Social density detection for suckling piglets based on convolutional neural network combined with local outlier factor algorithm

•A local outlier factor algorithm detects social density of suckling piglets.•This method could quantify the spatial relationship among different piglets.•This method could detect cluster in the piglet group.•The proposed method could detect outlier piglets. Pigs and their lactating piglets are herd...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 202; p. 107423
Main Authors Ding, Qi-an, Liu, Longshen, Lu, Mingzhou, Liu, Kang, Chen, Jia, Shen, Mingxia
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2022
Subjects
Online AccessGet full text
ISSN0168-1699
1872-7107
DOI10.1016/j.compag.2022.107423

Cover

Abstract •A local outlier factor algorithm detects social density of suckling piglets.•This method could quantify the spatial relationship among different piglets.•This method could detect cluster in the piglet group.•The proposed method could detect outlier piglets. Pigs and their lactating piglets are herd animals, and breeders usually observe their social distance to determine their physiological status, such as when they form clusters during cold stress, or whether there are outlier piglets with abnormal growth conditions. Instead, papers on automated detection of piglet social distance are rare. This paper proposed a novel method, the convolutional neural network combined with modified local outlier factor (CNN-LOF), to quantify the piglet social density, and detect piglets far from the herd (outlier piglets). The convolutional neural network (CNN) model named YOLOv5 was used to construct the piglet detector, and auto-mark piglets by detection box, which adopted boxes' center points instead of the piglets. The optimized local outlier factor (LOF) algorithm was employed to calculate the social density of the piglets, and the outlier piglets were based on outlier factors greater than 2. Besides, the social density of different periods was calculated, compared, and analyzed. According to the results, the accuracy of CNN-LOF for detecting outlier piglets was 97.7% for the 6,113 test images measured. The larger social density of a piglet indicates more other piglets around and higher probability of being in the center of the herd. CNN-LOF and manual detection have a similarity of more than 80% in a continuous period of 1 h. In summary, this study quantifies the social density of suckling piglets, which also intuitively reveals the distribution of piglets in different environments, and provides technical support for precision livestock farming.
AbstractList Pigs and their lactating piglets are herd animals, and breeders usually observe their social distance to determine their physiological status, such as when they form clusters during cold stress, or whether there are outlier piglets with abnormal growth conditions. Instead, papers on automated detection of piglet social distance are rare. This paper proposed a novel method, the convolutional neural network combined with modified local outlier factor (CNN-LOF), to quantify the piglet social density, and detect piglets far from the herd (outlier piglets). The convolutional neural network (CNN) model named YOLOv5 was used to construct the piglet detector, and auto-mark piglets by detection box, which adopted boxes' center points instead of the piglets. The optimized local outlier factor (LOF) algorithm was employed to calculate the social density of the piglets, and the outlier piglets were based on outlier factors greater than 2. Besides, the social density of different periods was calculated, compared, and analyzed. According to the results, the accuracy of CNN-LOF for detecting outlier piglets was 97.7% for the 6,113 test images measured. The larger social density of a piglet indicates more other piglets around and higher probability of being in the center of the herd. CNN-LOF and manual detection have a similarity of more than 80% in a continuous period of 1 h. In summary, this study quantifies the social density of suckling piglets, which also intuitively reveals the distribution of piglets in different environments, and provides technical support for precision livestock farming.
•A local outlier factor algorithm detects social density of suckling piglets.•This method could quantify the spatial relationship among different piglets.•This method could detect cluster in the piglet group.•The proposed method could detect outlier piglets. Pigs and their lactating piglets are herd animals, and breeders usually observe their social distance to determine their physiological status, such as when they form clusters during cold stress, or whether there are outlier piglets with abnormal growth conditions. Instead, papers on automated detection of piglet social distance are rare. This paper proposed a novel method, the convolutional neural network combined with modified local outlier factor (CNN-LOF), to quantify the piglet social density, and detect piglets far from the herd (outlier piglets). The convolutional neural network (CNN) model named YOLOv5 was used to construct the piglet detector, and auto-mark piglets by detection box, which adopted boxes' center points instead of the piglets. The optimized local outlier factor (LOF) algorithm was employed to calculate the social density of the piglets, and the outlier piglets were based on outlier factors greater than 2. Besides, the social density of different periods was calculated, compared, and analyzed. According to the results, the accuracy of CNN-LOF for detecting outlier piglets was 97.7% for the 6,113 test images measured. The larger social density of a piglet indicates more other piglets around and higher probability of being in the center of the herd. CNN-LOF and manual detection have a similarity of more than 80% in a continuous period of 1 h. In summary, this study quantifies the social density of suckling piglets, which also intuitively reveals the distribution of piglets in different environments, and provides technical support for precision livestock farming.
ArticleNumber 107423
Author Chen, Jia
Ding, Qi-an
Liu, Kang
Shen, Mingxia
Lu, Mingzhou
Liu, Longshen
Author_xml – sequence: 1
  givenname: Qi-an
  surname: Ding
  fullname: Ding, Qi-an
  organization: College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
– sequence: 2
  givenname: Longshen
  surname: Liu
  fullname: Liu, Longshen
  organization: College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
– sequence: 3
  givenname: Mingzhou
  surname: Lu
  fullname: Lu, Mingzhou
  organization: College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
– sequence: 4
  givenname: Kang
  surname: Liu
  fullname: Liu, Kang
  organization: College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
– sequence: 5
  givenname: Jia
  surname: Chen
  fullname: Chen, Jia
  organization: College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
– sequence: 6
  givenname: Mingxia
  surname: Shen
  fullname: Shen, Mingxia
  email: mingxia@njau.edu.cn
  organization: College of Artificial Intelligence, Nanjing Agricultural University, Nanjing 210031, China
BookMark eNqFUT1PwzAQtRBIlMI_YMjIkmI7aeMwICHEl1SJAZgtx7kUF8cutgNi46dzJUwMMD3fvQ_png_IrvMOCDlmdMYoW5yuZ9r3G7Wacco5rqqSFztkwkTF8wrHXTJBmcjZoq73yUGMa4pzLaoJ-Xzw2iibteCiSR-ICXQy3mWdD1kc9Is1bpVtzMpCilmjIrQZstq7N2-HrRLdDobwDendhxck-8Y4FL6b9JxZr5HzQ7IGQtYpnTBZ2ZUPyPaHZK9TNsLRD07J0_XV4-Vtvry_ubu8WOa6KOqUq6albM5po6jAd9uUomtVpwtNC8UbOhcFZV0DdaU5AB5bsQUTJVNCUKihLqbkZMzdBP86QEyyN1GDtcqBH6Lkoij5vKzmHKVno1QHH2OATmqT1PbUFJSxklG5rV2u5Vi73NYux9rRXP4yb4LpVfj4z3Y-2gA7eMOiZNQGnIbWBPwQ2Xrzd8AXyuqkUg
CitedBy_id crossref_primary_10_1111_gcb_70132
crossref_primary_10_3390_app132011237
crossref_primary_10_1016_j_compag_2024_109716
crossref_primary_10_1016_j_compag_2023_107938
crossref_primary_10_1049_ipr2_13094
crossref_primary_10_1016_j_compag_2023_107898
Cites_doi 10.1016/j.livsci.2011.09.011
10.1016/j.compag.2018.12.009
10.1007/s11042-020-08976-6
10.1145/335191.335388
10.1016/j.biosystemseng.2020.06.013
10.1016/j.applanim.2014.02.003
10.1016/j.compag.2022.106741
10.1016/j.compag.2020.105391
10.1016/S0003-3472(86)80202-0
10.1016/j.applanim.2020.105146
10.1016/j.compag.2021.106376
10.1016/j.neucom.2020.01.085
10.1016/j.compag.2021.106357
10.1109/LGRS.2021.3085139
10.1016/j.compag.2020.105826
10.1017/S0962728600003171
10.3390/jmse10030377
10.1017/S1751731116001208
10.1007/s11250-018-1633-4
10.18061/ojs.v115i2.4564
10.1016/j.compag.2021.106351
10.1016/j.compag.2019.105048
10.3390/agriengineering2040039
10.1109/TNNLS.2018.2876865
10.1016/j.compag.2021.106417
10.3390/app10082878
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.compag.2022.107423
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2022_107423
S0168169922007311
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-abd01520ba08abddb48fdafc3c03a2b058301fbe97c2ee1687161841a880e9e93
IEDL.DBID .~1
ISSN 0168-1699
IngestDate Thu Oct 02 21:45:16 EDT 2025
Thu Oct 02 04:29:24 EDT 2025
Thu Apr 24 23:06:37 EDT 2025
Fri Feb 23 02:37:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Outlier
Social distance
Cluster
Piglets
Precision livestock farming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-abd01520ba08abddb48fdafc3c03a2b058301fbe97c2ee1687161841a880e9e93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2834254752
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2834254752
crossref_citationtrail_10_1016_j_compag_2022_107423
crossref_primary_10_1016_j_compag_2022_107423
elsevier_sciencedirect_doi_10_1016_j_compag_2022_107423
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Computers and electronics in agriculture
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M. 2020. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.
Alameer, Kyriazakis, Dalton, Miller, Bacardit (b0005) 2020; 197
Garcia, Aguilar, Toro, Pinto, Rodriguez (b0040) 2020; 179
Ding, Chen, Shen, Liu (b0030) 2022; 194
Mekhalfi, Nicolò, Bazi, Al Rahhal, Alsharif, Al Maghayreh (b0080) 2021; 19
Ho, Tsai, Kuo (b0055) 2021; 189
Yang, Huang, Yang, Li, Chen, Gan, Xue (b0145) 2019; 167
Kim, Kim, Park, Won (b0070) 2022; 10
Kauppinen, Vesala, Valros (b0065) 2012; 143
Banhazi, Lehr, Black, Crabtree, Schofield, Tscharke, Berckmans (b0010) 2012; 5
Xiao, Tian, Yu, Zhang, Liu, Du, Lan (b0140) 2020; 79
Nasirahmadi, Sturm, Olsson, Jeppsson, Müller, Edwards, Hensel (b0090) 2019; 156
Guo, Lv, Liu, Fu (b0050) 2018; 50
Ledergerber, Bennett, Diefenbacher, Shilling, Whitaker (b0075) 2015; 115
Yang, Xiao (b0150) 2020; 233
Tennessen, Caldwell (b0115) 2020
Gan, Ou, Huang, Xu, Li, Li, Liu, Xue (b0035) 2021; 188
Newberry, Wood-Gush (b0095) 1986; 34
Seo, Ahn, Kim, Lee, Chung, Park (b0105) 2020; 10
Zhao, Zheng, Xu, Wu (b0155) 2019; 30
Wu, Sahoo, Hoi (b0130) 2020; 396
Wang, Larsen, Bayer, Maschat, Baumgartner, Rault, Norton (b0120) 2021; 189
Breunig, Kriegel, Ng, Sander (b0020) 2000; 29
Riekert, Klein, Adrion, Hoffmann, Gallmann (b0100) 2020; 174
Chen, Liang, Chen, Liu, Lan (b0025) 2020; 13
Nasirahmadi, Hensel, Edwards, Sturm (b0085) 2017; 11
Zou, Z., Shi, Z., Guo, Y., & Ye, J. 2019. Object detection in 20 years: A survey. arXiv preprint arXiv:1905.05055.
Wutke, Schmitt, Traulsen, Gültas (b0135) 2020; 2
Wiseman-Orr, Scott, Nolan (b0125) 2011; 20
Ge, Z., Liu, S., Wang, F., Li, Z., & Sun, J. 2021. Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430.
Huang, Mao, Gan, Ceballos, Parsons, Xue, Liu (b0060) 2021; 189
Skok, Škorjanc (b0110) 2014; 154
Guo (10.1016/j.compag.2022.107423_b0050) 2018; 50
Alameer (10.1016/j.compag.2022.107423_b0005) 2020; 197
10.1016/j.compag.2022.107423_b0015
Yang (10.1016/j.compag.2022.107423_b0145) 2019; 167
Breunig (10.1016/j.compag.2022.107423_b0020) 2000; 29
Wang (10.1016/j.compag.2022.107423_b0120) 2021; 189
Kauppinen (10.1016/j.compag.2022.107423_b0065) 2012; 143
Wutke (10.1016/j.compag.2022.107423_b0135) 2020; 2
Kim (10.1016/j.compag.2022.107423_b0070) 2022; 10
Nasirahmadi (10.1016/j.compag.2022.107423_b0085) 2017; 11
Zhao (10.1016/j.compag.2022.107423_b0155) 2019; 30
Nasirahmadi (10.1016/j.compag.2022.107423_b0090) 2019; 156
Wu (10.1016/j.compag.2022.107423_b0130) 2020; 396
Chen (10.1016/j.compag.2022.107423_b0025) 2020; 13
Newberry (10.1016/j.compag.2022.107423_b0095) 1986; 34
Gan (10.1016/j.compag.2022.107423_b0035) 2021; 188
Xiao (10.1016/j.compag.2022.107423_b0140) 2020; 79
Mekhalfi (10.1016/j.compag.2022.107423_b0080) 2021; 19
Ho (10.1016/j.compag.2022.107423_b0055) 2021; 189
Seo (10.1016/j.compag.2022.107423_b0105) 2020; 10
Wiseman-Orr (10.1016/j.compag.2022.107423_b0125) 2011; 20
10.1016/j.compag.2022.107423_b0045
Yang (10.1016/j.compag.2022.107423_b0150) 2020; 233
Tennessen (10.1016/j.compag.2022.107423_b0115) 2020
Huang (10.1016/j.compag.2022.107423_b0060) 2021; 189
Riekert (10.1016/j.compag.2022.107423_b0100) 2020; 174
Skok (10.1016/j.compag.2022.107423_b0110) 2014; 154
10.1016/j.compag.2022.107423_b0160
Banhazi (10.1016/j.compag.2022.107423_b0010) 2012; 5
Ledergerber (10.1016/j.compag.2022.107423_b0075) 2015; 115
Garcia (10.1016/j.compag.2022.107423_b0040) 2020; 179
Ding (10.1016/j.compag.2022.107423_b0030) 2022; 194
References_xml – volume: 197
  start-page: 91
  year: 2020
  end-page: 104
  ident: b0005
  article-title: Automatic recognition of feeding and foraging behaviour in pigs using deep learning
  publication-title: biosystems engineering
– start-page: 169
  year: 2020
  end-page: 181
  ident: b0115
  article-title: Animal Welfare: A Good Life for Animals
  publication-title: Introduction to Agroecology
– volume: 233
  year: 2020
  ident: b0150
  article-title: A review of video-based pig behavior recognition
  publication-title: Applied Animal Behaviour Science
– volume: 396
  start-page: 39
  year: 2020
  end-page: 64
  ident: b0130
  article-title: Recent advances in deep learning for object detection
  publication-title: Neurocomputing
– volume: 2
  start-page: 581
  year: 2020
  end-page: 595
  ident: b0135
  article-title: Investigation of Pig Activity Based on Video Data and Semi-Supervised Neural Networks
  publication-title: AgriEngineering
– volume: 154
  start-page: 15
  year: 2014
  end-page: 21
  ident: b0110
  article-title: Group suckling cohesion as a prelude to the formation of teat order in piglets
  publication-title: Applied Animal Behaviour Science
– volume: 10
  start-page: 2878
  year: 2020
  ident: b0105
  article-title: EmbeddedPigDet—Fast and accurate pig detection for embedded board implementations
  publication-title: Applied Sciences
– volume: 5
  start-page: 1
  year: 2012
  end-page: 9
  ident: b0010
  article-title: Precision livestock farming: an international review of scientific and commercial aspects
  publication-title: Int. J. Agric. Biol. Eng.
– volume: 189
  year: 2021
  ident: b0055
  article-title: Automatic monitoring of lactation frequency of sows and movement quantification of newborn piglets in farrowing houses using convolutional neural networks
  publication-title: Comput. Electron. Agric.
– reference: Zou, Z., Shi, Z., Guo, Y., & Ye, J. 2019. Object detection in 20 years: A survey. arXiv preprint arXiv:1905.05055.
– volume: 11
  start-page: 131
  year: 2017
  end-page: 139
  ident: b0085
  article-title: A new approach for categorizing pig lying behaviour based on a Delaunay triangulation method
  publication-title: Animal
– volume: 143
  start-page: 142
  year: 2012
  end-page: 150
  ident: b0065
  article-title: Farmer attitude toward improvement of animal welfare is correlated with piglet production parameters
  publication-title: Livestock Science
– volume: 10
  start-page: 377
  year: 2022
  ident: b0070
  article-title: Object Detection and Classification Based on YOLO-V5 with Improved Maritime Dataset
  publication-title: Journal of Marine Science and Engineering
– volume: 79
  start-page: 23729
  year: 2020
  end-page: 23791
  ident: b0140
  article-title: A review of object detection based on deep learning
  publication-title: Multimedia Tools and Applications
– volume: 19
  start-page: 1
  year: 2021
  end-page: 5
  ident: b0080
  article-title: Contrasting yolov5, transformer, and efficientdet detectors for crop circle detection in desert
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 156
  start-page: 475
  year: 2019
  end-page: 481
  ident: b0090
  article-title: Automatic scoring of lateral and sternal lying posture in grouped pigs using image processing and Support Vector Machine
  publication-title: Comput. Electron. Agric.
– volume: 115
  start-page: 40
  year: 2015
  end-page: 47
  ident: b0075
  article-title: The effects of socializing and environmental enrichments on sow and piglet behavior and performance
  publication-title: The Ohio Journal of Science
– volume: 189
  year: 2021
  ident: b0120
  article-title: A PCA-based frame selection method for applying CNN and LSTM to classify postural behaviour in sows
  publication-title: Comput. Electron. Agric.
– volume: 179
  year: 2020
  ident: b0040
  article-title: A systematic literature review on the use of machine learning in precision livestock farming
  publication-title: Comput. Electron. Agric.
– reference: Ge, Z., Liu, S., Wang, F., Li, Z., & Sun, J. 2021. Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430.
– volume: 20
  start-page: 535
  year: 2011
  ident: b0125
  article-title: Development and testing of a novel instrument to measure health-related quality of life (HRQL) of farmed pigs and promote welfare enhancement (Part I)
  publication-title: Animal Welfare-The UFAW Journal
– volume: 30
  start-page: 3212
  year: 2019
  end-page: 3232
  ident: b0155
  article-title: Object detection with deep learning: A review
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 167
  year: 2019
  ident: b0145
  article-title: Automated video analysis of sow nursing behavior based on fully convolutional network and oriented optical flow
  publication-title: Comput. Electron. Agric.
– volume: 189
  year: 2021
  ident: b0060
  article-title: Center clustering network improves piglet counting under occlusion
  publication-title: Comput. Electron. Agric.
– volume: 13
  start-page: 144
  year: 2020
  end-page: 149
  ident: b0025
  article-title: Novel method for real-time detection and tracking of pig body and its different parts
  publication-title: Int. J. Agric. Biol. Eng.
– volume: 188
  year: 2021
  ident: b0035
  article-title: Automated detection and analysis of social behaviors among preweaning piglets using key point-based spatial and temporal features
  publication-title: Comput. Electron. Agric.
– volume: 29
  start-page: 93
  year: 2000
  end-page: 104
  ident: b0020
  article-title: LOF: identifying density-based local outliers
  publication-title: SIGMOD Rec.
– volume: 174
  year: 2020
  ident: b0100
  article-title: Automatically detecting pig position and posture by 2D camera imaging and deep learning
  publication-title: Comput. Electron. Agric.
– volume: 50
  start-page: 1203
  year: 2018
  end-page: 1208
  ident: b0050
  article-title: Effects of heat stress on piglet production/performance parameters
  publication-title: Trop. Anim. Health Prod.
– volume: 34
  start-page: 1311
  year: 1986
  end-page: 1318
  ident: b0095
  article-title: Social relationships of piglets in a semi-natural environment
  publication-title: Anim. Behav.
– reference: Bochkovskiy, A., Wang, C. Y., Liao, H. Y. M. 2020. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.
– volume: 194
  year: 2022
  ident: b0030
  article-title: Activity detection of suckling piglets based on motion area analysis using frame differences in combination with convolution neural network
  publication-title: Comput. Electron. Agric.
– volume: 143
  start-page: 142
  issue: 2–3
  year: 2012
  ident: 10.1016/j.compag.2022.107423_b0065
  article-title: Farmer attitude toward improvement of animal welfare is correlated with piglet production parameters
  publication-title: Livestock Science
  doi: 10.1016/j.livsci.2011.09.011
– volume: 156
  start-page: 475
  year: 2019
  ident: 10.1016/j.compag.2022.107423_b0090
  article-title: Automatic scoring of lateral and sternal lying posture in grouped pigs using image processing and Support Vector Machine
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.12.009
– volume: 79
  start-page: 23729
  issue: 33
  year: 2020
  ident: 10.1016/j.compag.2022.107423_b0140
  article-title: A review of object detection based on deep learning
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-020-08976-6
– volume: 29
  start-page: 93
  issue: 2
  year: 2000
  ident: 10.1016/j.compag.2022.107423_b0020
  article-title: LOF: identifying density-based local outliers
  publication-title: SIGMOD Rec.
  doi: 10.1145/335191.335388
– volume: 197
  start-page: 91
  year: 2020
  ident: 10.1016/j.compag.2022.107423_b0005
  article-title: Automatic recognition of feeding and foraging behaviour in pigs using deep learning
  publication-title: biosystems engineering
  doi: 10.1016/j.biosystemseng.2020.06.013
– volume: 154
  start-page: 15
  year: 2014
  ident: 10.1016/j.compag.2022.107423_b0110
  article-title: Group suckling cohesion as a prelude to the formation of teat order in piglets
  publication-title: Applied Animal Behaviour Science
  doi: 10.1016/j.applanim.2014.02.003
– volume: 194
  year: 2022
  ident: 10.1016/j.compag.2022.107423_b0030
  article-title: Activity detection of suckling piglets based on motion area analysis using frame differences in combination with convolution neural network
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106741
– volume: 174
  year: 2020
  ident: 10.1016/j.compag.2022.107423_b0100
  article-title: Automatically detecting pig position and posture by 2D camera imaging and deep learning
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105391
– volume: 34
  start-page: 1311
  issue: 5
  year: 1986
  ident: 10.1016/j.compag.2022.107423_b0095
  article-title: Social relationships of piglets in a semi-natural environment
  publication-title: Anim. Behav.
  doi: 10.1016/S0003-3472(86)80202-0
– volume: 233
  year: 2020
  ident: 10.1016/j.compag.2022.107423_b0150
  article-title: A review of video-based pig behavior recognition
  publication-title: Applied Animal Behaviour Science
  doi: 10.1016/j.applanim.2020.105146
– volume: 189
  year: 2021
  ident: 10.1016/j.compag.2022.107423_b0055
  article-title: Automatic monitoring of lactation frequency of sows and movement quantification of newborn piglets in farrowing houses using convolutional neural networks
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106376
– volume: 5
  start-page: 1
  issue: 3
  year: 2012
  ident: 10.1016/j.compag.2022.107423_b0010
  article-title: Precision livestock farming: an international review of scientific and commercial aspects
  publication-title: Int. J. Agric. Biol. Eng.
– volume: 396
  start-page: 39
  year: 2020
  ident: 10.1016/j.compag.2022.107423_b0130
  article-title: Recent advances in deep learning for object detection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.01.085
– volume: 188
  year: 2021
  ident: 10.1016/j.compag.2022.107423_b0035
  article-title: Automated detection and analysis of social behaviors among preweaning piglets using key point-based spatial and temporal features
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106357
– volume: 19
  start-page: 1
  year: 2021
  ident: 10.1016/j.compag.2022.107423_b0080
  article-title: Contrasting yolov5, transformer, and efficientdet detectors for crop circle detection in desert
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2021.3085139
– volume: 179
  year: 2020
  ident: 10.1016/j.compag.2022.107423_b0040
  article-title: A systematic literature review on the use of machine learning in precision livestock farming
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105826
– volume: 20
  start-page: 535
  issue: 4
  year: 2011
  ident: 10.1016/j.compag.2022.107423_b0125
  article-title: Development and testing of a novel instrument to measure health-related quality of life (HRQL) of farmed pigs and promote welfare enhancement (Part I)
  publication-title: Animal Welfare-The UFAW Journal
  doi: 10.1017/S0962728600003171
– volume: 13
  start-page: 144
  issue: 6
  year: 2020
  ident: 10.1016/j.compag.2022.107423_b0025
  article-title: Novel method for real-time detection and tracking of pig body and its different parts
  publication-title: Int. J. Agric. Biol. Eng.
– volume: 10
  start-page: 377
  issue: 3
  year: 2022
  ident: 10.1016/j.compag.2022.107423_b0070
  article-title: Object Detection and Classification Based on YOLO-V5 with Improved Maritime Dataset
  publication-title: Journal of Marine Science and Engineering
  doi: 10.3390/jmse10030377
– volume: 11
  start-page: 131
  issue: 1
  year: 2017
  ident: 10.1016/j.compag.2022.107423_b0085
  article-title: A new approach for categorizing pig lying behaviour based on a Delaunay triangulation method
  publication-title: Animal
  doi: 10.1017/S1751731116001208
– volume: 50
  start-page: 1203
  issue: 6
  year: 2018
  ident: 10.1016/j.compag.2022.107423_b0050
  article-title: Effects of heat stress on piglet production/performance parameters
  publication-title: Trop. Anim. Health Prod.
  doi: 10.1007/s11250-018-1633-4
– volume: 115
  start-page: 40
  issue: 2
  year: 2015
  ident: 10.1016/j.compag.2022.107423_b0075
  article-title: The effects of socializing and environmental enrichments on sow and piglet behavior and performance
  publication-title: The Ohio Journal of Science
  doi: 10.18061/ojs.v115i2.4564
– volume: 189
  year: 2021
  ident: 10.1016/j.compag.2022.107423_b0120
  article-title: A PCA-based frame selection method for applying CNN and LSTM to classify postural behaviour in sows
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106351
– volume: 167
  year: 2019
  ident: 10.1016/j.compag.2022.107423_b0145
  article-title: Automated video analysis of sow nursing behavior based on fully convolutional network and oriented optical flow
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.105048
– ident: 10.1016/j.compag.2022.107423_b0160
– ident: 10.1016/j.compag.2022.107423_b0015
– ident: 10.1016/j.compag.2022.107423_b0045
– volume: 2
  start-page: 581
  issue: 4
  year: 2020
  ident: 10.1016/j.compag.2022.107423_b0135
  article-title: Investigation of Pig Activity Based on Video Data and Semi-Supervised Neural Networks
  publication-title: AgriEngineering
  doi: 10.3390/agriengineering2040039
– volume: 30
  start-page: 3212
  issue: 11
  year: 2019
  ident: 10.1016/j.compag.2022.107423_b0155
  article-title: Object detection with deep learning: A review
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2018.2876865
– volume: 189
  year: 2021
  ident: 10.1016/j.compag.2022.107423_b0060
  article-title: Center clustering network improves piglet counting under occlusion
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106417
– volume: 10
  start-page: 2878
  issue: 8
  year: 2020
  ident: 10.1016/j.compag.2022.107423_b0105
  article-title: EmbeddedPigDet—Fast and accurate pig detection for embedded board implementations
  publication-title: Applied Sciences
  doi: 10.3390/app10082878
– start-page: 169
  year: 2020
  ident: 10.1016/j.compag.2022.107423_b0115
  article-title: Animal Welfare: A Good Life for Animals
SSID ssj0016987
Score 2.4111624
Snippet •A local outlier factor algorithm detects social density of suckling piglets.•This method could quantify the spatial relationship among different piglets.•This...
Pigs and their lactating piglets are herd animals, and breeders usually observe their social distance to determine their physiological status, such as when...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107423
SubjectTerms agriculture
algorithms
automation
Cluster
cold stress
electronics
herds
neural networks
Outlier
physiological state
Piglets
Precision livestock farming
probability
Social distance
Title Social density detection for suckling piglets based on convolutional neural network combined with local outlier factor algorithm
URI https://dx.doi.org/10.1016/j.compag.2022.107423
https://www.proquest.com/docview/2834254752
Volume 202
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AKRWK
  dateStart: 19851001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na8IwFA_iLtth7JO5D8lg12pNqm2PIhO3gZdN8BaSJi0OraL1sMvYn773klbYYAg79SNJCXnJ-700v_ceIQ-8I2MTa-alPszgADDei3WYeEmaSskNB9C1bItxbzQJnqfdaY0MKl8YpFWWut_pdKutyzftcjTbq9ms_QrGStTpYVxVPG6y_r1BEGIWg9bnjuYBFSLnMt2D3RLUrtznLMfL8rwz2CUy1kJmIuN_wdMvRW3RZ3hCjkuzkfZdz05JzeRn5KifrcvQGeacfDlPW6qRkl58wLWwNKucgl1KN3iGCzBFV7MMRLWhCF-aQinyzsv5B60xvqW9WHY4FC5g6wwV8X8ttcBHkUMEvaUuVQ-V82y5htLFBZkMH98GI6_Mr-AlnMeFJ5UGY4D5SvoR3GsVRKmWacITn0um_G4Eqz9VJg4TZgwMYIjR9YOOhDVvQML8ktTzZW6uCE20YiqWnVD1_EBLjSl9Ytit-LFMQwDKBuHVsIqkDD6OOTDmomKZvQsnDIHCEE4YDeLtWq1c8I099cNKYuLHJBKAD3ta3lcCFrC-8NBE5ma53Qgwv0CtBWGXXf_76zfkEJ-cC-MtqRfrrbkDW6ZQTTtZm-Sg__QyGn8DE3D24Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-iB_UgfuK3Ebx265J2bY9jOObXLm6wW0iatEy2bmz14EX8030vaQUFETylNEkJecn7vdf83gshN7wlE5No5mU-rOAAMN5LdJR6aZZJyQ0H0LVsi0G7Pwrux-F4jXTrWBikVVa63-l0q62rN81qNpuLyaT5DMZK3GpjXlU8bsL43o0gZBF6YI33L54HtIhdzHQb3CVoXsfPWZKXJXrn4CYy1kBqIuO_4dMPTW3hp7dLdiq7kXbc0PbImin2yXYnX1a5M8wB-XChtlQjJ718g7K0PKuCgmFKV3iICzhFF5McZLWiiF-aQi0Sz6sFCL0xwaUtLD0cKmfgO0ND_GFLLfJRJBHBaKm7q4fKaT5fQu3skIx6t8Nu36suWPBSzpPSk0qDNcB8Jf0YnrUK4kzLLOWpzyVTfhjD9s-USaKUGQMTGGF6_aAlYdMbEDE_IuvFvDDHhKZaMZXIVqTafqClxjt9EnBX_ERmESDlCeH1tIq0yj6Ol2BMRU0zexFOGAKFIZwwToj31Wvhsm_80T6qJSa-rSIBAPFHz-tawAI2GJ6ayMLMX1cC7C_Qa0EUstN_f_2KbPaHT4_i8W7wcEa2sMbFM56T9XL5ai7AsCnVpV24n8Wg-HY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Social+density+detection+for+suckling+piglets+based+on+convolutional+neural+network+combined+with+local+outlier+factor+algorithm&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Ding%2C+Qi-an&rft.au=Liu%2C+Longshen&rft.au=Lu%2C+Mingzhou&rft.au=Liu%2C+Kang&rft.date=2022-11-01&rft.issn=0168-1699&rft.volume=202+p.107423-&rft_id=info:doi/10.1016%2Fj.compag.2022.107423&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon