Forecasting energy consumption using ensemble ARIMA–ANFIS hybrid algorithm
•Developing a hybrid ARIMA–ANFIS algorithm based on three different patterns.•Using diversification method to deal with data insufficiency.•Finally, comparing all patterns with different prediction models. Energy consumption is on the rise in developing economies. In order to improve present and fut...
Saved in:
| Published in | International journal of electrical power & energy systems Vol. 82; pp. 92 - 104 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.11.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0142-0615 1879-3517 |
| DOI | 10.1016/j.ijepes.2016.03.012 |
Cover
| Abstract | •Developing a hybrid ARIMA–ANFIS algorithm based on three different patterns.•Using diversification method to deal with data insufficiency.•Finally, comparing all patterns with different prediction models.
Energy consumption is on the rise in developing economies. In order to improve present and future energy supplies, forecasting energy demands is essential. However, lack of accurate and comprehensive data set to predict the future demand is one of big problems in these countries. Therefore, using ensemble hybrid forecasting models that can deal with shortage of data set could be a suitable solution. In this paper, the annual energy consumption in Iran is forecasted using 3 patterns of ARIMA–ANFIS model. In the first pattern, ARIMA (Auto Regressive Integrated Moving Average) model is implemented on 4 input features, where its nonlinear residuals are forecasted by 6 different ANFIS (Adaptive Neuro Fuzzy Inference System) structures including grid partitioning, sub clustering, and fuzzy c means clustering (each with 2 training algorithms). In the second pattern, the forecasting of ARIMA in addition to 4 input features is assumed as input variables for ANFIS prediction. Therefore, four mentioned inputs beside ARIMA’s output are used in energy prediction with 6 different ANFIS structures. In the third pattern, due to dealing with data insufficiency, the second pattern is applied with AdaBoost (Adaptive Boosting) data diversification model and a novel ensemble methodology is presented.
The results indicate that proposed hybrid patterns improve the accuracy of single ARIMA and ANFIS models in forecasting energy consumption, though third pattern, used diversification model, acts better than others and model’s MSE criterion was decreased to 0.026% from 0.058% of second hybrid pattern. Finally, a comprehensive comparison between other hybrid prediction models is done. |
|---|---|
| AbstractList | •Developing a hybrid ARIMA–ANFIS algorithm based on three different patterns.•Using diversification method to deal with data insufficiency.•Finally, comparing all patterns with different prediction models.
Energy consumption is on the rise in developing economies. In order to improve present and future energy supplies, forecasting energy demands is essential. However, lack of accurate and comprehensive data set to predict the future demand is one of big problems in these countries. Therefore, using ensemble hybrid forecasting models that can deal with shortage of data set could be a suitable solution. In this paper, the annual energy consumption in Iran is forecasted using 3 patterns of ARIMA–ANFIS model. In the first pattern, ARIMA (Auto Regressive Integrated Moving Average) model is implemented on 4 input features, where its nonlinear residuals are forecasted by 6 different ANFIS (Adaptive Neuro Fuzzy Inference System) structures including grid partitioning, sub clustering, and fuzzy c means clustering (each with 2 training algorithms). In the second pattern, the forecasting of ARIMA in addition to 4 input features is assumed as input variables for ANFIS prediction. Therefore, four mentioned inputs beside ARIMA’s output are used in energy prediction with 6 different ANFIS structures. In the third pattern, due to dealing with data insufficiency, the second pattern is applied with AdaBoost (Adaptive Boosting) data diversification model and a novel ensemble methodology is presented.
The results indicate that proposed hybrid patterns improve the accuracy of single ARIMA and ANFIS models in forecasting energy consumption, though third pattern, used diversification model, acts better than others and model’s MSE criterion was decreased to 0.026% from 0.058% of second hybrid pattern. Finally, a comprehensive comparison between other hybrid prediction models is done. Energy consumption is on the rise in developing economies. In order to improve present and future energy supplies, forecasting energy demands is essential. However, lack of accurate and comprehensive data set to predict the future demand is one of big problems in these countries. Therefore, using ensemble hybrid forecasting models that can deal with shortage of data set could be a suitable solution. In this paper, the annual energy consumption in Iran is forecasted using 3 patterns of ARIMA-ANFIS model. In the first pattern, ARIMA (Auto Regressive Integrated Moving Average) model is implemented on 4 input features, where its nonlinear residuals are forecasted by 6 different ANFIS (Adaptive Neuro Fuzzy Inference System) structures including grid partitioning, sub clustering, and fuzzy c means clustering (each with 2 training algorithms). In the second pattern, the forecasting of ARIMA in addition to 4 input features is assumed as input variables for ANFIS prediction. Therefore, four mentioned inputs beside ARIMA's output are used in energy prediction with 6 different ANFIS structures. In the third pattern, due to dealing with data insufficiency, the second pattern is applied with AdaBoost (Adaptive Boosting) data diversification model and a novel ensemble methodology is presented. The results indicate that proposed hybrid patterns improve the accuracy of single ARIMA and ANFIS models in forecasting energy consumption, though third pattern, used diversification model, acts better than others and model's MSE criterion was decreased to 0.026% from 0.058% of second hybrid pattern. Finally, a comprehensive comparison between other hybrid prediction models is done. |
| Author | Barak, Sasan Sadegh, S. Saeedeh |
| Author_xml | – sequence: 1 givenname: Sasan surname: Barak fullname: Barak, Sasan email: Sasan.barak@gmail.com, sasan.barak@vsb.cz organization: Faculty of Economics, Technical University of Ostrava, Ostrava, Czech Republic – sequence: 2 givenname: S. Saeedeh surname: Sadegh fullname: Sadegh, S. Saeedeh organization: Department of Industrial Engineering, Tarbiat Modares University, Tehran, Iran |
| BookMark | eNqFkMtKw0AUhgepYFt9AxdZukmcW24uhFCsFqqCdj9MJifthCQTZ1KhO9_BN_RJTIkrF7o6HM7__XC-GZq0pgWELgkOCCbRdRXoCjpwAR22ALMAE3qCpiSJU5-FJJ6gKSac-jgi4RmaOVdhjOOU0ylaL40FJV2v260HLdjtwVOmdfum67Vpvb0bDw6avAYve1k9Zl8fn9nTcvXq7Q651YUn662xut815-i0lLWDi585R5vl3Wbx4K-f71eLbO0rxtLel5IpGhY4UpglJVWSYZWWoFJeyDBKmeIlKdI8xDllpJAxjyGBiOdS8QRYyOboaqztrHnbg-tFo52CupYtmL0TJKFhyFmE4yF6M0aVNc5ZKIXSvTx-1lupa0GwOBoUlRgNiqNBgZkYDA4w_wV3VjfSHv7DbkcMBgXvGqxwSkOroNCD6l4URv9d8A1vLJCT |
| CitedBy_id | crossref_primary_10_1016_j_rineng_2024_102747 crossref_primary_10_1016_j_jclepro_2019_05_314 crossref_primary_10_3390_app10020571 crossref_primary_10_1109_TNNLS_2021_3051384 crossref_primary_10_1016_j_engappai_2019_03_024 crossref_primary_10_1007_s00477_020_01842_9 crossref_primary_10_1007_s00521_022_07675_7 crossref_primary_10_1016_j_cjche_2021_11_023 crossref_primary_10_1016_j_compeleceng_2023_108784 crossref_primary_10_1002_er_6788 crossref_primary_10_1016_j_asoc_2021_108363 crossref_primary_10_3390_e25111542 crossref_primary_10_1007_s00500_022_07800_7 crossref_primary_10_1016_j_istruc_2024_107490 crossref_primary_10_1002_ep_13544 crossref_primary_10_1080_20479700_2018_1531608 crossref_primary_10_1016_j_rser_2018_02_002 crossref_primary_10_3390_en12071347 crossref_primary_10_3390_en13236440 crossref_primary_10_4236_tel_2019_97144 crossref_primary_10_1080_08839514_2024_2379731 crossref_primary_10_2166_wpt_2022_046 crossref_primary_10_1002_for_2655 crossref_primary_10_1002_asmb_2861 crossref_primary_10_1016_j_renene_2024_119948 crossref_primary_10_1016_j_energy_2019_116524 crossref_primary_10_1007_s00500_023_08676_x crossref_primary_10_1016_j_energy_2023_129448 crossref_primary_10_1080_08839514_2024_2348413 crossref_primary_10_1016_j_robot_2022_104199 crossref_primary_10_1109_ACCESS_2020_3022808 crossref_primary_10_1007_s00500_020_05176_0 crossref_primary_10_1016_j_jclepro_2020_120135 crossref_primary_10_1016_j_energy_2018_10_175 crossref_primary_10_1016_j_jweia_2020_104198 crossref_primary_10_1109_ACCESS_2020_2966712 crossref_primary_10_1016_j_apenergy_2020_114977 crossref_primary_10_1016_j_trc_2020_102708 crossref_primary_10_1007_s13042_023_01963_x crossref_primary_10_47097_piar_1573999 crossref_primary_10_1155_2018_6924960 crossref_primary_10_1080_01430750_2020_1719885 crossref_primary_10_1016_j_eswa_2022_119336 crossref_primary_10_1016_j_renene_2017_05_053 crossref_primary_10_1109_ACCESS_2020_2978937 crossref_primary_10_3390_en10111701 crossref_primary_10_1016_j_eneco_2021_105760 crossref_primary_10_1080_03036758_2024_2395910 crossref_primary_10_3390_en10122171 crossref_primary_10_1016_j_energy_2023_129799 crossref_primary_10_3390_en13092390 crossref_primary_10_1016_j_energy_2024_131250 crossref_primary_10_1016_j_petrol_2021_109774 crossref_primary_10_31200_makuubd_538878 crossref_primary_10_1007_s12667_018_0300_1 crossref_primary_10_1016_j_engappai_2019_03_012 crossref_primary_10_1371_journal_pone_0307915 crossref_primary_10_1155_2022_8455629 crossref_primary_10_3390_en16062579 crossref_primary_10_1016_j_envres_2021_111990 crossref_primary_10_1088_1742_6596_1716_1_012048 crossref_primary_10_1016_j_renene_2018_01_113 crossref_primary_10_1016_j_seta_2020_100863 crossref_primary_10_1007_s41066_020_00220_8 crossref_primary_10_1038_s41598_024_58966_z crossref_primary_10_1145_3569422 crossref_primary_10_3390_app11083474 crossref_primary_10_3390_en13092280 crossref_primary_10_3934_energy_2019_2_151 crossref_primary_10_1108_GS_06_2022_0059 crossref_primary_10_1007_s00500_019_04432_2 crossref_primary_10_1049_iet_gtd_2020_0842 crossref_primary_10_1016_j_apenergy_2024_125053 crossref_primary_10_1016_j_energy_2023_127365 crossref_primary_10_1016_j_energy_2023_128575 crossref_primary_10_1016_j_inffus_2016_11_006 crossref_primary_10_1016_j_enbuild_2018_03_087 crossref_primary_10_1007_s11269_021_02863_x crossref_primary_10_1016_j_asoc_2024_111324 crossref_primary_10_3390_en15217863 crossref_primary_10_1007_s41324_023_00528_y crossref_primary_10_1088_1742_6596_1863_1_012061 crossref_primary_10_1049_iet_smt_2020_0218 crossref_primary_10_1016_j_energy_2022_124889 crossref_primary_10_1016_j_energy_2024_133631 crossref_primary_10_37675_jat_2023_00395 crossref_primary_10_1016_j_energy_2020_117200 crossref_primary_10_1088_1757_899X_1098_4_042032 crossref_primary_10_3390_su10072225 crossref_primary_10_1016_j_clet_2024_100831 crossref_primary_10_1016_j_jclepro_2020_122942 crossref_primary_10_1007_s00521_022_07889_9 crossref_primary_10_1016_j_jclepro_2021_127897 crossref_primary_10_1016_j_energy_2018_07_047 crossref_primary_10_1016_j_energy_2018_07_168 crossref_primary_10_1016_j_cam_2019_112656 crossref_primary_10_1016_j_atech_2024_100397 crossref_primary_10_1016_j_engappai_2023_107670 crossref_primary_10_1016_j_energy_2022_126159 crossref_primary_10_3390_en11071848 crossref_primary_10_1016_j_energy_2019_04_075 crossref_primary_10_1109_ACCESS_2021_3076746 crossref_primary_10_3390_sym12122024 crossref_primary_10_1016_j_jclepro_2017_07_106 crossref_primary_10_1515_cppm_2021_0065 crossref_primary_10_3390_en12101891 crossref_primary_10_3233_JIFS_210822 crossref_primary_10_1016_j_energy_2021_122093 crossref_primary_10_1007_s12667_019_00351_1 crossref_primary_10_1016_j_egypro_2017_03_795 crossref_primary_10_1016_j_scs_2020_102654 crossref_primary_10_1007_s00521_022_07138_z crossref_primary_10_3390_en15134880 crossref_primary_10_1016_j_enconman_2020_112535 crossref_primary_10_17093_alphanumeric_747427 crossref_primary_10_1016_j_renene_2022_05_041 crossref_primary_10_3390_systems11060285 crossref_primary_10_1016_j_renene_2017_01_019 crossref_primary_10_1016_j_apenergy_2024_124738 crossref_primary_10_1088_1755_1315_344_1_012140 crossref_primary_10_1016_j_promfg_2019_04_022 crossref_primary_10_3390_en14082151 crossref_primary_10_1016_j_energy_2024_133964 crossref_primary_10_1016_j_jclepro_2019_05_153 crossref_primary_10_3390_en15197323 crossref_primary_10_1016_j_asoc_2023_110043 crossref_primary_10_1155_2018_5714872 crossref_primary_10_1016_j_asoc_2023_110275 crossref_primary_10_1063_5_0213366 crossref_primary_10_3390_app10010134 crossref_primary_10_1007_s12053_020_09851_x crossref_primary_10_1016_j_epsr_2023_109464 crossref_primary_10_1016_j_jobe_2020_102105 crossref_primary_10_3390_app11167766 crossref_primary_10_3390_en12132520 crossref_primary_10_1016_j_energy_2018_04_175 crossref_primary_10_1016_j_scs_2023_104623 crossref_primary_10_1016_j_engappai_2019_08_018 crossref_primary_10_1109_TIE_2023_3294607 crossref_primary_10_1016_j_ejor_2018_12_013 crossref_primary_10_1016_j_scs_2020_102052 crossref_primary_10_1155_2022_6729608 crossref_primary_10_1007_s00521_021_06033_3 crossref_primary_10_1016_j_energy_2024_131405 crossref_primary_10_1007_s10489_021_03085_9 crossref_primary_10_1007_s11629_023_8388_8 crossref_primary_10_1016_j_scs_2018_05_041 crossref_primary_10_3390_en13051085 crossref_primary_10_3390_sym11030390 crossref_primary_10_3390_en13010208 crossref_primary_10_3233_JIFS_221409 crossref_primary_10_3390_en14030707 crossref_primary_10_1109_TGCN_2021_3091388 crossref_primary_10_1007_s11771_019_4161_0 crossref_primary_10_1016_j_cie_2021_107870 crossref_primary_10_1016_j_energy_2024_133017 crossref_primary_10_1088_1742_6596_1921_1_012067 crossref_primary_10_1016_j_egyr_2019_06_003 crossref_primary_10_3390_en13092317 crossref_primary_10_3390_en12214187 crossref_primary_10_1016_j_jclepro_2022_133778 crossref_primary_10_1177_0958305X19842061 crossref_primary_10_1088_1742_6596_995_1_012034 crossref_primary_10_1007_s10489_019_01426_3 crossref_primary_10_48175_IJARSCT_18338 crossref_primary_10_1002_eng2_12070 crossref_primary_10_1049_tje2_12146 crossref_primary_10_3390_su10051515 crossref_primary_10_1016_j_energy_2020_117035 crossref_primary_10_1016_j_apenergy_2022_118756 crossref_primary_10_1016_j_energy_2020_117159 crossref_primary_10_51758_AGJSR_04_2015_0018 crossref_primary_10_1177_1847979018768421 crossref_primary_10_1016_j_ijepes_2019_02_023 crossref_primary_10_3390_en12173278 crossref_primary_10_7717_peerj_cs_2680 crossref_primary_10_1016_j_rser_2020_109725 crossref_primary_10_1061__ASCE_HE_1943_5584_0001963 crossref_primary_10_3390_en14217378 crossref_primary_10_1007_s00521_021_06001_x crossref_primary_10_1016_j_jclepro_2020_124843 crossref_primary_10_1016_j_jhydrol_2018_01_035 crossref_primary_10_4236_epe_2020_126024 crossref_primary_10_1007_s11036_022_02050_1 crossref_primary_10_3390_resources7040081 crossref_primary_10_1038_s41598_022_08864_z crossref_primary_10_1016_j_energy_2019_04_115 crossref_primary_10_1080_01430750_2024_2306201 crossref_primary_10_1007_s12540_020_00854_y crossref_primary_10_31590_ejosat_1007589 crossref_primary_10_1109_ACCESS_2018_2869981 crossref_primary_10_1109_ACCESS_2021_3126545 crossref_primary_10_1111_coin_12368 crossref_primary_10_3390_en11071687 crossref_primary_10_1016_j_resconrec_2019_01_030 crossref_primary_10_1016_j_egyai_2020_100009 crossref_primary_10_3390_buildings15010039 crossref_primary_10_1016_j_enbuild_2019_05_031 crossref_primary_10_1007_s13198_019_00879_6 crossref_primary_10_1051_e3sconf_201913101099 crossref_primary_10_3390_en10111868 crossref_primary_10_3390_su15054618 crossref_primary_10_1049_iet_esi_2018_0011 crossref_primary_10_1002_er_6444 crossref_primary_10_1109_ACCESS_2019_2925740 crossref_primary_10_3390_sym10120700 crossref_primary_10_3390_ijerph17103510 crossref_primary_10_1007_s00521_024_09697_9 crossref_primary_10_1007_s41939_025_00740_3 crossref_primary_10_1016_j_jclepro_2020_120107 crossref_primary_10_1515_ijeeps_2021_0012 crossref_primary_10_30521_jes_1549293 crossref_primary_10_1080_0952813X_2022_2093407 crossref_primary_10_1016_j_enbuild_2020_110558 crossref_primary_10_1111_tgis_13199 crossref_primary_10_3390_app9061113 |
| Cites_doi | 10.1016/j.egypro.2012.01.284 10.1016/j.energy.2008.05.008 10.1016/j.enbuild.2015.02.052 10.1016/j.energy.2014.03.105 10.1016/j.renene.2014.09.058 10.1016/j.egypro.2011.12.1013 10.1016/S0925-2312(01)00702-0 10.1016/j.ijepes.2010.08.008 10.1016/j.enbuild.2011.07.010 10.1016/j.tust.2007.11.003 10.1016/j.energy.2011.12.023 10.1016/j.inffus.2006.10.009 10.1016/j.enpol.2008.02.018 10.1016/j.energy.2014.06.100 10.1016/S1568-4946(01)00013-8 10.1016/j.asoc.2014.05.028 10.1016/j.enpol.2004.09.005 10.1016/j.enpol.2008.02.035 10.1016/j.rser.2011.08.014 10.1016/j.engappai.2011.10.005 10.1016/j.energy.2009.10.018 10.1016/j.enpol.2008.10.051 10.1016/j.eswa.2011.08.049 10.1016/j.asoc.2010.10.015 10.1016/j.energy.2009.12.023 10.1016/j.dss.2007.12.002 10.1016/j.ijepes.2014.10.028 10.1016/j.enconman.2014.12.053 10.1016/j.patcog.2014.06.008 10.1016/S0142-0615(98)00056-8 10.1016/j.enpol.2009.12.037 10.1016/j.energy.2005.08.010 10.1016/j.jweia.2013.10.004 10.1016/j.rser.2015.04.037 10.1016/j.eswa.2008.08.058 10.1109/21.256541 10.1016/j.eswa.2015.08.010 10.1016/j.techfore.2014.01.009 10.1016/j.knosys.2014.11.027 10.1016/j.asoc.2014.08.009 10.1016/j.apenergy.2011.04.027 10.1016/j.enconman.2007.06.015 10.1016/j.enconman.2009.06.016 10.1016/j.patcog.2012.05.002 10.1016/j.ins.2012.01.024 10.1016/j.enconman.2010.06.053 10.1016/j.eswa.2009.02.081 10.1016/j.apenergy.2012.01.063 10.1016/j.epsr.2009.09.006 10.1016/j.enpol.2006.05.009 10.1016/j.enpol.2009.04.049 10.1016/j.ijepes.2014.05.037 10.1016/j.enconman.2011.08.004 10.1016/j.enpol.2011.11.090 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION 7SP 8FD FR3 KR7 L7M |
| DOI | 10.1016/j.ijepes.2016.03.012 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3517 |
| EndPage | 104 |
| ExternalDocumentID | 10_1016_j_ijepes_2016_03_012 S0142061516303702 |
| GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHZHX AI. AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSR SST SSV SSZ T5K VH1 WUQ ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS GROUPED_DOAJ ~HD 7SP 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c339t-aa3c25d06c038f2ca30c9fec94da5693c4f1d9b50b231da747e8e64bac48e353 |
| IEDL.DBID | .~1 |
| ISSN | 0142-0615 |
| IngestDate | Mon Sep 29 06:36:42 EDT 2025 Wed Oct 01 04:38:30 EDT 2025 Thu Apr 24 23:00:51 EDT 2025 Fri Feb 23 02:24:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Ensemble algorithm AdaBoost ANFIS ARIMA Energy forecasting |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c339t-aa3c25d06c038f2ca30c9fec94da5693c4f1d9b50b231da747e8e64bac48e353 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1825543607 |
| PQPubID | 23500 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_1825543607 crossref_citationtrail_10_1016_j_ijepes_2016_03_012 crossref_primary_10_1016_j_ijepes_2016_03_012 elsevier_sciencedirect_doi_10_1016_j_ijepes_2016_03_012 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2016 2016-11-00 20161101 |
| PublicationDateYYYYMMDD | 2016-11-01 |
| PublicationDate_xml | – month: 11 year: 2016 text: November 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | International journal of electrical power & energy systems |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Lee, Tong (b0045) 2012; 94 Jang (b0100) 1993; 23 Babu, Reddy (b0145) 2014 Azadeh, Saberi, Gitiforouz, Saberi (b0130) 2009; 36 Suganthi, Iniyan, Samuel (b0095) 2015; 48 Pao (b0065) 2006; 31 Pappas, Ekonomou, Karamousantas, Chatzarakis, Katsikas, Liatsis (b0040) 2008; 33 Liu, Tian, Li, Zhang (b0215) 2015; 92 Alfaro, García, Gámez, Elizondo (b0240) 2008; 45 Ünler (b0295) 2008; 36 Freund Y, Schapire RE. Experiments with a new boosting algorithm. In: Morgan K, editor. 13th International conference on machine learning. San Francisco; 1996. p. 148–56. Pappas, Ekonomou, Karampelas, Karamousantas, Katsikas, Chatzarakis (b0250) 2010; 80 Kıran, Özceylan, Gündüz, Paksoy (b0290) 2012; 53 Suganthi, Samuel (b0020) 2012; 16 Chang, Fan, Lin (b0160) 2011; 33 Nie, Jin, Fei (b0230) 2014; 47 Azadeh, Saberi, Seraj (b0060) 2010; 35 Mamlook, Badran, Abdulhadi (b0090) 2009; 37 Ying, Pan (b0115) 2008; 49 MéNdez, De Los Angeles HernáNdez (b0275) 2013; 220 Assaad, Boné, Cardot (b0235) 2008; 9 Efendigil, Önüt, Kahraman (b0050) 2009; 36 Rahmani, Yusof, Seyedmahmoudian, Mekhilef (b0175) 2013; 123, Part A Alizadeh, Jolai, Aminnayeri, Rada (b0105) 2012; 39 Cao, Kwong, Wang (b0225) 2012; 45 Xie, Yuan, Yang (b0190) 2015; 66 Yan, Chowdhury (b0170) 2014; 63 Sivanandam, Sumathi, Deepa (b0265) 2007 Kucukali, Baris (b0155) 2010; 38 Kozak, Boryczka (b0205) 2015; 75 Sadeghi, Mirshojaeian Hosseini (b0280) 2006; 34 Geem, Roper (b0285) 2009; 37 Abbasimehr, Setak, Tarokh (b0005) 2011; 19 Hao, Liu, Li, Chen, Kong (b0085) 2012; 16 Osório, Matias, Catalão (b0180) 2015; 75 Barak, Dahooie, Tichý (b0110) 2015; 42 Acaroglu, Ozdemir, Asbury (b0075) 2008; 23 Akdemir, Çetinkaya (b0120) 2012; 14 Jovanović, Sretenović, Živković (b0200) 2015; 94 Li, Hu (b0140) 2012; 25 Ekonomou (b0015) 2010; 35 Ediger, Akar (b0255) 2007; 35 Ciabattoni, Grisostomi, Ippoliti, Longhi (b0080) 2014; 74 Khashei, Bijari (b0310) 2011; 11 Azadeh, Ghaderi, Sohrabkhani (b0055) 2008; 36 Heo, Yang (b0245) 2014; 24 Lemaic M. Markov-chain-based heuristics for the feedback vertex set problem for digraphs: Universität zu Köln; 2008. Kavaklioglu, Ceylan, Ozturk, Canyurt (b0150) 2009; 50 Padmakumari, Mohandas, Thiruvengadam (b0070) 1999; 21 Babu, Reddy (b0305) 2014; 23 Li, Su, Chu (b0135) 2011; 43 Abraham, Nath (b0165) 2001; 1 Azadeh, Asadzadeh, Mirseraji, Saberi (b0195) 2015; 91 Azadeh, Asadzadeh, Saberi, Nadimi, Tajvidi, Sheikalishahi (b0030) 2011; 88 Hamzacebi, Es (b0185) 2014; 70 Al-Ghandoor, Samhouri, Al-Hinti, Jaber, Al-Rawashdeh (b0125) 2012; 38 Yu, Wei, Wang (b0025) 2012; 42 Haykin (b0210) 2010 Barak, Modarres (b0300) 2014 Zhang (b0035) 2003; 50 Lee, Tong (b0010) 2011; 52 Jang (10.1016/j.ijepes.2016.03.012_b0100) 1993; 23 Kıran (10.1016/j.ijepes.2016.03.012_b0290) 2012; 53 Yu (10.1016/j.ijepes.2016.03.012_b0025) 2012; 42 Nie (10.1016/j.ijepes.2016.03.012_b0230) 2014; 47 Efendigil (10.1016/j.ijepes.2016.03.012_b0050) 2009; 36 Babu (10.1016/j.ijepes.2016.03.012_b0305) 2014; 23 MéNdez (10.1016/j.ijepes.2016.03.012_b0275) 2013; 220 Akdemir (10.1016/j.ijepes.2016.03.012_b0120) 2012; 14 Hamzacebi (10.1016/j.ijepes.2016.03.012_b0185) 2014; 70 Zhang (10.1016/j.ijepes.2016.03.012_b0035) 2003; 50 Azadeh (10.1016/j.ijepes.2016.03.012_b0055) 2008; 36 Li (10.1016/j.ijepes.2016.03.012_b0140) 2012; 25 Al-Ghandoor (10.1016/j.ijepes.2016.03.012_b0125) 2012; 38 Suganthi (10.1016/j.ijepes.2016.03.012_b0020) 2012; 16 Alfaro (10.1016/j.ijepes.2016.03.012_b0240) 2008; 45 Geem (10.1016/j.ijepes.2016.03.012_b0285) 2009; 37 Yan (10.1016/j.ijepes.2016.03.012_b0170) 2014; 63 Ekonomou (10.1016/j.ijepes.2016.03.012_b0015) 2010; 35 Rahmani (10.1016/j.ijepes.2016.03.012_b0175) 2013; 123, Part A Khashei (10.1016/j.ijepes.2016.03.012_b0310) 2011; 11 Chang (10.1016/j.ijepes.2016.03.012_b0160) 2011; 33 Sivanandam (10.1016/j.ijepes.2016.03.012_b0265) 2007 Alizadeh (10.1016/j.ijepes.2016.03.012_b0105) 2012; 39 Kavaklioglu (10.1016/j.ijepes.2016.03.012_b0150) 2009; 50 Abraham (10.1016/j.ijepes.2016.03.012_b0165) 2001; 1 Liu (10.1016/j.ijepes.2016.03.012_b0215) 2015; 92 Babu (10.1016/j.ijepes.2016.03.012_b0145) 2014 Osório (10.1016/j.ijepes.2016.03.012_b0180) 2015; 75 Hao (10.1016/j.ijepes.2016.03.012_b0085) 2012; 16 Haykin (10.1016/j.ijepes.2016.03.012_b0210) 2010 Pappas (10.1016/j.ijepes.2016.03.012_b0040) 2008; 33 Kozak (10.1016/j.ijepes.2016.03.012_b0205) 2015; 75 Ediger (10.1016/j.ijepes.2016.03.012_b0255) 2007; 35 Jovanović (10.1016/j.ijepes.2016.03.012_b0200) 2015; 94 Suganthi (10.1016/j.ijepes.2016.03.012_b0095) 2015; 48 Kucukali (10.1016/j.ijepes.2016.03.012_b0155) 2010; 38 Barak (10.1016/j.ijepes.2016.03.012_b0110) 2015; 42 Mamlook (10.1016/j.ijepes.2016.03.012_b0090) 2009; 37 Pao (10.1016/j.ijepes.2016.03.012_b0065) 2006; 31 10.1016/j.ijepes.2016.03.012_b0220 Acaroglu (10.1016/j.ijepes.2016.03.012_b0075) 2008; 23 Padmakumari (10.1016/j.ijepes.2016.03.012_b0070) 1999; 21 Barak (10.1016/j.ijepes.2016.03.012_b0300) 2014 Heo (10.1016/j.ijepes.2016.03.012_b0245) 2014; 24 Pappas (10.1016/j.ijepes.2016.03.012_b0250) 2010; 80 Assaad (10.1016/j.ijepes.2016.03.012_b0235) 2008; 9 Azadeh (10.1016/j.ijepes.2016.03.012_b0130) 2009; 36 Lee (10.1016/j.ijepes.2016.03.012_b0010) 2011; 52 Azadeh (10.1016/j.ijepes.2016.03.012_b0060) 2010; 35 Xie (10.1016/j.ijepes.2016.03.012_b0190) 2015; 66 Abbasimehr (10.1016/j.ijepes.2016.03.012_b0005) 2011; 19 Azadeh (10.1016/j.ijepes.2016.03.012_b0195) 2015; 91 Ying (10.1016/j.ijepes.2016.03.012_b0115) 2008; 49 Azadeh (10.1016/j.ijepes.2016.03.012_b0030) 2011; 88 Li (10.1016/j.ijepes.2016.03.012_b0135) 2011; 43 Lee (10.1016/j.ijepes.2016.03.012_b0045) 2012; 94 Ünler (10.1016/j.ijepes.2016.03.012_b0295) 2008; 36 10.1016/j.ijepes.2016.03.012_b0260 Sadeghi (10.1016/j.ijepes.2016.03.012_b0280) 2006; 34 Cao (10.1016/j.ijepes.2016.03.012_b0225) 2012; 45 Ciabattoni (10.1016/j.ijepes.2016.03.012_b0080) 2014; 74 |
| References_xml | – volume: 49 start-page: 205 year: 2008 end-page: 211 ident: b0115 article-title: Using adaptive network based fuzzy inference system to forecast regional electricity loads publication-title: Energy Convers Manage – volume: 36 start-page: 11108 year: 2009 end-page: 11117 ident: b0130 article-title: A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation publication-title: Expert Syst Appl – volume: 94 start-page: 251 year: 2012 end-page: 256 ident: b0045 article-title: Forecasting nonlinear time series of energy consumption using a hybrid dynamic model publication-title: Appl Energy – volume: 74 start-page: 359 year: 2014 end-page: 367 ident: b0080 article-title: Fuzzy logic home energy consumption modeling for residential photovoltaic plant sizing in the new Italian scenario publication-title: Energy – volume: 38 start-page: 2438 year: 2010 end-page: 2445 ident: b0155 article-title: Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach publication-title: Energy Policy – reference: Freund Y, Schapire RE. Experiments with a new boosting algorithm. In: Morgan K, editor. 13th International conference on machine learning. San Francisco; 1996. p. 148–56. – volume: 88 start-page: 3850 year: 2011 end-page: 3859 ident: b0030 article-title: A neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behavior analysis: the cases of Bahrain, Saudi Arabia, Syria, and UAE publication-title: Appl Energy – volume: 38 start-page: 128 year: 2012 end-page: 135 ident: b0125 article-title: Projection of future transport energy demand of Jordan using adaptive neuro-fuzzy technique publication-title: Energy – volume: 94 start-page: 189 year: 2015 end-page: 199 ident: b0200 article-title: Ensemble of various neural networks for prediction of heating energy consumption publication-title: Energy Build – volume: 23 start-page: 600 year: 2008 end-page: 608 ident: b0075 article-title: A fuzzy logic model to predict specific energy requirement for TBM performance prediction publication-title: Tunn Undergr Space Technol – volume: 43 start-page: 2893 year: 2011 end-page: 2899 ident: b0135 article-title: Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: a comparative study publication-title: Energy Build – volume: 24 start-page: 494 year: 2014 end-page: 499 ident: b0245 article-title: AdaBoost based bankruptcy forecasting of Korean construction companies publication-title: Appl Soft Comput – volume: 16 start-page: 1852 year: 2012 end-page: 1859 ident: b0085 article-title: Power system load forecasting based on fuzzy clustering and gray target theory publication-title: Energy Proc – volume: 39 start-page: 1536 year: 2012 end-page: 1544 ident: b0105 article-title: Comparison of different input selection algorithms in neuro-fuzzy modeling publication-title: Expert Syst Appl – volume: 66 start-page: 1 year: 2015 end-page: 8 ident: b0190 article-title: Forecasting China’s energy demand and self-sufficiency rate by grey forecasting model and Markov model publication-title: Int J Electr Power Energy Syst – volume: 36 start-page: 6697 year: 2009 end-page: 6707 ident: b0050 article-title: A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: a comparative analysis publication-title: Expert Syst Appl – volume: 220 start-page: 149 year: 2013 end-page: 169 ident: b0275 article-title: Hybrid learning mechanism for interval A2-C1 type-2 non-singleton type-2 Takagi–Sugeno–Kang fuzzy logic systems publication-title: Inform Sci – volume: 19 start-page: 35 year: 2011 end-page: 41 ident: b0005 article-title: A neuro-fuzzy classifier for customer churn prediction publication-title: Int J Comput Appl – volume: 47 start-page: 3931 year: 2014 end-page: 3940 ident: b0230 article-title: Probability estimation for multi-class classification using AdaBoost publication-title: Pattern Recogn – volume: 23 start-page: 27 year: 2014 end-page: 38 ident: b0305 article-title: A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data publication-title: Appl Soft Comput – volume: 45 start-page: 110 year: 2008 end-page: 122 ident: b0240 article-title: Bankruptcy forecasting: an empirical comparison of AdaBoost and neural networks publication-title: Decis Support Syst – year: 2010 ident: b0210 article-title: Neural networks: a comprehensive foundation, 1994 – volume: 50 start-page: 159 year: 2003 end-page: 175 ident: b0035 article-title: Time series forecasting using a hybrid ARIMA and neural network model publication-title: Neurocomputing – volume: 36 start-page: 2637 year: 2008 end-page: 2644 ident: b0055 article-title: A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran publication-title: Energy Policy – volume: 35 start-page: 512 year: 2010 end-page: 517 ident: b0015 article-title: Greek long-term energy consumption prediction using artificial neural networks publication-title: Energy – volume: 80 start-page: 256 year: 2010 end-page: 264 ident: b0250 article-title: Electricity demand load forecasting of the Hellenic power system using an ARMA model publication-title: Elect Power Syst Res – volume: 63 start-page: 64 year: 2014 end-page: 70 ident: b0170 article-title: Mid-term electricity market clearing price forecasting utilizing hybrid support vector machine and auto-regressive moving average with external input publication-title: Int J Electr Power Energy Syst – volume: 42 start-page: 329 year: 2012 end-page: 340 ident: b0025 article-title: A PSO–GA optimal model to estimate primary energy demand of China publication-title: Energy Policy – volume: 35 start-page: 1701 year: 2007 end-page: 1708 ident: b0255 article-title: ARIMA forecasting of primary energy demand by fuel in Turkey publication-title: Energy Policy – volume: 45 start-page: 4451 year: 2012 end-page: 4465 ident: b0225 article-title: A noise-detection based AdaBoost algorithm for mislabeled data publication-title: Pattern Recogn – volume: 75 start-page: 301 year: 2015 end-page: 307 ident: b0180 article-title: Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information publication-title: Renew Energy – volume: 35 start-page: 2351 year: 2010 end-page: 2366 ident: b0060 article-title: An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran publication-title: Energy – volume: 50 start-page: 2719 year: 2009 end-page: 2727 ident: b0150 article-title: Modeling and prediction of Turkey’s electricity consumption using artificial neural networks publication-title: Energy Convers Manage – volume: 75 start-page: 141 year: 2015 end-page: 151 ident: b0205 article-title: Multiple boosting in the ant colony decision forest meta-classifier publication-title: Knowl-Based Syst – volume: 91 start-page: 47 year: 2015 end-page: 63 ident: b0195 article-title: An emotional learning-neuro-fuzzy inference approach for optimum training and forecasting of gas consumption estimation models with cognitive data publication-title: Technol Forecast Soc Change – reference: Lemaic M. Markov-chain-based heuristics for the feedback vertex set problem for digraphs: Universität zu Köln; 2008. – year: 2014 ident: b0145 article-title: A moving-average-filter-based hybrid ARIMA–ANN model for forecasting time series data publication-title: Appl Soft Comput – volume: 42 start-page: 9221 year: 2015 end-page: 9235 ident: b0110 article-title: Wrapper ANFIS-ICA method to do stock market timing and feature selection on the basis of Japanese Candlestick publication-title: Expert Syst Appl – volume: 11 start-page: 2664 year: 2011 end-page: 2675 ident: b0310 article-title: A novel hybridization of artificial neural networks and ARIMA models for time series forecasting publication-title: Appl Soft Comput – volume: 52 start-page: 147 year: 2011 end-page: 152 ident: b0010 article-title: Forecasting energy consumption using a grey model improved by incorporating genetic programming publication-title: Energy Convers Manage – volume: 23 start-page: 665 year: 1993 end-page: 685 ident: b0100 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: IEEE Trans Syst Man Cybern – volume: 14 start-page: 794 year: 2012 end-page: 799 ident: b0120 article-title: Long-term load forecasting based on adaptive neural fuzzy inference system using real energy data publication-title: Energy Proc – volume: 37 start-page: 1239 year: 2009 end-page: 1248 ident: b0090 article-title: A fuzzy inference model for short-term load forecasting publication-title: Energy Policy – volume: 1 start-page: 127 year: 2001 end-page: 138 ident: b0165 article-title: A neuro-fuzzy approach for modelling electricity demand in Victoria publication-title: Appl Soft Comput – volume: 34 start-page: 993 year: 2006 end-page: 1003 ident: b0280 article-title: Energy supply planning in Iran by using fuzzy linear programming approach (regarding uncertainties of investment costs) publication-title: Energy Policy – volume: 37 start-page: 4049 year: 2009 end-page: 4054 ident: b0285 article-title: Energy demand estimation of South Korea using artificial neural network publication-title: Energy Policy – volume: 16 start-page: 1223 year: 2012 end-page: 1240 ident: b0020 article-title: Energy models for demand forecasting—a review publication-title: Renew Sustain Energy Rev – volume: 53 start-page: 75 year: 2012 end-page: 83 ident: b0290 article-title: A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey publication-title: Energy Convers Manage – volume: 25 start-page: 295 year: 2012 end-page: 308 ident: b0140 article-title: A new ARIMA-based neuro-fuzzy approach and swarm intelligence for time series forecasting publication-title: Eng Appl Artif Intell – year: 2007 ident: b0265 article-title: Introduction to fuzzy logic using MATLAB – volume: 31 start-page: 2129 year: 2006 end-page: 2141 ident: b0065 article-title: Comparing linear and nonlinear forecasts for Taiwan’s electricity consumption publication-title: Energy – volume: 48 start-page: 585 year: 2015 end-page: 607 ident: b0095 article-title: Applications of fuzzy logic in renewable energy systems – a review publication-title: Renew Sustain Energy Rev – volume: 33 start-page: 17 year: 2011 end-page: 27 ident: b0160 article-title: Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach publication-title: Int J Electr Power Energy Syst – volume: 21 start-page: 315 year: 1999 end-page: 322 ident: b0070 article-title: Long term distribution demand forecasting using neuro fuzzy computations publication-title: Int J Electr Power Energy Syst – volume: 9 start-page: 41 year: 2008 end-page: 55 ident: b0235 article-title: A new boosting algorithm for improved time-series forecasting with recurrent neural networks publication-title: Inform Fusion – volume: 70 start-page: 165 year: 2014 end-page: 171 ident: b0185 article-title: Forecasting the annual electricity consumption of Turkey using an optimized grey model publication-title: Energy – volume: 92 start-page: 67 year: 2015 end-page: 81 ident: b0215 article-title: Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions publication-title: Energy Convers Manage – volume: 123, Part A start-page: 163 year: 2013 end-page: 170 ident: b0175 article-title: Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting publication-title: J Wind Eng Ind Aerodyn – year: 2014 ident: b0300 article-title: Developing an approach to evaluate stocks by forecasting effective features with data mining methods publication-title: Expert Syst Appl – volume: 33 start-page: 1353 year: 2008 end-page: 1360 ident: b0040 article-title: Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models publication-title: Energy – volume: 36 start-page: 1937 year: 2008 end-page: 1944 ident: b0295 article-title: Improvement of energy demand forecasts using swarm intelligence: the case of Turkey with projections to 2025 publication-title: Energy Policy – volume: 16 start-page: 1852 year: 2012 ident: 10.1016/j.ijepes.2016.03.012_b0085 article-title: Power system load forecasting based on fuzzy clustering and gray target theory publication-title: Energy Proc doi: 10.1016/j.egypro.2012.01.284 – volume: 33 start-page: 1353 year: 2008 ident: 10.1016/j.ijepes.2016.03.012_b0040 article-title: Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models publication-title: Energy doi: 10.1016/j.energy.2008.05.008 – volume: 94 start-page: 189 year: 2015 ident: 10.1016/j.ijepes.2016.03.012_b0200 article-title: Ensemble of various neural networks for prediction of heating energy consumption publication-title: Energy Build doi: 10.1016/j.enbuild.2015.02.052 – volume: 70 start-page: 165 year: 2014 ident: 10.1016/j.ijepes.2016.03.012_b0185 article-title: Forecasting the annual electricity consumption of Turkey using an optimized grey model publication-title: Energy doi: 10.1016/j.energy.2014.03.105 – volume: 75 start-page: 301 year: 2015 ident: 10.1016/j.ijepes.2016.03.012_b0180 article-title: Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information publication-title: Renew Energy doi: 10.1016/j.renene.2014.09.058 – volume: 14 start-page: 794 year: 2012 ident: 10.1016/j.ijepes.2016.03.012_b0120 article-title: Long-term load forecasting based on adaptive neural fuzzy inference system using real energy data publication-title: Energy Proc doi: 10.1016/j.egypro.2011.12.1013 – volume: 50 start-page: 159 year: 2003 ident: 10.1016/j.ijepes.2016.03.012_b0035 article-title: Time series forecasting using a hybrid ARIMA and neural network model publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00702-0 – volume: 33 start-page: 17 year: 2011 ident: 10.1016/j.ijepes.2016.03.012_b0160 article-title: Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2010.08.008 – volume: 43 start-page: 2893 year: 2011 ident: 10.1016/j.ijepes.2016.03.012_b0135 article-title: Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: a comparative study publication-title: Energy Build doi: 10.1016/j.enbuild.2011.07.010 – volume: 23 start-page: 600 year: 2008 ident: 10.1016/j.ijepes.2016.03.012_b0075 article-title: A fuzzy logic model to predict specific energy requirement for TBM performance prediction publication-title: Tunn Undergr Space Technol doi: 10.1016/j.tust.2007.11.003 – volume: 38 start-page: 128 year: 2012 ident: 10.1016/j.ijepes.2016.03.012_b0125 article-title: Projection of future transport energy demand of Jordan using adaptive neuro-fuzzy technique publication-title: Energy doi: 10.1016/j.energy.2011.12.023 – volume: 9 start-page: 41 year: 2008 ident: 10.1016/j.ijepes.2016.03.012_b0235 article-title: A new boosting algorithm for improved time-series forecasting with recurrent neural networks publication-title: Inform Fusion doi: 10.1016/j.inffus.2006.10.009 – volume: 36 start-page: 1937 year: 2008 ident: 10.1016/j.ijepes.2016.03.012_b0295 article-title: Improvement of energy demand forecasts using swarm intelligence: the case of Turkey with projections to 2025 publication-title: Energy Policy doi: 10.1016/j.enpol.2008.02.018 – volume: 74 start-page: 359 year: 2014 ident: 10.1016/j.ijepes.2016.03.012_b0080 article-title: Fuzzy logic home energy consumption modeling for residential photovoltaic plant sizing in the new Italian scenario publication-title: Energy doi: 10.1016/j.energy.2014.06.100 – volume: 1 start-page: 127 year: 2001 ident: 10.1016/j.ijepes.2016.03.012_b0165 article-title: A neuro-fuzzy approach for modelling electricity demand in Victoria publication-title: Appl Soft Comput doi: 10.1016/S1568-4946(01)00013-8 – year: 2014 ident: 10.1016/j.ijepes.2016.03.012_b0145 article-title: A moving-average-filter-based hybrid ARIMA–ANN model for forecasting time series data publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.05.028 – volume: 34 start-page: 993 year: 2006 ident: 10.1016/j.ijepes.2016.03.012_b0280 article-title: Energy supply planning in Iran by using fuzzy linear programming approach (regarding uncertainties of investment costs) publication-title: Energy Policy doi: 10.1016/j.enpol.2004.09.005 – volume: 36 start-page: 2637 year: 2008 ident: 10.1016/j.ijepes.2016.03.012_b0055 article-title: A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran publication-title: Energy Policy doi: 10.1016/j.enpol.2008.02.035 – volume: 16 start-page: 1223 year: 2012 ident: 10.1016/j.ijepes.2016.03.012_b0020 article-title: Energy models for demand forecasting—a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2011.08.014 – year: 2014 ident: 10.1016/j.ijepes.2016.03.012_b0300 article-title: Developing an approach to evaluate stocks by forecasting effective features with data mining methods publication-title: Expert Syst Appl – volume: 25 start-page: 295 year: 2012 ident: 10.1016/j.ijepes.2016.03.012_b0140 article-title: A new ARIMA-based neuro-fuzzy approach and swarm intelligence for time series forecasting publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2011.10.005 – volume: 35 start-page: 512 year: 2010 ident: 10.1016/j.ijepes.2016.03.012_b0015 article-title: Greek long-term energy consumption prediction using artificial neural networks publication-title: Energy doi: 10.1016/j.energy.2009.10.018 – volume: 37 start-page: 1239 year: 2009 ident: 10.1016/j.ijepes.2016.03.012_b0090 article-title: A fuzzy inference model for short-term load forecasting publication-title: Energy Policy doi: 10.1016/j.enpol.2008.10.051 – volume: 23 start-page: 27 year: 2014 ident: 10.1016/j.ijepes.2016.03.012_b0305 article-title: A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.05.028 – volume: 39 start-page: 1536 year: 2012 ident: 10.1016/j.ijepes.2016.03.012_b0105 article-title: Comparison of different input selection algorithms in neuro-fuzzy modeling publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.08.049 – volume: 11 start-page: 2664 year: 2011 ident: 10.1016/j.ijepes.2016.03.012_b0310 article-title: A novel hybridization of artificial neural networks and ARIMA models for time series forecasting publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2010.10.015 – volume: 35 start-page: 2351 year: 2010 ident: 10.1016/j.ijepes.2016.03.012_b0060 article-title: An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran publication-title: Energy doi: 10.1016/j.energy.2009.12.023 – volume: 45 start-page: 110 year: 2008 ident: 10.1016/j.ijepes.2016.03.012_b0240 article-title: Bankruptcy forecasting: an empirical comparison of AdaBoost and neural networks publication-title: Decis Support Syst doi: 10.1016/j.dss.2007.12.002 – volume: 66 start-page: 1 year: 2015 ident: 10.1016/j.ijepes.2016.03.012_b0190 article-title: Forecasting China’s energy demand and self-sufficiency rate by grey forecasting model and Markov model publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.10.028 – volume: 92 start-page: 67 year: 2015 ident: 10.1016/j.ijepes.2016.03.012_b0215 article-title: Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2014.12.053 – volume: 47 start-page: 3931 year: 2014 ident: 10.1016/j.ijepes.2016.03.012_b0230 article-title: Probability estimation for multi-class classification using AdaBoost publication-title: Pattern Recogn doi: 10.1016/j.patcog.2014.06.008 – volume: 21 start-page: 315 year: 1999 ident: 10.1016/j.ijepes.2016.03.012_b0070 article-title: Long term distribution demand forecasting using neuro fuzzy computations publication-title: Int J Electr Power Energy Syst doi: 10.1016/S0142-0615(98)00056-8 – volume: 38 start-page: 2438 year: 2010 ident: 10.1016/j.ijepes.2016.03.012_b0155 article-title: Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach publication-title: Energy Policy doi: 10.1016/j.enpol.2009.12.037 – year: 2010 ident: 10.1016/j.ijepes.2016.03.012_b0210 – volume: 31 start-page: 2129 year: 2006 ident: 10.1016/j.ijepes.2016.03.012_b0065 article-title: Comparing linear and nonlinear forecasts for Taiwan’s electricity consumption publication-title: Energy doi: 10.1016/j.energy.2005.08.010 – volume: 123, Part A start-page: 163 year: 2013 ident: 10.1016/j.ijepes.2016.03.012_b0175 article-title: Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2013.10.004 – volume: 48 start-page: 585 year: 2015 ident: 10.1016/j.ijepes.2016.03.012_b0095 article-title: Applications of fuzzy logic in renewable energy systems – a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.04.037 – volume: 36 start-page: 6697 year: 2009 ident: 10.1016/j.ijepes.2016.03.012_b0050 article-title: A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: a comparative analysis publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.08.058 – ident: 10.1016/j.ijepes.2016.03.012_b0220 – volume: 23 start-page: 665 year: 1993 ident: 10.1016/j.ijepes.2016.03.012_b0100 article-title: ANFIS: adaptive-network-based fuzzy inference system publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.256541 – volume: 42 start-page: 9221 year: 2015 ident: 10.1016/j.ijepes.2016.03.012_b0110 article-title: Wrapper ANFIS-ICA method to do stock market timing and feature selection on the basis of Japanese Candlestick publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.08.010 – volume: 91 start-page: 47 year: 2015 ident: 10.1016/j.ijepes.2016.03.012_b0195 article-title: An emotional learning-neuro-fuzzy inference approach for optimum training and forecasting of gas consumption estimation models with cognitive data publication-title: Technol Forecast Soc Change doi: 10.1016/j.techfore.2014.01.009 – volume: 75 start-page: 141 year: 2015 ident: 10.1016/j.ijepes.2016.03.012_b0205 article-title: Multiple boosting in the ant colony decision forest meta-classifier publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2014.11.027 – volume: 24 start-page: 494 year: 2014 ident: 10.1016/j.ijepes.2016.03.012_b0245 article-title: AdaBoost based bankruptcy forecasting of Korean construction companies publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2014.08.009 – volume: 88 start-page: 3850 year: 2011 ident: 10.1016/j.ijepes.2016.03.012_b0030 article-title: A neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behavior analysis: the cases of Bahrain, Saudi Arabia, Syria, and UAE publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.04.027 – volume: 49 start-page: 205 year: 2008 ident: 10.1016/j.ijepes.2016.03.012_b0115 article-title: Using adaptive network based fuzzy inference system to forecast regional electricity loads publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2007.06.015 – volume: 50 start-page: 2719 year: 2009 ident: 10.1016/j.ijepes.2016.03.012_b0150 article-title: Modeling and prediction of Turkey’s electricity consumption using artificial neural networks publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2009.06.016 – volume: 45 start-page: 4451 year: 2012 ident: 10.1016/j.ijepes.2016.03.012_b0225 article-title: A noise-detection based AdaBoost algorithm for mislabeled data publication-title: Pattern Recogn doi: 10.1016/j.patcog.2012.05.002 – volume: 220 start-page: 149 year: 2013 ident: 10.1016/j.ijepes.2016.03.012_b0275 article-title: Hybrid learning mechanism for interval A2-C1 type-2 non-singleton type-2 Takagi–Sugeno–Kang fuzzy logic systems publication-title: Inform Sci doi: 10.1016/j.ins.2012.01.024 – volume: 52 start-page: 147 year: 2011 ident: 10.1016/j.ijepes.2016.03.012_b0010 article-title: Forecasting energy consumption using a grey model improved by incorporating genetic programming publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2010.06.053 – volume: 36 start-page: 11108 year: 2009 ident: 10.1016/j.ijepes.2016.03.012_b0130 article-title: A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.02.081 – volume: 19 start-page: 35 year: 2011 ident: 10.1016/j.ijepes.2016.03.012_b0005 article-title: A neuro-fuzzy classifier for customer churn prediction publication-title: Int J Comput Appl – ident: 10.1016/j.ijepes.2016.03.012_b0260 – volume: 94 start-page: 251 year: 2012 ident: 10.1016/j.ijepes.2016.03.012_b0045 article-title: Forecasting nonlinear time series of energy consumption using a hybrid dynamic model publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.01.063 – volume: 80 start-page: 256 year: 2010 ident: 10.1016/j.ijepes.2016.03.012_b0250 article-title: Electricity demand load forecasting of the Hellenic power system using an ARMA model publication-title: Elect Power Syst Res doi: 10.1016/j.epsr.2009.09.006 – volume: 35 start-page: 1701 year: 2007 ident: 10.1016/j.ijepes.2016.03.012_b0255 article-title: ARIMA forecasting of primary energy demand by fuel in Turkey publication-title: Energy Policy doi: 10.1016/j.enpol.2006.05.009 – volume: 37 start-page: 4049 year: 2009 ident: 10.1016/j.ijepes.2016.03.012_b0285 article-title: Energy demand estimation of South Korea using artificial neural network publication-title: Energy Policy doi: 10.1016/j.enpol.2009.04.049 – volume: 63 start-page: 64 year: 2014 ident: 10.1016/j.ijepes.2016.03.012_b0170 article-title: Mid-term electricity market clearing price forecasting utilizing hybrid support vector machine and auto-regressive moving average with external input publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2014.05.037 – volume: 53 start-page: 75 year: 2012 ident: 10.1016/j.ijepes.2016.03.012_b0290 article-title: A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2011.08.004 – year: 2007 ident: 10.1016/j.ijepes.2016.03.012_b0265 – volume: 42 start-page: 329 year: 2012 ident: 10.1016/j.ijepes.2016.03.012_b0025 article-title: A PSO–GA optimal model to estimate primary energy demand of China publication-title: Energy Policy doi: 10.1016/j.enpol.2011.11.090 |
| SSID | ssj0007942 |
| Score | 2.593202 |
| Snippet | •Developing a hybrid ARIMA–ANFIS algorithm based on three different patterns.•Using diversification method to deal with data insufficiency.•Finally, comparing... Energy consumption is on the rise in developing economies. In order to improve present and future energy supplies, forecasting energy demands is essential.... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 92 |
| SubjectTerms | AdaBoost Adaptive systems Algorithms ANFIS ARIMA Artificial neural networks Demand Energy consumption Energy forecasting Ensemble algorithm Forecasting Fuzzy logic Mathematical models |
| Title | Forecasting energy consumption using ensemble ARIMA–ANFIS hybrid algorithm |
| URI | https://dx.doi.org/10.1016/j.ijepes.2016.03.012 https://www.proquest.com/docview/1825543607 |
| Volume | 82 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-3517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection (subscription) customDbUrl: eissn: 1879-3517 dateEnd: 20230930 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-3517 dateEnd: 20230930 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1879-3517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-3517 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: AKRWK dateStart: 19790101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvehBXLEuJYLX2DSzJcdQLK1LD1qht2G22JZudDl4Ef-D_9Bf4swkcQMpeMwyIbx5-d575HvfA-ACmxRaC0F9iqkV1abKj4jZEKRMLYYESSPtCLId0npE1z3cK4FG0QtjaZU59meY7tA6P1PLrVmbDQY1S0sKXUAmBoapE5REiNopBpcvXzQP429hRmMM7RQDXLTPOY7XYKhn2op214mTOq2Hf4WnX0Dtok9zB2znaaOXZG-2C0p6sge2vokJ7oNbO2VT8oXlMXvatfR50jVYOlTwLMPdXljosRhpL7lv3yXvr29Jp9l-8PrPtnPL46On6Xyw7I8PQLd51W20_HxWgi8hjJc-51CGWAVEBjBKQ8lhIONUyxgpjkkMJUrrKhY4ECahU9wUETrSBAkuUaQhhoegPJlO9BHwUspjBKUgIYcIQxxJpQ0qxgoSoSLFKwAWFmIy1xG34yxGrCCMDVlmV2btygLIjF0rwP9cNct0NNbcTwvjsx_-wAzUr1l5XuwVM5-K_f_BJ3q6WjBTSpnkCZKAHv_76Sdg0x5l3YinoLycr_SZSUuWour8rgo2kvZNq_MBId_jAA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUqOAAHxCrKGiSuoWm8Jceqomqh7QGK1JvlLbRVN3U5cEH8A3_Il2A7CZuEKnGN4ygaT97MKG_eAHCFTQqthaA-xdSKalPlR8QcCFKmFkOCJJF2BNk2qT-i2y7uFkA174WxtMoM-1NMd2idXSll1ixN-_2SpSWFLiATA8PUCkquIxxSW4Fdv3zxPIzDhSmPMbRjDHDeP-dIXv2Bnmqr2l0mTuu0HP4Vn34htQs_tR2wneWNXiV9tV1Q0OM9sPVNTXAfNO2YTcnnlsjsadfT50nXYelgwbMUd7sw1yMx1F7lvtGqvL--Vdq1xoPXe7atWx4fPk1m_UVvdAA6tZtOte5nwxJ8CWG88DmHMsQqIDKAURJKDgMZJ1rGSHFMYihRUlaxwIEwGZ3iporQkSZIcIkiDTE8BGvjyVgfAS-hPEZQChJyiDDEkVTawGKsIBEqUrwIYG4hJjMhcTvPYshyxtiApXZl1q4sgMzYtQj8z13TVEhjxf00Nz774RDMYP2KnZf5WTHzrdgfIHysJ8s5M7WUyZ4gCejxv59-ATbqnVaTNRvtuxOwaVfS1sRTsLaYLfWZyVEW4tz54Ad3_OSV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+energy+consumption+using+ensemble+ARIMA%E2%80%93ANFIS+hybrid+algorithm&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Barak%2C+Sasan&rft.au=Sadegh%2C+S.+Saeedeh&rft.date=2016-11-01&rft.pub=Elsevier+Ltd&rft.issn=0142-0615&rft.eissn=1879-3517&rft.volume=82&rft.spage=92&rft.epage=104&rft_id=info:doi/10.1016%2Fj.ijepes.2016.03.012&rft.externalDocID=S0142061516303702 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon |