Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: A hybrid feature extraction approach

Human eye is one of the most sophisticated organ, with retina, pupil, iris cornea, lens and optic nerve. Automatic retinal image analysis is emerging as an important screening tool for early detection of eye diseases. Uncontrolled diabetes retinopathy (DR) and glaucoma may lead to blindness. DR is c...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 39; pp. 9 - 22
Main Authors Mookiah, M.R.K., Acharya, U. Rajendra, Martis, Roshan Joy, Chua, Chua Kuang, Lim, C.M., Ng, E.Y.K., Laude, Augustinus
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.2013
Subjects
Online AccessGet full text
ISSN0950-7051
1872-7409
DOI10.1016/j.knosys.2012.09.008

Cover

Abstract Human eye is one of the most sophisticated organ, with retina, pupil, iris cornea, lens and optic nerve. Automatic retinal image analysis is emerging as an important screening tool for early detection of eye diseases. Uncontrolled diabetes retinopathy (DR) and glaucoma may lead to blindness. DR is caused by damage to the small blood vessels of the retina in the posterior part of the eye of the diabetic patient. The main stages of DR are non-proliferate diabetes retinopathy (NPDR) and proliferate diabetes retinopathy (PDR). The retinal fundus photographs are widely used in the diagnosis and treatment of various eye diseases in clinics. It is also one of the main resources used for mass screening of DR. We present an automatic screening system for the detection of normal and DR stages (NPDR and PDR). The proposed systems involves processing of fundus images for extraction of abnormal signs, such as area of hard exudates, area of blood vessels, bifurcation points, texture and entropies. Our protocol uses total of 156 subjects consisting of two stages of DR and normal. In this work, we have fed thirteen statistically significant (p<0.0001) features for Probabilistic Neural Network (PNN), Decision Tree (DT) C4.5, and Support Vector Machine (SVM) to select the best classifier. The best model parameter (σ) for which the PNN classifier performed best was identified using global optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). We demonstrated an average classification accuracy of 96.15%, sensitivity of 96.27% and specificity of 96.08% for σ=0.0104 using threefold cross validation using PNN classifier. The computer-aided diagnosis (CAD) results were validated by comparing with expert ophthalmologists. The proposed automated system can aid clinicians to make a faster DR diagnosis during the mass screening of normal/DR images.
AbstractList Human eye is one of the most sophisticated organ, with retina, pupil, iris cornea, lens and optic nerve. Automatic retinal image analysis is emerging as an important screening tool for early detection of eye diseases. Uncontrolled diabetes retinopathy (DR) and glaucoma may lead to blindness. DR is caused by damage to the small blood vessels of the retina in the posterior part of the eye of the diabetic patient. The main stages of DR are non-proliferate diabetes retinopathy (NPDR) and proliferate diabetes retinopathy (PDR). The retinal fundus photographs are widely used in the diagnosis and treatment of various eye diseases in clinics. It is also one of the main resources used for mass screening of DR. We present an automatic screening system for the detection of normal and DR stages (NPDR and PDR). The proposed systems involves processing of fundus images for extraction of abnormal signs, such as area of hard exudates, area of blood vessels, bifurcation points, texture and entropies. Our protocol uses total of 156 subjects consisting of two stages of DR and normal. In this work, we have fed thirteen statistically significant (p<0.0001) features for Probabilistic Neural Network (PNN), Decision Tree (DT) C4.5, and Support Vector Machine (SVM) to select the best classifier. The best model parameter (σ) for which the PNN classifier performed best was identified using global optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). We demonstrated an average classification accuracy of 96.15%, sensitivity of 96.27% and specificity of 96.08% for σ=0.0104 using threefold cross validation using PNN classifier. The computer-aided diagnosis (CAD) results were validated by comparing with expert ophthalmologists. The proposed automated system can aid clinicians to make a faster DR diagnosis during the mass screening of normal/DR images.
Human eye is one of the most sophisticated organ, with retina, pupil, iris cornea, lens and optic nerve. Automatic retinal image analysis is emerging as an important screening tool for early detection of eye diseases. Uncontrolled diabetes retinopathy (DR) and glaucoma may lead to blindness. DR is caused by damage to the small blood vessels of the retina in the posterior part of the eye of the diabetic patient. The main stages of DR are non-proliferate diabetes retinopathy (NPDR) and proliferate diabetes retinopathy (PDR). The retinal fundus photographs are widely used in the diagnosis and treatment of various eye diseases in clinics. It is also one of the main resources used for mass screening of DR. We present an automatic screening system for the detection of normal and DR stages (NPDR and PDR). The proposed systems involves processing of fundus images for extraction of abnormal signs, such as area of hard exudates, area of blood vessels, bifurcation points, texture and entropies. Our protocol uses total of 156 subjects consisting of two stages of DR and normal. In this work, we have fed thirteen statistically significant (p < 0.0001) features for Probabilistic Neural Network (PNN), Decision Tree (DT) C4.5, and Support Vector Machine (SVM) to select the best classifier. The best model parameter (I) for which the PNN classifier performed best was identified using global optimization techniques such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). We demonstrated an average classification accuracy of 96.15%, sensitivity of 96.27% and specificity of 96.08% for I = 0.0104 using threefold cross validation using PNN classifier. The computer-aided diagnosis (CAD) results were validated by comparing with expert ophthalmologists. The proposed automated system can aid clinicians to make a faster DR diagnosis during the mass screening of normal/DR images.
Author Mookiah, M.R.K.
Martis, Roshan Joy
Laude, Augustinus
Acharya, U. Rajendra
Chua, Chua Kuang
Lim, C.M.
Ng, E.Y.K.
Author_xml – sequence: 1
  givenname: M.R.K.
  surname: Mookiah
  fullname: Mookiah, M.R.K.
  email: mkm2@np.edu.sg
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 2
  givenname: U. Rajendra
  surname: Acharya
  fullname: Acharya, U. Rajendra
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 3
  givenname: Roshan Joy
  surname: Martis
  fullname: Martis, Roshan Joy
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 4
  givenname: Chua Kuang
  surname: Chua
  fullname: Chua, Chua Kuang
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 5
  givenname: C.M.
  surname: Lim
  fullname: Lim, C.M.
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 6
  givenname: E.Y.K.
  surname: Ng
  fullname: Ng, E.Y.K.
  organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
– sequence: 7
  givenname: Augustinus
  surname: Laude
  fullname: Laude, Augustinus
  organization: National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore
BookMark eNqFkE9v1DAQxS3USmxbvgEHH7kk2PnnpAekqmopUiUucLYm48mulyQOtlOxH4FvjaPtiQNcZt7hvXma3xW7mN1MjL2XIpdCNh-P-Y_ZhVPICyGLXHS5EO0btpOtKjJVie6C7URXi0yJWr5lVyEchRBFIdsd-_3w4sY1WjeDP3EY987beJh4D4EMxxFCsIMlzxfwMFFMKq6znfd8cJ7DGt0E0SI3FnrahE9zdgvEw4nvPZhkveV3_HDqvTV8IIirJ06_ogfcajksi3eAhxt2OcAY6N3rvmbfHx--3T9lz18_f7m_e86wLLuYYVvKFlGWrShNhWgQVWPqpqlqI43o2q4vyqFWUhoFAGVPPUnTIymoa9H05TX7cL6ban-uFKKebEAaR5jJrUHLStV1UammStbqbEXvQvA06MXbKYHSUuiNvD7qM3m9kdei04l8it3-FUMbYXs2PW3H_4U_ncOUGLwk8jqgpRnJWE8YtXH23wf-AEF7qUE
CitedBy_id crossref_primary_10_3233_JIFS_220772
crossref_primary_10_1142_S0218339014500156
crossref_primary_10_1016_j_compeleceng_2018_11_024
crossref_primary_10_1016_j_compeleceng_2015_01_013
crossref_primary_10_1002_ima_22574
crossref_primary_10_1007_s12652_020_02727_z
crossref_primary_10_32604_iasc_2023_038165
crossref_primary_10_1016_j_compbiomed_2013_10_007
crossref_primary_10_1109_ACCESS_2022_3217216
crossref_primary_10_1016_j_bbe_2019_02_004
crossref_primary_10_1016_j_compbiomed_2022_105302
crossref_primary_10_1515_jisys_2016_0354
crossref_primary_10_1007_s11517_014_1180_8
crossref_primary_10_1007_s10916_019_1432_0
crossref_primary_10_1007_s11831_022_09720_z
crossref_primary_10_1016_j_compbiomed_2016_04_015
crossref_primary_10_1109_ACCESS_2018_2888639
crossref_primary_10_1016_j_compbiomed_2021_104453
crossref_primary_10_1142_S0219519419400049
crossref_primary_10_1007_s42600_019_00011_4
crossref_primary_10_1007_s10916_017_0853_x
crossref_primary_10_1007_s10916_019_1313_6
crossref_primary_10_1007_s11517_014_1167_5
crossref_primary_10_1016_j_compbiomed_2018_11_028
crossref_primary_10_3390_diagnostics11081405
crossref_primary_10_1007_s11042_022_12642_4
crossref_primary_10_1016_j_measurement_2019_02_089
crossref_primary_10_1016_j_compbiomed_2017_03_008
crossref_primary_10_1016_j_compbiomed_2019_103387
crossref_primary_10_1016_j_knosys_2016_10_019
crossref_primary_10_1109_JBHI_2019_2912668
crossref_primary_10_1007_s12065_020_00400_0
crossref_primary_10_1016_j_neucom_2018_10_098
crossref_primary_10_1142_S0219519415500451
crossref_primary_10_3390_diagnostics13193116
crossref_primary_10_1007_s11517_016_1563_0
crossref_primary_10_1007_s12652_020_02882_3
crossref_primary_10_1016_j_ijleo_2019_163328
crossref_primary_10_3390_s20041005
crossref_primary_10_3390_diagnostics13071212
crossref_primary_10_1007_s10916_019_1203_y
crossref_primary_10_1142_S0219519419400037
crossref_primary_10_3390_electronics9060914
crossref_primary_10_1016_j_bspc_2014_09_004
crossref_primary_10_3233_JIFS_169226
crossref_primary_10_1007_s12065_018_0158_0
crossref_primary_10_3390_diagnostics13101664
crossref_primary_10_1016_j_compbiomed_2014_07_015
crossref_primary_10_1080_03091902_2020_1791986
crossref_primary_10_1142_S0219467820500308
crossref_primary_10_1007_s12652_020_02647_y
crossref_primary_10_1007_s13246_021_01012_3
crossref_primary_10_1007_s11760_020_01816_y
crossref_primary_10_1007_s12065_021_00581_2
crossref_primary_10_1007_s10489_017_1048_3
crossref_primary_10_3390_app11093944
crossref_primary_10_1049_iet_cvi_2018_5263
crossref_primary_10_1007_s13246_020_00929_5
crossref_primary_10_1142_S0219519419500301
crossref_primary_10_1166_jmihi_2022_3932
crossref_primary_10_1166_jmihi_2022_3933
crossref_primary_10_1007_s12652_019_01617_3
crossref_primary_10_1007_s00138_018_00998_3
crossref_primary_10_1007_s00354_023_00215_4
crossref_primary_10_1016_j_compmedimag_2018_08_008
crossref_primary_10_1016_j_neucom_2018_03_023
crossref_primary_10_1016_j_imu_2021_100596
crossref_primary_10_1142_S0219519419400025
crossref_primary_10_1016_j_media_2019_101561
crossref_primary_10_3390_diagnostics11112025
crossref_primary_10_1007_s11831_018_9281_4
crossref_primary_10_1016_j_bspc_2018_02_008
crossref_primary_10_1016_j_compbiomed_2015_09_012
crossref_primary_10_1016_j_compmedimag_2016_08_005
crossref_primary_10_32604_iasc_2023_026243
crossref_primary_10_3390_app8091632
crossref_primary_10_1007_s00774_017_0836_5
crossref_primary_10_1080_03091902_2019_1576790
crossref_primary_10_1515_bmt_2016_0112
crossref_primary_10_1016_j_compbiomed_2015_05_019
crossref_primary_10_4015_S1016237216500460
crossref_primary_10_2174_1573405615666190219102427
crossref_primary_10_1016_j_bspc_2020_102115
crossref_primary_10_1007_s11517_015_1278_7
crossref_primary_10_1177_0954411919835856
crossref_primary_10_1515_bmt_2015_0188
crossref_primary_10_1016_j_compbiomed_2017_06_017
crossref_primary_10_1016_j_procs_2020_03_429
crossref_primary_10_1038_s41598_023_36311_0
crossref_primary_10_1109_JBHI_2015_2490798
crossref_primary_10_1142_S0218001418500349
crossref_primary_10_1016_j_compbiomed_2018_09_028
crossref_primary_10_1016_j_bbe_2018_07_005
crossref_primary_10_1016_j_compbiomed_2017_11_019
Cites_doi 10.1142/S0219519411004101
10.1016/j.infrared.2009.05.002
10.1109/TITB.2007.910453
10.1109/83.217222
10.1109/72.668893
10.2337/diacare.16.5.844a
10.1001/archopht.123.6.759
10.1016/1350-9462(94)00011-4
10.1109/TIP.2009.2015682
10.1109/TMI.2005.843738
10.1007/978-1-4471-0513-8_10
10.1007/s10916-008-9154-8
10.1243/09544119JEIM486
10.1016/j.micron.2011.03.003
10.1016/j.ins.2007.07.020
10.1109/TPAMI.2002.1017623
10.1016/j.eswa.2012.02.157
10.1016/j.eswa.2012.02.040
10.1007/s10916-009-9337-y
10.1016/j.patcog.2006.08.003
10.1016/j.ins.2007.03.027
10.1109/ICNN.1995.488968
10.1136/bjo.83.8.902
10.1016/j.knosys.2012.02.010
10.1007/s10916-007-9113-9
10.1109/ICCCE.2008.4580604
10.1001/archopht.119.4.509
10.1109/ICCV.2003.1238371
10.1016/S0895-6111(00)00011-2
10.1167/iovs.02-0418
10.1007/s10916-008-9195-z
10.1088/0031-9155/40/5/009
10.1109/TITB.2011.2119322
10.1111/j.1444-0938.2006.00071.x
10.1109/ISPA.2003.1296409
10.1177/0954411912458740
10.1109/TIP.2009.2035882
10.1155/IJBI/2006/45806
10.1007/BF00166760
10.1109/LSP.2008.2010820
10.1167/iovs.02-0417
10.1007/s00347-004-1098-x
10.1016/j.eswa.2011.07.115
10.1016/0893-6080(90)90049-Q
10.1109/ICIP.2001.958624
10.1016/j.eswa.2011.12.046
10.1046/j.1464-5491.2003.01085.x
ContentType Journal Article
Copyright 2012 Elsevier B.V.
Copyright_xml – notice: 2012 Elsevier B.V.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2012.09.008
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
EndPage 22
ExternalDocumentID 10_1016_j_knosys_2012_09_008
S0950705112002651
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
UHS
WH7
WUQ
XPP
ZMT
~02
~G-
77I
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c339t-c8318cc13803d4ccdcc76d56645d1d0989b23f5711d7aaa3bebe1dbce7a5506b3
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Sun Sep 28 09:41:02 EDT 2025
Sat Oct 25 05:18:38 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Fri Feb 23 02:28:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bifurcation point
Laws texture energy
Diabetic retinopathy
Local binary pattern
Evolutionary algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-c8318cc13803d4ccdcc76d56645d1d0989b23f5711d7aaa3bebe1dbce7a5506b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1475524764
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1475524764
crossref_primary_10_1016_j_knosys_2012_09_008
crossref_citationtrail_10_1016_j_knosys_2012_09_008
elsevier_sciencedirect_doi_10_1016_j_knosys_2012_09_008
PublicationCentury 2000
PublicationDate February 2013
2013-02-00
20130201
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: February 2013
PublicationDecade 2010
PublicationTitle Knowledge-based systems
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pharwaha, Singh (b0245) 2009; vol. 2179
Acharya, Lim, Ng, Chee, Tamura (b0010) 2009; 223
A. Hunter, J. Lowell, J. Owens, L. Kennedy, Quantification of diabetic retinopathy using neural networks and sensitivity analysis, in: Artificial Neural Networks in Medicine and Biology, 2000, pp. 81–86.
Wareham (b0345) 1993; 16
Ravindran, Ragsdell, Reklaitis (b0260) 2006
M.I. Iqbal, A.M. Aibinu, M. Nilsson, I.B. Tijani, M. Salami, Detection of vascular intersection in retina fundus image using modified cross point number and neural network technique, in: ICCCE 2008. International Conference on Computer and Communication Engineering, 2008, pp. 241–246.
L. Huiqi, O. Chutatape, Automatic location of optic disk in retinal images, in: Proceedings of 2001 International Conference on Image Processing, 2001, vol. 832, 2001, pp. 837–840.
Larsen, Godt, Grunkin, Lund-Andersen, Larsen (b0145) 2003; 44
Ng, Acharya, Keith, Lockwood (b0210) 2007; 177
Raghu, Yegnanarayana (b0255) 1998; 9
Acharya, Dua, Xian, Vinitha Sree, Chua Kuang (b0015) 2011; 15
B.M. Ege, O.V. Larsen, O.K. Hejlesen, Detection of abnormalities in retinal images using digital image analysis, in: 11th Scandinavian Conference on Image Processing, 1999, pp. 833–840.
Gupta, Undrill (b0090) 1995; 40
Mookiah, Rajendra Acharya, Lim, Petznick, Suri (b0385) 2012; 33
A.M. Aibinu, M.I. Iqbal, M. Nilsson, M.J.E. Salami, Automatic Diagnosis of diabetic retinopathy from fundus images using digital signal and image processing techniques, in: International Conference on Robotics, Vision, Information, and Signal Processing, Penang, Malaysia, 2007, pp. 510–515.
Frank (b0070) 1995; 14
Tan, Ng, Acharya, Chee (b0310) 2009; 52
M.M.R. Krishnan, U.R. Acharya, Chua Kuang Chua, E.Y.K. Ng, L.C. Min, M.M. Mushrif, A. Laude, Application of intuitionistic fuzzy histon segmentation for the automated detection of optic disc in digital fundus images, in: IEEE-EMBS International Conference on Biomedical and Health Informatics, Hong Kong, Shenzhen, 2012.
W. Huan, H. Wynne, G. Kheng Guan, L. Mong Li, An effective approach to detect lesions in color retinal images, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2000, vol. 182, 2000, pp. 181–186.
Larsen, Godt, Larsen, Lund-Andersen, Sjølie, Agardh, Kalm, Grunkin, Owens (b0140) 2003; 44
Gonzalez, Woods (b0080) 2002
Fogel (b0065) 2006
.
Krishnan, Choudhary, Chakraborty, Ray, Paul (b0190) 2011; 42
Quinlan (b0250) 1992
C. Sinthanayothin, Image Analysis for Automatic Diagnosis of Diabetic Retinopathy, PhD thesis, King’s College of London, 1999a.
Mushrif, Ray (b0185) 2009; 16
Ojala, Pietikäinen, Maenpaa (b0220) 2002; 24
Ronald, Peng (b0280) 2003
Weka. WEKA (Data Mining Software), 2006.
T.S. Korting, Technical Report on C4.5 Algorithm and Multivariate Decision Trees, Image Processing Division, National Institute for Space Research, Brazil, 2006.
Yun, Rajendra Acharya, Venkatesh, Chee, Min, Ng (b0365) 2008; 178
Osareh, Mirmehdi, Thomas, Markham (b0230) 2002
Ramlugun, Nagarajan, Chakraborty (b0270) 2012; 39
Hsiao, Liu, Yu, Kuo, Yu (b0380) 2012; 39
Kahai, Namuduri, Thompson (b0125) 2006
Chong, Zak (b0035) 2001
Petrou, Sevilla (b0240) 2006
Vincent (b0340) 1993; 2
Lee, Lee, Kingsley, Wang, Russell, Klein, Warn (b0150) 2001; 119
Gun, Gupta, Dasgupta (b0085) 2005
Sinthanayothin, Boyce, Cook, Williamson (b0290) 1999; 83
Yen, Wen-Fung (b0360) 2008; 12
Lee, Lee, Wang, Klein, Kingsley, Warn (b0155) 2005; 123
Specht (b0300) 1990; 3
Vince, Dixon, Cothren, Cornhill (b0335) 2000; 24
Martis, Chakraborty (b0180) 2011; 11
Nayak, Acharya, Bhat, Shetty, Lim (b0200) 2009; 33
Liao, Law, Chung (b0170) 2009; 18
Acharya, Sree, Alvin, Suri (b0265) 2012; 39
Englmeier, Schmid, Hildebrand, Bichler, Porta, Maurino, Bek (b0060) 2004; 9
Jelinek, Cree, Worsley, Luckie, Nixon (b0120) 2006; 89
Reza, Eswaran (b0275) 2011; 35
Chaudhuri, Samal (b0030) 2007; 40
Usher, Dumskyj, Himaga, Williamson, Nussey, Boyce (b0320) 2004; 21
Goldberg (b0075) 1989
Nayak, Bhat, Acharya U, Lim, Kagathi (b0195) 2008; 32
Verma, Prakash, Tewari (b0330) 2002; 80
Li, You, Zhang (b0165) 2012; 39
A. Osareh, M. Mirmehdi, B. Thomas, R. Markham, Medical Image Understanding and Analysis, Surrey, UK, 2001.
Emily (b0055) 2003
M.R.K. Mookiah, U.R. Acharya, C.K. Chua, L.C. Min, E.Y.K. Ng, M.M. Mushrif, A. Laude, Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, (2012), In Press
Acharya, Chua, Ng, Yu, Chee (b0005) 2008; 32
Neubauer, Chryssafis, Thiel, Priglinger, Welge-Lussen, Kampik (b0205) 2005; 102
Niemeijer, van Ginneken, Staal, Suttorp-Schulten, Abramoff (b0215) 2005; 24
C. Sinthanayothin, V. Kongbunkiat, S. Phoojaruenchanachai, A. Singalavanija, Automated screening system for diabetic retinopathy, in: ISPA 2003, Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, 2003. vol. 912, 2003, pp. 915–920.
Vapnik (b0325) 1998
Christianini, Taylor (b0040) 2000
Spencer, Phillips, Sharp, Forrester (b0305) 1992; 230
X. Zhang, A. Chutatape, Detection and classification of bright lesions in color fundus images, in: ICIP ’04, 2004 International Conference on Image Processing, 2004, vol. 131, 2004, pp. 139–142.
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, 1995, vol. 1944, 1995, pp. 1942–1948.
M.J. Cree, J.J.G. Leandro, J.V.B. Soares, R.M.J.C. Jr, H.F. Jelinek, D. Cornforth, Comparison of various methods to delineate blood vessels in retinal images, in: 16th Australian Institute of Physics Congress, Canberra, 2005.
Z. Xiaohui, O. Chutatape, Top-down and bottom-up strategies in lesion detection of background diabetic retinopathy, in: CVPR 2005, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, vol. 422, 2005, pp. 422–428.
Baochang, Yongsheng, Sanqiang, Jianzhuang (b0025) 2010; 19
Osareh, Mirmehdi, Thomas, Markham (b0235) 2002
H. Li, O. Chutatape, A model-based approach for automated feature extraction in fundus images, in: Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, vol. 391, 2003, pp. 394–399.
Raghu (10.1016/j.knosys.2012.09.008_b0255) 1998; 9
Baochang (10.1016/j.knosys.2012.09.008_b0025) 2010; 19
Emily (10.1016/j.knosys.2012.09.008_b0055) 2003
Pharwaha (10.1016/j.knosys.2012.09.008_b0245) 2009; vol. 2179
Ramlugun (10.1016/j.knosys.2012.09.008_b0270) 2012; 39
Usher (10.1016/j.knosys.2012.09.008_b0320) 2004; 21
Nayak (10.1016/j.knosys.2012.09.008_b0200) 2009; 33
Ronald (10.1016/j.knosys.2012.09.008_b0280) 2003
Nayak (10.1016/j.knosys.2012.09.008_b0195) 2008; 32
Chaudhuri (10.1016/j.knosys.2012.09.008_b0030) 2007; 40
10.1016/j.knosys.2012.09.008_b0355
10.1016/j.knosys.2012.09.008_b0110
10.1016/j.knosys.2012.09.008_b0315
10.1016/j.knosys.2012.09.008_b0115
Mushrif (10.1016/j.knosys.2012.09.008_b0185) 2009; 16
10.1016/j.knosys.2012.09.008_b0390
10.1016/j.knosys.2012.09.008_b0350
Englmeier (10.1016/j.knosys.2012.09.008_b0060) 2004; 9
Li (10.1016/j.knosys.2012.09.008_b0165) 2012; 39
Vapnik (10.1016/j.knosys.2012.09.008_b0325) 1998
Vince (10.1016/j.knosys.2012.09.008_b0335) 2000; 24
Christianini (10.1016/j.knosys.2012.09.008_b0040) 2000
Tan (10.1016/j.knosys.2012.09.008_b0310) 2009; 52
Acharya (10.1016/j.knosys.2012.09.008_b0265) 2012; 39
Verma (10.1016/j.knosys.2012.09.008_b0330) 2002; 80
Osareh (10.1016/j.knosys.2012.09.008_b0235) 2002
Krishnan (10.1016/j.knosys.2012.09.008_b0190) 2011; 42
10.1016/j.knosys.2012.09.008_b0045
Lee (10.1016/j.knosys.2012.09.008_b0155) 2005; 123
Acharya (10.1016/j.knosys.2012.09.008_b0010) 2009; 223
Goldberg (10.1016/j.knosys.2012.09.008_b0075) 1989
10.1016/j.knosys.2012.09.008_b0160
Specht (10.1016/j.knosys.2012.09.008_b0300) 1990; 3
Acharya (10.1016/j.knosys.2012.09.008_b0005) 2008; 32
Larsen (10.1016/j.knosys.2012.09.008_b0145) 2003; 44
Spencer (10.1016/j.knosys.2012.09.008_b0305) 1992; 230
Liao (10.1016/j.knosys.2012.09.008_b0170) 2009; 18
10.1016/j.knosys.2012.09.008_b0285
Vincent (10.1016/j.knosys.2012.09.008_b0340) 1993; 2
Acharya (10.1016/j.knosys.2012.09.008_b0015) 2011; 15
Petrou (10.1016/j.knosys.2012.09.008_b0240) 2006
Ravindran (10.1016/j.knosys.2012.09.008_b0260) 2006
Ng (10.1016/j.knosys.2012.09.008_b0210) 2007; 177
Martis (10.1016/j.knosys.2012.09.008_b0180) 2011; 11
Kahai (10.1016/j.knosys.2012.09.008_b0125) 2006
10.1016/j.knosys.2012.09.008_b0135
Yen (10.1016/j.knosys.2012.09.008_b0360) 2008; 12
Niemeijer (10.1016/j.knosys.2012.09.008_b0215) 2005; 24
10.1016/j.knosys.2012.09.008_b0050
Yun (10.1016/j.knosys.2012.09.008_b0365) 2008; 178
Wareham (10.1016/j.knosys.2012.09.008_b0345) 1993; 16
10.1016/j.knosys.2012.09.008_b0130
Ojala (10.1016/j.knosys.2012.09.008_b0220) 2002; 24
10.1016/j.knosys.2012.09.008_b0295
Neubauer (10.1016/j.knosys.2012.09.008_b0205) 2005; 102
10.1016/j.knosys.2012.09.008_b0370
Mookiah (10.1016/j.knosys.2012.09.008_b0385) 2012; 33
Quinlan (10.1016/j.knosys.2012.09.008_b0250) 1992
Chong (10.1016/j.knosys.2012.09.008_b0035) 2001
Sinthanayothin (10.1016/j.knosys.2012.09.008_b0290) 1999; 83
Osareh (10.1016/j.knosys.2012.09.008_b0230) 2002
Jelinek (10.1016/j.knosys.2012.09.008_b0120) 2006; 89
Gun (10.1016/j.knosys.2012.09.008_b0085) 2005
Gonzalez (10.1016/j.knosys.2012.09.008_b0080) 2002
Gupta (10.1016/j.knosys.2012.09.008_b0090) 1995; 40
Lee (10.1016/j.knosys.2012.09.008_b0150) 2001; 119
10.1016/j.knosys.2012.09.008_b0100
10.1016/j.knosys.2012.09.008_b0105
Larsen (10.1016/j.knosys.2012.09.008_b0140) 2003; 44
Frank (10.1016/j.knosys.2012.09.008_b0070) 1995; 14
10.1016/j.knosys.2012.09.008_b0225
Reza (10.1016/j.knosys.2012.09.008_b0275) 2011; 35
Fogel (10.1016/j.knosys.2012.09.008_b0065) 2006
10.1016/j.knosys.2012.09.008_b0020
Hsiao (10.1016/j.knosys.2012.09.008_b0380) 2012; 39
References_xml – volume: 16
  start-page: 844
  year: 1993
  ident: b0345
  article-title: Cost-effectiveness of alternative methods for diabetic retinopathy screening
  publication-title: Diabetes Care
– reference: B.M. Ege, O.V. Larsen, O.K. Hejlesen, Detection of abnormalities in retinal images using digital image analysis, in: 11th Scandinavian Conference on Image Processing, 1999, pp. 833–840.
– year: 2006
  ident: b0065
  article-title: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence
– reference: T.S. Korting, Technical Report on C4.5 Algorithm and Multivariate Decision Trees, Image Processing Division, National Institute for Space Research, Brazil, 2006.
– reference: M.I. Iqbal, A.M. Aibinu, M. Nilsson, I.B. Tijani, M. Salami, Detection of vascular intersection in retina fundus image using modified cross point number and neural network technique, in: ICCCE 2008. International Conference on Computer and Communication Engineering, 2008, pp. 241–246.
– start-page: 413
  year: 2002
  end-page: 420
  ident: b0235
  article-title: Comparative exudate classification using support vector machines and neural networks
  publication-title: Proceedings of the 5th International Conference on Medical Image Computing and Computer-Assisted Intervention – Part II
– volume: 21
  start-page: 84
  year: 2004
  end-page: 90
  ident: b0320
  article-title: Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening
  publication-title: Diabetic Med.
– year: 2005
  ident: b0085
  article-title: An Outline of Statistical Theory
– year: 1998
  ident: b0325
  article-title: Statistical Learning Theory
– reference: Weka. WEKA (Data Mining Software), 2006. <
– volume: 83
  start-page: 902
  year: 1999
  end-page: 910
  ident: b0290
  article-title: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images
  publication-title: British Journal of Ophthalmology
– reference: A. Hunter, J. Lowell, J. Owens, L. Kennedy, Quantification of diabetic retinopathy using neural networks and sensitivity analysis, in: Artificial Neural Networks in Medicine and Biology, 2000, pp. 81–86.
– volume: 11
  start-page: 897
  year: 2011
  end-page: 915
  ident: b0180
  article-title: Arrhythmia disease diagnosis using neural network, SVM and genetic algorithm optimized
  publication-title: J. Mech. Med. Biol.
– volume: 35
  start-page: 17
  year: 2011
  end-page: 24
  ident: b0275
  article-title: A decision support system for automatic screening of non-proliferative diabetic retinopathy
  publication-title: J. Med. Syst.
– volume: 2
  start-page: 176
  year: 1993
  end-page: 201
  ident: b0340
  article-title: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms
  publication-title: IEEE Trans. Image Process.
– reference: A. Osareh, M. Mirmehdi, B. Thomas, R. Markham, Medical Image Understanding and Analysis, Surrey, UK, 2001.
– year: 2000
  ident: b0040
  article-title: An Introduction to Support Vector Machines and Other Kernel based Learning Methods
– year: 2003
  ident: b0055
  article-title: Diabetic Retinopathy Preferred Practice Patterns
– volume: 16
  start-page: 168
  year: 2009
  end-page: 171
  ident: b0185
  article-title: A-IFS histon based multithresholding algorithm for color image segmentation
  publication-title: IEEE Signal Process. Lett.
– volume: 89
  start-page: 299
  year: 2006
  end-page: 305
  ident: b0120
  article-title: An automated microaneurysm detector as a tool for identification of diabetic retinopathy in rural optometric practice
  publication-title: Clin. Exp. Optom.
– volume: 19
  start-page: 533
  year: 2010
  end-page: 544
  ident: b0025
  article-title: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor
  publication-title: IEEE Transactions on Image Processing
– volume: 42
  start-page: 632
  year: 2011
  end-page: 641
  ident: b0190
  article-title: Texture based segmentation of epithelial layer from oral histological images
  publication-title: Micron
– reference: M.R.K. Mookiah, U.R. Acharya, C.K. Chua, L.C. Min, E.Y.K. Ng, M.M. Mushrif, A. Laude, Automated detection of optic disk in retinal fundus images using intuitionistic fuzzy histon segmentation, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, (2012), In Press, <
– year: 2006
  ident: b0125
  article-title: A decision support framework for automated screening of diabetic retinopathy
  publication-title: Int. J. Biomed. Imag.
– reference: M.J. Cree, J.J.G. Leandro, J.V.B. Soares, R.M.J.C. Jr, H.F. Jelinek, D. Cornforth, Comparison of various methods to delineate blood vessels in retinal images, in: 16th Australian Institute of Physics Congress, Canberra, 2005.
– start-page: 502
  year: 2002
  end-page: 516
  ident: b0230
  article-title: Classification and localisation of diabetic-related eye disease
  publication-title: Proceedings of the 7th European Conference on Computer Vision – Part IV
– year: 2006
  ident: b0260
  article-title: Engineering Optimization Methods and Applications
– volume: 44
  start-page: 767
  year: 2003
  end-page: 771
  ident: b0145
  article-title: Automated detection of diabetic retinopathy in a fundus photographic screening population
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 178
  start-page: 106
  year: 2008
  end-page: 121
  ident: b0365
  article-title: Identification of different stages of diabetic retinopathy using retinal optical images
  publication-title: Informat. Sci.
– volume: 119
  start-page: 509
  year: 2001
  end-page: 515
  ident: b0150
  article-title: Comparison of diagnosis of early retinal lesions of diabetic retinopathy between a computer system and human experts
  publication-title: Arch. Ophthalmol.
– volume: 14
  start-page: 2361
  year: 1995
  end-page: 2392
  ident: b0070
  article-title: Diabetic retinopathy
  publication-title: Progr. Retinal Eye Res.
– year: 1992
  ident: b0250
  article-title: C 4. 5: Programs for Machine Learning
– volume: 12
  start-page: 118
  year: 2008
  end-page: 130
  ident: b0360
  article-title: A sorting system for hierarchical grading of diabetic fundus images: a preliminary study
  publication-title: IEEE Trans. Informat. Technol. Biomed.
– reference: W. Huan, H. Wynne, G. Kheng Guan, L. Mong Li, An effective approach to detect lesions in color retinal images, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2000, vol. 182, 2000, pp. 181–186.
– volume: 39
  start-page: 10600
  year: 2012
  end-page: 10606
  ident: b0380
  article-title: A novel optic disc detection scheme on retinal images
  publication-title: Expert Syst. Appl.
– volume: 44
  start-page: 761
  year: 2003
  end-page: 766
  ident: b0140
  article-title: Automated detection of fundus photographic red lesions in diabetic retinopathy
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 102
  start-page: 251
  year: 2005
  end-page: 258
  ident: b0205
  article-title: Screening for diabetic retinopathy and optic disc topography with the “retinal thickness analyzer” (RTA)
  publication-title: Ophthalmologe
– volume: 80
  start-page: 419
  year: 2002
  end-page: 420
  ident: b0330
  article-title: Diabetic retinopathy: time for action. No complacency please!
  publication-title: Bull. World Health Organizat.
– volume: 18
  start-page: 1107
  year: 2009
  end-page: 1118
  ident: b0170
  article-title: Dominant local binary patterns for texture classification
  publication-title: IEEE Trans. Image Process.
– volume: 33
  start-page: 73
  year: 2012
  end-page: 82
  ident: b0385
  article-title: Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features
  publication-title: Knowl. Based Syst.
– volume: 24
  start-page: 584
  year: 2005
  end-page: 592
  ident: b0215
  article-title: Automatic detection of red lesions in digital color fundus photographs
  publication-title: IEEE Trans. Med. Imag.
– reference: L. Huiqi, O. Chutatape, Automatic location of optic disk in retinal images, in: Proceedings of 2001 International Conference on Image Processing, 2001, vol. 832, 2001, pp. 837–840.
– reference: Z. Xiaohui, O. Chutatape, Top-down and bottom-up strategies in lesion detection of background diabetic retinopathy, in: CVPR 2005, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, vol. 422, 2005, pp. 422–428.
– volume: 123
  start-page: 759
  year: 2005
  end-page: 764
  ident: b0155
  article-title: Computer classification of non-proliferative diabetic retinopathy
  publication-title: Arch. Ophthalmol.
– volume: 230
  start-page: 36
  year: 1992
  end-page: 41
  ident: b0305
  article-title: Automated detection and quantification of microaneurysms in fluorescein angiograms
  publication-title: Graefe’s Arch. Clin. Exp. Ophthalmol.
– volume: 9
  start-page: 473
  year: 2004
  end-page: 478
  ident: b0060
  article-title: Early detection of diabetes retinopathy by new algorithms for automatic recognition of vascular changes
  publication-title: Eur. J. Med. Res.
– volume: 9
  start-page: 516
  year: 1998
  end-page: 522
  ident: b0255
  article-title: Supervised texture classification using a probabilistic neural network and constraint satisfaction model
  publication-title: IEEE Transactions on Neural Networks
– year: 2003
  ident: b0280
  article-title: A Textbook of Clinical Ophthalmology: A Practical Guide to Disorders of the Eyes and their Management
– volume: 32
  start-page: 481
  year: 2008
  end-page: 488
  ident: b0005
  article-title: Application of higher order spectra for the identification of diabetes retinopathy stages
  publication-title: J. Med. Syst.
– volume: 40
  start-page: 1981
  year: 2007
  end-page: 1989
  ident: b0030
  article-title: A simple method for fitting of bounding rectangle to closed regions
  publication-title: Pattern Recognition
– volume: 223
  start-page: 545
  year: 2009
  end-page: 553
  ident: b0010
  article-title: Computer-based detection of diabetes retinopathy stages using digital fundus images
  publication-title: Proc. Inst. Mech. Eng. H
– reference: X. Zhang, A. Chutatape, Detection and classification of bright lesions in color fundus images, in: ICIP ’04, 2004 International Conference on Image Processing, 2004, vol. 131, 2004, pp. 139–142.
– volume: vol. 2179
  year: 2009
  ident: b0245
  publication-title: Shannon and Non-Shannon Measures of Entropy for Statistical Texture Feature Extraction in Digitized Mammograms
– reference: H. Li, O. Chutatape, A model-based approach for automated feature extraction in fundus images, in: Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, vol. 391, 2003, pp. 394–399.
– year: 2002
  ident: b0080
  article-title: Digital Image Processing
– volume: 39
  start-page: 9072
  year: 2012
  end-page: 9078
  ident: b0265
  article-title: Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework
  publication-title: Expert Syst. Appl.
– volume: 33
  start-page: 337
  year: 2009
  end-page: 346
  ident: b0200
  article-title: Automated diagnosis of glaucoma using digital fundus images
  publication-title: J. Med. Syst.
– year: 2001
  ident: b0035
  article-title: An Introduction to Optimization
– volume: 32
  start-page: 107
  year: 2008
  end-page: 115
  ident: b0195
  article-title: Automated identification of diabetic retinopathy stages using digital fundus images
  publication-title: J. Med. Syst.
– year: 2006
  ident: b0240
  article-title: Image Processing–Dealing with Texture
– volume: 177
  start-page: 4526
  year: 2007
  end-page: 4538
  ident: b0210
  article-title: Detection and differentiation of breast cancer using neural classifiers with first warning thermal sensors
  publication-title: Inform. Sci.
– volume: 39
  start-page: 1141
  year: 2012
  end-page: 1146
  ident: b0270
  article-title: Small retinal vessels extraction towards proliferative diabetic retinopathy screening
  publication-title: Expert Syst. Appl.
– volume: 40
  start-page: 835
  year: 1995
  end-page: 855
  ident: b0090
  article-title: The use of texture analysis to delineate suspicious masses in mammography
  publication-title: Phys. Med. Biol.
– year: 1989
  ident: b0075
  article-title: Genetic Algorithms in Search, Optimization, and Machine Learning
– reference: >.
– volume: 39
  start-page: 7600
  year: 2012
  end-page: 7610
  ident: b0165
  article-title: Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses
  publication-title: Expert Syst. Appl.
– reference: M.M.R. Krishnan, U.R. Acharya, Chua Kuang Chua, E.Y.K. Ng, L.C. Min, M.M. Mushrif, A. Laude, Application of intuitionistic fuzzy histon segmentation for the automated detection of optic disc in digital fundus images, in: IEEE-EMBS International Conference on Biomedical and Health Informatics, Hong Kong, Shenzhen, 2012.
– reference: C. Sinthanayothin, Image Analysis for Automatic Diagnosis of Diabetic Retinopathy, PhD thesis, King’s College of London, 1999a.
– volume: 3
  start-page: 109
  year: 1990
  end-page: 118
  ident: b0300
  article-title: Probabilistic neural networks
  publication-title: J. Neural Networks
– volume: 15
  start-page: 449
  year: 2011
  end-page: 455
  ident: b0015
  article-title: Automated diagnosis of glaucoma using texture and higher order spectra features
  publication-title: IEEE Trans. Inform. Technol. Biomed.
– reference: C. Sinthanayothin, V. Kongbunkiat, S. Phoojaruenchanachai, A. Singalavanija, Automated screening system for diabetic retinopathy, in: ISPA 2003, Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis, 2003. vol. 912, 2003, pp. 915–920.
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, 1995, vol. 1944, 1995, pp. 1942–1948.
– volume: 24
  start-page: 221
  year: 2000
  end-page: 229
  ident: b0335
  article-title: Comparison of texture analysis methods for the characterization of coronary plaques in intravascular ultrasound images
  publication-title: Comput. Med. Imag. Graph.
– reference: A.M. Aibinu, M.I. Iqbal, M. Nilsson, M.J.E. Salami, Automatic Diagnosis of diabetic retinopathy from fundus images using digital signal and image processing techniques, in: International Conference on Robotics, Vision, Information, and Signal Processing, Penang, Malaysia, 2007, pp. 510–515.
– volume: 52
  start-page: 97
  year: 2009
  end-page: 108
  ident: b0310
  article-title: Infrared thermography on ocular surface temperature: a review
  publication-title: Infrared Phys. Technol.
– volume: 24
  start-page: 971
  year: 2002
  end-page: 987
  ident: b0220
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 413
  year: 2002
  ident: 10.1016/j.knosys.2012.09.008_b0235
  article-title: Comparative exudate classification using support vector machines and neural networks
– volume: 11
  start-page: 897
  year: 2011
  ident: 10.1016/j.knosys.2012.09.008_b0180
  article-title: Arrhythmia disease diagnosis using neural network, SVM and genetic algorithm optimized k-means clustering
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519411004101
– volume: 52
  start-page: 97
  issue: 4
  year: 2009
  ident: 10.1016/j.knosys.2012.09.008_b0310
  article-title: Infrared thermography on ocular surface temperature: a review
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2009.05.002
– start-page: 502
  year: 2002
  ident: 10.1016/j.knosys.2012.09.008_b0230
  article-title: Classification and localisation of diabetic-related eye disease
– volume: 12
  start-page: 118
  year: 2008
  ident: 10.1016/j.knosys.2012.09.008_b0360
  article-title: A sorting system for hierarchical grading of diabetic fundus images: a preliminary study
  publication-title: IEEE Trans. Informat. Technol. Biomed.
  doi: 10.1109/TITB.2007.910453
– volume: 2
  start-page: 176
  year: 1993
  ident: 10.1016/j.knosys.2012.09.008_b0340
  article-title: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.217222
– ident: 10.1016/j.knosys.2012.09.008_b0050
– volume: 9
  start-page: 516
  year: 1998
  ident: 10.1016/j.knosys.2012.09.008_b0255
  article-title: Supervised texture classification using a probabilistic neural network and constraint satisfaction model
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.668893
– volume: 9
  start-page: 473
  year: 2004
  ident: 10.1016/j.knosys.2012.09.008_b0060
  article-title: Early detection of diabetes retinopathy by new algorithms for automatic recognition of vascular changes
  publication-title: Eur. J. Med. Res.
– volume: 16
  start-page: 844
  year: 1993
  ident: 10.1016/j.knosys.2012.09.008_b0345
  article-title: Cost-effectiveness of alternative methods for diabetic retinopathy screening
  publication-title: Diabetes Care
  doi: 10.2337/diacare.16.5.844a
– ident: 10.1016/j.knosys.2012.09.008_b0285
– volume: 123
  start-page: 759
  year: 2005
  ident: 10.1016/j.knosys.2012.09.008_b0155
  article-title: Computer classification of non-proliferative diabetic retinopathy
  publication-title: Arch. Ophthalmol.
  doi: 10.1001/archopht.123.6.759
– volume: 14
  start-page: 2361
  year: 1995
  ident: 10.1016/j.knosys.2012.09.008_b0070
  article-title: Diabetic retinopathy
  publication-title: Progr. Retinal Eye Res.
  doi: 10.1016/1350-9462(94)00011-4
– volume: 18
  start-page: 1107
  year: 2009
  ident: 10.1016/j.knosys.2012.09.008_b0170
  article-title: Dominant local binary patterns for texture classification
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2009.2015682
– volume: 24
  start-page: 584
  year: 2005
  ident: 10.1016/j.knosys.2012.09.008_b0215
  article-title: Automatic detection of red lesions in digital color fundus photographs
  publication-title: IEEE Trans. Med. Imag.
  doi: 10.1109/TMI.2005.843738
– ident: 10.1016/j.knosys.2012.09.008_b0110
  doi: 10.1007/978-1-4471-0513-8_10
– volume: 32
  start-page: 481
  year: 2008
  ident: 10.1016/j.knosys.2012.09.008_b0005
  article-title: Application of higher order spectra for the identification of diabetes retinopathy stages
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-008-9154-8
– year: 1998
  ident: 10.1016/j.knosys.2012.09.008_b0325
– volume: 223
  start-page: 545
  year: 2009
  ident: 10.1016/j.knosys.2012.09.008_b0010
  article-title: Computer-based detection of diabetes retinopathy stages using digital fundus images
  publication-title: Proc. Inst. Mech. Eng. H
  doi: 10.1243/09544119JEIM486
– volume: 42
  start-page: 632
  year: 2011
  ident: 10.1016/j.knosys.2012.09.008_b0190
  article-title: Texture based segmentation of epithelial layer from oral histological images
  publication-title: Micron
  doi: 10.1016/j.micron.2011.03.003
– ident: 10.1016/j.knosys.2012.09.008_b0355
– volume: 80
  start-page: 419
  year: 2002
  ident: 10.1016/j.knosys.2012.09.008_b0330
  article-title: Diabetic retinopathy: time for action. No complacency please!
  publication-title: Bull. World Health Organizat.
– ident: 10.1016/j.knosys.2012.09.008_b0225
– volume: 178
  start-page: 106
  year: 2008
  ident: 10.1016/j.knosys.2012.09.008_b0365
  article-title: Identification of different stages of diabetic retinopathy using retinal optical images
  publication-title: Informat. Sci.
  doi: 10.1016/j.ins.2007.07.020
– volume: 24
  start-page: 971
  year: 2002
  ident: 10.1016/j.knosys.2012.09.008_b0220
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017623
– year: 2002
  ident: 10.1016/j.knosys.2012.09.008_b0080
– volume: 39
  start-page: 10600
  year: 2012
  ident: 10.1016/j.knosys.2012.09.008_b0380
  article-title: A novel optic disc detection scheme on retinal images
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.02.157
– year: 2000
  ident: 10.1016/j.knosys.2012.09.008_b0040
– year: 1992
  ident: 10.1016/j.knosys.2012.09.008_b0250
– volume: 39
  start-page: 9072
  year: 2012
  ident: 10.1016/j.knosys.2012.09.008_b0265
  article-title: Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.02.040
– volume: 35
  start-page: 17
  year: 2011
  ident: 10.1016/j.knosys.2012.09.008_b0275
  article-title: A decision support system for automatic screening of non-proliferative diabetic retinopathy
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-009-9337-y
– year: 2003
  ident: 10.1016/j.knosys.2012.09.008_b0280
– year: 2003
  ident: 10.1016/j.knosys.2012.09.008_b0055
– volume: 40
  start-page: 1981
  year: 2007
  ident: 10.1016/j.knosys.2012.09.008_b0030
  article-title: A simple method for fitting of bounding rectangle to closed regions
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2006.08.003
– volume: 177
  start-page: 4526
  year: 2007
  ident: 10.1016/j.knosys.2012.09.008_b0210
  article-title: Detection and differentiation of breast cancer using neural classifiers with first warning thermal sensors
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2007.03.027
– ident: 10.1016/j.knosys.2012.09.008_b0130
  doi: 10.1109/ICNN.1995.488968
– volume: 83
  start-page: 902
  year: 1999
  ident: 10.1016/j.knosys.2012.09.008_b0290
  article-title: Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images
  publication-title: British Journal of Ophthalmology
  doi: 10.1136/bjo.83.8.902
– year: 2006
  ident: 10.1016/j.knosys.2012.09.008_b0240
– ident: 10.1016/j.knosys.2012.09.008_b0020
– volume: 33
  start-page: 73
  year: 2012
  ident: 10.1016/j.knosys.2012.09.008_b0385
  article-title: Data mining technique for automated diagnosis of glaucoma using higher order spectra and wavelet energy features
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2012.02.010
– ident: 10.1016/j.knosys.2012.09.008_b0045
– year: 2005
  ident: 10.1016/j.knosys.2012.09.008_b0085
– year: 1989
  ident: 10.1016/j.knosys.2012.09.008_b0075
– ident: 10.1016/j.knosys.2012.09.008_b0350
– volume: 32
  start-page: 107
  year: 2008
  ident: 10.1016/j.knosys.2012.09.008_b0195
  article-title: Automated identification of diabetic retinopathy stages using digital fundus images
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-007-9113-9
– ident: 10.1016/j.knosys.2012.09.008_b0115
  doi: 10.1109/ICCCE.2008.4580604
– volume: 119
  start-page: 509
  year: 2001
  ident: 10.1016/j.knosys.2012.09.008_b0150
  article-title: Comparison of diagnosis of early retinal lesions of diabetic retinopathy between a computer system and human experts
  publication-title: Arch. Ophthalmol.
  doi: 10.1001/archopht.119.4.509
– ident: 10.1016/j.knosys.2012.09.008_b0160
  doi: 10.1109/ICCV.2003.1238371
– volume: 24
  start-page: 221
  year: 2000
  ident: 10.1016/j.knosys.2012.09.008_b0335
  article-title: Comparison of texture analysis methods for the characterization of coronary plaques in intravascular ultrasound images
  publication-title: Comput. Med. Imag. Graph.
  doi: 10.1016/S0895-6111(00)00011-2
– year: 2006
  ident: 10.1016/j.knosys.2012.09.008_b0065
– volume: 44
  start-page: 761
  year: 2003
  ident: 10.1016/j.knosys.2012.09.008_b0140
  article-title: Automated detection of fundus photographic red lesions in diabetic retinopathy
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.02-0418
– volume: 33
  start-page: 337
  year: 2009
  ident: 10.1016/j.knosys.2012.09.008_b0200
  article-title: Automated diagnosis of glaucoma using digital fundus images
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-008-9195-z
– year: 2001
  ident: 10.1016/j.knosys.2012.09.008_b0035
– volume: 40
  start-page: 835
  year: 1995
  ident: 10.1016/j.knosys.2012.09.008_b0090
  article-title: The use of texture analysis to delineate suspicious masses in mammography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/40/5/009
– volume: vol. 2179
  year: 2009
  ident: 10.1016/j.knosys.2012.09.008_b0245
– volume: 15
  start-page: 449
  year: 2011
  ident: 10.1016/j.knosys.2012.09.008_b0015
  article-title: Automated diagnosis of glaucoma using texture and higher order spectra features
  publication-title: IEEE Trans. Inform. Technol. Biomed.
  doi: 10.1109/TITB.2011.2119322
– volume: 89
  start-page: 299
  year: 2006
  ident: 10.1016/j.knosys.2012.09.008_b0120
  article-title: An automated microaneurysm detector as a tool for identification of diabetic retinopathy in rural optometric practice
  publication-title: Clin. Exp. Optom.
  doi: 10.1111/j.1444-0938.2006.00071.x
– ident: 10.1016/j.knosys.2012.09.008_b0135
– ident: 10.1016/j.knosys.2012.09.008_b0295
  doi: 10.1109/ISPA.2003.1296409
– ident: 10.1016/j.knosys.2012.09.008_b0390
  doi: 10.1177/0954411912458740
– volume: 19
  start-page: 533
  year: 2010
  ident: 10.1016/j.knosys.2012.09.008_b0025
  article-title: Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2009.2035882
– ident: 10.1016/j.knosys.2012.09.008_b0370
– ident: 10.1016/j.knosys.2012.09.008_b0100
– ident: 10.1016/j.knosys.2012.09.008_b0315
– year: 2006
  ident: 10.1016/j.knosys.2012.09.008_b0125
  article-title: A decision support framework for automated screening of diabetic retinopathy
  publication-title: Int. J. Biomed. Imag.
  doi: 10.1155/IJBI/2006/45806
– volume: 230
  start-page: 36
  year: 1992
  ident: 10.1016/j.knosys.2012.09.008_b0305
  article-title: Automated detection and quantification of microaneurysms in fluorescein angiograms
  publication-title: Graefe’s Arch. Clin. Exp. Ophthalmol.
  doi: 10.1007/BF00166760
– volume: 16
  start-page: 168
  year: 2009
  ident: 10.1016/j.knosys.2012.09.008_b0185
  article-title: A-IFS histon based multithresholding algorithm for color image segmentation
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2008.2010820
– volume: 44
  start-page: 767
  year: 2003
  ident: 10.1016/j.knosys.2012.09.008_b0145
  article-title: Automated detection of diabetic retinopathy in a fundus photographic screening population
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.02-0417
– volume: 102
  start-page: 251
  year: 2005
  ident: 10.1016/j.knosys.2012.09.008_b0205
  article-title: Screening for diabetic retinopathy and optic disc topography with the “retinal thickness analyzer” (RTA)
  publication-title: Ophthalmologe
  doi: 10.1007/s00347-004-1098-x
– volume: 39
  start-page: 1141
  year: 2012
  ident: 10.1016/j.knosys.2012.09.008_b0270
  article-title: Small retinal vessels extraction towards proliferative diabetic retinopathy screening
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.07.115
– volume: 3
  start-page: 109
  year: 1990
  ident: 10.1016/j.knosys.2012.09.008_b0300
  article-title: Probabilistic neural networks
  publication-title: J. Neural Networks
  doi: 10.1016/0893-6080(90)90049-Q
– ident: 10.1016/j.knosys.2012.09.008_b0105
  doi: 10.1109/ICIP.2001.958624
– volume: 39
  start-page: 7600
  year: 2012
  ident: 10.1016/j.knosys.2012.09.008_b0165
  article-title: Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.12.046
– volume: 21
  start-page: 84
  year: 2004
  ident: 10.1016/j.knosys.2012.09.008_b0320
  article-title: Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening
  publication-title: Diabetic Med.
  doi: 10.1046/j.1464-5491.2003.01085.x
– year: 2006
  ident: 10.1016/j.knosys.2012.09.008_b0260
SSID ssj0002218
Score 2.4309773
Snippet Human eye is one of the most sophisticated organ, with retina, pupil, iris cornea, lens and optic nerve. Automatic retinal image analysis is emerging as an...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9
SubjectTerms Bifurcation point
Blood vessels
Diabetic retinopathy
Evolutionary algorithm
Laws texture energy
Local binary pattern
Title Evolutionary algorithm based classifier parameter tuning for automatic diabetic retinopathy grading: A hybrid feature extraction approach
URI https://dx.doi.org/10.1016/j.knosys.2012.09.008
https://www.proquest.com/docview/1475524764
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AKRWK
  dateStart: 19871201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWcOHS0tKKV9FU4ppuEjtxwm2FQEsr9kKRuFmO7ewujwQtWaS9cO-_7oyTgIqEkHqLIjuJPO_JzDeMHUoUZmNlHFiuZSDKMg-0iyzBVubCpSLRCXUjn0_S8aX4eZVcDdhx3wtDZZWd7m91utfW3Z1hd5rD-_l8eIHOAfIrOQwUSPg2aiEkTTH48fRS5hHHPsdHiwNa3bfP-Rqvm6p-WBFoN2UECbgye8s8vVLU3vqcbrIPndsIo_bLPrGBqz6zj_1IBugkdIv9OXnseEkvVqBvpzUG_7M7IGNlwZCrPC_xVUCQ33dUCgPNklIjgM4r6GVTewhXaFOyeEFNjlVNc4tXMF34gvsjGMFsRZ1eUDqPCwqo4RdthwT0IOVf2OXpye_jcdBNWwgM53kTmAzF25iIZyG3AglojEwtensisZEN8ywvYl4mMoqs1FrzAskf2cI4qTHKSQv-la1VdeW2GUTab6VYyuGTQnSBtJYutJYi0IzvMN4fsjIdFDlNxLhVfc3ZtWpJo4g0KswVkmaHBc-77lsojnfWy55-6h-WUmgt3tn5vSe3QmmjXyi6cvXyAQMlmSSxkKnY_e-n77GN2M_UoJqYfbbWLJbuG3o2TXHgWfeArY_Ofo0nfwF5NP5h
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHMqlPAoqrzKVek03iZ044bZCoKU8LgWJm-XYDmwLCdrNIu2FO_-aGSdpRSWE1FsU2UnkeU9mvmHsm0RhNlbGgeVaBqIs80C7yBJsZS5cKhKdUDfy-UU6uhI_rpPrBXbY98JQWWWn-1ud7rV1d2fQnebgYTwe_ETnAPmVHAYKJKiNekkksaQI7PvT3zqPOPZJPlod0PK-f84Xef2u6umcULspJUjIldlb9ukfTe3Nz_Eq-9j5jTBsP22NLbhqna30MxmgE9FP7PnosWMmPZmDvrupMfq_vQeyVhYM-crjEl8FhPl9T7Uw0MwoNwLovYKeNbXHcIU2J4sX1OVY1TS4eA43E19xfwBDuJ1TqxeUzgODAqr4SdsiAT1K-Qa7Oj66PBwF3biFwHCeN4HJUL6NiXgWciuQgsbI1KK7JxIb2TDP8iLmZSKjyEqtNS-Q_pEtjJMaw5y04Jtssaor95lBpP1WCqYcPilEH0hr6UJrKQTN-Bbj_SEr02GR00iMO9UXnf1SLWkUkUaFuULSbLHgz66HFovjnfWyp596xVMKzcU7O7_25FYobvQPRVeunk0xUpJJEguZiu3_fvo--zC6PD9TZycXpztsOfYDNqhAZpctNpOZ20M3pym-eDZ-AU0cAAU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+algorithm+based+classifier+parameter+tuning+for+automatic+diabetic+retinopathy+grading%3A+A+hybrid+feature+extraction+approach&rft.jtitle=Knowledge-based+systems&rft.au=Mookiah%2C+M.R.K.&rft.au=Acharya%2C+U.+Rajendra&rft.au=Martis%2C+Roshan+Joy&rft.au=Chua%2C+Chua+Kuang&rft.date=2013-02-01&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=39&rft.spage=9&rft.epage=22&rft_id=info:doi/10.1016%2Fj.knosys.2012.09.008&rft.externalDocID=S0950705112002651
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon