Social density detection for suckling piglets based on convolutional neural network combined with local outlier factor algorithm
•A local outlier factor algorithm detects social density of suckling piglets.•This method could quantify the spatial relationship among different piglets.•This method could detect cluster in the piglet group.•The proposed method could detect outlier piglets. Pigs and their lactating piglets are herd...
Saved in:
| Published in | Computers and electronics in agriculture Vol. 202; p. 107423 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.11.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0168-1699 1872-7107 |
| DOI | 10.1016/j.compag.2022.107423 |
Cover
| Abstract | •A local outlier factor algorithm detects social density of suckling piglets.•This method could quantify the spatial relationship among different piglets.•This method could detect cluster in the piglet group.•The proposed method could detect outlier piglets.
Pigs and their lactating piglets are herd animals, and breeders usually observe their social distance to determine their physiological status, such as when they form clusters during cold stress, or whether there are outlier piglets with abnormal growth conditions. Instead, papers on automated detection of piglet social distance are rare. This paper proposed a novel method, the convolutional neural network combined with modified local outlier factor (CNN-LOF), to quantify the piglet social density, and detect piglets far from the herd (outlier piglets). The convolutional neural network (CNN) model named YOLOv5 was used to construct the piglet detector, and auto-mark piglets by detection box, which adopted boxes' center points instead of the piglets. The optimized local outlier factor (LOF) algorithm was employed to calculate the social density of the piglets, and the outlier piglets were based on outlier factors greater than 2. Besides, the social density of different periods was calculated, compared, and analyzed. According to the results, the accuracy of CNN-LOF for detecting outlier piglets was 97.7% for the 6,113 test images measured. The larger social density of a piglet indicates more other piglets around and higher probability of being in the center of the herd. CNN-LOF and manual detection have a similarity of more than 80% in a continuous period of 1 h. In summary, this study quantifies the social density of suckling piglets, which also intuitively reveals the distribution of piglets in different environments, and provides technical support for precision livestock farming. |
|---|---|
| AbstractList | Pigs and their lactating piglets are herd animals, and breeders usually observe their social distance to determine their physiological status, such as when they form clusters during cold stress, or whether there are outlier piglets with abnormal growth conditions. Instead, papers on automated detection of piglet social distance are rare. This paper proposed a novel method, the convolutional neural network combined with modified local outlier factor (CNN-LOF), to quantify the piglet social density, and detect piglets far from the herd (outlier piglets). The convolutional neural network (CNN) model named YOLOv5 was used to construct the piglet detector, and auto-mark piglets by detection box, which adopted boxes' center points instead of the piglets. The optimized local outlier factor (LOF) algorithm was employed to calculate the social density of the piglets, and the outlier piglets were based on outlier factors greater than 2. Besides, the social density of different periods was calculated, compared, and analyzed. According to the results, the accuracy of CNN-LOF for detecting outlier piglets was 97.7% for the 6,113 test images measured. The larger social density of a piglet indicates more other piglets around and higher probability of being in the center of the herd. CNN-LOF and manual detection have a similarity of more than 80% in a continuous period of 1 h. In summary, this study quantifies the social density of suckling piglets, which also intuitively reveals the distribution of piglets in different environments, and provides technical support for precision livestock farming. •A local outlier factor algorithm detects social density of suckling piglets.•This method could quantify the spatial relationship among different piglets.•This method could detect cluster in the piglet group.•The proposed method could detect outlier piglets. Pigs and their lactating piglets are herd animals, and breeders usually observe their social distance to determine their physiological status, such as when they form clusters during cold stress, or whether there are outlier piglets with abnormal growth conditions. Instead, papers on automated detection of piglet social distance are rare. This paper proposed a novel method, the convolutional neural network combined with modified local outlier factor (CNN-LOF), to quantify the piglet social density, and detect piglets far from the herd (outlier piglets). The convolutional neural network (CNN) model named YOLOv5 was used to construct the piglet detector, and auto-mark piglets by detection box, which adopted boxes' center points instead of the piglets. The optimized local outlier factor (LOF) algorithm was employed to calculate the social density of the piglets, and the outlier piglets were based on outlier factors greater than 2. Besides, the social density of different periods was calculated, compared, and analyzed. According to the results, the accuracy of CNN-LOF for detecting outlier piglets was 97.7% for the 6,113 test images measured. The larger social density of a piglet indicates more other piglets around and higher probability of being in the center of the herd. CNN-LOF and manual detection have a similarity of more than 80% in a continuous period of 1 h. In summary, this study quantifies the social density of suckling piglets, which also intuitively reveals the distribution of piglets in different environments, and provides technical support for precision livestock farming. |
| ArticleNumber | 107423 |
| Author | Chen, Jia Ding, Qi-an Liu, Kang Shen, Mingxia Lu, Mingzhou Liu, Longshen |
| Author_xml | – sequence: 1 givenname: Qi-an surname: Ding fullname: Ding, Qi-an organization: College of Engineering, Nanjing Agricultural University, Nanjing 210031, China – sequence: 2 givenname: Longshen surname: Liu fullname: Liu, Longshen organization: College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China – sequence: 3 givenname: Mingzhou surname: Lu fullname: Lu, Mingzhou organization: College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China – sequence: 4 givenname: Kang surname: Liu fullname: Liu, Kang organization: College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China – sequence: 5 givenname: Jia surname: Chen fullname: Chen, Jia organization: College of Engineering, Nanjing Agricultural University, Nanjing 210031, China – sequence: 6 givenname: Mingxia surname: Shen fullname: Shen, Mingxia email: mingxia@njau.edu.cn organization: College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China |
| BookMark | eNqFUT1PwzAQtRBIlMI_YMjIkmI7aeMwICHEl1SJAZgtx7kUF8cutgNi46dzJUwMMD3fvQ_png_IrvMOCDlmdMYoW5yuZ9r3G7Wacco5rqqSFztkwkTF8wrHXTJBmcjZoq73yUGMa4pzLaoJ-Xzw2iibteCiSR-ICXQy3mWdD1kc9Is1bpVtzMpCilmjIrQZstq7N2-HrRLdDobwDendhxck-8Y4FL6b9JxZr5HzQ7IGQtYpnTBZ2ZUPyPaHZK9TNsLRD07J0_XV4-Vtvry_ubu8WOa6KOqUq6albM5po6jAd9uUomtVpwtNC8UbOhcFZV0DdaU5AB5bsQUTJVNCUKihLqbkZMzdBP86QEyyN1GDtcqBH6Lkoij5vKzmHKVno1QHH2OATmqT1PbUFJSxklG5rV2u5Vi73NYux9rRXP4yb4LpVfj4z3Y-2gA7eMOiZNQGnIbWBPwQ2Xrzd8AXyuqkUg |
| CitedBy_id | crossref_primary_10_1111_gcb_70132 crossref_primary_10_3390_app132011237 crossref_primary_10_1016_j_compag_2024_109716 crossref_primary_10_1016_j_compag_2023_107938 crossref_primary_10_1049_ipr2_13094 crossref_primary_10_1016_j_compag_2023_107898 |
| Cites_doi | 10.1016/j.livsci.2011.09.011 10.1016/j.compag.2018.12.009 10.1007/s11042-020-08976-6 10.1145/335191.335388 10.1016/j.biosystemseng.2020.06.013 10.1016/j.applanim.2014.02.003 10.1016/j.compag.2022.106741 10.1016/j.compag.2020.105391 10.1016/S0003-3472(86)80202-0 10.1016/j.applanim.2020.105146 10.1016/j.compag.2021.106376 10.1016/j.neucom.2020.01.085 10.1016/j.compag.2021.106357 10.1109/LGRS.2021.3085139 10.1016/j.compag.2020.105826 10.1017/S0962728600003171 10.3390/jmse10030377 10.1017/S1751731116001208 10.1007/s11250-018-1633-4 10.18061/ojs.v115i2.4564 10.1016/j.compag.2021.106351 10.1016/j.compag.2019.105048 10.3390/agriengineering2040039 10.1109/TNNLS.2018.2876865 10.1016/j.compag.2021.106417 10.3390/app10082878 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.compag.2022.107423 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1872-7107 |
| ExternalDocumentID | 10_1016_j_compag_2022_107423 S0168169922007311 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGQPQ AGWPP AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-abd01520ba08abddb48fdafc3c03a2b058301fbe97c2ee1687161841a880e9e93 |
| IEDL.DBID | .~1 |
| ISSN | 0168-1699 |
| IngestDate | Thu Oct 02 21:45:16 EDT 2025 Thu Oct 02 04:29:24 EDT 2025 Thu Apr 24 23:06:37 EDT 2025 Fri Feb 23 02:37:11 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Outlier Social distance Cluster Piglets Precision livestock farming |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c339t-abd01520ba08abddb48fdafc3c03a2b058301fbe97c2ee1687161841a880e9e93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2834254752 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2834254752 crossref_citationtrail_10_1016_j_compag_2022_107423 crossref_primary_10_1016_j_compag_2022_107423 elsevier_sciencedirect_doi_10_1016_j_compag_2022_107423 |
| PublicationCentury | 2000 |
| PublicationDate | November 2022 2022-11-00 20221101 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: November 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers and electronics in agriculture |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M. 2020. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934. Alameer, Kyriazakis, Dalton, Miller, Bacardit (b0005) 2020; 197 Garcia, Aguilar, Toro, Pinto, Rodriguez (b0040) 2020; 179 Ding, Chen, Shen, Liu (b0030) 2022; 194 Mekhalfi, Nicolò, Bazi, Al Rahhal, Alsharif, Al Maghayreh (b0080) 2021; 19 Ho, Tsai, Kuo (b0055) 2021; 189 Yang, Huang, Yang, Li, Chen, Gan, Xue (b0145) 2019; 167 Kim, Kim, Park, Won (b0070) 2022; 10 Kauppinen, Vesala, Valros (b0065) 2012; 143 Banhazi, Lehr, Black, Crabtree, Schofield, Tscharke, Berckmans (b0010) 2012; 5 Xiao, Tian, Yu, Zhang, Liu, Du, Lan (b0140) 2020; 79 Nasirahmadi, Sturm, Olsson, Jeppsson, Müller, Edwards, Hensel (b0090) 2019; 156 Guo, Lv, Liu, Fu (b0050) 2018; 50 Ledergerber, Bennett, Diefenbacher, Shilling, Whitaker (b0075) 2015; 115 Yang, Xiao (b0150) 2020; 233 Tennessen, Caldwell (b0115) 2020 Gan, Ou, Huang, Xu, Li, Li, Liu, Xue (b0035) 2021; 188 Newberry, Wood-Gush (b0095) 1986; 34 Seo, Ahn, Kim, Lee, Chung, Park (b0105) 2020; 10 Zhao, Zheng, Xu, Wu (b0155) 2019; 30 Wu, Sahoo, Hoi (b0130) 2020; 396 Wang, Larsen, Bayer, Maschat, Baumgartner, Rault, Norton (b0120) 2021; 189 Breunig, Kriegel, Ng, Sander (b0020) 2000; 29 Riekert, Klein, Adrion, Hoffmann, Gallmann (b0100) 2020; 174 Chen, Liang, Chen, Liu, Lan (b0025) 2020; 13 Nasirahmadi, Hensel, Edwards, Sturm (b0085) 2017; 11 Zou, Z., Shi, Z., Guo, Y., & Ye, J. 2019. Object detection in 20 years: A survey. arXiv preprint arXiv:1905.05055. Wutke, Schmitt, Traulsen, Gültas (b0135) 2020; 2 Wiseman-Orr, Scott, Nolan (b0125) 2011; 20 Ge, Z., Liu, S., Wang, F., Li, Z., & Sun, J. 2021. Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430. Huang, Mao, Gan, Ceballos, Parsons, Xue, Liu (b0060) 2021; 189 Skok, Škorjanc (b0110) 2014; 154 Guo (10.1016/j.compag.2022.107423_b0050) 2018; 50 Alameer (10.1016/j.compag.2022.107423_b0005) 2020; 197 10.1016/j.compag.2022.107423_b0015 Yang (10.1016/j.compag.2022.107423_b0145) 2019; 167 Breunig (10.1016/j.compag.2022.107423_b0020) 2000; 29 Wang (10.1016/j.compag.2022.107423_b0120) 2021; 189 Kauppinen (10.1016/j.compag.2022.107423_b0065) 2012; 143 Wutke (10.1016/j.compag.2022.107423_b0135) 2020; 2 Kim (10.1016/j.compag.2022.107423_b0070) 2022; 10 Nasirahmadi (10.1016/j.compag.2022.107423_b0085) 2017; 11 Zhao (10.1016/j.compag.2022.107423_b0155) 2019; 30 Nasirahmadi (10.1016/j.compag.2022.107423_b0090) 2019; 156 Wu (10.1016/j.compag.2022.107423_b0130) 2020; 396 Chen (10.1016/j.compag.2022.107423_b0025) 2020; 13 Newberry (10.1016/j.compag.2022.107423_b0095) 1986; 34 Gan (10.1016/j.compag.2022.107423_b0035) 2021; 188 Xiao (10.1016/j.compag.2022.107423_b0140) 2020; 79 Mekhalfi (10.1016/j.compag.2022.107423_b0080) 2021; 19 Ho (10.1016/j.compag.2022.107423_b0055) 2021; 189 Seo (10.1016/j.compag.2022.107423_b0105) 2020; 10 Wiseman-Orr (10.1016/j.compag.2022.107423_b0125) 2011; 20 10.1016/j.compag.2022.107423_b0045 Yang (10.1016/j.compag.2022.107423_b0150) 2020; 233 Tennessen (10.1016/j.compag.2022.107423_b0115) 2020 Huang (10.1016/j.compag.2022.107423_b0060) 2021; 189 Riekert (10.1016/j.compag.2022.107423_b0100) 2020; 174 Skok (10.1016/j.compag.2022.107423_b0110) 2014; 154 10.1016/j.compag.2022.107423_b0160 Banhazi (10.1016/j.compag.2022.107423_b0010) 2012; 5 Ledergerber (10.1016/j.compag.2022.107423_b0075) 2015; 115 Garcia (10.1016/j.compag.2022.107423_b0040) 2020; 179 Ding (10.1016/j.compag.2022.107423_b0030) 2022; 194 |
| References_xml | – volume: 197 start-page: 91 year: 2020 end-page: 104 ident: b0005 article-title: Automatic recognition of feeding and foraging behaviour in pigs using deep learning publication-title: biosystems engineering – start-page: 169 year: 2020 end-page: 181 ident: b0115 article-title: Animal Welfare: A Good Life for Animals publication-title: Introduction to Agroecology – volume: 233 year: 2020 ident: b0150 article-title: A review of video-based pig behavior recognition publication-title: Applied Animal Behaviour Science – volume: 396 start-page: 39 year: 2020 end-page: 64 ident: b0130 article-title: Recent advances in deep learning for object detection publication-title: Neurocomputing – volume: 2 start-page: 581 year: 2020 end-page: 595 ident: b0135 article-title: Investigation of Pig Activity Based on Video Data and Semi-Supervised Neural Networks publication-title: AgriEngineering – volume: 154 start-page: 15 year: 2014 end-page: 21 ident: b0110 article-title: Group suckling cohesion as a prelude to the formation of teat order in piglets publication-title: Applied Animal Behaviour Science – volume: 10 start-page: 2878 year: 2020 ident: b0105 article-title: EmbeddedPigDet—Fast and accurate pig detection for embedded board implementations publication-title: Applied Sciences – volume: 5 start-page: 1 year: 2012 end-page: 9 ident: b0010 article-title: Precision livestock farming: an international review of scientific and commercial aspects publication-title: Int. J. Agric. Biol. Eng. – volume: 189 year: 2021 ident: b0055 article-title: Automatic monitoring of lactation frequency of sows and movement quantification of newborn piglets in farrowing houses using convolutional neural networks publication-title: Comput. Electron. Agric. – reference: Zou, Z., Shi, Z., Guo, Y., & Ye, J. 2019. Object detection in 20 years: A survey. arXiv preprint arXiv:1905.05055. – volume: 11 start-page: 131 year: 2017 end-page: 139 ident: b0085 article-title: A new approach for categorizing pig lying behaviour based on a Delaunay triangulation method publication-title: Animal – volume: 143 start-page: 142 year: 2012 end-page: 150 ident: b0065 article-title: Farmer attitude toward improvement of animal welfare is correlated with piglet production parameters publication-title: Livestock Science – volume: 10 start-page: 377 year: 2022 ident: b0070 article-title: Object Detection and Classification Based on YOLO-V5 with Improved Maritime Dataset publication-title: Journal of Marine Science and Engineering – volume: 79 start-page: 23729 year: 2020 end-page: 23791 ident: b0140 article-title: A review of object detection based on deep learning publication-title: Multimedia Tools and Applications – volume: 19 start-page: 1 year: 2021 end-page: 5 ident: b0080 article-title: Contrasting yolov5, transformer, and efficientdet detectors for crop circle detection in desert publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 156 start-page: 475 year: 2019 end-page: 481 ident: b0090 article-title: Automatic scoring of lateral and sternal lying posture in grouped pigs using image processing and Support Vector Machine publication-title: Comput. Electron. Agric. – volume: 115 start-page: 40 year: 2015 end-page: 47 ident: b0075 article-title: The effects of socializing and environmental enrichments on sow and piglet behavior and performance publication-title: The Ohio Journal of Science – volume: 189 year: 2021 ident: b0120 article-title: A PCA-based frame selection method for applying CNN and LSTM to classify postural behaviour in sows publication-title: Comput. Electron. Agric. – volume: 179 year: 2020 ident: b0040 article-title: A systematic literature review on the use of machine learning in precision livestock farming publication-title: Comput. Electron. Agric. – reference: Ge, Z., Liu, S., Wang, F., Li, Z., & Sun, J. 2021. Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430. – volume: 20 start-page: 535 year: 2011 ident: b0125 article-title: Development and testing of a novel instrument to measure health-related quality of life (HRQL) of farmed pigs and promote welfare enhancement (Part I) publication-title: Animal Welfare-The UFAW Journal – volume: 30 start-page: 3212 year: 2019 end-page: 3232 ident: b0155 article-title: Object detection with deep learning: A review publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 167 year: 2019 ident: b0145 article-title: Automated video analysis of sow nursing behavior based on fully convolutional network and oriented optical flow publication-title: Comput. Electron. Agric. – volume: 189 year: 2021 ident: b0060 article-title: Center clustering network improves piglet counting under occlusion publication-title: Comput. Electron. Agric. – volume: 13 start-page: 144 year: 2020 end-page: 149 ident: b0025 article-title: Novel method for real-time detection and tracking of pig body and its different parts publication-title: Int. J. Agric. Biol. Eng. – volume: 188 year: 2021 ident: b0035 article-title: Automated detection and analysis of social behaviors among preweaning piglets using key point-based spatial and temporal features publication-title: Comput. Electron. Agric. – volume: 29 start-page: 93 year: 2000 end-page: 104 ident: b0020 article-title: LOF: identifying density-based local outliers publication-title: SIGMOD Rec. – volume: 174 year: 2020 ident: b0100 article-title: Automatically detecting pig position and posture by 2D camera imaging and deep learning publication-title: Comput. Electron. Agric. – volume: 50 start-page: 1203 year: 2018 end-page: 1208 ident: b0050 article-title: Effects of heat stress on piglet production/performance parameters publication-title: Trop. Anim. Health Prod. – volume: 34 start-page: 1311 year: 1986 end-page: 1318 ident: b0095 article-title: Social relationships of piglets in a semi-natural environment publication-title: Anim. Behav. – reference: Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M. 2020. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934. – volume: 194 year: 2022 ident: b0030 article-title: Activity detection of suckling piglets based on motion area analysis using frame differences in combination with convolution neural network publication-title: Comput. Electron. Agric. – volume: 143 start-page: 142 issue: 2–3 year: 2012 ident: 10.1016/j.compag.2022.107423_b0065 article-title: Farmer attitude toward improvement of animal welfare is correlated with piglet production parameters publication-title: Livestock Science doi: 10.1016/j.livsci.2011.09.011 – volume: 156 start-page: 475 year: 2019 ident: 10.1016/j.compag.2022.107423_b0090 article-title: Automatic scoring of lateral and sternal lying posture in grouped pigs using image processing and Support Vector Machine publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.12.009 – volume: 79 start-page: 23729 issue: 33 year: 2020 ident: 10.1016/j.compag.2022.107423_b0140 article-title: A review of object detection based on deep learning publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-020-08976-6 – volume: 29 start-page: 93 issue: 2 year: 2000 ident: 10.1016/j.compag.2022.107423_b0020 article-title: LOF: identifying density-based local outliers publication-title: SIGMOD Rec. doi: 10.1145/335191.335388 – volume: 197 start-page: 91 year: 2020 ident: 10.1016/j.compag.2022.107423_b0005 article-title: Automatic recognition of feeding and foraging behaviour in pigs using deep learning publication-title: biosystems engineering doi: 10.1016/j.biosystemseng.2020.06.013 – volume: 154 start-page: 15 year: 2014 ident: 10.1016/j.compag.2022.107423_b0110 article-title: Group suckling cohesion as a prelude to the formation of teat order in piglets publication-title: Applied Animal Behaviour Science doi: 10.1016/j.applanim.2014.02.003 – volume: 194 year: 2022 ident: 10.1016/j.compag.2022.107423_b0030 article-title: Activity detection of suckling piglets based on motion area analysis using frame differences in combination with convolution neural network publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.106741 – volume: 174 year: 2020 ident: 10.1016/j.compag.2022.107423_b0100 article-title: Automatically detecting pig position and posture by 2D camera imaging and deep learning publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105391 – volume: 34 start-page: 1311 issue: 5 year: 1986 ident: 10.1016/j.compag.2022.107423_b0095 article-title: Social relationships of piglets in a semi-natural environment publication-title: Anim. Behav. doi: 10.1016/S0003-3472(86)80202-0 – volume: 233 year: 2020 ident: 10.1016/j.compag.2022.107423_b0150 article-title: A review of video-based pig behavior recognition publication-title: Applied Animal Behaviour Science doi: 10.1016/j.applanim.2020.105146 – volume: 189 year: 2021 ident: 10.1016/j.compag.2022.107423_b0055 article-title: Automatic monitoring of lactation frequency of sows and movement quantification of newborn piglets in farrowing houses using convolutional neural networks publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106376 – volume: 5 start-page: 1 issue: 3 year: 2012 ident: 10.1016/j.compag.2022.107423_b0010 article-title: Precision livestock farming: an international review of scientific and commercial aspects publication-title: Int. J. Agric. Biol. Eng. – volume: 396 start-page: 39 year: 2020 ident: 10.1016/j.compag.2022.107423_b0130 article-title: Recent advances in deep learning for object detection publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.01.085 – volume: 188 year: 2021 ident: 10.1016/j.compag.2022.107423_b0035 article-title: Automated detection and analysis of social behaviors among preweaning piglets using key point-based spatial and temporal features publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106357 – volume: 19 start-page: 1 year: 2021 ident: 10.1016/j.compag.2022.107423_b0080 article-title: Contrasting yolov5, transformer, and efficientdet detectors for crop circle detection in desert publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2021.3085139 – volume: 179 year: 2020 ident: 10.1016/j.compag.2022.107423_b0040 article-title: A systematic literature review on the use of machine learning in precision livestock farming publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2020.105826 – volume: 20 start-page: 535 issue: 4 year: 2011 ident: 10.1016/j.compag.2022.107423_b0125 article-title: Development and testing of a novel instrument to measure health-related quality of life (HRQL) of farmed pigs and promote welfare enhancement (Part I) publication-title: Animal Welfare-The UFAW Journal doi: 10.1017/S0962728600003171 – volume: 13 start-page: 144 issue: 6 year: 2020 ident: 10.1016/j.compag.2022.107423_b0025 article-title: Novel method for real-time detection and tracking of pig body and its different parts publication-title: Int. J. Agric. Biol. Eng. – volume: 10 start-page: 377 issue: 3 year: 2022 ident: 10.1016/j.compag.2022.107423_b0070 article-title: Object Detection and Classification Based on YOLO-V5 with Improved Maritime Dataset publication-title: Journal of Marine Science and Engineering doi: 10.3390/jmse10030377 – volume: 11 start-page: 131 issue: 1 year: 2017 ident: 10.1016/j.compag.2022.107423_b0085 article-title: A new approach for categorizing pig lying behaviour based on a Delaunay triangulation method publication-title: Animal doi: 10.1017/S1751731116001208 – volume: 50 start-page: 1203 issue: 6 year: 2018 ident: 10.1016/j.compag.2022.107423_b0050 article-title: Effects of heat stress on piglet production/performance parameters publication-title: Trop. Anim. Health Prod. doi: 10.1007/s11250-018-1633-4 – volume: 115 start-page: 40 issue: 2 year: 2015 ident: 10.1016/j.compag.2022.107423_b0075 article-title: The effects of socializing and environmental enrichments on sow and piglet behavior and performance publication-title: The Ohio Journal of Science doi: 10.18061/ojs.v115i2.4564 – volume: 189 year: 2021 ident: 10.1016/j.compag.2022.107423_b0120 article-title: A PCA-based frame selection method for applying CNN and LSTM to classify postural behaviour in sows publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106351 – volume: 167 year: 2019 ident: 10.1016/j.compag.2022.107423_b0145 article-title: Automated video analysis of sow nursing behavior based on fully convolutional network and oriented optical flow publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.105048 – ident: 10.1016/j.compag.2022.107423_b0160 – ident: 10.1016/j.compag.2022.107423_b0015 – ident: 10.1016/j.compag.2022.107423_b0045 – volume: 2 start-page: 581 issue: 4 year: 2020 ident: 10.1016/j.compag.2022.107423_b0135 article-title: Investigation of Pig Activity Based on Video Data and Semi-Supervised Neural Networks publication-title: AgriEngineering doi: 10.3390/agriengineering2040039 – volume: 30 start-page: 3212 issue: 11 year: 2019 ident: 10.1016/j.compag.2022.107423_b0155 article-title: Object detection with deep learning: A review publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2018.2876865 – volume: 189 year: 2021 ident: 10.1016/j.compag.2022.107423_b0060 article-title: Center clustering network improves piglet counting under occlusion publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106417 – volume: 10 start-page: 2878 issue: 8 year: 2020 ident: 10.1016/j.compag.2022.107423_b0105 article-title: EmbeddedPigDet—Fast and accurate pig detection for embedded board implementations publication-title: Applied Sciences doi: 10.3390/app10082878 – start-page: 169 year: 2020 ident: 10.1016/j.compag.2022.107423_b0115 article-title: Animal Welfare: A Good Life for Animals |
| SSID | ssj0016987 |
| Score | 2.4111624 |
| Snippet | •A local outlier factor algorithm detects social density of suckling piglets.•This method could quantify the spatial relationship among different piglets.•This... Pigs and their lactating piglets are herd animals, and breeders usually observe their social distance to determine their physiological status, such as when... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107423 |
| SubjectTerms | agriculture algorithms automation Cluster cold stress electronics herds neural networks Outlier physiological state Piglets Precision livestock farming probability Social distance |
| Title | Social density detection for suckling piglets based on convolutional neural network combined with local outlier factor algorithm |
| URI | https://dx.doi.org/10.1016/j.compag.2022.107423 https://www.proquest.com/docview/2834254752 |
| Volume | 202 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AKRWK dateStart: 19851001 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na8IwFA_iLtth7JO5D8lg12pNqm2PIhO3gZdN8BaSJi0OraL1sMvYn773klbYYAg79SNJCXnJ-700v_ceIQ-8I2MTa-alPszgADDei3WYeEmaSskNB9C1bItxbzQJnqfdaY0MKl8YpFWWut_pdKutyzftcjTbq9ms_QrGStTpYVxVPG6y_r1BEGIWg9bnjuYBFSLnMt2D3RLUrtznLMfL8rwz2CUy1kJmIuN_wdMvRW3RZ3hCjkuzkfZdz05JzeRn5KifrcvQGeacfDlPW6qRkl58wLWwNKucgl1KN3iGCzBFV7MMRLWhCF-aQinyzsv5B60xvqW9WHY4FC5g6wwV8X8ttcBHkUMEvaUuVQ-V82y5htLFBZkMH98GI6_Mr-AlnMeFJ5UGY4D5SvoR3GsVRKmWacITn0um_G4Eqz9VJg4TZgwMYIjR9YOOhDVvQML8ktTzZW6uCE20YiqWnVD1_EBLjSl9Ytit-LFMQwDKBuHVsIqkDD6OOTDmomKZvQsnDIHCEE4YDeLtWq1c8I099cNKYuLHJBKAD3ta3lcCFrC-8NBE5ma53Qgwv0CtBWGXXf_76zfkEJ-cC-MtqRfrrbkDW6ZQTTtZm-Sg__QyGn8DE3D24Q |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-iB_UgfuK3Ebx265J2bY9jOObXLm6wW0iatEy2bmz14EX8030vaQUFETylNEkJecn7vdf83gshN7wlE5No5mU-rOAAMN5LdJR6aZZJyQ0H0LVsi0G7Pwrux-F4jXTrWBikVVa63-l0q62rN81qNpuLyaT5DMZK3GpjXlU8bsL43o0gZBF6YI33L54HtIhdzHQb3CVoXsfPWZKXJXrn4CYy1kBqIuO_4dMPTW3hp7dLdiq7kXbc0PbImin2yXYnX1a5M8wB-XChtlQjJ718g7K0PKuCgmFKV3iICzhFF5McZLWiiF-aQi0Sz6sFCL0xwaUtLD0cKmfgO0ND_GFLLfJRJBHBaKm7q4fKaT5fQu3skIx6t8Nu36suWPBSzpPSk0qDNcB8Jf0YnrUK4kzLLOWpzyVTfhjD9s-USaKUGQMTGGF6_aAlYdMbEDE_IuvFvDDHhKZaMZXIVqTafqClxjt9EnBX_ERmESDlCeH1tIq0yj6Ol2BMRU0zexFOGAKFIZwwToj31Wvhsm_80T6qJSa-rSIBAPFHz-tawAI2GJ6ayMLMX1cC7C_Qa0EUstN_f_2KbPaHT4_i8W7wcEa2sMbFM56T9XL5ai7AsCnVpV24n8Wg-HY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Social+density+detection+for+suckling+piglets+based+on+convolutional+neural+network+combined+with+local+outlier+factor+algorithm&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Ding%2C+Qi-an&rft.au=Liu%2C+Longshen&rft.au=Lu%2C+Mingzhou&rft.au=Liu%2C+Kang&rft.date=2022-11-01&rft.issn=0168-1699&rft.volume=202+p.107423-&rft_id=info:doi/10.1016%2Fj.compag.2022.107423&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |