+extraction+approach&rft.jtitle=Knowledge-based+systems&rft.au=Mookiah%2C+M.R.K.&rft.au=Acharya%2C+U.+Rajendra&rft.au=Martis%2C+Roshan+Joy&rft.au=Chua%2C+Chua+Kuang&rft.date=2013-02-01&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=39&rft.spage=9&rft.epage=22&rft_id=info:doi/10.1016%2Fj.knosys.2012.09.008&rft.externalDocID=S0950705112002651 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |