Forecasting energy consumption using ensemble ARIMA–ANFIS hybrid algorithm

•Developing a hybrid ARIMA–ANFIS algorithm based on three different patterns.•Using diversification method to deal with data insufficiency.•Finally, comparing all patterns with different prediction models. Energy consumption is on the rise in developing economies. In order to improve present and fut...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of electrical power & energy systems Vol. 82; pp. 92 - 104
Main Authors Barak, Sasan, Sadegh, S. Saeedeh
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2016
Subjects
Online AccessGet full text
ISSN0142-0615
1879-3517
DOI10.1016/j.ijepes.2016.03.012

Cover

Abstract •Developing a hybrid ARIMA–ANFIS algorithm based on three different patterns.•Using diversification method to deal with data insufficiency.•Finally, comparing all patterns with different prediction models. Energy consumption is on the rise in developing economies. In order to improve present and future energy supplies, forecasting energy demands is essential. However, lack of accurate and comprehensive data set to predict the future demand is one of big problems in these countries. Therefore, using ensemble hybrid forecasting models that can deal with shortage of data set could be a suitable solution. In this paper, the annual energy consumption in Iran is forecasted using 3 patterns of ARIMA–ANFIS model. In the first pattern, ARIMA (Auto Regressive Integrated Moving Average) model is implemented on 4 input features, where its nonlinear residuals are forecasted by 6 different ANFIS (Adaptive Neuro Fuzzy Inference System) structures including grid partitioning, sub clustering, and fuzzy c means clustering (each with 2 training algorithms). In the second pattern, the forecasting of ARIMA in addition to 4 input features is assumed as input variables for ANFIS prediction. Therefore, four mentioned inputs beside ARIMA’s output are used in energy prediction with 6 different ANFIS structures. In the third pattern, due to dealing with data insufficiency, the second pattern is applied with AdaBoost (Adaptive Boosting) data diversification model and a novel ensemble methodology is presented. The results indicate that proposed hybrid patterns improve the accuracy of single ARIMA and ANFIS models in forecasting energy consumption, though third pattern, used diversification model, acts better than others and model’s MSE criterion was decreased to 0.026% from 0.058% of second hybrid pattern. Finally, a comprehensive comparison between other hybrid prediction models is done.
AbstractList •Developing a hybrid ARIMA–ANFIS algorithm based on three different patterns.•Using diversification method to deal with data insufficiency.•Finally, comparing all patterns with different prediction models. Energy consumption is on the rise in developing economies. In order to improve present and future energy supplies, forecasting energy demands is essential. However, lack of accurate and comprehensive data set to predict the future demand is one of big problems in these countries. Therefore, using ensemble hybrid forecasting models that can deal with shortage of data set could be a suitable solution. In this paper, the annual energy consumption in Iran is forecasted using 3 patterns of ARIMA–ANFIS model. In the first pattern, ARIMA (Auto Regressive Integrated Moving Average) model is implemented on 4 input features, where its nonlinear residuals are forecasted by 6 different ANFIS (Adaptive Neuro Fuzzy Inference System) structures including grid partitioning, sub clustering, and fuzzy c means clustering (each with 2 training algorithms). In the second pattern, the forecasting of ARIMA in addition to 4 input features is assumed as input variables for ANFIS prediction. Therefore, four mentioned inputs beside ARIMA’s output are used in energy prediction with 6 different ANFIS structures. In the third pattern, due to dealing with data insufficiency, the second pattern is applied with AdaBoost (Adaptive Boosting) data diversification model and a novel ensemble methodology is presented. The results indicate that proposed hybrid patterns improve the accuracy of single ARIMA and ANFIS models in forecasting energy consumption, though third pattern, used diversification model, acts better than others and model’s MSE criterion was decreased to 0.026% from 0.058% of second hybrid pattern. Finally, a comprehensive comparison between other hybrid prediction models is done.
Energy consumption is on the rise in developing economies. In order to improve present and future energy supplies, forecasting energy demands is essential. However, lack of accurate and comprehensive data set to predict the future demand is one of big problems in these countries. Therefore, using ensemble hybrid forecasting models that can deal with shortage of data set could be a suitable solution. In this paper, the annual energy consumption in Iran is forecasted using 3 patterns of ARIMA-ANFIS model. In the first pattern, ARIMA (Auto Regressive Integrated Moving Average) model is implemented on 4 input features, where its nonlinear residuals are forecasted by 6 different ANFIS (Adaptive Neuro Fuzzy Inference System) structures including grid partitioning, sub clustering, and fuzzy c means clustering (each with 2 training algorithms). In the second pattern, the forecasting of ARIMA in addition to 4 input features is assumed as input variables for ANFIS prediction. Therefore, four mentioned inputs beside ARIMA's output are used in energy prediction with 6 different ANFIS structures. In the third pattern, due to dealing with data insufficiency, the second pattern is applied with AdaBoost (Adaptive Boosting) data diversification model and a novel ensemble methodology is presented. The results indicate that proposed hybrid patterns improve the accuracy of single ARIMA and ANFIS models in forecasting energy consumption, though third pattern, used diversification model, acts better than others and model's MSE criterion was decreased to 0.026% from 0.058% of second hybrid pattern. Finally, a comprehensive comparison between other hybrid prediction models is done.
Author Barak, Sasan
Sadegh, S. Saeedeh
Author_xml – sequence: 1
  givenname: Sasan
  surname: Barak
  fullname: Barak, Sasan
  email: Sasan.barak@gmail.com, sasan.barak@vsb.cz
  organization: Faculty of Economics, Technical University of Ostrava, Ostrava, Czech Republic
– sequence: 2
  givenname: S. Saeedeh
  surname: Sadegh
  fullname: Sadegh, S. Saeedeh
  organization: Department of Industrial Engineering, Tarbiat Modares University, Tehran, Iran
BookMark eNqFkMtKw0AUhgepYFt9AxdZukmcW24uhFCsFqqCdj9MJifthCQTZ1KhO9_BN_RJTIkrF7o6HM7__XC-GZq0pgWELgkOCCbRdRXoCjpwAR22ALMAE3qCpiSJU5-FJJ6gKSac-jgi4RmaOVdhjOOU0ylaL40FJV2v260HLdjtwVOmdfum67Vpvb0bDw6avAYve1k9Zl8fn9nTcvXq7Q651YUn662xut815-i0lLWDi585R5vl3Wbx4K-f71eLbO0rxtLel5IpGhY4UpglJVWSYZWWoFJeyDBKmeIlKdI8xDllpJAxjyGBiOdS8QRYyOboaqztrHnbg-tFo52CupYtmL0TJKFhyFmE4yF6M0aVNc5ZKIXSvTx-1lupa0GwOBoUlRgNiqNBgZkYDA4w_wV3VjfSHv7DbkcMBgXvGqxwSkOroNCD6l4URv9d8A1vLJCT
CitedBy_id crossref_primary_10_1016_j_rineng_2024_102747
crossref_primary_10_1016_j_jclepro_2019_05_314
crossref_primary_10_3390_app10020571
crossref_primary_10_1109_TNNLS_2021_3051384
crossref_primary_10_1016_j_engappai_2019_03_024
crossref_primary_10_1007_s00477_020_01842_9
crossref_primary_10_1007_s00521_022_07675_7
crossref_primary_10_1016_j_cjche_2021_11_023
crossref_primary_10_1016_j_compeleceng_2023_108784
crossref_primary_10_1002_er_6788
crossref_primary_10_1016_j_asoc_2021_108363
crossref_primary_10_3390_e25111542
crossref_primary_10_1007_s00500_022_07800_7
crossref_primary_10_1016_j_istruc_2024_107490
crossref_primary_10_1002_ep_13544
crossref_primary_10_1080_20479700_2018_1531608
crossref_primary_10_1016_j_rser_2018_02_002
crossref_primary_10_3390_en12071347
crossref_primary_10_3390_en13236440
crossref_primary_10_4236_tel_2019_97144
crossref_primary_10_1080_08839514_2024_2379731
crossref_primary_10_2166_wpt_2022_046
crossref_primary_10_1002_for_2655
crossref_primary_10_1002_asmb_2861
crossref_primary_10_1016_j_renene_2024_119948
crossref_primary_10_1016_j_energy_2019_116524
crossref_primary_10_1007_s00500_023_08676_x
crossref_primary_10_1016_j_energy_2023_129448
crossref_primary_10_1080_08839514_2024_2348413
crossref_primary_10_1016_j_robot_2022_104199
crossref_primary_10_1109_ACCESS_2020_3022808
crossref_primary_10_1007_s00500_020_05176_0
crossref_primary_10_1016_j_jclepro_2020_120135
crossref_primary_10_1016_j_energy_2018_10_175
crossref_primary_10_1016_j_jweia_2020_104198
crossref_primary_10_1109_ACCESS_2020_2966712
crossref_primary_10_1016_j_apenergy_2020_114977
crossref_primary_10_1016_j_trc_2020_102708
crossref_primary_10_1007_s13042_023_01963_x
crossref_primary_10_47097_piar_1573999
crossref_primary_10_1155_2018_6924960
crossref_primary_10_1080_01430750_2020_1719885
crossref_primary_10_1016_j_eswa_2022_119336
crossref_primary_10_1016_j_renene_2017_05_053
crossref_primary_10_1109_ACCESS_2020_2978937
crossref_primary_10_3390_en10111701
crossref_primary_10_1016_j_eneco_2021_105760
crossref_primary_10_1080_03036758_2024_2395910
crossref_primary_10_3390_en10122171
crossref_primary_10_1016_j_energy_2023_129799
crossref_primary_10_3390_en13092390
crossref_primary_10_1016_j_energy_2024_131250
crossref_primary_10_1016_j_petrol_2021_109774
crossref_primary_10_31200_makuubd_538878
crossref_primary_10_1007_s12667_018_0300_1
crossref_primary_10_1016_j_engappai_2019_03_012
crossref_primary_10_1371_journal_pone_0307915
crossref_primary_10_1155_2022_8455629
crossref_primary_10_3390_en16062579
crossref_primary_10_1016_j_envres_2021_111990
crossref_primary_10_1088_1742_6596_1716_1_012048
crossref_primary_10_1016_j_renene_2018_01_113
crossref_primary_10_1016_j_seta_2020_100863
crossref_primary_10_1007_s41066_020_00220_8
crossref_primary_10_1038_s41598_024_58966_z
crossref_primary_10_1145_3569422
crossref_primary_10_3390_app11083474
crossref_primary_10_3390_en13092280
crossref_primary_10_3934_energy_2019_2_151
crossref_primary_10_1108_GS_06_2022_0059
crossref_primary_10_1007_s00500_019_04432_2
crossref_primary_10_1049_iet_gtd_2020_0842
crossref_primary_10_1016_j_apenergy_2024_125053
crossref_primary_10_1016_j_energy_2023_127365
crossref_primary_10_1016_j_energy_2023_128575
crossref_primary_10_1016_j_inffus_2016_11_006
crossref_primary_10_1016_j_enbuild_2018_03_087
crossref_primary_10_1007_s11269_021_02863_x
crossref_primary_10_1016_j_asoc_2024_111324
crossref_primary_10_3390_en15217863
crossref_primary_10_1007_s41324_023_00528_y
crossref_primary_10_1088_1742_6596_1863_1_012061
crossref_primary_10_1049_iet_smt_2020_0218
crossref_primary_10_1016_j_energy_2022_124889
crossref_primary_10_1016_j_energy_2024_133631
crossref_primary_10_37675_jat_2023_00395
crossref_primary_10_1016_j_energy_2020_117200
crossref_primary_10_1088_1757_899X_1098_4_042032
crossref_primary_10_3390_su10072225
crossref_primary_10_1016_j_clet_2024_100831
crossref_primary_10_1016_j_jclepro_2020_122942
crossref_primary_10_1007_s00521_022_07889_9
crossref_primary_10_1016_j_jclepro_2021_127897
crossref_primary_10_1016_j_energy_2018_07_047
crossref_primary_10_1016_j_energy_2018_07_168
crossref_primary_10_1016_j_cam_2019_112656
crossref_primary_10_1016_j_atech_2024_100397
crossref_primary_10_1016_j_engappai_2023_107670
crossref_primary_10_1016_j_energy_2022_126159
crossref_primary_10_3390_en11071848
crossref_primary_10_1016_j_energy_2019_04_075
crossref_primary_10_1109_ACCESS_2021_3076746
crossref_primary_10_3390_sym12122024
crossref_primary_10_1016_j_jclepro_2017_07_106
crossref_primary_10_1515_cppm_2021_0065
crossref_primary_10_3390_en12101891
crossref_primary_10_3233_JIFS_210822
crossref_primary_10_1016_j_energy_2021_122093
crossref_primary_10_1007_s12667_019_00351_1
crossref_primary_10_1016_j_egypro_2017_03_795
crossref_primary_10_1016_j_scs_2020_102654
crossref_primary_10_1007_s00521_022_07138_z
crossref_primary_10_3390_en15134880
crossref_primary_10_1016_j_enconman_2020_112535
crossref_primary_10_17093_alphanumeric_747427
crossref_primary_10_1016_j_renene_2022_05_041
crossref_primary_10_3390_systems11060285
crossref_primary_10_1016_j_renene_2017_01_019
crossref_primary_10_1016_j_apenergy_2024_124738
crossref_primary_10_1088_1755_1315_344_1_012140
crossref_primary_10_1016_j_promfg_2019_04_022
crossref_primary_10_3390_en14082151
crossref_primary_10_1016_j_energy_2024_133964
crossref_primary_10_1016_j_jclepro_2019_05_153
crossref_primary_10_3390_en15197323
crossref_primary_10_1016_j_asoc_2023_110043
crossref_primary_10_1155_2018_5714872
crossref_primary_10_1016_j_asoc_2023_110275
crossref_primary_10_1063_5_0213366
crossref_primary_10_3390_app10010134
crossref_primary_10_1007_s12053_020_09851_x
crossref_primary_10_1016_j_epsr_2023_109464
crossref_primary_10_1016_j_jobe_2020_102105
crossref_primary_10_3390_app11167766
crossref_primary_10_3390_en12132520
crossref_primary_10_1016_j_energy_2018_04_175
crossref_primary_10_1016_j_scs_2023_104623
crossref_primary_10_1016_j_engappai_2019_08_018
crossref_primary_10_1109_TIE_2023_3294607
crossref_primary_10_1016_j_ejor_2018_12_013
crossref_primary_10_1016_j_scs_2020_102052
crossref_primary_10_1155_2022_6729608
crossref_primary_10_1007_s00521_021_06033_3
crossref_primary_10_1016_j_energy_2024_131405
crossref_primary_10_1007_s10489_021_03085_9
crossref_primary_10_1007_s11629_023_8388_8
crossref_primary_10_1016_j_scs_2018_05_041
crossref_primary_10_3390_en13051085
crossref_primary_10_3390_sym11030390
crossref_primary_10_3390_en13010208
crossref_primary_10_3233_JIFS_221409
crossref_primary_10_3390_en14030707
crossref_primary_10_1109_TGCN_2021_3091388
crossref_primary_10_1007_s11771_019_4161_0
crossref_primary_10_1016_j_cie_2021_107870
crossref_primary_10_1016_j_energy_2024_133017
crossref_primary_10_1088_1742_6596_1921_1_012067
crossref_primary_10_1016_j_egyr_2019_06_003
crossref_primary_10_3390_en13092317
crossref_primary_10_3390_en12214187
crossref_primary_10_1016_j_jclepro_2022_133778
crossref_primary_10_1177_0958305X19842061
crossref_primary_10_1088_1742_6596_995_1_012034
crossref_primary_10_1007_s10489_019_01426_3
crossref_primary_10_48175_IJARSCT_18338
crossref_primary_10_1002_eng2_12070
crossref_primary_10_1049_tje2_12146
crossref_primary_10_3390_su10051515
crossref_primary_10_1016_j_energy_2020_117035
crossref_primary_10_1016_j_apenergy_2022_118756
crossref_primary_10_1016_j_energy_2020_117159
crossref_primary_10_51758_AGJSR_04_2015_0018
crossref_primary_10_1177_1847979018768421
crossref_primary_10_1016_j_ijepes_2019_02_023
crossref_primary_10_3390_en12173278
crossref_primary_10_7717_peerj_cs_2680
crossref_primary_10_1016_j_rser_2020_109725
crossref_primary_10_1061__ASCE_HE_1943_5584_0001963
crossref_primary_10_3390_en14217378
crossref_primary_10_1007_s00521_021_06001_x
crossref_primary_10_1016_j_jclepro_2020_124843
crossref_primary_10_1016_j_jhydrol_2018_01_035
crossref_primary_10_4236_epe_2020_126024
crossref_primary_10_1007_s11036_022_02050_1
crossref_primary_10_3390_resources7040081
crossref_primary_10_1038_s41598_022_08864_z
crossref_primary_10_1016_j_energy_2019_04_115
crossref_primary_10_1080_01430750_2024_2306201
crossref_primary_10_1007_s12540_020_00854_y
crossref_primary_10_31590_ejosat_1007589
crossref_primary_10_1109_ACCESS_2018_2869981
crossref_primary_10_1109_ACCESS_2021_3126545
crossref_primary_10_1111_coin_12368
crossref_primary_10_3390_en11071687
crossref_primary_10_1016_j_resconrec_2019_01_030
crossref_primary_10_1016_j_egyai_2020_100009
crossref_primary_10_3390_buildings15010039
crossref_primary_10_1016_j_enbuild_2019_05_031
crossref_primary_10_1007_s13198_019_00879_6
crossref_primary_10_1051_e3sconf_201913101099
crossref_primary_10_3390_en10111868
crossref_primary_10_3390_su15054618
crossref_primary_10_1049_iet_esi_2018_0011
crossref_primary_10_1002_er_6444
crossref_primary_10_1109_ACCESS_2019_2925740
crossref_primary_10_3390_sym10120700
crossref_primary_10_3390_ijerph17103510
crossref_primary_10_1007_s00521_024_09697_9
crossref_primary_10_1007_s41939_025_00740_3
crossref_primary_10_1016_j_jclepro_2020_120107
crossref_primary_10_1515_ijeeps_2021_0012
crossref_primary_10_30521_jes_1549293
crossref_primary_10_1080_0952813X_2022_2093407
crossref_primary_10_1016_j_enbuild_2020_110558
crossref_primary_10_1111_tgis_13199
crossref_primary_10_3390_app9061113
Cites_doi 10.1016/j.egypro.2012.01.284
10.1016/j.energy.2008.05.008
10.1016/j.enbuild.2015.02.052
10.1016/j.energy.2014.03.105
10.1016/j.renene.2014.09.058
10.1016/j.egypro.2011.12.1013
10.1016/S0925-2312(01)00702-0
10.1016/j.ijepes.2010.08.008
10.1016/j.enbuild.2011.07.010
10.1016/j.tust.2007.11.003
10.1016/j.energy.2011.12.023
10.1016/j.inffus.2006.10.009
10.1016/j.enpol.2008.02.018
10.1016/j.energy.2014.06.100
10.1016/S1568-4946(01)00013-8
10.1016/j.asoc.2014.05.028
10.1016/j.enpol.2004.09.005
10.1016/j.enpol.2008.02.035
10.1016/j.rser.2011.08.014
10.1016/j.engappai.2011.10.005
10.1016/j.energy.2009.10.018
10.1016/j.enpol.2008.10.051
10.1016/j.eswa.2011.08.049
10.1016/j.asoc.2010.10.015
10.1016/j.energy.2009.12.023
10.1016/j.dss.2007.12.002
10.1016/j.ijepes.2014.10.028
10.1016/j.enconman.2014.12.053
10.1016/j.patcog.2014.06.008
10.1016/S0142-0615(98)00056-8
10.1016/j.enpol.2009.12.037
10.1016/j.energy.2005.08.010
10.1016/j.jweia.2013.10.004
10.1016/j.rser.2015.04.037
10.1016/j.eswa.2008.08.058
10.1109/21.256541
10.1016/j.eswa.2015.08.010
10.1016/j.techfore.2014.01.009
10.1016/j.knosys.2014.11.027
10.1016/j.asoc.2014.08.009
10.1016/j.apenergy.2011.04.027
10.1016/j.enconman.2007.06.015
10.1016/j.enconman.2009.06.016
10.1016/j.patcog.2012.05.002
10.1016/j.ins.2012.01.024
10.1016/j.enconman.2010.06.053
10.1016/j.eswa.2009.02.081
10.1016/j.apenergy.2012.01.063
10.1016/j.epsr.2009.09.006
10.1016/j.enpol.2006.05.009
10.1016/j.enpol.2009.04.049
10.1016/j.ijepes.2014.05.037
10.1016/j.enconman.2011.08.004
10.1016/j.enpol.2011.11.090
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
DOI 10.1016/j.ijepes.2016.03.012
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3517
EndPage 104
ExternalDocumentID 10_1016_j_ijepes_2016_03_012
S0142061516303702
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSV
SSZ
T5K
VH1
WUQ
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
GROUPED_DOAJ
~HD
7SP
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c339t-aa3c25d06c038f2ca30c9fec94da5693c4f1d9b50b231da747e8e64bac48e353
IEDL.DBID .~1
ISSN 0142-0615
IngestDate Mon Sep 29 06:36:42 EDT 2025
Wed Oct 01 04:38:30 EDT 2025
Thu Apr 24 23:00:51 EDT 2025
Fri Feb 23 02:24:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Ensemble algorithm
AdaBoost
ANFIS
ARIMA
Energy forecasting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-aa3c25d06c038f2ca30c9fec94da5693c4f1d9b50b231da747e8e64bac48e353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825543607
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1825543607
crossref_citationtrail_10_1016_j_ijepes_2016_03_012
crossref_primary_10_1016_j_ijepes_2016_03_012
elsevier_sciencedirect_doi_10_1016_j_ijepes_2016_03_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2016
2016-11-00
20161101
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November 2016
PublicationDecade 2010
PublicationTitle International journal of electrical power & energy systems
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lee, Tong (b0045) 2012; 94
Jang (b0100) 1993; 23
Babu, Reddy (b0145) 2014
Azadeh, Saberi, Gitiforouz, Saberi (b0130) 2009; 36
Suganthi, Iniyan, Samuel (b0095) 2015; 48
Pao (b0065) 2006; 31
Pappas, Ekonomou, Karamousantas, Chatzarakis, Katsikas, Liatsis (b0040) 2008; 33
Liu, Tian, Li, Zhang (b0215) 2015; 92
Alfaro, García, Gámez, Elizondo (b0240) 2008; 45
Ünler (b0295) 2008; 36
Freund Y, Schapire RE. Experiments with a new boosting algorithm. In: Morgan K, editor. 13th International conference on machine learning. San Francisco; 1996. p. 148–56.
Pappas, Ekonomou, Karampelas, Karamousantas, Katsikas, Chatzarakis (b0250) 2010; 80
Kıran, Özceylan, Gündüz, Paksoy (b0290) 2012; 53
Suganthi, Samuel (b0020) 2012; 16
Chang, Fan, Lin (b0160) 2011; 33
Nie, Jin, Fei (b0230) 2014; 47
Azadeh, Saberi, Seraj (b0060) 2010; 35
Mamlook, Badran, Abdulhadi (b0090) 2009; 37
Ying, Pan (b0115) 2008; 49
MéNdez, De Los Angeles HernáNdez (b0275) 2013; 220
Assaad, Boné, Cardot (b0235) 2008; 9
Efendigil, Önüt, Kahraman (b0050) 2009; 36
Rahmani, Yusof, Seyedmahmoudian, Mekhilef (b0175) 2013; 123, Part A
Alizadeh, Jolai, Aminnayeri, Rada (b0105) 2012; 39
Cao, Kwong, Wang (b0225) 2012; 45
Xie, Yuan, Yang (b0190) 2015; 66
Yan, Chowdhury (b0170) 2014; 63
Sivanandam, Sumathi, Deepa (b0265) 2007
Kucukali, Baris (b0155) 2010; 38
Kozak, Boryczka (b0205) 2015; 75
Sadeghi, Mirshojaeian Hosseini (b0280) 2006; 34
Geem, Roper (b0285) 2009; 37
Abbasimehr, Setak, Tarokh (b0005) 2011; 19
Hao, Liu, Li, Chen, Kong (b0085) 2012; 16
Osório, Matias, Catalão (b0180) 2015; 75
Barak, Dahooie, Tichý (b0110) 2015; 42
Acaroglu, Ozdemir, Asbury (b0075) 2008; 23
Akdemir, Çetinkaya (b0120) 2012; 14
Jovanović, Sretenović, Živković (b0200) 2015; 94
Li, Hu (b0140) 2012; 25
Ekonomou (b0015) 2010; 35
Ediger, Akar (b0255) 2007; 35
Ciabattoni, Grisostomi, Ippoliti, Longhi (b0080) 2014; 74
Khashei, Bijari (b0310) 2011; 11
Azadeh, Ghaderi, Sohrabkhani (b0055) 2008; 36
Heo, Yang (b0245) 2014; 24
Lemaic M. Markov-chain-based heuristics for the feedback vertex set problem for digraphs: Universität zu Köln; 2008.
Kavaklioglu, Ceylan, Ozturk, Canyurt (b0150) 2009; 50
Padmakumari, Mohandas, Thiruvengadam (b0070) 1999; 21
Babu, Reddy (b0305) 2014; 23
Li, Su, Chu (b0135) 2011; 43
Abraham, Nath (b0165) 2001; 1
Azadeh, Asadzadeh, Mirseraji, Saberi (b0195) 2015; 91
Azadeh, Asadzadeh, Saberi, Nadimi, Tajvidi, Sheikalishahi (b0030) 2011; 88
Hamzacebi, Es (b0185) 2014; 70
Al-Ghandoor, Samhouri, Al-Hinti, Jaber, Al-Rawashdeh (b0125) 2012; 38
Yu, Wei, Wang (b0025) 2012; 42
Haykin (b0210) 2010
Barak, Modarres (b0300) 2014
Zhang (b0035) 2003; 50
Lee, Tong (b0010) 2011; 52
Jang (10.1016/j.ijepes.2016.03.012_b0100) 1993; 23
Kıran (10.1016/j.ijepes.2016.03.012_b0290) 2012; 53
Yu (10.1016/j.ijepes.2016.03.012_b0025) 2012; 42
Nie (10.1016/j.ijepes.2016.03.012_b0230) 2014; 47
Efendigil (10.1016/j.ijepes.2016.03.012_b0050) 2009; 36
Babu (10.1016/j.ijepes.2016.03.012_b0305) 2014; 23
MéNdez (10.1016/j.ijepes.2016.03.012_b0275) 2013; 220
Akdemir (10.1016/j.ijepes.2016.03.012_b0120) 2012; 14
Hamzacebi (10.1016/j.ijepes.2016.03.012_b0185) 2014; 70
Zhang (10.1016/j.ijepes.2016.03.012_b0035) 2003; 50
Azadeh (10.1016/j.ijepes.2016.03.012_b0055) 2008; 36
Li (10.1016/j.ijepes.2016.03.012_b0140) 2012; 25
Al-Ghandoor (10.1016/j.ijepes.2016.03.012_b0125) 2012; 38
Suganthi (10.1016/j.ijepes.2016.03.012_b0020) 2012; 16
Alfaro (10.1016/j.ijepes.2016.03.012_b0240) 2008; 45
Geem (10.1016/j.ijepes.2016.03.012_b0285) 2009; 37
Yan (10.1016/j.ijepes.2016.03.012_b0170) 2014; 63
Ekonomou (10.1016/j.ijepes.2016.03.012_b0015) 2010; 35
Rahmani (10.1016/j.ijepes.2016.03.012_b0175) 2013; 123, Part A
Khashei (10.1016/j.ijepes.2016.03.012_b0310) 2011; 11
Chang (10.1016/j.ijepes.2016.03.012_b0160) 2011; 33
Sivanandam (10.1016/j.ijepes.2016.03.012_b0265) 2007
Alizadeh (10.1016/j.ijepes.2016.03.012_b0105) 2012; 39
Kavaklioglu (10.1016/j.ijepes.2016.03.012_b0150) 2009; 50
Abraham (10.1016/j.ijepes.2016.03.012_b0165) 2001; 1
Liu (10.1016/j.ijepes.2016.03.012_b0215) 2015; 92
Babu (10.1016/j.ijepes.2016.03.012_b0145) 2014
Osório (10.1016/j.ijepes.2016.03.012_b0180) 2015; 75
Hao (10.1016/j.ijepes.2016.03.012_b0085) 2012; 16
Haykin (10.1016/j.ijepes.2016.03.012_b0210) 2010
Pappas (10.1016/j.ijepes.2016.03.012_b0040) 2008; 33
Kozak (10.1016/j.ijepes.2016.03.012_b0205) 2015; 75
Ediger (10.1016/j.ijepes.2016.03.012_b0255) 2007; 35
Jovanović (10.1016/j.ijepes.2016.03.012_b0200) 2015; 94
Suganthi (10.1016/j.ijepes.2016.03.012_b0095) 2015; 48
Kucukali (10.1016/j.ijepes.2016.03.012_b0155) 2010; 38
Barak (10.1016/j.ijepes.2016.03.012_b0110) 2015; 42
Mamlook (10.1016/j.ijepes.2016.03.012_b0090) 2009; 37
Pao (10.1016/j.ijepes.2016.03.012_b0065) 2006; 31
10.1016/j.ijepes.2016.03.012_b0220
Acaroglu (10.1016/j.ijepes.2016.03.012_b0075) 2008; 23
Padmakumari (10.1016/j.ijepes.2016.03.012_b0070) 1999; 21
Barak (10.1016/j.ijepes.2016.03.012_b0300) 2014
Heo (10.1016/j.ijepes.2016.03.012_b0245) 2014; 24
Pappas (10.1016/j.ijepes.2016.03.012_b0250) 2010; 80
Assaad (10.1016/j.ijepes.2016.03.012_b0235) 2008; 9
Azadeh (10.1016/j.ijepes.2016.03.012_b0130) 2009; 36
Lee (10.1016/j.ijepes.2016.03.012_b0010) 2011; 52
Azadeh (10.1016/j.ijepes.2016.03.012_b0060) 2010; 35
Xie (10.1016/j.ijepes.2016.03.012_b0190) 2015; 66
Abbasimehr (10.1016/j.ijepes.2016.03.012_b0005) 2011; 19
Azadeh (10.1016/j.ijepes.2016.03.012_b0195) 2015; 91
Ying (10.1016/j.ijepes.2016.03.012_b0115) 2008; 49
Azadeh (10.1016/j.ijepes.2016.03.012_b0030) 2011; 88
Li (10.1016/j.ijepes.2016.03.012_b0135) 2011; 43
Lee (10.1016/j.ijepes.2016.03.012_b0045) 2012; 94
Ünler (10.1016/j.ijepes.2016.03.012_b0295) 2008; 36
10.1016/j.ijepes.2016.03.012_b0260
Sadeghi (10.1016/j.ijepes.2016.03.012_b0280) 2006; 34
Cao (10.1016/j.ijepes.2016.03.012_b0225) 2012; 45
Ciabattoni (10.1016/j.ijepes.2016.03.012_b0080) 2014; 74
References_xml – volume: 49
  start-page: 205
  year: 2008
  end-page: 211
  ident: b0115
  article-title: Using adaptive network based fuzzy inference system to forecast regional electricity loads
  publication-title: Energy Convers Manage
– volume: 36
  start-page: 11108
  year: 2009
  end-page: 11117
  ident: b0130
  article-title: A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation
  publication-title: Expert Syst Appl
– volume: 94
  start-page: 251
  year: 2012
  end-page: 256
  ident: b0045
  article-title: Forecasting nonlinear time series of energy consumption using a hybrid dynamic model
  publication-title: Appl Energy
– volume: 74
  start-page: 359
  year: 2014
  end-page: 367
  ident: b0080
  article-title: Fuzzy logic home energy consumption modeling for residential photovoltaic plant sizing in the new Italian scenario
  publication-title: Energy
– volume: 38
  start-page: 2438
  year: 2010
  end-page: 2445
  ident: b0155
  article-title: Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach
  publication-title: Energy Policy
– reference: Freund Y, Schapire RE. Experiments with a new boosting algorithm. In: Morgan K, editor. 13th International conference on machine learning. San Francisco; 1996. p. 148–56.
– volume: 88
  start-page: 3850
  year: 2011
  end-page: 3859
  ident: b0030
  article-title: A neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behavior analysis: the cases of Bahrain, Saudi Arabia, Syria, and UAE
  publication-title: Appl Energy
– volume: 38
  start-page: 128
  year: 2012
  end-page: 135
  ident: b0125
  article-title: Projection of future transport energy demand of Jordan using adaptive neuro-fuzzy technique
  publication-title: Energy
– volume: 94
  start-page: 189
  year: 2015
  end-page: 199
  ident: b0200
  article-title: Ensemble of various neural networks for prediction of heating energy consumption
  publication-title: Energy Build
– volume: 23
  start-page: 600
  year: 2008
  end-page: 608
  ident: b0075
  article-title: A fuzzy logic model to predict specific energy requirement for TBM performance prediction
  publication-title: Tunn Undergr Space Technol
– volume: 43
  start-page: 2893
  year: 2011
  end-page: 2899
  ident: b0135
  article-title: Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: a comparative study
  publication-title: Energy Build
– volume: 24
  start-page: 494
  year: 2014
  end-page: 499
  ident: b0245
  article-title: AdaBoost based bankruptcy forecasting of Korean construction companies
  publication-title: Appl Soft Comput
– volume: 16
  start-page: 1852
  year: 2012
  end-page: 1859
  ident: b0085
  article-title: Power system load forecasting based on fuzzy clustering and gray target theory
  publication-title: Energy Proc
– volume: 39
  start-page: 1536
  year: 2012
  end-page: 1544
  ident: b0105
  article-title: Comparison of different input selection algorithms in neuro-fuzzy modeling
  publication-title: Expert Syst Appl
– volume: 66
  start-page: 1
  year: 2015
  end-page: 8
  ident: b0190
  article-title: Forecasting China’s energy demand and self-sufficiency rate by grey forecasting model and Markov model
  publication-title: Int J Electr Power Energy Syst
– volume: 36
  start-page: 6697
  year: 2009
  end-page: 6707
  ident: b0050
  article-title: A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: a comparative analysis
  publication-title: Expert Syst Appl
– volume: 220
  start-page: 149
  year: 2013
  end-page: 169
  ident: b0275
  article-title: Hybrid learning mechanism for interval A2-C1 type-2 non-singleton type-2 Takagi–Sugeno–Kang fuzzy logic systems
  publication-title: Inform Sci
– volume: 19
  start-page: 35
  year: 2011
  end-page: 41
  ident: b0005
  article-title: A neuro-fuzzy classifier for customer churn prediction
  publication-title: Int J Comput Appl
– volume: 47
  start-page: 3931
  year: 2014
  end-page: 3940
  ident: b0230
  article-title: Probability estimation for multi-class classification using AdaBoost
  publication-title: Pattern Recogn
– volume: 23
  start-page: 27
  year: 2014
  end-page: 38
  ident: b0305
  article-title: A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data
  publication-title: Appl Soft Comput
– volume: 45
  start-page: 110
  year: 2008
  end-page: 122
  ident: b0240
  article-title: Bankruptcy forecasting: an empirical comparison of AdaBoost and neural networks
  publication-title: Decis Support Syst
– year: 2010
  ident: b0210
  article-title: Neural networks: a comprehensive foundation, 1994
– volume: 50
  start-page: 159
  year: 2003
  end-page: 175
  ident: b0035
  article-title: Time series forecasting using a hybrid ARIMA and neural network model
  publication-title: Neurocomputing
– volume: 36
  start-page: 2637
  year: 2008
  end-page: 2644
  ident: b0055
  article-title: A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran
  publication-title: Energy Policy
– volume: 35
  start-page: 512
  year: 2010
  end-page: 517
  ident: b0015
  article-title: Greek long-term energy consumption prediction using artificial neural networks
  publication-title: Energy
– volume: 80
  start-page: 256
  year: 2010
  end-page: 264
  ident: b0250
  article-title: Electricity demand load forecasting of the Hellenic power system using an ARMA model
  publication-title: Elect Power Syst Res
– volume: 63
  start-page: 64
  year: 2014
  end-page: 70
  ident: b0170
  article-title: Mid-term electricity market clearing price forecasting utilizing hybrid support vector machine and auto-regressive moving average with external input
  publication-title: Int J Electr Power Energy Syst
– volume: 42
  start-page: 329
  year: 2012
  end-page: 340
  ident: b0025
  article-title: A PSO–GA optimal model to estimate primary energy demand of China
  publication-title: Energy Policy
– volume: 35
  start-page: 1701
  year: 2007
  end-page: 1708
  ident: b0255
  article-title: ARIMA forecasting of primary energy demand by fuel in Turkey
  publication-title: Energy Policy
– volume: 45
  start-page: 4451
  year: 2012
  end-page: 4465
  ident: b0225
  article-title: A noise-detection based AdaBoost algorithm for mislabeled data
  publication-title: Pattern Recogn
– volume: 75
  start-page: 301
  year: 2015
  end-page: 307
  ident: b0180
  article-title: Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
  publication-title: Renew Energy
– volume: 35
  start-page: 2351
  year: 2010
  end-page: 2366
  ident: b0060
  article-title: An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran
  publication-title: Energy
– volume: 50
  start-page: 2719
  year: 2009
  end-page: 2727
  ident: b0150
  article-title: Modeling and prediction of Turkey’s electricity consumption using artificial neural networks
  publication-title: Energy Convers Manage
– volume: 75
  start-page: 141
  year: 2015
  end-page: 151
  ident: b0205
  article-title: Multiple boosting in the ant colony decision forest meta-classifier
  publication-title: Knowl-Based Syst
– volume: 91
  start-page: 47
  year: 2015
  end-page: 63
  ident: b0195
  article-title: An emotional learning-neuro-fuzzy inference approach for optimum training and forecasting of gas consumption estimation models with cognitive data
  publication-title: Technol Forecast Soc Change
– reference: Lemaic M. Markov-chain-based heuristics for the feedback vertex set problem for digraphs: Universität zu Köln; 2008.
– year: 2014
  ident: b0145
  article-title: A moving-average-filter-based hybrid ARIMA–ANN model for forecasting time series data
  publication-title: Appl Soft Comput
– volume: 42
  start-page: 9221
  year: 2015
  end-page: 9235
  ident: b0110
  article-title: Wrapper ANFIS-ICA method to do stock market timing and feature selection on the basis of Japanese Candlestick
  publication-title: Expert Syst Appl
– volume: 11
  start-page: 2664
  year: 2011
  end-page: 2675
  ident: b0310
  article-title: A novel hybridization of artificial neural networks and ARIMA models for time series forecasting
  publication-title: Appl Soft Comput
– volume: 52
  start-page: 147
  year: 2011
  end-page: 152
  ident: b0010
  article-title: Forecasting energy consumption using a grey model improved by incorporating genetic programming
  publication-title: Energy Convers Manage
– volume: 23
  start-page: 665
  year: 1993
  end-page: 685
  ident: b0100
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans Syst Man Cybern
– volume: 14
  start-page: 794
  year: 2012
  end-page: 799
  ident: b0120
  article-title: Long-term load forecasting based on adaptive neural fuzzy inference system using real energy data
  publication-title: Energy Proc
– volume: 37
  start-page: 1239
  year: 2009
  end-page: 1248
  ident: b0090
  article-title: A fuzzy inference model for short-term load forecasting
  publication-title: Energy Policy
– volume: 1
  start-page: 127
  year: 2001
  end-page: 138
  ident: b0165
  article-title: A neuro-fuzzy approach for modelling electricity demand in Victoria
  publication-title: Appl Soft Comput
– volume: 34
  start-page: 993
  year: 2006
  end-page: 1003
  ident: b0280
  article-title: Energy supply planning in Iran by using fuzzy linear programming approach (regarding uncertainties of investment costs)
  publication-title: Energy Policy
– volume: 37
  start-page: 4049
  year: 2009
  end-page: 4054
  ident: b0285
  article-title: Energy demand estimation of South Korea using artificial neural network
  publication-title: Energy Policy
– volume: 16
  start-page: 1223
  year: 2012
  end-page: 1240
  ident: b0020
  article-title: Energy models for demand forecasting—a review
  publication-title: Renew Sustain Energy Rev
– volume: 53
  start-page: 75
  year: 2012
  end-page: 83
  ident: b0290
  article-title: A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey
  publication-title: Energy Convers Manage
– volume: 25
  start-page: 295
  year: 2012
  end-page: 308
  ident: b0140
  article-title: A new ARIMA-based neuro-fuzzy approach and swarm intelligence for time series forecasting
  publication-title: Eng Appl Artif Intell
– year: 2007
  ident: b0265
  article-title: Introduction to fuzzy logic using MATLAB
– volume: 31
  start-page: 2129
  year: 2006
  end-page: 2141
  ident: b0065
  article-title: Comparing linear and nonlinear forecasts for Taiwan’s electricity consumption
  publication-title: Energy
– volume: 48
  start-page: 585
  year: 2015
  end-page: 607
  ident: b0095
  article-title: Applications of fuzzy logic in renewable energy systems – a review
  publication-title: Renew Sustain Energy Rev
– volume: 33
  start-page: 17
  year: 2011
  end-page: 27
  ident: b0160
  article-title: Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach
  publication-title: Int J Electr Power Energy Syst
– volume: 21
  start-page: 315
  year: 1999
  end-page: 322
  ident: b0070
  article-title: Long term distribution demand forecasting using neuro fuzzy computations
  publication-title: Int J Electr Power Energy Syst
– volume: 9
  start-page: 41
  year: 2008
  end-page: 55
  ident: b0235
  article-title: A new boosting algorithm for improved time-series forecasting with recurrent neural networks
  publication-title: Inform Fusion
– volume: 70
  start-page: 165
  year: 2014
  end-page: 171
  ident: b0185
  article-title: Forecasting the annual electricity consumption of Turkey using an optimized grey model
  publication-title: Energy
– volume: 92
  start-page: 67
  year: 2015
  end-page: 81
  ident: b0215
  article-title: Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions
  publication-title: Energy Convers Manage
– volume: 123, Part A
  start-page: 163
  year: 2013
  end-page: 170
  ident: b0175
  article-title: Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting
  publication-title: J Wind Eng Ind Aerodyn
– year: 2014
  ident: b0300
  article-title: Developing an approach to evaluate stocks by forecasting effective features with data mining methods
  publication-title: Expert Syst Appl
– volume: 33
  start-page: 1353
  year: 2008
  end-page: 1360
  ident: b0040
  article-title: Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models
  publication-title: Energy
– volume: 36
  start-page: 1937
  year: 2008
  end-page: 1944
  ident: b0295
  article-title: Improvement of energy demand forecasts using swarm intelligence: the case of Turkey with projections to 2025
  publication-title: Energy Policy
– volume: 16
  start-page: 1852
  year: 2012
  ident: 10.1016/j.ijepes.2016.03.012_b0085
  article-title: Power system load forecasting based on fuzzy clustering and gray target theory
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2012.01.284
– volume: 33
  start-page: 1353
  year: 2008
  ident: 10.1016/j.ijepes.2016.03.012_b0040
  article-title: Electricity demand loads modeling using AutoRegressive Moving Average (ARMA) models
  publication-title: Energy
  doi: 10.1016/j.energy.2008.05.008
– volume: 94
  start-page: 189
  year: 2015
  ident: 10.1016/j.ijepes.2016.03.012_b0200
  article-title: Ensemble of various neural networks for prediction of heating energy consumption
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2015.02.052
– volume: 70
  start-page: 165
  year: 2014
  ident: 10.1016/j.ijepes.2016.03.012_b0185
  article-title: Forecasting the annual electricity consumption of Turkey using an optimized grey model
  publication-title: Energy
  doi: 10.1016/j.energy.2014.03.105
– volume: 75
  start-page: 301
  year: 2015
  ident: 10.1016/j.ijepes.2016.03.012_b0180
  article-title: Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.09.058
– volume: 14
  start-page: 794
  year: 2012
  ident: 10.1016/j.ijepes.2016.03.012_b0120
  article-title: Long-term load forecasting based on adaptive neural fuzzy inference system using real energy data
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2011.12.1013
– volume: 50
  start-page: 159
  year: 2003
  ident: 10.1016/j.ijepes.2016.03.012_b0035
  article-title: Time series forecasting using a hybrid ARIMA and neural network model
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00702-0
– volume: 33
  start-page: 17
  year: 2011
  ident: 10.1016/j.ijepes.2016.03.012_b0160
  article-title: Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2010.08.008
– volume: 43
  start-page: 2893
  year: 2011
  ident: 10.1016/j.ijepes.2016.03.012_b0135
  article-title: Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: a comparative study
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2011.07.010
– volume: 23
  start-page: 600
  year: 2008
  ident: 10.1016/j.ijepes.2016.03.012_b0075
  article-title: A fuzzy logic model to predict specific energy requirement for TBM performance prediction
  publication-title: Tunn Undergr Space Technol
  doi: 10.1016/j.tust.2007.11.003
– volume: 38
  start-page: 128
  year: 2012
  ident: 10.1016/j.ijepes.2016.03.012_b0125
  article-title: Projection of future transport energy demand of Jordan using adaptive neuro-fuzzy technique
  publication-title: Energy
  doi: 10.1016/j.energy.2011.12.023
– volume: 9
  start-page: 41
  year: 2008
  ident: 10.1016/j.ijepes.2016.03.012_b0235
  article-title: A new boosting algorithm for improved time-series forecasting with recurrent neural networks
  publication-title: Inform Fusion
  doi: 10.1016/j.inffus.2006.10.009
– volume: 36
  start-page: 1937
  year: 2008
  ident: 10.1016/j.ijepes.2016.03.012_b0295
  article-title: Improvement of energy demand forecasts using swarm intelligence: the case of Turkey with projections to 2025
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.02.018
– volume: 74
  start-page: 359
  year: 2014
  ident: 10.1016/j.ijepes.2016.03.012_b0080
  article-title: Fuzzy logic home energy consumption modeling for residential photovoltaic plant sizing in the new Italian scenario
  publication-title: Energy
  doi: 10.1016/j.energy.2014.06.100
– volume: 1
  start-page: 127
  year: 2001
  ident: 10.1016/j.ijepes.2016.03.012_b0165
  article-title: A neuro-fuzzy approach for modelling electricity demand in Victoria
  publication-title: Appl Soft Comput
  doi: 10.1016/S1568-4946(01)00013-8
– year: 2014
  ident: 10.1016/j.ijepes.2016.03.012_b0145
  article-title: A moving-average-filter-based hybrid ARIMA–ANN model for forecasting time series data
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.05.028
– volume: 34
  start-page: 993
  year: 2006
  ident: 10.1016/j.ijepes.2016.03.012_b0280
  article-title: Energy supply planning in Iran by using fuzzy linear programming approach (regarding uncertainties of investment costs)
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2004.09.005
– volume: 36
  start-page: 2637
  year: 2008
  ident: 10.1016/j.ijepes.2016.03.012_b0055
  article-title: A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.02.035
– volume: 16
  start-page: 1223
  year: 2012
  ident: 10.1016/j.ijepes.2016.03.012_b0020
  article-title: Energy models for demand forecasting—a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2011.08.014
– year: 2014
  ident: 10.1016/j.ijepes.2016.03.012_b0300
  article-title: Developing an approach to evaluate stocks by forecasting effective features with data mining methods
  publication-title: Expert Syst Appl
– volume: 25
  start-page: 295
  year: 2012
  ident: 10.1016/j.ijepes.2016.03.012_b0140
  article-title: A new ARIMA-based neuro-fuzzy approach and swarm intelligence for time series forecasting
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2011.10.005
– volume: 35
  start-page: 512
  year: 2010
  ident: 10.1016/j.ijepes.2016.03.012_b0015
  article-title: Greek long-term energy consumption prediction using artificial neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2009.10.018
– volume: 37
  start-page: 1239
  year: 2009
  ident: 10.1016/j.ijepes.2016.03.012_b0090
  article-title: A fuzzy inference model for short-term load forecasting
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.10.051
– volume: 23
  start-page: 27
  year: 2014
  ident: 10.1016/j.ijepes.2016.03.012_b0305
  article-title: A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.05.028
– volume: 39
  start-page: 1536
  year: 2012
  ident: 10.1016/j.ijepes.2016.03.012_b0105
  article-title: Comparison of different input selection algorithms in neuro-fuzzy modeling
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.08.049
– volume: 11
  start-page: 2664
  year: 2011
  ident: 10.1016/j.ijepes.2016.03.012_b0310
  article-title: A novel hybridization of artificial neural networks and ARIMA models for time series forecasting
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2010.10.015
– volume: 35
  start-page: 2351
  year: 2010
  ident: 10.1016/j.ijepes.2016.03.012_b0060
  article-title: An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: a case study of Iran
  publication-title: Energy
  doi: 10.1016/j.energy.2009.12.023
– volume: 45
  start-page: 110
  year: 2008
  ident: 10.1016/j.ijepes.2016.03.012_b0240
  article-title: Bankruptcy forecasting: an empirical comparison of AdaBoost and neural networks
  publication-title: Decis Support Syst
  doi: 10.1016/j.dss.2007.12.002
– volume: 66
  start-page: 1
  year: 2015
  ident: 10.1016/j.ijepes.2016.03.012_b0190
  article-title: Forecasting China’s energy demand and self-sufficiency rate by grey forecasting model and Markov model
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.10.028
– volume: 92
  start-page: 67
  year: 2015
  ident: 10.1016/j.ijepes.2016.03.012_b0215
  article-title: Comparison of four Adaboost algorithm based artificial neural networks in wind speed predictions
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2014.12.053
– volume: 47
  start-page: 3931
  year: 2014
  ident: 10.1016/j.ijepes.2016.03.012_b0230
  article-title: Probability estimation for multi-class classification using AdaBoost
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2014.06.008
– volume: 21
  start-page: 315
  year: 1999
  ident: 10.1016/j.ijepes.2016.03.012_b0070
  article-title: Long term distribution demand forecasting using neuro fuzzy computations
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/S0142-0615(98)00056-8
– volume: 38
  start-page: 2438
  year: 2010
  ident: 10.1016/j.ijepes.2016.03.012_b0155
  article-title: Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.12.037
– year: 2010
  ident: 10.1016/j.ijepes.2016.03.012_b0210
– volume: 31
  start-page: 2129
  year: 2006
  ident: 10.1016/j.ijepes.2016.03.012_b0065
  article-title: Comparing linear and nonlinear forecasts for Taiwan’s electricity consumption
  publication-title: Energy
  doi: 10.1016/j.energy.2005.08.010
– volume: 123, Part A
  start-page: 163
  year: 2013
  ident: 10.1016/j.ijepes.2016.03.012_b0175
  article-title: Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2013.10.004
– volume: 48
  start-page: 585
  year: 2015
  ident: 10.1016/j.ijepes.2016.03.012_b0095
  article-title: Applications of fuzzy logic in renewable energy systems – a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.04.037
– volume: 36
  start-page: 6697
  year: 2009
  ident: 10.1016/j.ijepes.2016.03.012_b0050
  article-title: A decision support system for demand forecasting with artificial neural networks and neuro-fuzzy models: a comparative analysis
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.08.058
– ident: 10.1016/j.ijepes.2016.03.012_b0220
– volume: 23
  start-page: 665
  year: 1993
  ident: 10.1016/j.ijepes.2016.03.012_b0100
  article-title: ANFIS: adaptive-network-based fuzzy inference system
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.256541
– volume: 42
  start-page: 9221
  year: 2015
  ident: 10.1016/j.ijepes.2016.03.012_b0110
  article-title: Wrapper ANFIS-ICA method to do stock market timing and feature selection on the basis of Japanese Candlestick
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.08.010
– volume: 91
  start-page: 47
  year: 2015
  ident: 10.1016/j.ijepes.2016.03.012_b0195
  article-title: An emotional learning-neuro-fuzzy inference approach for optimum training and forecasting of gas consumption estimation models with cognitive data
  publication-title: Technol Forecast Soc Change
  doi: 10.1016/j.techfore.2014.01.009
– volume: 75
  start-page: 141
  year: 2015
  ident: 10.1016/j.ijepes.2016.03.012_b0205
  article-title: Multiple boosting in the ant colony decision forest meta-classifier
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2014.11.027
– volume: 24
  start-page: 494
  year: 2014
  ident: 10.1016/j.ijepes.2016.03.012_b0245
  article-title: AdaBoost based bankruptcy forecasting of Korean construction companies
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2014.08.009
– volume: 88
  start-page: 3850
  year: 2011
  ident: 10.1016/j.ijepes.2016.03.012_b0030
  article-title: A neuro-fuzzy-stochastic frontier analysis approach for long-term natural gas consumption forecasting and behavior analysis: the cases of Bahrain, Saudi Arabia, Syria, and UAE
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.04.027
– volume: 49
  start-page: 205
  year: 2008
  ident: 10.1016/j.ijepes.2016.03.012_b0115
  article-title: Using adaptive network based fuzzy inference system to forecast regional electricity loads
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2007.06.015
– volume: 50
  start-page: 2719
  year: 2009
  ident: 10.1016/j.ijepes.2016.03.012_b0150
  article-title: Modeling and prediction of Turkey’s electricity consumption using artificial neural networks
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2009.06.016
– volume: 45
  start-page: 4451
  year: 2012
  ident: 10.1016/j.ijepes.2016.03.012_b0225
  article-title: A noise-detection based AdaBoost algorithm for mislabeled data
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2012.05.002
– volume: 220
  start-page: 149
  year: 2013
  ident: 10.1016/j.ijepes.2016.03.012_b0275
  article-title: Hybrid learning mechanism for interval A2-C1 type-2 non-singleton type-2 Takagi–Sugeno–Kang fuzzy logic systems
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2012.01.024
– volume: 52
  start-page: 147
  year: 2011
  ident: 10.1016/j.ijepes.2016.03.012_b0010
  article-title: Forecasting energy consumption using a grey model improved by incorporating genetic programming
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2010.06.053
– volume: 36
  start-page: 11108
  year: 2009
  ident: 10.1016/j.ijepes.2016.03.012_b0130
  article-title: A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.02.081
– volume: 19
  start-page: 35
  year: 2011
  ident: 10.1016/j.ijepes.2016.03.012_b0005
  article-title: A neuro-fuzzy classifier for customer churn prediction
  publication-title: Int J Comput Appl
– ident: 10.1016/j.ijepes.2016.03.012_b0260
– volume: 94
  start-page: 251
  year: 2012
  ident: 10.1016/j.ijepes.2016.03.012_b0045
  article-title: Forecasting nonlinear time series of energy consumption using a hybrid dynamic model
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.01.063
– volume: 80
  start-page: 256
  year: 2010
  ident: 10.1016/j.ijepes.2016.03.012_b0250
  article-title: Electricity demand load forecasting of the Hellenic power system using an ARMA model
  publication-title: Elect Power Syst Res
  doi: 10.1016/j.epsr.2009.09.006
– volume: 35
  start-page: 1701
  year: 2007
  ident: 10.1016/j.ijepes.2016.03.012_b0255
  article-title: ARIMA forecasting of primary energy demand by fuel in Turkey
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2006.05.009
– volume: 37
  start-page: 4049
  year: 2009
  ident: 10.1016/j.ijepes.2016.03.012_b0285
  article-title: Energy demand estimation of South Korea using artificial neural network
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.04.049
– volume: 63
  start-page: 64
  year: 2014
  ident: 10.1016/j.ijepes.2016.03.012_b0170
  article-title: Mid-term electricity market clearing price forecasting utilizing hybrid support vector machine and auto-regressive moving average with external input
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2014.05.037
– volume: 53
  start-page: 75
  year: 2012
  ident: 10.1016/j.ijepes.2016.03.012_b0290
  article-title: A novel hybrid approach based on particle swarm optimization and ant colony algorithm to forecast energy demand of Turkey
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2011.08.004
– year: 2007
  ident: 10.1016/j.ijepes.2016.03.012_b0265
– volume: 42
  start-page: 329
  year: 2012
  ident: 10.1016/j.ijepes.2016.03.012_b0025
  article-title: A PSO–GA optimal model to estimate primary energy demand of China
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.11.090
SSID ssj0007942
Score 2.593202
Snippet •Developing a hybrid ARIMA–ANFIS algorithm based on three different patterns.•Using diversification method to deal with data insufficiency.•Finally, comparing...
Energy consumption is on the rise in developing economies. In order to improve present and future energy supplies, forecasting energy demands is essential....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 92
SubjectTerms AdaBoost
Adaptive systems
Algorithms
ANFIS
ARIMA
Artificial neural networks
Demand
Energy consumption
Energy forecasting
Ensemble algorithm
Forecasting
Fuzzy logic
Mathematical models
Title Forecasting energy consumption using ensemble ARIMA–ANFIS hybrid algorithm
URI https://dx.doi.org/10.1016/j.ijepes.2016.03.012
https://www.proquest.com/docview/1825543607
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection (subscription)
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 20230930
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 20230930
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: AKRWK
  dateStart: 19790101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5KvehBXLEuJYLX2DSzJcdQLK1LD1qht2G22JZudDl4Ef-D_9Bf4swkcQMpeMwyIbx5-d575HvfA-ACmxRaC0F9iqkV1abKj4jZEKRMLYYESSPtCLId0npE1z3cK4FG0QtjaZU59meY7tA6P1PLrVmbDQY1S0sKXUAmBoapE5REiNopBpcvXzQP429hRmMM7RQDXLTPOY7XYKhn2op214mTOq2Hf4WnX0Dtok9zB2znaaOXZG-2C0p6sge2vokJ7oNbO2VT8oXlMXvatfR50jVYOlTwLMPdXljosRhpL7lv3yXvr29Jp9l-8PrPtnPL46On6Xyw7I8PQLd51W20_HxWgi8hjJc-51CGWAVEBjBKQ8lhIONUyxgpjkkMJUrrKhY4ECahU9wUETrSBAkuUaQhhoegPJlO9BHwUspjBKUgIYcIQxxJpQ0qxgoSoSLFKwAWFmIy1xG34yxGrCCMDVlmV2btygLIjF0rwP9cNct0NNbcTwvjsx_-wAzUr1l5XuwVM5-K_f_BJ3q6WjBTSpnkCZKAHv_76Sdg0x5l3YinoLycr_SZSUuWour8rgo2kvZNq_MBId_jAA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUqOAAHxCrKGiSuoWm8Jceqomqh7QGK1JvlLbRVN3U5cEH8A3_Il2A7CZuEKnGN4ygaT97MKG_eAHCFTQqthaA-xdSKalPlR8QcCFKmFkOCJJF2BNk2qT-i2y7uFkA174WxtMoM-1NMd2idXSll1ixN-_2SpSWFLiATA8PUCkquIxxSW4Fdv3zxPIzDhSmPMbRjDHDeP-dIXv2Bnmqr2l0mTuu0HP4Vn34htQs_tR2wneWNXiV9tV1Q0OM9sPVNTXAfNO2YTcnnlsjsadfT50nXYelgwbMUd7sw1yMx1F7lvtGqvL--Vdq1xoPXe7atWx4fPk1m_UVvdAA6tZtOte5nwxJ8CWG88DmHMsQqIDKAURJKDgMZJ1rGSHFMYihRUlaxwIEwGZ3iporQkSZIcIkiDTE8BGvjyVgfAS-hPEZQChJyiDDEkVTawGKsIBEqUrwIYG4hJjMhcTvPYshyxtiApXZl1q4sgMzYtQj8z13TVEhjxf00Nz774RDMYP2KnZf5WTHzrdgfIHysJ8s5M7WUyZ4gCejxv59-ATbqnVaTNRvtuxOwaVfS1sRTsLaYLfWZyVEW4tz54Ad3_OSV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Forecasting+energy+consumption+using+ensemble+ARIMA%E2%80%93ANFIS+hybrid+algorithm&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Barak%2C+Sasan&rft.au=Sadegh%2C+S.+Saeedeh&rft.date=2016-11-01&rft.pub=Elsevier+Ltd&rft.issn=0142-0615&rft.eissn=1879-3517&rft.volume=82&rft.spage=92&rft.epage=104&rft_id=info:doi/10.1016%2Fj.ijepes.2016.03.012&rft.externalDocID=S0142061516303702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon