Spatial prediction of soil sand content at various sampling density based on geostatistical and machine learning algorithms in plain areas
•The effect of sampling densities on accuracy of prediction model was explored.•Geostatistical models without environmental variables have higher prediction accuracy in plain areas when the sampling size is large.•Machine learning models had an advantage of prediction accuracy when sampling densitie...
        Saved in:
      
    
          | Published in | Catena (Giessen) Vol. 234; p. 107572 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.01.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0341-8162 1872-6887  | 
| DOI | 10.1016/j.catena.2023.107572 | 
Cover
| Abstract | •The effect of sampling densities on accuracy of prediction model was explored.•Geostatistical models without environmental variables have higher prediction accuracy in plain areas when the sampling size is large.•Machine learning models had an advantage of prediction accuracy when sampling densities were below 5.31 samples/103 km2.•Quantitatively identified the driving factors of the spatial distribution of soil sand content in eastern China.
Accurate prediction of the spatial distribution of soil sand content is a pre-requisite for land use management, soil quality evaluation and erosion control, as it determines the transport and movement of soil water, fertilizer, air and heat. Digital soil mapping (DSM) is extensively employed for predicting soil properties. However, practical research is required to address the challenge of selecting an optimal prediction model that is both cost-effective and accurate at a specific sampling density. In this study, topsoil samples were collected from 2,848 sampling points in the eastern plains of China (107,200 km2). The performance of different prediction models for mapping soil sand content was compared at 12 levels of sampling density. Moreover, the geographical detector, a statistical method used to assess the spatial stratified heterogeneity of variables, was adopted to determine the major drivers of spatial variation in soil sand content. The results indicated that climate factors are the major drivers of the spatial variability in soil sand content. For the 100% sample size (26.57 samples/103 km2), the geostatistical models that did not depend on environmental variables (ordinary kriging, sequential Gaussian simulation) performed best, followed by the machine learning models (random forest, cubist and support vector machine) and the geostatistical model with environmental variables (co-kriging). Sampling density had a considerable impact on model accuracy, and the advantages of machine learning models became apparent when sampling densities were below 20% (5.31 samples/103 km2). Therefore, the best combination of prediction model and sampling density should be selected to obtain maps of soil sand content economically and accurately. This study provides a valuable reference for the selection of prediction methods in the practical application of DSM. | 
    
|---|---|
| AbstractList | •The effect of sampling densities on accuracy of prediction model was explored.•Geostatistical models without environmental variables have higher prediction accuracy in plain areas when the sampling size is large.•Machine learning models had an advantage of prediction accuracy when sampling densities were below 5.31 samples/103 km2.•Quantitatively identified the driving factors of the spatial distribution of soil sand content in eastern China.
Accurate prediction of the spatial distribution of soil sand content is a pre-requisite for land use management, soil quality evaluation and erosion control, as it determines the transport and movement of soil water, fertilizer, air and heat. Digital soil mapping (DSM) is extensively employed for predicting soil properties. However, practical research is required to address the challenge of selecting an optimal prediction model that is both cost-effective and accurate at a specific sampling density. In this study, topsoil samples were collected from 2,848 sampling points in the eastern plains of China (107,200 km2). The performance of different prediction models for mapping soil sand content was compared at 12 levels of sampling density. Moreover, the geographical detector, a statistical method used to assess the spatial stratified heterogeneity of variables, was adopted to determine the major drivers of spatial variation in soil sand content. The results indicated that climate factors are the major drivers of the spatial variability in soil sand content. For the 100% sample size (26.57 samples/103 km2), the geostatistical models that did not depend on environmental variables (ordinary kriging, sequential Gaussian simulation) performed best, followed by the machine learning models (random forest, cubist and support vector machine) and the geostatistical model with environmental variables (co-kriging). Sampling density had a considerable impact on model accuracy, and the advantages of machine learning models became apparent when sampling densities were below 20% (5.31 samples/103 km2). Therefore, the best combination of prediction model and sampling density should be selected to obtain maps of soil sand content economically and accurately. This study provides a valuable reference for the selection of prediction methods in the practical application of DSM. Accurate prediction of the spatial distribution of soil sand content is a pre-requisite for land use management, soil quality evaluation and erosion control, as it determines the transport and movement of soil water, fertilizer, air and heat. Digital soil mapping (DSM) is extensively employed for predicting soil properties. However, practical research is required to address the challenge of selecting an optimal prediction model that is both cost-effective and accurate at a specific sampling density. In this study, topsoil samples were collected from 2,848 sampling points in the eastern plains of China (107,200 km²). The performance of different prediction models for mapping soil sand content was compared at 12 levels of sampling density. Moreover, the geographical detector, a statistical method used to assess the spatial stratified heterogeneity of variables, was adopted to determine the major drivers of spatial variation in soil sand content. The results indicated that climate factors are the major drivers of the spatial variability in soil sand content. For the 100% sample size (26.57 samples/10³ km²), the geostatistical models that did not depend on environmental variables (ordinary kriging, sequential Gaussian simulation) performed best, followed by the machine learning models (random forest, cubist and support vector machine) and the geostatistical model with environmental variables (co-kriging). Sampling density had a considerable impact on model accuracy, and the advantages of machine learning models became apparent when sampling densities were below 20% (5.31 samples/10³ km²). Therefore, the best combination of prediction model and sampling density should be selected to obtain maps of soil sand content economically and accurately. This study provides a valuable reference for the selection of prediction methods in the practical application of DSM.  | 
    
| ArticleNumber | 107572 | 
    
| Author | Qiu, Dan Liang, Yin Liang, Yonghong Qu, Lili Schoorl, J.M. Lu, Huizhong Tian, Zhiyuan Huang, Biao  | 
    
| Author_xml | – sequence: 1 givenname: Lili surname: Qu fullname: Qu, Lili organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 2 givenname: Huizhong surname: Lu fullname: Lu, Huizhong organization: National Key Laboratory of Water Disaster Prevention, Nanjing Hydraulic Research Institute, Nanjing 210029, China – sequence: 3 givenname: Zhiyuan orcidid: 0000-0003-1740-117X surname: Tian fullname: Tian, Zhiyuan email: tianzhiyuan@issas.ac.cn organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 4 givenname: J.M. orcidid: 0000-0003-1930-7953 surname: Schoorl fullname: Schoorl, J.M. organization: Soil Geography and Landscape, Wageningen University, P.O. Box 47, NL-6700 AA Wageningen, the Netherlands – sequence: 5 givenname: Biao surname: Huang fullname: Huang, Biao organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China – sequence: 6 givenname: Yonghong surname: Liang fullname: Liang, Yonghong organization: Jiangsu Province Station of Farmland Quality and Agro-environment Protection, Nanjing 210029, China – sequence: 7 givenname: Dan surname: Qiu fullname: Qiu, Dan organization: Jiangsu Province Station of Farmland Quality and Agro-environment Protection, Nanjing 210029, China – sequence: 8 givenname: Yin surname: Liang fullname: Liang, Yin organization: State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China  | 
    
| BookMark | eNqFkcFq3DAQhkVJIZu0b5CDjr3sVrK8ktxDIISkCQR6aHsWY3m80SJLjqQE8gp96sq4pxzSywwM8_0w852RkxADEnLB2Y4zLr8edxYKBtg1rBF1pPaq-UA2XKtmK7VWJ2TDRMu3msvmlJzlfGSMtWrPN-TPzxmKA0_nhIOzxcVA40hzdJ5mCAO1MdToQqHQF0guPuc6n2bvwoEOGLIrr7SHjAOt5AFjLjUvF2dr5sJPYB9dQOoRUlgg8IeYXHmcMnWBzh5qhYSQP5GPI_iMn__1c_L79ubX9d324cf3--urh60Voiu1SqFRC64ZbyyDtm-ZQiF5P7K-k0r0XS-FBAmIeugGKXA_ttCMttMgei3OyZc1d07x6RlzMZPLFr2HgPU8I_he8E4pxerqt3XVpphzwtFYt9xXf5LAecOZWQSYo1kFmEWAWQVUuH0Dz8lNkF7_h12uGNYfvDhMJluHwVY9CW0xQ3TvB_wFY2Smzg | 
    
| CitedBy_id | crossref_primary_10_1038_s41597_024_03165_8 crossref_primary_10_1007_s12145_023_01179_1 crossref_primary_10_1016_j_aeolia_2024_100924 crossref_primary_10_1007_s41742_024_00611_8 crossref_primary_10_1016_j_iswcr_2024_05_005 crossref_primary_10_1007_s11356_024_34440_1 crossref_primary_10_1007_s12665_024_11468_7 crossref_primary_10_1016_j_geoderma_2024_117023 crossref_primary_10_1016_j_jhazmat_2024_136285 crossref_primary_10_3390_rs15225304 crossref_primary_10_3724_EE_1672_9250_2024_52_064 crossref_primary_10_3390_s25030604 crossref_primary_10_1016_j_heliyon_2024_e39309 crossref_primary_10_1016_j_catena_2025_108773  | 
    
| Cites_doi | 10.1021/acs.est.0c07983 10.1016/j.geoderma.2019.114136 10.3390/rs14153575 10.1016/j.geoderma.2020.114337 10.1016/j.catena.2021.105791 10.1016/j.ecolind.2021.107618 10.1016/j.earscirev.2020.103359 10.1016/j.catena.2021.105509 10.1016/j.geoderma.2020.114253 10.1016/j.geoderma.2017.06.016 10.1016/S2095-3119(17)61762-3 10.1016/j.ecolind.2018.05.044 10.1016/j.geoderma.2019.02.019 10.18637/jss.v011.i09 10.1016/j.geoderma.2021.115638 10.1088/1748-9326/aca41e 10.1016/j.still.2020.104731 10.1016/j.catena.2022.106217 10.1016/j.rse.2022.113260 10.1007/s11368-021-03044-4 10.1007/s11368-023-03460-8 10.1016/j.jclepro.2022.133305 10.1016/j.ecolind.2019.02.026 10.1080/13658810802443457 10.1016/j.scitotenv.2022.159698 10.1016/j.geoderma.2021.115567 10.1111/j.1365-2389.2009.01159.x 10.1016/j.catena.2018.10.052 10.1016/j.ecoenv.2021.112752 10.3390/rs11141683 10.1002/saj2.20025 10.1016/j.spasta.2022.100639 10.1023/B:STCO.0000035301.49549.88 10.5194/soil-7-217-2021 10.1016/j.geoderma.2018.09.008 10.1016/S1002-0160(20)60021-2 10.1016/j.jclepro.2021.127995 10.3390/rs10060888 10.1016/j.geoderma.2018.01.020 10.1016/j.jhydrol.2009.03.031 10.1023/A:1010933404324 10.1016/j.geoderma.2019.01.019 10.1016/j.iswcr.2021.06.005 10.1016/j.geoderma.2019.05.031 10.1002/joc.1276 10.1016/j.geoderma.2021.115290 10.32614/RJ-2016-014 10.1111/gcb.15547 10.1201/b16500-4 10.1016/j.iswcr.2021.11.003 10.1016/B978-0-12-405942-9.00001-3 10.1016/j.neunet.2006.01.012 10.1016/j.geodrs.2020.e00255 10.1016/S0016-7061(03)00223-4 10.1016/j.chemosphere.2022.134715 10.1016/j.catena.2020.104953 10.1016/j.scib.2021.10.013 10.1007/s10661-022-10434-9 10.1073/pnas.1706103114 10.1016/j.geoderma.2009.07.010 10.1088/1748-9326/ac5206 10.1002/ldr.4226  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2023 Elsevier B.V. | 
    
| DBID | AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1016/j.catena.2023.107572 | 
    
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Geology Sciences (General)  | 
    
| EISSN | 1872-6887 | 
    
| ExternalDocumentID | 10_1016_j_catena_2023_107572 S034181622300663X  | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GroupedDBID | --K --M -DZ .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HMC HVGLF HZ~ IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K UNMZH VH1 WUQ XPP Y6R ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c339t-c3638e8318012c0a4b407e361bf0b9673b9b636a6aee8d9d63e5f4a2fc98a3b83 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0341-8162 | 
    
| IngestDate | Thu Oct 02 21:42:12 EDT 2025 Thu Apr 24 23:00:29 EDT 2025 Thu Oct 09 00:33:22 EDT 2025 Fri Feb 23 02:35:11 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Soil sand content R2 Digital soil mapping Model comparison SVM RMSE MAE Geographical detector RF Sampling density Uncertainty assessment OK SGS COK DSM  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c339t-c3638e8318012c0a4b407e361bf0b9673b9b636a6aee8d9d63e5f4a2fc98a3b83 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0003-1740-117X 0000-0003-1930-7953  | 
    
| PQID | 3153197770 | 
    
| PQPubID | 24069 | 
    
| ParticipantIDs | proquest_miscellaneous_3153197770 crossref_citationtrail_10_1016_j_catena_2023_107572 crossref_primary_10_1016_j_catena_2023_107572 elsevier_sciencedirect_doi_10_1016_j_catena_2023_107572  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | January 2024 2024-01-00 20240101  | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2024 text: January 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Catena (Giessen) | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Shen, Hu, Zhang, Zhao, Bian, Liu (b0230) 2021; 225 Veronesi, Schillaci (b0275) 2019; 101 Wang, Li, Christakos, Liao, Zhang, Gu, Zheng (b0290) 2010; 24 Padarian, Stockmann, Minasny, McBratney (b0185) 2022; 281 Qu, Guo, Li, Wu, Liang, Zhu, Yuan (b0200) 2022; 36 Rawlins, Scheib, Lark, Lister (b0210) 2009; 60 Beguin, Fuglstad, Mansuy, Paré (b0015) 2017; 306 Madenoglu, Atalay, Erpul (b0160) 2020; 204 Sanderman, Hengl, Fiske (b0215) 2017; 114 Breiman (b0030) 2001; 45 Chen, Arrouays, Mulder, Poggio, Minasny, Roudier, Libohova, Lagacherie, Shi, Hannam, Meersmans, Richer, Walter (b0035) 2022; 409 Poggio, De Sousa, Batjes, Heuvelink, Kempen, Ribeiro, Rossiter (b0190) 2021; 7 Lu, Tian, Wei (b0150) 2023; 856 Tang, Gudda, Wu, Ling, El-Ramady, Mosa, Wang (b0265) 2022; 301 Mello, Demattê, Rizzo, de Mello, Poppiel, Silvero, Sousa (b0175) 2022; 409 Wu, Chen, Yang, Zhu, Han (b0300) 2022; 14 Liu, Wu, Zhao, Li, Yang, Song, Shi, Zhu, Zhang (b0140) 2022; 67 Fang, Wang, Chen, Sun, Cao, Wang, Wang (b0045) 2021; 314 Xie, Zhang, Lu, Peng, Zhao (b0305) 2022; 33 Gräler, Pebesma, Heuvelink (b0055) 2016; 8 Shao, Zhang, Fan, Su, Wu, Zhang, Yang, Gao (b0220) 2021; 206 Huang, Yang, Zhang, Pu, Yang, Cai, Zhou (b0085) 2022; 17 Karatzoglou, Smola, Hornik (b0095) 2004; 11 Hijmans, Cameron, Parra, Jones, Jarvis (b0075) 2005; 25 Sun, Lai, Ding, Wu, Wang, Wu (b0255) 2022; 213 Kuhn M., Weston S., Keefer C., 2012. Cubist models for regression. R package Vignette R package version 0.0, 18, 480. Zhang, Ji, Saurette, Easher, Li, Shi, Adamchuk, Biswas (b0335) 2020; 366 Biney, Houška, Volánek, Abebrese, Cervenka (b0025) 2023; 870 Long, Liu, Xing, Qiu, Huang, Zhou, Shen, Zhang (b0145) 2018; 93 Pouladi, Møller, Tabatabai, Greve (b0195) 2019; 342 John, Bouslihim, Ofem, Hssaini, Razouk, Okon, Isong, Agyeman, Kebonye, Qin (b0090) 2022; 10 Ma, Zhu, Tian, Qu, He, Liang (b0155) 2022; 369 McBratney, Mendonça Santos, Minasny (b0170) 2003; 117 Hu, Xie, Xu, Qi, Zhu, Zhu, Zhou (b0080) 2021; 55 Lai, Wang, Sun (b0115) 2021; 126 Zhu, Liang, Tian, Zhang, Zhang, Du, Wang, Li, Qu, Dai (b0345) 2021; 31 Arrouays, McBratney, Minasny, Hempel, Heuvelink, MacMillan, McKenzie (b0005) 2014 Wan, Li, Shang, Rahman (b0285) 2021; 21 Zhang, Guo, Chen, Shi, Luo, Ju, Zhang, Wang (b0330) 2019; 11 Behrens, Zhu, Schmidt, Scholten (b0020) 2010; 155 Grabs, Seibert, Bishop, Laudon (b0050) 2009; 373 Kuhn (b0100) 2015; 1505 Lamichhane, Kumar, Wilson (b0120) 2019; 352 Gupta, Bonetti, Lehmann, Or (b0065) 2022; 17 Laborczi, Szatmari, Kaposi, Pasztor (b0110) 2019; 352 Wadoux, Minasny, McBratney (b0280) 2020; 210 Zeng, Wan, Gu, Lei, Yang, Chen (b0320) 2023; 857 Liu, Chen, Wu, Wang, Wang (b0130) 2021; 196 Arrouays, McBratney, Bouma, Libohova, Richer-de-Forges, Morgan, Mulder (b0010) 2020; 20 Guo, Linderman, Shi, Chen, Duan, Zhang (b0060) 2018; 10 Martin, Dimassi, Roman Dobarco, Guenet, Arrouays, Angers, Blache, Huard, Soussana, Pellerin (b0165) 2021; 27 Liaw, Wiener (b0125) 2002; 2 Liu, Rossiter, Song, Zhang, Wu, Zhao (b0135) 2020; 84 Sharififar (b0225) 2022; 194 Smola, Schölkopf (b0250) 2004; 14 Zhao, Wang, Zhao, Triantafilis (b0340) 2022; 209 Minasny, McBratney, Malone, Wheeler (b0180) 2013; 118 Shen, Wang, Wang, Liu, Zhang, Zhang (b0235) 2019; 174 Silva, Weindorf, Pinto, Faria, Junior, Gomide, Curi (b0245) 2020; 362 Du, McCarty, Li, Rabenhorst, Wang, Lee, Zou (b0040) 2021; 404 Webster, Oliver (b0295) 2001 Yang, Li, Shi, Shen, Qi, Gao, Zhou (b0315) 2020; 369 Tian, Liu, Liang, Zhu (b0270) 2022; 10 Szatmári, Pásztor (b0260) 2019; 337 Yageta, Osbahr, Morimoto, Clark (b0310) 2019; 344 Shrestha, Solomatine (b0240) 2006; 19 Heuvelink, Webster (b0070) 2022; 50 Zhang, Feng, Song (b0325) 2017; 16 Qu, Zhu, Liang, Qiu, Zhang, Liang (b0205) 2023; 23 Huang (10.1016/j.catena.2023.107572_b0085) 2022; 17 Lai (10.1016/j.catena.2023.107572_b0115) 2021; 126 Martin (10.1016/j.catena.2023.107572_b0165) 2021; 27 John (10.1016/j.catena.2023.107572_b0090) 2022; 10 Breiman (10.1016/j.catena.2023.107572_b0030) 2001; 45 Szatmári (10.1016/j.catena.2023.107572_b0260) 2019; 337 Liu (10.1016/j.catena.2023.107572_b0140) 2022; 67 Behrens (10.1016/j.catena.2023.107572_b0020) 2010; 155 Guo (10.1016/j.catena.2023.107572_b0060) 2018; 10 Karatzoglou (10.1016/j.catena.2023.107572_b0095) 2004; 11 Lamichhane (10.1016/j.catena.2023.107572_b0120) 2019; 352 Wadoux (10.1016/j.catena.2023.107572_b0280) 2020; 210 Du (10.1016/j.catena.2023.107572_b0040) 2021; 404 Yageta (10.1016/j.catena.2023.107572_b0310) 2019; 344 10.1016/j.catena.2023.107572_b0105 Zhang (10.1016/j.catena.2023.107572_b0325) 2017; 16 Laborczi (10.1016/j.catena.2023.107572_b0110) 2019; 352 Long (10.1016/j.catena.2023.107572_b0145) 2018; 93 Webster (10.1016/j.catena.2023.107572_b0295) 2001 Chen (10.1016/j.catena.2023.107572_b0035) 2022; 409 Liu (10.1016/j.catena.2023.107572_b0130) 2021; 196 Shen (10.1016/j.catena.2023.107572_b0235) 2019; 174 Yang (10.1016/j.catena.2023.107572_b0315) 2020; 369 McBratney (10.1016/j.catena.2023.107572_b0170) 2003; 117 Shrestha (10.1016/j.catena.2023.107572_b0240) 2006; 19 Qu (10.1016/j.catena.2023.107572_b0205) 2023; 23 Wan (10.1016/j.catena.2023.107572_b0285) 2021; 21 Mello (10.1016/j.catena.2023.107572_b0175) 2022; 409 Beguin (10.1016/j.catena.2023.107572_b0015) 2017; 306 Ma (10.1016/j.catena.2023.107572_b0155) 2022; 369 Zhao (10.1016/j.catena.2023.107572_b0340) 2022; 209 Shao (10.1016/j.catena.2023.107572_b0220) 2021; 206 Tang (10.1016/j.catena.2023.107572_b0265) 2022; 301 Arrouays (10.1016/j.catena.2023.107572_b0010) 2020; 20 Hu (10.1016/j.catena.2023.107572_b0080) 2021; 55 Veronesi (10.1016/j.catena.2023.107572_b0275) 2019; 101 Gupta (10.1016/j.catena.2023.107572_b0065) 2022; 17 Liaw (10.1016/j.catena.2023.107572_b0125) 2002; 2 Wang (10.1016/j.catena.2023.107572_b0290) 2010; 24 Madenoglu (10.1016/j.catena.2023.107572_b0160) 2020; 204 Zhang (10.1016/j.catena.2023.107572_b0335) 2020; 366 Wu (10.1016/j.catena.2023.107572_b0300) 2022; 14 Poggio (10.1016/j.catena.2023.107572_b0190) 2021; 7 Silva (10.1016/j.catena.2023.107572_b0245) 2020; 362 Minasny (10.1016/j.catena.2023.107572_b0180) 2013; 118 Sun (10.1016/j.catena.2023.107572_b0255) 2022; 213 Tian (10.1016/j.catena.2023.107572_b0270) 2022; 10 Heuvelink (10.1016/j.catena.2023.107572_b0070) 2022; 50 Zhang (10.1016/j.catena.2023.107572_b0330) 2019; 11 Grabs (10.1016/j.catena.2023.107572_b0050) 2009; 373 Hijmans (10.1016/j.catena.2023.107572_b0075) 2005; 25 Kuhn (10.1016/j.catena.2023.107572_b0100) 2015; 1505 Gräler (10.1016/j.catena.2023.107572_b0055) 2016; 8 Xie (10.1016/j.catena.2023.107572_b0305) 2022; 33 Sanderman (10.1016/j.catena.2023.107572_b0215) 2017; 114 Pouladi (10.1016/j.catena.2023.107572_b0195) 2019; 342 Fang (10.1016/j.catena.2023.107572_b0045) 2021; 314 Lu (10.1016/j.catena.2023.107572_b0150) 2023; 856 Zhu (10.1016/j.catena.2023.107572_b0345) 2021; 31 Liu (10.1016/j.catena.2023.107572_b0135) 2020; 84 Smola (10.1016/j.catena.2023.107572_b0250) 2004; 14 Padarian (10.1016/j.catena.2023.107572_b0185) 2022; 281 Arrouays (10.1016/j.catena.2023.107572_b0005) 2014 Qu (10.1016/j.catena.2023.107572_b0200) 2022; 36 Sharififar (10.1016/j.catena.2023.107572_b0225) 2022; 194 Shen (10.1016/j.catena.2023.107572_b0230) 2021; 225 Rawlins (10.1016/j.catena.2023.107572_b0210) 2009; 60 Zeng (10.1016/j.catena.2023.107572_b0320) 2023; 857 Biney (10.1016/j.catena.2023.107572_b0025) 2023; 870  | 
    
| References_xml | – volume: 373 start-page: 15 year: 2009 end-page: 23 ident: b0050 article-title: Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model publication-title: J. Hydrol. – volume: 50 year: 2022 ident: b0070 article-title: Spatial statistics and soil mapping: A blossoming partnership under pressure publication-title: Spat. Stat. – volume: 117 start-page: 3 year: 2003 end-page: 52 ident: b0170 article-title: On digital soil mapping publication-title: Geoderma – volume: 14 start-page: 199 year: 2004 end-page: 222 ident: b0250 article-title: A tutorial on support vector regression publication-title: Stat. Comput. – volume: 21 start-page: 3868 year: 2021 end-page: 3887 ident: b0285 article-title: Exploratory factor analysis-based co-kriging method for spatial interpolation of multi-layered soil particle-size fractions and texture publication-title: J. Soils Sediments – volume: 11 start-page: 1 year: 2004 end-page: 20 ident: b0095 article-title: kernlab-an S4 package for kernel methods in R publication-title: J. Stat. Softw. – volume: 31 start-page: 715 year: 2021 end-page: 724 ident: b0345 article-title: Simulating soil erodibility in southeastern China using a sequential Gaussian algorithm publication-title: Pedosphere – volume: 337 start-page: 1329 year: 2019 end-page: 1340 ident: b0260 article-title: Comparison of various uncertainty modelling approaches based on geostatistics and machine learning algorithms publication-title: Geoderma – volume: 194 start-page: 760 year: 2022 ident: b0225 article-title: Accuracy and uncertainty of geostatistical models versus machine learning for digital mapping of soil calcium and potassium publication-title: Environ. Monit. Assess. – volume: 342 start-page: 85 year: 2019 end-page: 92 ident: b0195 article-title: Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging publication-title: Geoderma – volume: 10 start-page: 470 year: 2022 end-page: 486 ident: b0090 article-title: Do model choice and sample ratios separately or simultaneously influence soil organic matter prediction publication-title: Int. Soil. Water. Conse. – volume: 857 year: 2023 ident: b0320 article-title: An interpolation method incorporating the pollution diffusion characteristics for soil heavy metals-taking a coke plant as an example publication-title: Sci. Total Environ. – volume: 17 year: 2022 ident: b0065 article-title: Limited role of soil texture in mediating natural vegetation response to rainfall anomalies publication-title: Environ. Res. Lett. – volume: 126 year: 2021 ident: b0115 article-title: A comparison of importance of modelling method and sample size for mapping soil organic matter in Guangdong, China publication-title: Ecol. Indic. – volume: 10 start-page: 62 year: 2022 end-page: 74 ident: b0270 article-title: Mapping soil erodibility in southeast China at 250 m resolution: Using environmental variables and random forest regression with limited samples publication-title: Int. Soil. Water. Conse. – volume: 25 start-page: 1965 year: 2005 end-page: 1978 ident: b0075 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: Int. J. Climatol. – volume: 118 start-page: 1 year: 2013 end-page: 47 ident: b0180 article-title: Digital mapping of soil carbon publication-title: Adv. Agron. – volume: 404 year: 2021 ident: b0040 article-title: Spatial extrapolation of topographic models for mapping soil organic carbon using local samples publication-title: Geoderma – volume: 60 start-page: 740 year: 2009 end-page: 747 ident: b0210 article-title: Sampling and analytical plus subsampling variance components for five soil indicators observed at regional scale publication-title: Eur. J. Soil Sci. – volume: 19 start-page: 225 year: 2006 end-page: 235 ident: b0240 article-title: Machine learning approaches for estimation of prediction interval for the model output publication-title: Neural networks – volume: 101 start-page: 1032 year: 2019 end-page: 1044 ident: b0275 article-title: Comparison between geostatistical and machine learning models as predictors of topsoil organic carbon with a focus on local uncertainty estimation publication-title: Ecol. Indic. – volume: 210 year: 2020 ident: b0280 article-title: Machine learning for digital soil mapping: Applications, challenges and suggested solutions publication-title: Earth Sci. Rev. – volume: 55 start-page: 9721 year: 2021 end-page: 9729 ident: b0080 article-title: Direct analysis of soil composition for source apportionment by laser ablation single-particle aerosol mass spectrometry publication-title: Environ. Sci. Technol. – volume: 409 year: 2022 ident: b0175 article-title: Complex hydrological knowledge to support digital soil mapping publication-title: Geoderma – volume: 870 year: 2023 ident: b0025 article-title: Examining the influence of bare soil UAV imagery combined with auxiliary datasets to estimate and map soil organic carbon distribution in an erosion-prone agricultural field publication-title: Environ. Sci. Technol. – volume: 344 start-page: 153 year: 2019 end-page: 163 ident: b0310 article-title: Comparing farmers' qualitative evaluation of soil fertility with quantitative soil fertility indicators in Kitui County, Kenya publication-title: Geoderma – volume: 366 year: 2020 ident: b0335 article-title: Three-dimensional digital soil mapping of multiple soil properties at a field-scale using regression kriging publication-title: Geoderma – volume: 409 year: 2022 ident: b0035 article-title: Digital mapping of GlobalSoilMap soil properties at a broad scale: A review publication-title: Geoderma – volume: 306 start-page: 195 year: 2017 end-page: 205 ident: b0015 article-title: Predicting soil properties in the Canadian boreal forest with limited data: Comparison of spatial and non-spatial statistical approaches publication-title: Geoderma – volume: 204 year: 2020 ident: b0160 article-title: Uncertainty assessment of soil erodibility by direct sequential Gaussian simulation (DSIM) in semiarid land uses publication-title: Soil Till. Res. – volume: 23 start-page: 2106 year: 2023 end-page: 2119 ident: b0205 article-title: Spatial variation of soil properties and evaluation of the risk of soil erodibility on a river alluvial and marine sedimentary plain in eastern China publication-title: J. Soils Sediments – volume: 369 year: 2020 ident: b0315 article-title: Evaluation of conditioned Latin hypercube sampling for soil mapping based on a machine learning method publication-title: Geoderma – year: 2001 ident: b0295 article-title: Geostatistics for Environmental Scientists – volume: 856 year: 2023 ident: b0150 article-title: Digital mapping of soil pH and carbonates at the European scale using environmental variables and machine learning publication-title: Environ. Sci. Technol. – volume: 206 year: 2021 ident: b0220 article-title: Spatial variability-based sample size allocation for stratified sampling publication-title: Catena – volume: 114 start-page: 9575 year: 2017 end-page: 9580 ident: b0215 article-title: Soil carbon debt of 12,000 years of human land use publication-title: Proc. Natl. Acad. Sci. – volume: 14 start-page: 3575 year: 2022 ident: b0300 article-title: Mapping Soil Organic Carbon in Low-Relief Farmlands Based on Stratified Heterogeneous Relationship publication-title: Remote Sens. Basel. – volume: 369 year: 2022 ident: b0155 article-title: Spatial distribution and scale-specific controls of soil water-stable aggregates in southeastern China publication-title: J. Clean. Prod. – volume: 24 start-page: 107 year: 2010 end-page: 127 ident: b0290 article-title: Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China publication-title: Int. J. Geogr. Inf. Sci. – volume: 174 start-page: 59 year: 2019 end-page: 72 ident: b0235 article-title: Comparing interpolation methods to predict soil total phosphorus in the Mollisol area of Northeast China publication-title: Catena – volume: 209 year: 2022 ident: b0340 article-title: Clay content mapping and uncertainty estimation using weighted model averaging publication-title: Catena – volume: 213 year: 2022 ident: b0255 article-title: Variability of soil mapping accuracy with sample sizes, modelling methods and landform types in a regional case study publication-title: Catena – volume: 33 start-page: 1323 year: 2022 end-page: 1336 ident: b0305 article-title: Spatiotemporal changes in cropland soil organic carbon in a rapidly urbanizing area of southeastern China from 1980 to 2015 publication-title: Land Degrad. Dev. – start-page: 9 year: 2014 end-page: 12 ident: b0005 article-title: The GlobalSoilMap project specifications publication-title: GlobalSoilMap: Basis of the global spatial soil information system – volume: 155 start-page: 175 year: 2010 end-page: 185 ident: b0020 article-title: Multi-scale digital terrain analysis and feature selection for digital soil mapping publication-title: Geoderma. – volume: 17 year: 2022 ident: b0085 article-title: A review on digital mapping of soil carbon in cropland: progress, challenge, and prospect publication-title: Environ. Res. Lett. – volume: 225 year: 2021 ident: b0230 article-title: Spatial distribution and human health risk assessment of soil heavy metals based on sequential Gaussian simulation and positive matrix factorization model: A case study in irrigation area of the Yellow River publication-title: Ecotoxicol. Environ. Saf. – volume: 301 year: 2022 ident: b0265 article-title: Contributions of partition and adsorption to polycyclic aromatic hydrocarbons sorption by fractionated soil at different particle sizes publication-title: Chemosphere – volume: 20 start-page: e00255 year: 2020 ident: b0010 article-title: Impressions of digital soil maps: The good, the not so good, and making them ever better publication-title: Geoderma Reg. – reference: Kuhn M., Weston S., Keefer C., 2012. Cubist models for regression. R package Vignette R package version 0.0, 18, 480. – volume: 36 start-page: 56 year: 2022 ident: b0200 article-title: Experimental study on soil erosion of typical riverbank in coastal plain sandy area of Jiangsu Province publication-title: J. Soil Water Conserv. – volume: 352 start-page: 360 year: 2019 end-page: 372 ident: b0110 article-title: Comparison of soil texture maps synthetized from standard depth layers with directly compiled products publication-title: Geoderma – volume: 2 start-page: 18 year: 2002 end-page: 22 ident: b0125 article-title: Classification and regression by randomForest publication-title: R news – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0030 article-title: Random forests publication-title: Machine Learn. – volume: 352 start-page: 395 year: 2019 end-page: 413 ident: b0120 article-title: Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review publication-title: Geoderma – volume: 196 year: 2021 ident: b0130 article-title: Geographical detector-based stratified regression kriging strategy for mapping soil organic carbon with high spatial heterogeneity publication-title: Catena – volume: 16 start-page: 2871 year: 2017 end-page: 2885 ident: b0325 article-title: Recent progress and future prospect of digital soil mapping: A review publication-title: J. Integr. Agr. – volume: 7 start-page: 217 year: 2021 end-page: 240 ident: b0190 article-title: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty publication-title: Soil – volume: 281 year: 2022 ident: b0185 article-title: Monitoring changes in global soil organic carbon stocks from space publication-title: Remote Sens. Environ. – volume: 27 start-page: 2458 year: 2021 end-page: 2477 ident: b0165 article-title: Feasibility of the 4 per 1000 aspirational target for soil carbon: A case study for France publication-title: Global Change Biol. – volume: 11 start-page: 1683 year: 2019 ident: b0330 article-title: Prediction of soil organic carbon based on Landsat 8 monthly NDVI data for the Jianghan Plain in Hubei Province, China publication-title: Remote Sens. – volume: 8 start-page: 204 year: 2016 ident: b0055 article-title: Spatio-temporal interpolation using gstat publication-title: R J. – volume: 362 year: 2020 ident: b0245 article-title: Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach publication-title: Geoderma – volume: 314 year: 2021 ident: b0045 article-title: Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins publication-title: J. Clean. Prod. – volume: 67 start-page: 328 year: 2022 end-page: 340 ident: b0140 article-title: Mapping high resolution National Soil Information Grids of China publication-title: Sci. Bull. – volume: 10 start-page: 888 year: 2018 ident: b0060 article-title: Exploring the sensitivity of sampling density in digital mapping of soil organic carbon and its application in soil sampling publication-title: Remote Sens. – volume: 1505 start-page: 003 year: 2015 ident: b0100 article-title: Caret: classification and regression training publication-title: Astrophysics Source Code Library. ascl – volume: 84 start-page: 144 year: 2020 end-page: 162 ident: b0135 article-title: An approach for broad-scale predictive soil properties mapping in low-relief areas based on responses to solar radiation publication-title: Soil Sci. Soc. Am. J. – volume: 93 start-page: 562 year: 2018 end-page: 571 ident: b0145 article-title: Effects of sampling density on interpolation accuracy for farmland soil organic matter concentration in a large region of complex topography publication-title: Ecol. Indic. – volume: 55 start-page: 9721 issue: 14 year: 2021 ident: 10.1016/j.catena.2023.107572_b0080 article-title: Direct analysis of soil composition for source apportionment by laser ablation single-particle aerosol mass spectrometry publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c07983 – volume: 362 year: 2020 ident: 10.1016/j.catena.2023.107572_b0245 article-title: Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach publication-title: Geoderma doi: 10.1016/j.geoderma.2019.114136 – volume: 14 start-page: 3575 issue: 15 year: 2022 ident: 10.1016/j.catena.2023.107572_b0300 article-title: Mapping Soil Organic Carbon in Low-Relief Farmlands Based on Stratified Heterogeneous Relationship publication-title: Remote Sens. Basel. doi: 10.3390/rs14153575 – volume: 369 year: 2020 ident: 10.1016/j.catena.2023.107572_b0315 article-title: Evaluation of conditioned Latin hypercube sampling for soil mapping based on a machine learning method publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114337 – volume: 209 year: 2022 ident: 10.1016/j.catena.2023.107572_b0340 article-title: Clay content mapping and uncertainty estimation using weighted model averaging publication-title: Catena doi: 10.1016/j.catena.2021.105791 – volume: 126 year: 2021 ident: 10.1016/j.catena.2023.107572_b0115 article-title: A comparison of importance of modelling method and sample size for mapping soil organic matter in Guangdong, China publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2021.107618 – volume: 210 year: 2020 ident: 10.1016/j.catena.2023.107572_b0280 article-title: Machine learning for digital soil mapping: Applications, challenges and suggested solutions publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2020.103359 – volume: 206 year: 2021 ident: 10.1016/j.catena.2023.107572_b0220 article-title: Spatial variability-based sample size allocation for stratified sampling publication-title: Catena doi: 10.1016/j.catena.2021.105509 – volume: 366 year: 2020 ident: 10.1016/j.catena.2023.107572_b0335 article-title: Three-dimensional digital soil mapping of multiple soil properties at a field-scale using regression kriging publication-title: Geoderma doi: 10.1016/j.geoderma.2020.114253 – volume: 306 start-page: 195 year: 2017 ident: 10.1016/j.catena.2023.107572_b0015 article-title: Predicting soil properties in the Canadian boreal forest with limited data: Comparison of spatial and non-spatial statistical approaches publication-title: Geoderma doi: 10.1016/j.geoderma.2017.06.016 – volume: 16 start-page: 2871 issue: 12 year: 2017 ident: 10.1016/j.catena.2023.107572_b0325 article-title: Recent progress and future prospect of digital soil mapping: A review publication-title: J. Integr. Agr. doi: 10.1016/S2095-3119(17)61762-3 – volume: 93 start-page: 562 year: 2018 ident: 10.1016/j.catena.2023.107572_b0145 article-title: Effects of sampling density on interpolation accuracy for farmland soil organic matter concentration in a large region of complex topography publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2018.05.044 – volume: 342 start-page: 85 year: 2019 ident: 10.1016/j.catena.2023.107572_b0195 article-title: Mapping soil organic matter contents at field level with Cubist, Random Forest and kriging publication-title: Geoderma doi: 10.1016/j.geoderma.2019.02.019 – volume: 11 start-page: 1 year: 2004 ident: 10.1016/j.catena.2023.107572_b0095 article-title: kernlab-an S4 package for kernel methods in R publication-title: J. Stat. Softw. doi: 10.18637/jss.v011.i09 – volume: 409 year: 2022 ident: 10.1016/j.catena.2023.107572_b0175 article-title: Complex hydrological knowledge to support digital soil mapping publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115638 – volume: 2 start-page: 18 issue: 3 year: 2002 ident: 10.1016/j.catena.2023.107572_b0125 article-title: Classification and regression by randomForest publication-title: R news – volume: 17 year: 2022 ident: 10.1016/j.catena.2023.107572_b0085 article-title: A review on digital mapping of soil carbon in cropland: progress, challenge, and prospect publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aca41e – volume: 204 year: 2020 ident: 10.1016/j.catena.2023.107572_b0160 article-title: Uncertainty assessment of soil erodibility by direct sequential Gaussian simulation (DSIM) in semiarid land uses publication-title: Soil Till. Res. doi: 10.1016/j.still.2020.104731 – volume: 213 year: 2022 ident: 10.1016/j.catena.2023.107572_b0255 article-title: Variability of soil mapping accuracy with sample sizes, modelling methods and landform types in a regional case study publication-title: Catena doi: 10.1016/j.catena.2022.106217 – volume: 281 year: 2022 ident: 10.1016/j.catena.2023.107572_b0185 article-title: Monitoring changes in global soil organic carbon stocks from space publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113260 – year: 2001 ident: 10.1016/j.catena.2023.107572_b0295 – volume: 21 start-page: 3868 year: 2021 ident: 10.1016/j.catena.2023.107572_b0285 article-title: Exploratory factor analysis-based co-kriging method for spatial interpolation of multi-layered soil particle-size fractions and texture publication-title: J. Soils Sediments doi: 10.1007/s11368-021-03044-4 – volume: 23 start-page: 2106 issue: 5 year: 2023 ident: 10.1016/j.catena.2023.107572_b0205 article-title: Spatial variation of soil properties and evaluation of the risk of soil erodibility on a river alluvial and marine sedimentary plain in eastern China publication-title: J. Soils Sediments doi: 10.1007/s11368-023-03460-8 – volume: 369 year: 2022 ident: 10.1016/j.catena.2023.107572_b0155 article-title: Spatial distribution and scale-specific controls of soil water-stable aggregates in southeastern China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.133305 – volume: 101 start-page: 1032 year: 2019 ident: 10.1016/j.catena.2023.107572_b0275 article-title: Comparison between geostatistical and machine learning models as predictors of topsoil organic carbon with a focus on local uncertainty estimation publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2019.02.026 – volume: 24 start-page: 107 issue: 1 year: 2010 ident: 10.1016/j.catena.2023.107572_b0290 article-title: Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658810802443457 – volume: 857 year: 2023 ident: 10.1016/j.catena.2023.107572_b0320 article-title: An interpolation method incorporating the pollution diffusion characteristics for soil heavy metals-taking a coke plant as an example publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.159698 – volume: 409 year: 2022 ident: 10.1016/j.catena.2023.107572_b0035 article-title: Digital mapping of GlobalSoilMap soil properties at a broad scale: A review publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115567 – volume: 60 start-page: 740 issue: 5 year: 2009 ident: 10.1016/j.catena.2023.107572_b0210 article-title: Sampling and analytical plus subsampling variance components for five soil indicators observed at regional scale publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2009.01159.x – volume: 174 start-page: 59 year: 2019 ident: 10.1016/j.catena.2023.107572_b0235 article-title: Comparing interpolation methods to predict soil total phosphorus in the Mollisol area of Northeast China publication-title: Catena doi: 10.1016/j.catena.2018.10.052 – volume: 225 year: 2021 ident: 10.1016/j.catena.2023.107572_b0230 article-title: Spatial distribution and human health risk assessment of soil heavy metals based on sequential Gaussian simulation and positive matrix factorization model: A case study in irrigation area of the Yellow River publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2021.112752 – volume: 11 start-page: 1683 issue: 14 year: 2019 ident: 10.1016/j.catena.2023.107572_b0330 article-title: Prediction of soil organic carbon based on Landsat 8 monthly NDVI data for the Jianghan Plain in Hubei Province, China publication-title: Remote Sens. doi: 10.3390/rs11141683 – volume: 84 start-page: 144 issue: 1 year: 2020 ident: 10.1016/j.catena.2023.107572_b0135 article-title: An approach for broad-scale predictive soil properties mapping in low-relief areas based on responses to solar radiation publication-title: Soil Sci. Soc. Am. J. doi: 10.1002/saj2.20025 – volume: 50 year: 2022 ident: 10.1016/j.catena.2023.107572_b0070 article-title: Spatial statistics and soil mapping: A blossoming partnership under pressure publication-title: Spat. Stat. doi: 10.1016/j.spasta.2022.100639 – volume: 14 start-page: 199 year: 2004 ident: 10.1016/j.catena.2023.107572_b0250 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 7 start-page: 217 issue: 1 year: 2021 ident: 10.1016/j.catena.2023.107572_b0190 article-title: SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty publication-title: Soil doi: 10.5194/soil-7-217-2021 – volume: 337 start-page: 1329 year: 2019 ident: 10.1016/j.catena.2023.107572_b0260 article-title: Comparison of various uncertainty modelling approaches based on geostatistics and machine learning algorithms publication-title: Geoderma doi: 10.1016/j.geoderma.2018.09.008 – volume: 31 start-page: 715 issue: 5 year: 2021 ident: 10.1016/j.catena.2023.107572_b0345 article-title: Simulating soil erodibility in southeastern China using a sequential Gaussian algorithm publication-title: Pedosphere doi: 10.1016/S1002-0160(20)60021-2 – volume: 314 year: 2021 ident: 10.1016/j.catena.2023.107572_b0045 article-title: Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.127995 – volume: 10 start-page: 888 issue: 6 year: 2018 ident: 10.1016/j.catena.2023.107572_b0060 article-title: Exploring the sensitivity of sampling density in digital mapping of soil organic carbon and its application in soil sampling publication-title: Remote Sens. doi: 10.3390/rs10060888 – volume: 352 start-page: 360 year: 2019 ident: 10.1016/j.catena.2023.107572_b0110 article-title: Comparison of soil texture maps synthetized from standard depth layers with directly compiled products publication-title: Geoderma doi: 10.1016/j.geoderma.2018.01.020 – volume: 373 start-page: 15 issue: 1–2 year: 2009 ident: 10.1016/j.catena.2023.107572_b0050 article-title: Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.03.031 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.catena.2023.107572_b0030 article-title: Random forests publication-title: Machine Learn. doi: 10.1023/A:1010933404324 – volume: 344 start-page: 153 year: 2019 ident: 10.1016/j.catena.2023.107572_b0310 article-title: Comparing farmers' qualitative evaluation of soil fertility with quantitative soil fertility indicators in Kitui County, Kenya publication-title: Geoderma doi: 10.1016/j.geoderma.2019.01.019 – volume: 10 start-page: 62 issue: 1 year: 2022 ident: 10.1016/j.catena.2023.107572_b0270 article-title: Mapping soil erodibility in southeast China at 250 m resolution: Using environmental variables and random forest regression with limited samples publication-title: Int. Soil. Water. Conse. doi: 10.1016/j.iswcr.2021.06.005 – volume: 352 start-page: 395 year: 2019 ident: 10.1016/j.catena.2023.107572_b0120 article-title: Digital soil mapping algorithms and covariates for soil organic carbon mapping and their implications: A review publication-title: Geoderma doi: 10.1016/j.geoderma.2019.05.031 – volume: 25 start-page: 1965 issue: 15 year: 2005 ident: 10.1016/j.catena.2023.107572_b0075 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: Int. J. Climatol. doi: 10.1002/joc.1276 – volume: 870 year: 2023 ident: 10.1016/j.catena.2023.107572_b0025 article-title: Examining the influence of bare soil UAV imagery combined with auxiliary datasets to estimate and map soil organic carbon distribution in an erosion-prone agricultural field publication-title: Environ. Sci. Technol. – volume: 404 year: 2021 ident: 10.1016/j.catena.2023.107572_b0040 article-title: Spatial extrapolation of topographic models for mapping soil organic carbon using local samples publication-title: Geoderma doi: 10.1016/j.geoderma.2021.115290 – volume: 8 start-page: 204 issue: 1 year: 2016 ident: 10.1016/j.catena.2023.107572_b0055 article-title: Spatio-temporal interpolation using gstat publication-title: R J. doi: 10.32614/RJ-2016-014 – volume: 27 start-page: 2458 issue: 11 year: 2021 ident: 10.1016/j.catena.2023.107572_b0165 article-title: Feasibility of the 4 per 1000 aspirational target for soil carbon: A case study for France publication-title: Global Change Biol. doi: 10.1111/gcb.15547 – ident: 10.1016/j.catena.2023.107572_b0105 – volume: 36 start-page: 56 issue: 42–48 year: 2022 ident: 10.1016/j.catena.2023.107572_b0200 article-title: Experimental study on soil erosion of typical riverbank in coastal plain sandy area of Jiangsu Province publication-title: J. Soil Water Conserv. – start-page: 9 year: 2014 ident: 10.1016/j.catena.2023.107572_b0005 article-title: The GlobalSoilMap project specifications publication-title: GlobalSoilMap: Basis of the global spatial soil information system doi: 10.1201/b16500-4 – volume: 10 start-page: 470 issue: 3 year: 2022 ident: 10.1016/j.catena.2023.107572_b0090 article-title: Do model choice and sample ratios separately or simultaneously influence soil organic matter prediction publication-title: Int. Soil. Water. Conse. doi: 10.1016/j.iswcr.2021.11.003 – volume: 118 start-page: 1 year: 2013 ident: 10.1016/j.catena.2023.107572_b0180 article-title: Digital mapping of soil carbon publication-title: Adv. Agron. doi: 10.1016/B978-0-12-405942-9.00001-3 – volume: 856 year: 2023 ident: 10.1016/j.catena.2023.107572_b0150 article-title: Digital mapping of soil pH and carbonates at the European scale using environmental variables and machine learning publication-title: Environ. Sci. Technol. – volume: 19 start-page: 225 issue: 2 year: 2006 ident: 10.1016/j.catena.2023.107572_b0240 article-title: Machine learning approaches for estimation of prediction interval for the model output publication-title: Neural networks doi: 10.1016/j.neunet.2006.01.012 – volume: 20 start-page: e00255 year: 2020 ident: 10.1016/j.catena.2023.107572_b0010 article-title: Impressions of digital soil maps: The good, the not so good, and making them ever better publication-title: Geoderma Reg. doi: 10.1016/j.geodrs.2020.e00255 – volume: 117 start-page: 3 year: 2003 ident: 10.1016/j.catena.2023.107572_b0170 article-title: On digital soil mapping publication-title: Geoderma doi: 10.1016/S0016-7061(03)00223-4 – volume: 301 year: 2022 ident: 10.1016/j.catena.2023.107572_b0265 article-title: Contributions of partition and adsorption to polycyclic aromatic hydrocarbons sorption by fractionated soil at different particle sizes publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.134715 – volume: 196 year: 2021 ident: 10.1016/j.catena.2023.107572_b0130 article-title: Geographical detector-based stratified regression kriging strategy for mapping soil organic carbon with high spatial heterogeneity publication-title: Catena doi: 10.1016/j.catena.2020.104953 – volume: 67 start-page: 328 issue: 3 year: 2022 ident: 10.1016/j.catena.2023.107572_b0140 article-title: Mapping high resolution National Soil Information Grids of China publication-title: Sci. Bull. doi: 10.1016/j.scib.2021.10.013 – volume: 194 start-page: 760 issue: 10 year: 2022 ident: 10.1016/j.catena.2023.107572_b0225 article-title: Accuracy and uncertainty of geostatistical models versus machine learning for digital mapping of soil calcium and potassium publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-022-10434-9 – volume: 114 start-page: 9575 issue: 36 year: 2017 ident: 10.1016/j.catena.2023.107572_b0215 article-title: Soil carbon debt of 12,000 years of human land use publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1706103114 – volume: 155 start-page: 175 issue: 3–4 year: 2010 ident: 10.1016/j.catena.2023.107572_b0020 article-title: Multi-scale digital terrain analysis and feature selection for digital soil mapping publication-title: Geoderma. doi: 10.1016/j.geoderma.2009.07.010 – volume: 17 issue: 3 year: 2022 ident: 10.1016/j.catena.2023.107572_b0065 article-title: Limited role of soil texture in mediating natural vegetation response to rainfall anomalies publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/ac5206 – volume: 33 start-page: 1323 issue: 9 year: 2022 ident: 10.1016/j.catena.2023.107572_b0305 article-title: Spatiotemporal changes in cropland soil organic carbon in a rapidly urbanizing area of southeastern China from 1980 to 2015 publication-title: Land Degrad. Dev. doi: 10.1002/ldr.4226 – volume: 1505 start-page: 003 year: 2015 ident: 10.1016/j.catena.2023.107572_b0100 article-title: Caret: classification and regression training publication-title: Astrophysics Source Code Library. ascl  | 
    
| SSID | ssj0004751 | 
    
| Score | 2.5131514 | 
    
| Snippet | •The effect of sampling densities on accuracy of prediction model was explored.•Geostatistical models without environmental variables have higher prediction... Accurate prediction of the spatial distribution of soil sand content is a pre-requisite for land use management, soil quality evaluation and erosion control,...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 107572 | 
    
| SubjectTerms | air catenas China climate cost effectiveness Digital soil mapping erosion control fertilizers Geographical detector geostatistics heat kriging land use planning Model comparison prediction sample size Sampling density sand fraction soil quality Soil sand content soil water support vector machines topsoil Uncertainty assessment  | 
    
| Title | Spatial prediction of soil sand content at various sampling density based on geostatistical and machine learning algorithms in plain areas | 
    
| URI | https://dx.doi.org/10.1016/j.catena.2023.107572 https://www.proquest.com/docview/3153197770  | 
    
| Volume | 234 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-6887 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004751 issn: 0341-8162 databaseCode: AKRWK dateStart: 19730101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA9jIvoytqk4N0cEH_Sh3rZJm-ZxDOdVcS86uG8hn3eVu_Zy2w32sj_Av9pz2lRRkIEvoQ05oeR8Jc3vnEPI65CGTLrAExnykHArTGK4s4lNrXRlVuZaY7zzl_NyfsE_LYrFFjmdYmEQVhlt_2jTB2sde2ZxNWfrup59TcEAVzAbbKLRby4wgp0LrGLw7u43zIOLoQQjDk5w9BQ-N2C8EHTUYPahnEGXKET-L_f0l6EevM_ZLtmJ20Z6Mn7ZHtnyzT55FCuYX97uk4cfhhK98LQX1bWjb2JO6bdPyA8sPQyiRtcbvJlBbtA20K6tV7TTjaMIWQf_Q3VPb-D43F530I9o82ZJHYLc-1uKHs9RoFz6FgORhhzPMCfSXw2gTE9jFYol1atlu6n7y6uO1g1drzS0GhHwT8nF2ftvp_MklmFILGOyhxZ01Feg_ODMbKq5gUOgZ2VmQmpkKZiRpmSlLrX3lQMOM18ErvNgZaWZqdgzst20jX9OaCi0rXJmityn3DEnbca107KoYDoh5QFh0-orG3OUY6mMlZrAaN_VyDOFPFMjzw5I8otqPebouGe8mBir_pA1BW7kHspXkxwoUEO8W9GNB5YolqExE0KkL_579kPyGN74-IPniGz3m2v_ErY8vTkeZPqYPDj5-Hl-_hNS5AL2 | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKESoXRAuo5WkkDnAIm8ROHB9RRVmg7YVW2pvl5zZom6w2KVIv_AB-NTOJAwIJVeJiRY7HijwvO_5mhpBXIQ2ZdIEnMuQh4VaYxHBnE5ta6cqszLXGeOeT03J-zj8tisUWOZxiYRBWGW3_aNMHax17ZnE1Z-u6nn1JwQBXMBtsotFvLm6R27zIBZ7A3n7_jfPgYqjBiKMTHD7Fzw0gL0QdNZh-KGfQJQqR_8s__WWpB_dzdJ_ci_tG-m78tF2y5Zs9shNLmF9c75E7H4YavfC0G_W1o69jUuk3D8gPrD0MskbXG7yaQXbQNtCurVe0042jiFkHB0R1T7_B-bm96qAf4ebNkjpEuffXFF2eo0C59C1GIg1JnmFOpL8cUJmexjIUS6pXy3ZT9xeXHa0bul5paDVC4B-S86P3Z4fzJNZhSCxjsocWlNRXoP3gzWyquYFToGdlZkJqZCmYkaZkpS6195UDFjNfBK7zYGWlmanYI7LdtI3fJzQU2lY5M0XuU-6Ykzbj2mlZVDCdkPKAsGn1lY1JyrFWxkpNaLSvauSZQp6pkWcHJPlFtR6TdNwwXkyMVX8ImwI_cgPly0kOFOghXq7oxgNLFMvQmgkh0sf_PfsLsjM_OzlWxx9PPz8hd-ENH__2PCXb_ebKP4P9T2-eD_L9Ez7jBIs | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+prediction+of+soil+sand+content+at+various+sampling+density+based+on+geostatistical+and+machine+learning+algorithms+in+plain+areas&rft.jtitle=Catena+%28Giessen%29&rft.au=Qu%2C+Lili&rft.au=Lu%2C+Huizhong&rft.au=Tian%2C+Zhiyuan&rft.au=Schoorl%2C+J.M.&rft.date=2024-01-01&rft.issn=0341-8162&rft.volume=234+p.107572-&rft_id=info:doi/10.1016%2Fj.catena.2023.107572&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0341-8162&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0341-8162&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0341-8162&client=summon |