Spatial prediction of soil sand content at various sampling density based on geostatistical and machine learning algorithms in plain areas

•The effect of sampling densities on accuracy of prediction model was explored.•Geostatistical models without environmental variables have higher prediction accuracy in plain areas when the sampling size is large.•Machine learning models had an advantage of prediction accuracy when sampling densitie...

Full description

Saved in:
Bibliographic Details
Published inCatena (Giessen) Vol. 234; p. 107572
Main Authors Qu, Lili, Lu, Huizhong, Tian, Zhiyuan, Schoorl, J.M., Huang, Biao, Liang, Yonghong, Qiu, Dan, Liang, Yin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2024
Subjects
Online AccessGet full text
ISSN0341-8162
1872-6887
DOI10.1016/j.catena.2023.107572

Cover

Abstract •The effect of sampling densities on accuracy of prediction model was explored.•Geostatistical models without environmental variables have higher prediction accuracy in plain areas when the sampling size is large.•Machine learning models had an advantage of prediction accuracy when sampling densities were below 5.31 samples/103 km2.•Quantitatively identified the driving factors of the spatial distribution of soil sand content in eastern China. Accurate prediction of the spatial distribution of soil sand content is a pre-requisite for land use management, soil quality evaluation and erosion control, as it determines the transport and movement of soil water, fertilizer, air and heat. Digital soil mapping (DSM) is extensively employed for predicting soil properties. However, practical research is required to address the challenge of selecting an optimal prediction model that is both cost-effective and accurate at a specific sampling density. In this study, topsoil samples were collected from 2,848 sampling points in the eastern plains of China (107,200 km2). The performance of different prediction models for mapping soil sand content was compared at 12 levels of sampling density. Moreover, the geographical detector, a statistical method used to assess the spatial stratified heterogeneity of variables, was adopted to determine the major drivers of spatial variation in soil sand content. The results indicated that climate factors are the major drivers of the spatial variability in soil sand content. For the 100% sample size (26.57 samples/103 km2), the geostatistical models that did not depend on environmental variables (ordinary kriging, sequential Gaussian simulation) performed best, followed by the machine learning models (random forest, cubist and support vector machine) and the geostatistical model with environmental variables (co-kriging). Sampling density had a considerable impact on model accuracy, and the advantages of machine learning models became apparent when sampling densities were below 20% (5.31 samples/103 km2). Therefore, the best combination of prediction model and sampling density should be selected to obtain maps of soil sand content economically and accurately. This study provides a valuable reference for the selection of prediction methods in the practical application of DSM.
AbstractList •The effect of sampling densities on accuracy of prediction model was explored.•Geostatistical models without environmental variables have higher prediction accuracy in plain areas when the sampling size is large.•Machine learning models had an advantage of prediction accuracy when sampling densities were below 5.31 samples/103 km2.•Quantitatively identified the driving factors of the spatial distribution of soil sand content in eastern China. Accurate prediction of the spatial distribution of soil sand content is a pre-requisite for land use management, soil quality evaluation and erosion control, as it determines the transport and movement of soil water, fertilizer, air and heat. Digital soil mapping (DSM) is extensively employed for predicting soil properties. However, practical research is required to address the challenge of selecting an optimal prediction model that is both cost-effective and accurate at a specific sampling density. In this study, topsoil samples were collected from 2,848 sampling points in the eastern plains of China (107,200 km2). The performance of different prediction models for mapping soil sand content was compared at 12 levels of sampling density. Moreover, the geographical detector, a statistical method used to assess the spatial stratified heterogeneity of variables, was adopted to determine the major drivers of spatial variation in soil sand content. The results indicated that climate factors are the major drivers of the spatial variability in soil sand content. For the 100% sample size (26.57 samples/103 km2), the geostatistical models that did not depend on environmental variables (ordinary kriging, sequential Gaussian simulation) performed best, followed by the machine learning models (random forest, cubist and support vector machine) and the geostatistical model with environmental variables (co-kriging). Sampling density had a considerable impact on model accuracy, and the advantages of machine learning models became apparent when sampling densities were below 20% (5.31 samples/103 km2). Therefore, the best combination of prediction model and sampling density should be selected to obtain maps of soil sand content economically and accurately. This study provides a valuable reference for the selection of prediction methods in the practical application of DSM.
Accurate prediction of the spatial distribution of soil sand content is a pre-requisite for land use management, soil quality evaluation and erosion control, as it determines the transport and movement of soil water, fertilizer, air and heat. Digital soil mapping (DSM) is extensively employed for predicting soil properties. However, practical research is required to address the challenge of selecting an optimal prediction model that is both cost-effective and accurate at a specific sampling density. In this study, topsoil samples were collected from 2,848 sampling points in the eastern plains of China (107,200 km²). The performance of different prediction models for mapping soil sand content was compared at 12 levels of sampling density. Moreover, the geographical detector, a statistical method used to assess the spatial stratified heterogeneity of variables, was adopted to determine the major drivers of spatial variation in soil sand content. The results indicated that climate factors are the major drivers of the spatial variability in soil sand content. For the 100% sample size (26.57 samples/10³ km²), the geostatistical models that did not depend on environmental variables (ordinary kriging, sequential Gaussian simulation) performed best, followed by the machine learning models (random forest, cubist and support vector machine) and the geostatistical model with environmental variables (co-kriging). Sampling density had a considerable impact on model accuracy, and the advantages of machine learning models became apparent when sampling densities were below 20% (5.31 samples/10³ km²). Therefore, the best combination of prediction model and sampling density should be selected to obtain maps of soil sand content economically and accurately. This study provides a valuable reference for the selection of prediction methods in the practical application of DSM.
ArticleNumber 107572
Author Qiu, Dan
Liang, Yin
Liang, Yonghong
Qu, Lili
Schoorl, J.M.
Lu, Huizhong
Tian, Zhiyuan
Huang, Biao
Author_xml – sequence: 1
  givenname: Lili
  surname: Qu
  fullname: Qu, Lili
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 2
  givenname: Huizhong
  surname: Lu
  fullname: Lu, Huizhong
  organization: National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210029, China
– sequence: 3
  givenname: Zhiyuan
  orcidid: 0000-0003-1740-117X
  surname: Tian
  fullname: Tian, Zhiyuan
  email: tianzhiyuan@issas.ac.cn
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 4
  givenname: J.M.
  orcidid: 0000-0003-1930-7953
  surname: Schoorl
  fullname: Schoorl, J.M.
  organization: Soil Geography and Landscape, Wageningen University, P.O. Box 47, NL-6700 AA Wageningen, the Netherlands
– sequence: 5
  givenname: Biao
  surname: Huang
  fullname: Huang, Biao
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
– sequence: 6
  givenname: Yonghong
  surname: Liang
  fullname: Liang, Yonghong
  organization: Jiangsu Province Station of Farmland Quality and Agro-environment Protection, Nanjing 210029, China
– sequence: 7
  givenname: Dan
  surname: Qiu
  fullname: Qiu, Dan
  organization: Jiangsu Province Station of Farmland Quality and Agro-environment Protection, Nanjing 210029, China
– sequence: 8
  givenname: Yin
  surname: Liang
  fullname: Liang, Yin
  organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
BookMark eNqFkcFq3DAQhkVJIZu0b5CDjr3sVrK8ktxDIISkCQR6aHsWY3m80SJLjqQE8gp96sq4pxzSywwM8_0w852RkxADEnLB2Y4zLr8edxYKBtg1rBF1pPaq-UA2XKtmK7VWJ2TDRMu3msvmlJzlfGSMtWrPN-TPzxmKA0_nhIOzxcVA40hzdJ5mCAO1MdToQqHQF0guPuc6n2bvwoEOGLIrr7SHjAOt5AFjLjUvF2dr5sJPYB9dQOoRUlgg8IeYXHmcMnWBzh5qhYSQP5GPI_iMn__1c_L79ubX9d324cf3--urh60Voiu1SqFRC64ZbyyDtm-ZQiF5P7K-k0r0XS-FBAmIeugGKXA_ttCMttMgei3OyZc1d07x6RlzMZPLFr2HgPU8I_he8E4pxerqt3XVpphzwtFYt9xXf5LAecOZWQSYo1kFmEWAWQVUuH0Dz8lNkF7_h12uGNYfvDhMJluHwVY9CW0xQ3TvB_wFY2Smzg
CitedBy_id crossref_primary_10_1038_s41597_024_03165_8
crossref_primary_10_1007_s12145_023_01179_1
crossref_primary_10_1016_j_aeolia_2024_100924
crossref_primary_10_1007_s41742_024_00611_8
crossref_primary_10_1016_j_iswcr_2024_05_005
crossref_primary_10_1007_s11356_024_34440_1
crossref_primary_10_1007_s12665_024_11468_7
crossref_primary_10_1016_j_geoderma_2024_117023
crossref_primary_10_1016_j_jhazmat_2024_136285
crossref_primary_10_3390_rs15225304
crossref_primary_10_3724_EE_1672_9250_2024_52_064
crossref_primary_10_3390_s25030604
crossref_primary_10_1016_j_heliyon_2024_e39309
crossref_primary_10_1016_j_catena_2025_108773
Cites_doi 10.1021/acs.est.0c07983
10.1016/j.geoderma.2019.114136
10.3390/rs14153575
10.1016/j.geoderma.2020.114337
10.1016/j.catena.2021.105791
10.1016/j.ecolind.2021.107618
10.1016/j.earscirev.2020.103359
10.1016/j.catena.2021.105509
10.1016/j.geoderma.2020.114253
10.1016/j.geoderma.2017.06.016
10.1016/S2095-3119(17)61762-3
10.1016/j.ecolind.2018.05.044
10.1016/j.geoderma.2019.02.019
10.18637/jss.v011.i09
10.1016/j.geoderma.2021.115638
10.1088/1748-9326/aca41e
10.1016/j.still.2020.104731
10.1016/j.catena.2022.106217
10.1016/j.rse.2022.113260
10.1007/s11368-021-03044-4
10.1007/s11368-023-03460-8
10.1016/j.jclepro.2022.133305
10.1016/j.ecolind.2019.02.026
10.1080/13658810802443457
10.1016/j.scitotenv.2022.159698
10.1016/j.geoderma.2021.115567
10.1111/j.1365-2389.2009.01159.x
10.1016/j.catena.2018.10.052
10.1016/j.ecoenv.2021.112752
10.3390/rs11141683
10.1002/saj2.20025
10.1016/j.spasta.2022.100639
10.1023/B:STCO.0000035301.49549.88
10.5194/soil-7-217-2021
10.1016/j.geoderma.2018.09.008
10.1016/S1002-0160(20)60021-2
10.1016/j.jclepro.2021.127995
10.3390/rs10060888
10.1016/j.geoderma.2018.01.020
10.1016/j.jhydrol.2009.03.031
10.1023/A:1010933404324
10.1016/j.geoderma.2019.01.019
10.1016/j.iswcr.2021.06.005
10.1016/j.geoderma.2019.05.031
10.1002/joc.1276
10.1016/j.geoderma.2021.115290
10.32614/RJ-2016-014
10.1111/gcb.15547
10.1201/b16500-4
10.1016/j.iswcr.2021.11.003
10.1016/B978-0-12-405942-9.00001-3
10.1016/j.neunet.2006.01.012
10.1016/j.geodrs.2020.e00255
10.1016/S0016-7061(03)00223-4
10.1016/j.chemosphere.2022.134715
10.1016/j.catena.2020.104953
10.1016/j.scib.2021.10.013
10.1007/s10661-022-10434-9
10.1073/pnas.1706103114
10.1016/j.geoderma.2009.07.010
10.1088/1748-9326/ac5206
10.1002/ldr.4226
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.catena.2023.107572
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Sciences (General)
EISSN 1872-6887
ExternalDocumentID 10_1016_j_catena_2023_107572
S034181622300663X
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
-DZ
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HMC
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SDF
SDG
SEN
SEP
SES
SEW
SPC
SPCBC
SSA
SSE
SSZ
T5K
UNMZH
VH1
WUQ
XPP
Y6R
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-c3638e8318012c0a4b407e361bf0b9673b9b636a6aee8d9d63e5f4a2fc98a3b83
IEDL.DBID .~1
ISSN 0341-8162
IngestDate Thu Oct 02 21:42:12 EDT 2025
Thu Apr 24 23:00:29 EDT 2025
Thu Oct 09 00:33:22 EDT 2025
Fri Feb 23 02:35:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Soil sand content
R2
Digital soil mapping
Model comparison
SVM
RMSE
MAE
Geographical detector
RF
Sampling density
Uncertainty assessment
OK
SGS
COK
DSM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-c3638e8318012c0a4b407e361bf0b9673b9b636a6aee8d9d63e5f4a2fc98a3b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1740-117X
0000-0003-1930-7953
PQID 3153197770
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153197770
crossref_citationtrail_10_1016_j_catena_2023_107572
crossref_primary_10_1016_j_catena_2023_107572
elsevier_sciencedirect_doi_10_1016_j_catena_2023_107572
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Catena (Giessen)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Shen, Hu, Zhang, Zhao, Bian, Liu (b0230) 2021; 225
Veronesi, Schillaci (b0275) 2019; 101
Wang, Li, Christakos, Liao, Zhang, Gu, Zheng (b0290) 2010; 24
Padarian, Stockmann, Minasny, McBratney (b0185) 2022; 281
Qu, Guo, Li, Wu, Liang, Zhu, Yuan (b0200) 2022; 36
Rawlins, Scheib, Lark, Lister (b0210) 2009; 60
Beguin, Fuglstad, Mansuy, Paré (b0015) 2017; 306
Madenoglu, Atalay, Erpul (b0160) 2020; 204
Sanderman, Hengl, Fiske (b0215) 2017; 114
Breiman (b0030) 2001; 45
Chen, Arrouays, Mulder, Poggio, Minasny, Roudier, Libohova, Lagacherie, Shi, Hannam, Meersmans, Richer, Walter (b0035) 2022; 409
Poggio, De Sousa, Batjes, Heuvelink, Kempen, Ribeiro, Rossiter (b0190) 2021; 7
Lu, Tian, Wei (b0150) 2023; 856
Tang, Gudda, Wu, Ling, El-Ramady, Mosa, Wang (b0265) 2022; 301
Mello, Demattê, Rizzo, de Mello, Poppiel, Silvero, Sousa (b0175) 2022; 409
Wu, Chen, Yang, Zhu, Han (b0300) 2022; 14
Liu, Wu, Zhao, Li, Yang, Song, Shi, Zhu, Zhang (b0140) 2022; 67
Fang, Wang, Chen, Sun, Cao, Wang, Wang (b0045) 2021; 314
Xie, Zhang, Lu, Peng, Zhao (b0305) 2022; 33
Gräler, Pebesma, Heuvelink (b0055) 2016; 8
Shao, Zhang, Fan, Su, Wu, Zhang, Yang, Gao (b0220) 2021; 206
Huang, Yang, Zhang, Pu, Yang, Cai, Zhou (b0085) 2022; 17
Karatzoglou, Smola, Hornik (b0095) 2004; 11
Hijmans, Cameron, Parra, Jones, Jarvis (b0075) 2005; 25
Sun, Lai, Ding, Wu, Wang, Wu (b0255) 2022; 213
Kuhn M., Weston S., Keefer C., 2012. Cubist models for regression. R package Vignette R package version 0.0, 18, 480.
Zhang, Ji, Saurette, Easher, Li, Shi, Adamchuk, Biswas (b0335) 2020; 366
Biney, Houška, Volánek, Abebrese, Cervenka (b0025) 2023; 870
Long, Liu, Xing, Qiu, Huang, Zhou, Shen, Zhang (b0145) 2018; 93
Pouladi, Møller, Tabatabai, Greve (b0195) 2019; 342
John, Bouslihim, Ofem, Hssaini, Razouk, Okon, Isong, Agyeman, Kebonye, Qin (b0090) 2022; 10
Ma, Zhu, Tian, Qu, He, Liang (b0155) 2022; 369
McBratney, Mendonça Santos, Minasny (b0170) 2003; 117
Hu, Xie, Xu, Qi, Zhu, Zhu, Zhou (b0080) 2021; 55
Lai, Wang, Sun (b0115) 2021; 126
Zhu, Liang, Tian, Zhang, Zhang, Du, Wang, Li, Qu, Dai (b0345) 2021; 31
Arrouays, McBratney, Minasny, Hempel, Heuvelink, MacMillan, McKenzie (b0005) 2014
Wan, Li, Shang, Rahman (b0285) 2021; 21
Zhang, Guo, Chen, Shi, Luo, Ju, Zhang, Wang (b0330) 2019; 11
Behrens, Zhu, Schmidt, Scholten (b0020) 2010; 155
Grabs, Seibert, Bishop, Laudon (b0050) 2009; 373
Kuhn (b0100) 2015; 1505
Lamichhane, Kumar, Wilson (b0120) 2019; 352
Gupta, Bonetti, Lehmann, Or (b0065) 2022; 17
Laborczi, Szatmari, Kaposi, Pasztor (b0110) 2019; 352
Wadoux, Minasny, McBratney (b0280) 2020; 210
Zeng, Wan, Gu, Lei, Yang, Chen (b0320) 2023; 857
Liu, Chen, Wu, Wang, Wang (b0130) 2021; 196
Arrouays, McBratney, Bouma, Libohova, Richer-de-Forges, Morgan, Mulder (b0010) 2020; 20
Guo, Linderman, Shi, Chen, Duan, Zhang (b0060) 2018; 10
Martin, Dimassi, Roman Dobarco, Guenet, Arrouays, Angers, Blache, Huard, Soussana, Pellerin (b0165) 2021; 27
Liaw, Wiener (b0125) 2002; 2
Liu, Rossiter, Song, Zhang, Wu, Zhao (b0135) 2020; 84
Sharififar (b0225) 2022; 194
Smola, Schölkopf (b0250) 2004; 14
Zhao, Wang, Zhao, Triantafilis (b0340) 2022; 209
Minasny, McBratney, Malone, Wheeler (b0180) 2013; 118
Shen, Wang, Wang, Liu, Zhang, Zhang (b0235) 2019; 174
Silva, Weindorf, Pinto, Faria, Junior, Gomide, Curi (b0245) 2020; 362
Du, McCarty, Li, Rabenhorst, Wang, Lee, Zou (b0040) 2021; 404
Webster, Oliver (b0295) 2001
Yang, Li, Shi, Shen, Qi, Gao, Zhou (b0315) 2020; 369
Tian, Liu, Liang, Zhu (b0270) 2022; 10
Szatmári, Pásztor (b0260) 2019; 337
Yageta, Osbahr, Morimoto, Clark (b0310) 2019; 344
Shrestha, Solomatine (b0240) 2006; 19
Heuvelink, Webster (b0070) 2022; 50
Zhang, Feng, Song (b0325) 2017; 16
Qu, Zhu, Liang, Qiu, Zhang, Liang (b0205) 2023; 23
Huang (10.1016/j.catena.2023.107572_b0085) 2022; 17
Lai (10.1016/j.catena.2023.107572_b0115) 2021; 126
Martin (10.1016/j.catena.2023.107572_b0165) 2021; 27
John (10.1016/j.catena.2023.107572_b0090) 2022; 10
Breiman (10.1016/j.catena.2023.107572_b0030) 2001; 45
Szatmári (10.1016/j.catena.2023.107572_b0260) 2019; 337
Liu (10.1016/j.catena.2023.107572_b0140) 2022; 67
Behrens (10.1016/j.catena.2023.107572_b0020) 2010; 155
Guo (10.1016/j.catena.2023.107572_b0060) 2018; 10
Karatzoglou (10.1016/j.catena.2023.107572_b0095) 2004; 11
Lamichhane (10.1016/j.catena.2023.107572_b0120) 2019; 352
Wadoux (10.1016/j.catena.2023.107572_b0280) 2020; 210
Du (10.1016/j.catena.2023.107572_b0040) 2021; 404
Yageta (10.1016/j.catena.2023.107572_b0310) 2019; 344
10.1016/j.catena.2023.107572_b0105
Zhang (10.1016/j.catena.2023.107572_b0325) 2017; 16
Laborczi (10.1016/j.catena.2023.107572_b0110) 2019; 352
Long (10.1016/j.catena.2023.107572_b0145) 2018; 93
Webster (10.1016/j.catena.2023.107572_b0295) 2001
Chen (10.1016/j.catena.2023.107572_b0035) 2022; 409
Liu (10.1016/j.catena.2023.107572_b0130) 2021; 196
Shen (10.1016/j.catena.2023.107572_b0235) 2019; 174
Yang (10.1016/j.catena.2023.107572_b0315) 2020; 369
McBratney (10.1016/j.catena.2023.107572_b0170) 2003; 117
Shrestha (10.1016/j.catena.2023.107572_b0240) 2006; 19
Qu (10.1016/j.catena.2023.107572_b0205) 2023; 23
Wan (10.1016/j.catena.2023.107572_b0285) 2021; 21
Mello (10.1016/j.catena.2023.107572_b0175) 2022; 409
Beguin (10.1016/j.catena.2023.107572_b0015) 2017; 306
Ma (10.1016/j.catena.2023.107572_b0155) 2022; 369
Zhao (10.1016/j.catena.2023.107572_b0340) 2022; 209
Shao (10.1016/j.catena.2023.107572_b0220) 2021; 206
Tang (10.1016/j.catena.2023.107572_b0265) 2022; 301
Arrouays (10.1016/j.catena.2023.107572_b0010) 2020; 20
Hu (10.1016/j.catena.2023.107572_b0080) 2021; 55
Veronesi (10.1016/j.catena.2023.107572_b0275) 2019; 101
Gupta (10.1016/j.catena.2023.107572_b0065) 2022; 17
Liaw (10.1016/j.catena.2023.107572_b0125) 2002; 2
Wang (10.1016/j.catena.2023.107572_b0290) 2010; 24
Madenoglu (10.1016/j.catena.2023.107572_b0160) 2020; 204
Zhang (10.1016/j.catena.2023.107572_b0335) 2020; 366
Wu (10.1016/j.catena.2023.107572_b0300) 2022; 14
Poggio (10.1016/j.catena.2023.107572_b0190) 2021; 7
Silva (10.1016/j.catena.2023.107572_b0245) 2020; 362
Minasny (10.1016/j.catena.2023.107572_b0180) 2013; 118
Sun (10.1016/j.catena.2023.107572_b0255) 2022; 213
Tian (10.1016/j.catena.2023.107572_b0270) 2022; 10
Heuvelink (10.1016/j.catena.2023.107572_b0070) 2022; 50
Zhang (10.1016/j.catena.2023.107572_b0330) 2019; 11
Grabs (10.1016/j.catena.2023.107572_b0050) 2009; 373
Hijmans (10.1016/j.catena.2023.107572_b0075) 2005; 25
Kuhn (10.1016/j.catena.2023.107572_b0100) 2015; 1505
Gräler (10.1016/j.catena.2023.107572_b0055) 2016; 8
Xie (10.1016/j.catena.2023.107572_b0305) 2022; 33
Sanderman (10.1016/j.catena.2023.107572_b0215) 2017; 114
Pouladi (10.1016/j.catena.2023.107572_b0195) 2019; 342
Fang (10.1016/j.catena.2023.107572_b0045) 2021; 314
Lu (10.1016/j.catena.2023.107572_b0150) 2023; 856
Zhu (10.1016/j.catena.2023.107572_b0345) 2021; 31
Liu (10.1016/j.catena.2023.107572_b0135) 2020; 84
Smola (10.1016/j.catena.2023.107572_b0250) 2004; 14
Padarian (10.1016/j.catena.2023.107572_b0185) 2022; 281
Arrouays (10.1016/j.catena.2023.107572_b0005) 2014
Qu (10.1016/j.catena.2023.107572_b0200) 2022; 36
Sharififar (10.1016/j.catena.2023.107572_b0225) 2022; 194
Shen (10.1016/j.catena.2023.107572_b0230) 2021; 225
Rawlins (10.1016/j.catena.2023.107572_b0210) 2009; 60
Zeng (10.1016/j.catena.2023.107572_b0320) 2023; 857
Biney (10.1016/j.catena.2023.107572_b0025) 2023; 870
References_xml – volume: 373
  start-page: 15
  year: 2009
  end-page: 23
  ident: b0050
  article-title: Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model
  publication-title: J. Hydrol.
– volume: 50
  year: 2022
  ident: b0070
  article-title: Spatial statistics and soil mapping: A blossoming partnership under pressure
  publication-title: Spat. Stat.
– volume: 117
  start-page: 3
  year: 2003
  end-page: 52
  ident: b0170
  article-title: On digital soil mapping
  publication-title: Geoderma
– volume: 14
  start-page: 199
  year: 2004
  end-page: 222
  ident: b0250
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
– volume: 21
  start-page: 3868
  year: 2021
  end-page: 3887
  ident: b0285
  article-title: Exploratory factor analysis-based co-kriging method for spatial interpolation of multi-layered soil particle-size fractions and texture
  publication-title: J. Soils Sediments
– volume: 11
  start-page: 1
  year: 2004
  end-page: 20
  ident: b0095
  article-title: kernlab-an S4 package for kernel methods in R
  publication-title: J. Stat. Softw.
– volume: 31
  start-page: 715
  year: 2021
  end-page: 724
  ident: b0345
  article-title: Simulating soil erodibility in southeastern China using a sequential Gaussian algorithm
  publication-title: Pedosphere
– volume: 337
  start-page: 1329
  year: 2019
  end-page: 1340
  ident: b0260
  article-title: Comparison of various uncertainty modelling approaches based on geostatistics and machine learning algorithms
  publication-title: Geoderma
– volume: 194
  start-page: 760
  year: 2022
  ident: b0225
  article-title: Accuracy and uncertainty of geostatistical models versus machine learning for digital mapping of soil calcium and potassium
  publication-title: Environ. Monit. Assess.
– volume: 342
  start-page: 85
  year: 2019
  end-page: 92
  ident: b0195
  article-title: Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging
  publication-title: Geoderma
– volume: 10
  start-page: 470
  year: 2022
  end-page: 486
  ident: b0090
  article-title: Do model choice and sample ratios separately or simultaneously influence soil organic matter prediction
  publication-title: Int. Soil. Water. Conse.
– volume: 857
  year: 2023
  ident: b0320
  article-title: An interpolation method incorporating the pollution diffusion characteristics for soil heavy metals-taking a coke plant as an example
  publication-title: Sci. Total Environ.
– volume: 17
  year: 2022
  ident: b0065
  article-title: Limited role of soil texture in mediating natural vegetation response to rainfall anomalies
  publication-title: Environ. Res. Lett.
– volume: 126
  year: 2021
  ident: b0115
  article-title: A comparison of importance of modelling method and sample size for mapping soil organic matter in Guangdong, China
  publication-title: Ecol. Indic.
– volume: 10
  start-page: 62
  year: 2022
  end-page: 74
  ident: b0270
  article-title: Mapping soil erodibility in southeast China at 250 m resolution: Using environmental variables and random forest regression with limited samples
  publication-title: Int. Soil. Water. Conse.
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  ident: b0075
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: Int. J. Climatol.
– volume: 118
  start-page: 1
  year: 2013
  end-page: 47
  ident: b0180
  article-title: Digital mapping of soil carbon
  publication-title: Adv. Agron.
– volume: 404
  year: 2021
  ident: b0040
  article-title: Spatial extrapolation of topographic models for mapping soil organic carbon using local samples
  publication-title: Geoderma
– volume: 60
  start-page: 740
  year: 2009
  end-page: 747
  ident: b0210
  article-title: Sampling and analytical plus subsampling variance components for five soil indicators observed at regional scale
  publication-title: Eur. J. Soil Sci.
– volume: 19
  start-page: 225
  year: 2006
  end-page: 235
  ident: b0240
  article-title: Machine learning approaches for estimation of prediction interval for the model output
  publication-title: Neural networks
– volume: 101
  start-page: 1032
  year: 2019
  end-page: 1044
  ident: b0275
  article-title: Comparison between geostatistical and machine learning models as predictors of topsoil organic carbon with a focus on local uncertainty estimation
  publication-title: Ecol. Indic.
– volume: 210
  year: 2020
  ident: b0280
  article-title: Machine learning for digital soil mapping: Applications, challenges and suggested solutions
  publication-title: Earth Sci. Rev.
– volume: 55
  start-page: 9721
  year: 2021
  end-page: 9729
  ident: b0080
  article-title: Direct analysis of soil composition for source apportionment by laser ablation single-particle aerosol mass spectrometry
  publication-title: Environ. Sci. Technol.
– volume: 409
  year: 2022
  ident: b0175
  article-title: Complex hydrological knowledge to support digital soil mapping
  publication-title: Geoderma
– volume: 870
  year: 2023
  ident: b0025
  article-title: Examining the influence of bare soil UAV imagery combined with auxiliary datasets to estimate and map soil organic carbon distribution in an erosion-prone agricultural field
  publication-title: Environ. Sci. Technol.
– volume: 344
  start-page: 153
  year: 2019
  end-page: 163
  ident: b0310
  article-title: Comparing farmers' qualitative evaluation of soil fertility with quantitative soil fertility indicators in Kitui County, Kenya
  publication-title: Geoderma
– volume: 366
  year: 2020
  ident: b0335
  article-title: Three-dimensional digital soil mapping of multiple soil properties at a field-scale using regression kriging
  publication-title: Geoderma
– volume: 409
  year: 2022
  ident: b0035
  article-title: Digital mapping of GlobalSoilMap soil properties at a broad scale: A review
  publication-title: Geoderma
– volume: 306
  start-page: 195
  year: 2017
  end-page: 205
  ident: b0015
  article-title: Predicting soil properties in the Canadian boreal forest with limited data: Comparison of spatial and non-spatial statistical approaches
  publication-title: Geoderma
– volume: 204
  year: 2020
  ident: b0160
  article-title: Uncertainty assessment of soil erodibility by direct sequential Gaussian simulation (DSIM) in semiarid land uses
  publication-title: Soil Till. Res.
– volume: 23
  start-page: 2106
  year: 2023
  end-page: 2119
  ident: b0205
  article-title: Spatial variation of soil properties and evaluation of the risk of soil erodibility on a river alluvial and marine sedimentary plain in eastern China
  publication-title: J. Soils Sediments
– volume: 369
  year: 2020
  ident: b0315
  article-title: Evaluation of conditioned Latin hypercube sampling for soil mapping based on a machine learning method
  publication-title: Geoderma
– year: 2001
  ident: b0295
  article-title: Geostatistics for Environmental Scientists
– volume: 856
  year: 2023
  ident: b0150
  article-title: Digital mapping of soil pH and carbonates at the European scale using environmental variables and machine learning
  publication-title: Environ. Sci. Technol.
– volume: 206
  year: 2021
  ident: b0220
  article-title: Spatial variability-based sample size allocation for stratified sampling
  publication-title: Catena
– volume: 114
  start-page: 9575
  year: 2017
  end-page: 9580
  ident: b0215
  article-title: Soil carbon debt of 12,000 years of human land use
  publication-title: Proc. Natl. Acad. Sci.
– volume: 14
  start-page: 3575
  year: 2022
  ident: b0300
  article-title: Mapping Soil Organic Carbon in Low-Relief Farmlands Based on Stratified Heterogeneous Relationship
  publication-title: Remote Sens. Basel.
– volume: 369
  year: 2022
  ident: b0155
  article-title: Spatial distribution and scale-specific controls of soil water-stable aggregates in southeastern China
  publication-title: J. Clean. Prod.
– volume: 24
  start-page: 107
  year: 2010
  end-page: 127
  ident: b0290
  article-title: Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China
  publication-title: Int. J. Geogr. Inf. Sci.
– volume: 174
  start-page: 59
  year: 2019
  end-page: 72
  ident: b0235
  article-title: Comparing interpolation methods to predict soil total phosphorus in the Mollisol area of Northeast China
  publication-title: Catena
– volume: 209
  year: 2022
  ident: b0340
  article-title: Clay content mapping and uncertainty estimation using weighted model averaging
  publication-title: Catena
– volume: 213
  year: 2022
  ident: b0255
  article-title: Variability of soil mapping accuracy with sample sizes, modelling methods and landform types in a regional case study
  publication-title: Catena
– volume: 33
  start-page: 1323
  year: 2022
  end-page: 1336
  ident: b0305
  article-title: Spatiotemporal changes in cropland soil organic carbon in a rapidly urbanizing area of southeastern China from 1980 to 2015
  publication-title: Land Degrad. Dev.
– start-page: 9
  year: 2014
  end-page: 12
  ident: b0005
  article-title: The GlobalSoilMap project specifications
  publication-title: GlobalSoilMap: Basis of the global spatial soil information system
– volume: 155
  start-page: 175
  year: 2010
  end-page: 185
  ident: b0020
  article-title: Multi-scale digital terrain analysis and feature selection for digital soil mapping
  publication-title: Geoderma.
– volume: 17
  year: 2022
  ident: b0085
  article-title: A review on digital mapping of soil carbon in cropland: progress, challenge, and prospect
  publication-title: Environ. Res. Lett.
– volume: 225
  year: 2021
  ident: b0230
  article-title: Spatial distribution and human health risk assessment of soil heavy metals based on sequential Gaussian simulation and positive matrix factorization model: A case study in irrigation area of the Yellow River
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 301
  year: 2022
  ident: b0265
  article-title: Contributions of partition and adsorption to polycyclic aromatic hydrocarbons sorption by fractionated soil at different particle sizes
  publication-title: Chemosphere
– volume: 20
  start-page: e00255
  year: 2020
  ident: b0010
  article-title: Impressions of digital soil maps: The good, the not so good, and making them ever better
  publication-title: Geoderma Reg.
– reference: Kuhn M., Weston S., Keefer C., 2012. Cubist models for regression. R package Vignette R package version 0.0, 18, 480.
– volume: 36
  start-page: 56
  year: 2022
  ident: b0200
  article-title: Experimental study on soil erosion of typical riverbank in coastal plain sandy area of Jiangsu Province
  publication-title: J. Soil Water Conserv.
– volume: 352
  start-page: 360
  year: 2019
  end-page: 372
  ident: b0110
  article-title: Comparison of soil texture maps synthetized from standard depth layers with directly compiled products
  publication-title: Geoderma
– volume: 2
  start-page: 18
  year: 2002
  end-page: 22
  ident: b0125
  article-title: Classification and regression by randomForest
  publication-title: R news
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0030
  article-title: Random forests
  publication-title: Machine Learn.
– volume: 352
  start-page: 395
  year: 2019
  end-page: 413
  ident: b0120
  article-title: Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review
  publication-title: Geoderma
– volume: 196
  year: 2021
  ident: b0130
  article-title: Geographical detector-based stratified regression kriging strategy for mapping soil organic carbon with high spatial heterogeneity
  publication-title: Catena
– volume: 16
  start-page: 2871
  year: 2017
  end-page: 2885
  ident: b0325
  article-title: Recent progress and future prospect of digital soil mapping: A review
  publication-title: J. Integr. Agr.
– volume: 7
  start-page: 217
  year: 2021
  end-page: 240
  ident: b0190
  article-title: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty
  publication-title: Soil
– volume: 281
  year: 2022
  ident: b0185
  article-title: Monitoring changes in global soil organic carbon stocks from space
  publication-title: Remote Sens. Environ.
– volume: 27
  start-page: 2458
  year: 2021
  end-page: 2477
  ident: b0165
  article-title: Feasibility of the 4 per 1000 aspirational target for soil carbon: A case study for France
  publication-title: Global Change Biol.
– volume: 11
  start-page: 1683
  year: 2019
  ident: b0330
  article-title: Prediction of soil organic carbon based on Landsat 8 monthly NDVI data for the Jianghan Plain in Hubei Province, China
  publication-title: Remote Sens.
– volume: 8
  start-page: 204
  year: 2016
  ident: b0055
  article-title: Spatio-temporal interpolation using gstat
  publication-title: R J.
– volume: 362
  year: 2020
  ident: b0245
  article-title: Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach
  publication-title: Geoderma
– volume: 314
  year: 2021
  ident: b0045
  article-title: Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins
  publication-title: J. Clean. Prod.
– volume: 67
  start-page: 328
  year: 2022
  end-page: 340
  ident: b0140
  article-title: Mapping high resolution National Soil Information Grids of China
  publication-title: Sci. Bull.
– volume: 10
  start-page: 888
  year: 2018
  ident: b0060
  article-title: Exploring the sensitivity of sampling density in digital mapping of soil organic carbon and its application in soil sampling
  publication-title: Remote Sens.
– volume: 1505
  start-page: 003
  year: 2015
  ident: b0100
  article-title: Caret: classification and regression training
  publication-title: Astrophysics Source Code Library. ascl
– volume: 84
  start-page: 144
  year: 2020
  end-page: 162
  ident: b0135
  article-title: An approach for broad-scale predictive soil properties mapping in low-relief areas based on responses to solar radiation
  publication-title: Soil Sci. Soc. Am. J.
– volume: 93
  start-page: 562
  year: 2018
  end-page: 571
  ident: b0145
  article-title: Effects of sampling density on interpolation accuracy for farmland soil organic matter concentration in a large region of complex topography
  publication-title: Ecol. Indic.
– volume: 55
  start-page: 9721
  issue: 14
  year: 2021
  ident: 10.1016/j.catena.2023.107572_b0080
  article-title: Direct analysis of soil composition for source apportionment by laser ablation single-particle aerosol mass spectrometry
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.0c07983
– volume: 362
  year: 2020
  ident: 10.1016/j.catena.2023.107572_b0245
  article-title: Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.114136
– volume: 14
  start-page: 3575
  issue: 15
  year: 2022
  ident: 10.1016/j.catena.2023.107572_b0300
  article-title: Mapping Soil Organic Carbon in Low-Relief Farmlands Based on Stratified Heterogeneous Relationship
  publication-title: Remote Sens. Basel.
  doi: 10.3390/rs14153575
– volume: 369
  year: 2020
  ident: 10.1016/j.catena.2023.107572_b0315
  article-title: Evaluation of conditioned Latin hypercube sampling for soil mapping based on a machine learning method
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114337
– volume: 209
  year: 2022
  ident: 10.1016/j.catena.2023.107572_b0340
  article-title: Clay content mapping and uncertainty estimation using weighted model averaging
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105791
– volume: 126
  year: 2021
  ident: 10.1016/j.catena.2023.107572_b0115
  article-title: A comparison of importance of modelling method and sample size for mapping soil organic matter in Guangdong, China
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2021.107618
– volume: 210
  year: 2020
  ident: 10.1016/j.catena.2023.107572_b0280
  article-title: Machine learning for digital soil mapping: Applications, challenges and suggested solutions
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2020.103359
– volume: 206
  year: 2021
  ident: 10.1016/j.catena.2023.107572_b0220
  article-title: Spatial variability-based sample size allocation for stratified sampling
  publication-title: Catena
  doi: 10.1016/j.catena.2021.105509
– volume: 366
  year: 2020
  ident: 10.1016/j.catena.2023.107572_b0335
  article-title: Three-dimensional digital soil mapping of multiple soil properties at a field-scale using regression kriging
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2020.114253
– volume: 306
  start-page: 195
  year: 2017
  ident: 10.1016/j.catena.2023.107572_b0015
  article-title: Predicting soil properties in the Canadian boreal forest with limited data: Comparison of spatial and non-spatial statistical approaches
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.06.016
– volume: 16
  start-page: 2871
  issue: 12
  year: 2017
  ident: 10.1016/j.catena.2023.107572_b0325
  article-title: Recent progress and future prospect of digital soil mapping: A review
  publication-title: J. Integr. Agr.
  doi: 10.1016/S2095-3119(17)61762-3
– volume: 93
  start-page: 562
  year: 2018
  ident: 10.1016/j.catena.2023.107572_b0145
  article-title: Effects of sampling density on interpolation accuracy for farmland soil organic matter concentration in a large region of complex topography
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2018.05.044
– volume: 342
  start-page: 85
  year: 2019
  ident: 10.1016/j.catena.2023.107572_b0195
  article-title: Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.02.019
– volume: 11
  start-page: 1
  year: 2004
  ident: 10.1016/j.catena.2023.107572_b0095
  article-title: kernlab-an S4 package for kernel methods in R
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v011.i09
– volume: 409
  year: 2022
  ident: 10.1016/j.catena.2023.107572_b0175
  article-title: Complex hydrological knowledge to support digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115638
– volume: 2
  start-page: 18
  issue: 3
  year: 2002
  ident: 10.1016/j.catena.2023.107572_b0125
  article-title: Classification and regression by randomForest
  publication-title: R news
– volume: 17
  year: 2022
  ident: 10.1016/j.catena.2023.107572_b0085
  article-title: A review on digital mapping of soil carbon in cropland: progress, challenge, and prospect
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aca41e
– volume: 204
  year: 2020
  ident: 10.1016/j.catena.2023.107572_b0160
  article-title: Uncertainty assessment of soil erodibility by direct sequential Gaussian simulation (DSIM) in semiarid land uses
  publication-title: Soil Till. Res.
  doi: 10.1016/j.still.2020.104731
– volume: 213
  year: 2022
  ident: 10.1016/j.catena.2023.107572_b0255
  article-title: Variability of soil mapping accuracy with sample sizes, modelling methods and landform types in a regional case study
  publication-title: Catena
  doi: 10.1016/j.catena.2022.106217
– volume: 281
  year: 2022
  ident: 10.1016/j.catena.2023.107572_b0185
  article-title: Monitoring changes in global soil organic carbon stocks from space
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2022.113260
– year: 2001
  ident: 10.1016/j.catena.2023.107572_b0295
– volume: 21
  start-page: 3868
  year: 2021
  ident: 10.1016/j.catena.2023.107572_b0285
  article-title: Exploratory factor analysis-based co-kriging method for spatial interpolation of multi-layered soil particle-size fractions and texture
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-021-03044-4
– volume: 23
  start-page: 2106
  issue: 5
  year: 2023
  ident: 10.1016/j.catena.2023.107572_b0205
  article-title: Spatial variation of soil properties and evaluation of the risk of soil erodibility on a river alluvial and marine sedimentary plain in eastern China
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-023-03460-8
– volume: 369
  year: 2022
  ident: 10.1016/j.catena.2023.107572_b0155
  article-title: Spatial distribution and scale-specific controls of soil water-stable aggregates in southeastern China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.133305
– volume: 101
  start-page: 1032
  year: 2019
  ident: 10.1016/j.catena.2023.107572_b0275
  article-title: Comparison between geostatistical and machine learning models as predictors of topsoil organic carbon with a focus on local uncertainty estimation
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2019.02.026
– volume: 24
  start-page: 107
  issue: 1
  year: 2010
  ident: 10.1016/j.catena.2023.107572_b0290
  article-title: Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658810802443457
– volume: 857
  year: 2023
  ident: 10.1016/j.catena.2023.107572_b0320
  article-title: An interpolation method incorporating the pollution diffusion characteristics for soil heavy metals-taking a coke plant as an example
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.159698
– volume: 409
  year: 2022
  ident: 10.1016/j.catena.2023.107572_b0035
  article-title: Digital mapping of GlobalSoilMap soil properties at a broad scale: A review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115567
– volume: 60
  start-page: 740
  issue: 5
  year: 2009
  ident: 10.1016/j.catena.2023.107572_b0210
  article-title: Sampling and analytical plus subsampling variance components for five soil indicators observed at regional scale
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/j.1365-2389.2009.01159.x
– volume: 174
  start-page: 59
  year: 2019
  ident: 10.1016/j.catena.2023.107572_b0235
  article-title: Comparing interpolation methods to predict soil total phosphorus in the Mollisol area of Northeast China
  publication-title: Catena
  doi: 10.1016/j.catena.2018.10.052
– volume: 225
  year: 2021
  ident: 10.1016/j.catena.2023.107572_b0230
  article-title: Spatial distribution and human health risk assessment of soil heavy metals based on sequential Gaussian simulation and positive matrix factorization model: A case study in irrigation area of the Yellow River
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2021.112752
– volume: 11
  start-page: 1683
  issue: 14
  year: 2019
  ident: 10.1016/j.catena.2023.107572_b0330
  article-title: Prediction of soil organic carbon based on Landsat 8 monthly NDVI data for the Jianghan Plain in Hubei Province, China
  publication-title: Remote Sens.
  doi: 10.3390/rs11141683
– volume: 84
  start-page: 144
  issue: 1
  year: 2020
  ident: 10.1016/j.catena.2023.107572_b0135
  article-title: An approach for broad-scale predictive soil properties mapping in low-relief areas based on responses to solar radiation
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.1002/saj2.20025
– volume: 50
  year: 2022
  ident: 10.1016/j.catena.2023.107572_b0070
  article-title: Spatial statistics and soil mapping: A blossoming partnership under pressure
  publication-title: Spat. Stat.
  doi: 10.1016/j.spasta.2022.100639
– volume: 14
  start-page: 199
  year: 2004
  ident: 10.1016/j.catena.2023.107572_b0250
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 7
  start-page: 217
  issue: 1
  year: 2021
  ident: 10.1016/j.catena.2023.107572_b0190
  article-title: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty
  publication-title: Soil
  doi: 10.5194/soil-7-217-2021
– volume: 337
  start-page: 1329
  year: 2019
  ident: 10.1016/j.catena.2023.107572_b0260
  article-title: Comparison of various uncertainty modelling approaches based on geostatistics and machine learning algorithms
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.09.008
– volume: 31
  start-page: 715
  issue: 5
  year: 2021
  ident: 10.1016/j.catena.2023.107572_b0345
  article-title: Simulating soil erodibility in southeastern China using a sequential Gaussian algorithm
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(20)60021-2
– volume: 314
  year: 2021
  ident: 10.1016/j.catena.2023.107572_b0045
  article-title: Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.127995
– volume: 10
  start-page: 888
  issue: 6
  year: 2018
  ident: 10.1016/j.catena.2023.107572_b0060
  article-title: Exploring the sensitivity of sampling density in digital mapping of soil organic carbon and its application in soil sampling
  publication-title: Remote Sens.
  doi: 10.3390/rs10060888
– volume: 352
  start-page: 360
  year: 2019
  ident: 10.1016/j.catena.2023.107572_b0110
  article-title: Comparison of soil texture maps synthetized from standard depth layers with directly compiled products
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.01.020
– volume: 373
  start-page: 15
  issue: 1–2
  year: 2009
  ident: 10.1016/j.catena.2023.107572_b0050
  article-title: Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.03.031
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.catena.2023.107572_b0030
  article-title: Random forests
  publication-title: Machine Learn.
  doi: 10.1023/A:1010933404324
– volume: 344
  start-page: 153
  year: 2019
  ident: 10.1016/j.catena.2023.107572_b0310
  article-title: Comparing farmers' qualitative evaluation of soil fertility with quantitative soil fertility indicators in Kitui County, Kenya
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.01.019
– volume: 10
  start-page: 62
  issue: 1
  year: 2022
  ident: 10.1016/j.catena.2023.107572_b0270
  article-title: Mapping soil erodibility in southeast China at 250 m resolution: Using environmental variables and random forest regression with limited samples
  publication-title: Int. Soil. Water. Conse.
  doi: 10.1016/j.iswcr.2021.06.005
– volume: 352
  start-page: 395
  year: 2019
  ident: 10.1016/j.catena.2023.107572_b0120
  article-title: Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.05.031
– volume: 25
  start-page: 1965
  issue: 15
  year: 2005
  ident: 10.1016/j.catena.2023.107572_b0075
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.1276
– volume: 870
  year: 2023
  ident: 10.1016/j.catena.2023.107572_b0025
  article-title: Examining the influence of bare soil UAV imagery combined with auxiliary datasets to estimate and map soil organic carbon distribution in an erosion-prone agricultural field
  publication-title: Environ. Sci. Technol.
– volume: 404
  year: 2021
  ident: 10.1016/j.catena.2023.107572_b0040
  article-title: Spatial extrapolation of topographic models for mapping soil organic carbon using local samples
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2021.115290
– volume: 8
  start-page: 204
  issue: 1
  year: 2016
  ident: 10.1016/j.catena.2023.107572_b0055
  article-title: Spatio-temporal interpolation using gstat
  publication-title: R J.
  doi: 10.32614/RJ-2016-014
– volume: 27
  start-page: 2458
  issue: 11
  year: 2021
  ident: 10.1016/j.catena.2023.107572_b0165
  article-title: Feasibility of the 4 per 1000 aspirational target for soil carbon: A case study for France
  publication-title: Global Change Biol.
  doi: 10.1111/gcb.15547
– ident: 10.1016/j.catena.2023.107572_b0105
– volume: 36
  start-page: 56
  issue: 42–48
  year: 2022
  ident: 10.1016/j.catena.2023.107572_b0200
  article-title: Experimental study on soil erosion of typical riverbank in coastal plain sandy area of Jiangsu Province
  publication-title: J. Soil Water Conserv.
– start-page: 9
  year: 2014
  ident: 10.1016/j.catena.2023.107572_b0005
  article-title: The GlobalSoilMap project specifications
  publication-title: GlobalSoilMap: Basis of the global spatial soil information system
  doi: 10.1201/b16500-4
– volume: 10
  start-page: 470
  issue: 3
  year: 2022
  ident: 10.1016/j.catena.2023.107572_b0090
  article-title: Do model choice and sample ratios separately or simultaneously influence soil organic matter prediction
  publication-title: Int. Soil. Water. Conse.
  doi: 10.1016/j.iswcr.2021.11.003
– volume: 118
  start-page: 1
  year: 2013
  ident: 10.1016/j.catena.2023.107572_b0180
  article-title: Digital mapping of soil carbon
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-405942-9.00001-3
– volume: 856
  year: 2023
  ident: 10.1016/j.catena.2023.107572_b0150
  article-title: Digital mapping of soil pH and carbonates at the European scale using environmental variables and machine learning
  publication-title: Environ. Sci. Technol.
– volume: 19
  start-page: 225
  issue: 2
  year: 2006
  ident: 10.1016/j.catena.2023.107572_b0240
  article-title: Machine learning approaches for estimation of prediction interval for the model output
  publication-title: Neural networks
  doi: 10.1016/j.neunet.2006.01.012
– volume: 20
  start-page: e00255
  year: 2020
  ident: 10.1016/j.catena.2023.107572_b0010
  article-title: Impressions of digital soil maps: The good, the not so good, and making them ever better
  publication-title: Geoderma Reg.
  doi: 10.1016/j.geodrs.2020.e00255
– volume: 117
  start-page: 3
  year: 2003
  ident: 10.1016/j.catena.2023.107572_b0170
  article-title: On digital soil mapping
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00223-4
– volume: 301
  year: 2022
  ident: 10.1016/j.catena.2023.107572_b0265
  article-title: Contributions of partition and adsorption to polycyclic aromatic hydrocarbons sorption by fractionated soil at different particle sizes
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.134715
– volume: 196
  year: 2021
  ident: 10.1016/j.catena.2023.107572_b0130
  article-title: Geographical detector-based stratified regression kriging strategy for mapping soil organic carbon with high spatial heterogeneity
  publication-title: Catena
  doi: 10.1016/j.catena.2020.104953
– volume: 67
  start-page: 328
  issue: 3
  year: 2022
  ident: 10.1016/j.catena.2023.107572_b0140
  article-title: Mapping high resolution National Soil Information Grids of China
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2021.10.013
– volume: 194
  start-page: 760
  issue: 10
  year: 2022
  ident: 10.1016/j.catena.2023.107572_b0225
  article-title: Accuracy and uncertainty of geostatistical models versus machine learning for digital mapping of soil calcium and potassium
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-022-10434-9
– volume: 114
  start-page: 9575
  issue: 36
  year: 2017
  ident: 10.1016/j.catena.2023.107572_b0215
  article-title: Soil carbon debt of 12,000 years of human land use
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1706103114
– volume: 155
  start-page: 175
  issue: 3–4
  year: 2010
  ident: 10.1016/j.catena.2023.107572_b0020
  article-title: Multi-scale digital terrain analysis and feature selection for digital soil mapping
  publication-title: Geoderma.
  doi: 10.1016/j.geoderma.2009.07.010
– volume: 17
  issue: 3
  year: 2022
  ident: 10.1016/j.catena.2023.107572_b0065
  article-title: Limited role of soil texture in mediating natural vegetation response to rainfall anomalies
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/ac5206
– volume: 33
  start-page: 1323
  issue: 9
  year: 2022
  ident: 10.1016/j.catena.2023.107572_b0305
  article-title: Spatiotemporal changes in cropland soil organic carbon in a rapidly urbanizing area of southeastern China from 1980 to 2015
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.4226
– volume: 1505
  start-page: 003
  year: 2015
  ident: 10.1016/j.catena.2023.107572_b0100
  article-title: Caret: classification and regression training
  publication-title: Astrophysics Source Code Library. ascl
SSID ssj0004751
Score 2.5131514
Snippet •The effect of sampling densities on accuracy of prediction model was explored.•Geostatistical models without environmental variables have higher prediction...
Accurate prediction of the spatial distribution of soil sand content is a pre-requisite for land use management, soil quality evaluation and erosion control,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107572
SubjectTerms air
catenas
China
climate
cost effectiveness
Digital soil mapping
erosion control
fertilizers
Geographical detector
geostatistics
heat
kriging
land use planning
Model comparison
prediction
sample size
Sampling density
sand fraction
soil quality
Soil sand content
soil water
support vector machines
topsoil
Uncertainty assessment
Title Spatial prediction of soil sand content at various sampling density based on geostatistical and machine learning algorithms in plain areas
URI https://dx.doi.org/10.1016/j.catena.2023.107572
https://www.proquest.com/docview/3153197770
Volume 234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004751
  issn: 0341-8162
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-6887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004751
  issn: 0341-8162
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-6887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004751
  issn: 0341-8162
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004751
  issn: 0341-8162
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6887
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004751
  issn: 0341-8162
  databaseCode: AKRWK
  dateStart: 19730101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA9jIvoytqk4N0cEH_Sh3rZJm-ZxDOdVcS86uG8hn3eVu_Zy2w32sj_Av9pz2lRRkIEvoQ05oeR8Jc3vnEPI65CGTLrAExnykHArTGK4s4lNrXRlVuZaY7zzl_NyfsE_LYrFFjmdYmEQVhlt_2jTB2sde2ZxNWfrup59TcEAVzAbbKLRby4wgp0LrGLw7u43zIOLoQQjDk5w9BQ-N2C8EHTUYPahnEGXKET-L_f0l6EevM_ZLtmJ20Z6Mn7ZHtnyzT55FCuYX97uk4cfhhK98LQX1bWjb2JO6bdPyA8sPQyiRtcbvJlBbtA20K6tV7TTjaMIWQf_Q3VPb-D43F530I9o82ZJHYLc-1uKHs9RoFz6FgORhhzPMCfSXw2gTE9jFYol1atlu6n7y6uO1g1drzS0GhHwT8nF2ftvp_MklmFILGOyhxZ01Feg_ODMbKq5gUOgZ2VmQmpkKZiRpmSlLrX3lQMOM18ErvNgZaWZqdgzst20jX9OaCi0rXJmityn3DEnbca107KoYDoh5QFh0-orG3OUY6mMlZrAaN_VyDOFPFMjzw5I8otqPebouGe8mBir_pA1BW7kHspXkxwoUEO8W9GNB5YolqExE0KkL_579kPyGN74-IPniGz3m2v_ErY8vTkeZPqYPDj5-Hl-_hNS5AL2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKESoXRAuo5WkkDnAIm8ROHB9RRVmg7YVW2pvl5zZom6w2KVIv_AB-NTOJAwIJVeJiRY7HijwvO_5mhpBXIQ2ZdIEnMuQh4VaYxHBnE5ta6cqszLXGeOeT03J-zj8tisUWOZxiYRBWGW3_aNMHax17ZnE1Z-u6nn1JwQBXMBtsotFvLm6R27zIBZ7A3n7_jfPgYqjBiKMTHD7Fzw0gL0QdNZh-KGfQJQqR_8s__WWpB_dzdJ_ci_tG-m78tF2y5Zs9shNLmF9c75E7H4YavfC0G_W1o69jUuk3D8gPrD0MskbXG7yaQXbQNtCurVe0042jiFkHB0R1T7_B-bm96qAf4ebNkjpEuffXFF2eo0C59C1GIg1JnmFOpL8cUJmexjIUS6pXy3ZT9xeXHa0bul5paDVC4B-S86P3Z4fzJNZhSCxjsocWlNRXoP3gzWyquYFToGdlZkJqZCmYkaZkpS6195UDFjNfBK7zYGWlmanYI7LdtI3fJzQU2lY5M0XuU-6Ykzbj2mlZVDCdkPKAsGn1lY1JyrFWxkpNaLSvauSZQp6pkWcHJPlFtR6TdNwwXkyMVX8ImwI_cgPly0kOFOghXq7oxgNLFMvQmgkh0sf_PfsLsjM_OzlWxx9PPz8hd-ENH__2PCXb_ebKP4P9T2-eD_L9Ez7jBIs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+prediction+of+soil+sand+content+at+various+sampling+density+based+on+geostatistical+and+machine+learning+algorithms+in+plain+areas&rft.jtitle=Catena+%28Giessen%29&rft.au=Qu%2C+Lili&rft.au=Lu%2C+Huizhong&rft.au=Tian%2C+Zhiyuan&rft.au=Schoorl%2C+J.M.&rft.date=2024-01-01&rft.issn=0341-8162&rft.volume=234+p.107572-&rft_id=info:doi/10.1016%2Fj.catena.2023.107572&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-8162&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-8162&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-8162&client=summon