Predicting below and above-ground peanut biomass and maturity using multi-target regression
[Display omitted] •Innovative multi-output regression algorithms predict peanut growth variables using remote sensing, enhancing precision in crop management.•Integration of satellite imagery enables accurate peanut maturity assessment, reducing subjectivity in in-season crop monitoring.•Promising m...
        Saved in:
      
    
          | Published in | Computers and electronics in agriculture Vol. 218; p. 108647 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.03.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0168-1699 1872-7107  | 
| DOI | 10.1016/j.compag.2024.108647 | 
Cover
| Abstract | [Display omitted]
•Innovative multi-output regression algorithms predict peanut growth variables using remote sensing, enhancing precision in crop management.•Integration of satellite imagery enables accurate peanut maturity assessment, reducing subjectivity in in-season crop monitoring.•Promising method for within-field variability assessment with 9–10 % prediction error in Peanut Maturity Index.
Accurate prediction of peanut growth and maturity is crucial to improve crop management and strengthening breeding programs. Remote sensing technology, such as satellites and drones, can facilitate in-season crop growth monitoring through the collection of high temporal and spatial imagery that capture differences in crop spectral reflectance. Current robust algorithms for predicting multiple peanut growth variables have not been proposed. This study aimed to develop algorithms for prediction of multiple peanut growth variables using a multi-output regression (MTR) approach. Two commercial irrigated fields, one of 8.6 ha located in Society Hill Alabama (AL), U.S. (study area 1), and the second of 54.76 ha (ha) located in Eufaula, Alabama (AL), U.S. (Study area 2) were used for data collection. Peanut biomass samples were collected weekly from 20 locations which each field. Two Peanut Maturity Indices (PMI orange to black and brown to black) were measured from manual assessment of maturity using the peanut profile board. MTR models were built to establish a functional relationship between peanut aboveground biomass, maturity, and spectral reflectance changes of the canopy over time using Random Forest (RF) and K-nearest neighbor. Reflectance from individual spectral bands and vegetation indices (VI) of the biomass sampling location were extracted from Planet scope® satellite images. The algorithms were developed using toolkits available in the Scikit-learn python library and were evaluated using the mean absolute error (MAE) metric. The RF algorithm was able to output multiple numeric values of peanut maturity indices upon VI and spectral bands, supporting the hypothesis that MTR can predict peanut maturity at the field level. The use of spectral reflectance from satellite images resulted in a small prediction error of 9 % for PMI using brown to black pods and 10 % when predicting PMI using orange to black pods. The MTR model was also accurate in predicting aboveground biomass (MAE = 1301 kg ha−1) compared to pod weight (MAE = 1103 kg ha−1). The study demonstrated a promising method to assess within-field variability of peanut maturity using remote sensing images, which could reduce the subjectivity of the manual method. | 
    
|---|---|
| AbstractList | [Display omitted]
•Innovative multi-output regression algorithms predict peanut growth variables using remote sensing, enhancing precision in crop management.•Integration of satellite imagery enables accurate peanut maturity assessment, reducing subjectivity in in-season crop monitoring.•Promising method for within-field variability assessment with 9–10 % prediction error in Peanut Maturity Index.
Accurate prediction of peanut growth and maturity is crucial to improve crop management and strengthening breeding programs. Remote sensing technology, such as satellites and drones, can facilitate in-season crop growth monitoring through the collection of high temporal and spatial imagery that capture differences in crop spectral reflectance. Current robust algorithms for predicting multiple peanut growth variables have not been proposed. This study aimed to develop algorithms for prediction of multiple peanut growth variables using a multi-output regression (MTR) approach. Two commercial irrigated fields, one of 8.6 ha located in Society Hill Alabama (AL), U.S. (study area 1), and the second of 54.76 ha (ha) located in Eufaula, Alabama (AL), U.S. (Study area 2) were used for data collection. Peanut biomass samples were collected weekly from 20 locations which each field. Two Peanut Maturity Indices (PMI orange to black and brown to black) were measured from manual assessment of maturity using the peanut profile board. MTR models were built to establish a functional relationship between peanut aboveground biomass, maturity, and spectral reflectance changes of the canopy over time using Random Forest (RF) and K-nearest neighbor. Reflectance from individual spectral bands and vegetation indices (VI) of the biomass sampling location were extracted from Planet scope® satellite images. The algorithms were developed using toolkits available in the Scikit-learn python library and were evaluated using the mean absolute error (MAE) metric. The RF algorithm was able to output multiple numeric values of peanut maturity indices upon VI and spectral bands, supporting the hypothesis that MTR can predict peanut maturity at the field level. The use of spectral reflectance from satellite images resulted in a small prediction error of 9 % for PMI using brown to black pods and 10 % when predicting PMI using orange to black pods. The MTR model was also accurate in predicting aboveground biomass (MAE = 1301 kg ha−1) compared to pod weight (MAE = 1103 kg ha−1). The study demonstrated a promising method to assess within-field variability of peanut maturity using remote sensing images, which could reduce the subjectivity of the manual method. Accurate prediction of peanut growth and maturity is crucial to improve crop management and strengthening breeding programs. Remote sensing technology, such as satellites and drones, can facilitate in-season crop growth monitoring through the collection of high temporal and spatial imagery that capture differences in crop spectral reflectance. Current robust algorithms for predicting multiple peanut growth variables have not been proposed. This study aimed to develop algorithms for prediction of multiple peanut growth variables using a multi-output regression (MTR) approach. Two commercial irrigated fields, one of 8.6 ha located in Society Hill Alabama (AL), U.S. (study area 1), and the second of 54.76 ha (ha) located in Eufaula, Alabama (AL), U.S. (Study area 2) were used for data collection. Peanut biomass samples were collected weekly from 20 locations which each field. Two Peanut Maturity Indices (PMI orange to black and brown to black) were measured from manual assessment of maturity using the peanut profile board. MTR models were built to establish a functional relationship between peanut aboveground biomass, maturity, and spectral reflectance changes of the canopy over time using Random Forest (RF) and K-nearest neighbor. Reflectance from individual spectral bands and vegetation indices (VI) of the biomass sampling location were extracted from Planet scope® satellite images. The algorithms were developed using toolkits available in the Scikit-learn python library and were evaluated using the mean absolute error (MAE) metric. The RF algorithm was able to output multiple numeric values of peanut maturity indices upon VI and spectral bands, supporting the hypothesis that MTR can predict peanut maturity at the field level. The use of spectral reflectance from satellite images resulted in a small prediction error of 9 % for PMI using brown to black pods and 10 % when predicting PMI using orange to black pods. The MTR model was also accurate in predicting aboveground biomass (MAE = 1301 kg ha⁻¹) compared to pod weight (MAE = 1103 kg ha⁻¹). The study demonstrated a promising method to assess within-field variability of peanut maturity using remote sensing images, which could reduce the subjectivity of the manual method.  | 
    
| ArticleNumber | 108647 | 
    
| Author | Ortiz, Brenda V. Sanz-Saez, Alvaro Bao, Yin Oliveira, Mailson Freire Carneiro, Franciele Morlin Thurmond, Megan Oliveira, Luan Pereira Tedesco, Danilo  | 
    
| Author_xml | – sequence: 1 givenname: Mailson Freire surname: Oliveira fullname: Oliveira, Mailson Freire email: mailson.oliveira@unesp.br organization: Auburn University, Department of Crop Soil and Environmental Sciences, Auburn, AL, United States – sequence: 2 givenname: Franciele Morlin surname: Carneiro fullname: Carneiro, Franciele Morlin email: fmcarneiro@utfpr.edu.br organization: Federal Technological University of Parana, Department of Agriculture, Campus Santa Helena, Brazil – sequence: 3 givenname: Brenda V. surname: Ortiz fullname: Ortiz, Brenda V. email: bvo0001@auburn.edu organization: Auburn University, Department of Crop Soil and Environmental Sciences, Auburn, AL, United States – sequence: 4 givenname: Megan surname: Thurmond fullname: Thurmond, Megan email: tmegan0023@gmail.com organization: Auburn University, Department of Crop Soil and Environmental Sciences, Auburn, AL, United States – sequence: 5 givenname: Luan Pereira surname: Oliveira fullname: Oliveira, Luan Pereira email: luan@uga.edu organization: University of Georgia, Department of Horticulture, Tifton, GA, United States – sequence: 6 givenname: Yin surname: Bao fullname: Bao, Yin email: yzb0016@auburn.edu organization: Auburn University, Department of Biosystems Engineering, Auburn, AL, United States – sequence: 7 givenname: Alvaro surname: Sanz-Saez fullname: Sanz-Saez, Alvaro email: azs0223@auburn.edu organization: Auburn University, Department of Crop Soil and Environmental Sciences, Auburn, AL, United States – sequence: 8 givenname: Danilo surname: Tedesco fullname: Tedesco, Danilo email: tedesco@ksu.edu organization: Kansas State University, Department of Agronomy, Manhattan, KS, United States  | 
    
| BookMark | eNqFkD1PwzAQhi1UJFrgHzBkZEnxR5oPBiRU8SVVggEmBuviXCJXSRxsp6j_HpcwMcBkne99TnfPgsx60yMhF4wuGWXp1XapTDdAs-SUJ-ErT5PsiMxZnvE4YzSbkXmI5TFLi-KELJzb0lAXeTYn7y8WK6287puoxNZ8RtBXEZRmh3FjzRiKAaEffVRq04Fz3_0O_Gi130ejO4Dd2Hode7AN-shiY9E5bfozclxD6_D85z0lb_d3r-vHePP88LS-3cRKiMLHAKJIVZ1zhSnQqiyoYCmHmqYZzXhdlyVlArGukyThBQBLmVBYlTwTlHMEcUoup7mDNR8jOi877RS2LfRoRicFW4lVEUSIEL2eosoa5yzWUmkPPizrLehWMioPRuVWTkblwaicjAY4-QUPVndg9_9hNxOGwcFOo5VOaezDCdqi8rIy-u8BX-tIlhY | 
    
| CitedBy_id | crossref_primary_10_1016_j_atech_2025_100808 crossref_primary_10_1186_s13007_025_01358_9 crossref_primary_10_1016_j_atech_2025_100873 crossref_primary_10_3390_agriculture15070689  | 
    
| Cites_doi | 10.1016/j.cj.2020.12.004 10.1016/S0176-1617(96)80284-7 10.3146/PS06-052.1 10.1016/0034-4257(88)90106-X 10.1007/s11119-021-09791-1 10.1080/15427528.2017.1422073 10.1038/s41598-021-89779-z 10.1109/LGRS.2011.2109934 10.1016/j.isprsjprs.2016.01.011 10.1016/j.cj.2016.01.008 10.1016/j.eja.2021.126337 10.3146/i0095-3679-8-2-15 10.1016/j.fcr.2013.09.023 10.3390/toxins15020111 10.1109/TGRS.2003.812910 10.3146/0095-3679(2006)33[125:DOMADD]2.0.CO;2 10.1080/02757259409532252 10.3390/rs14010093 10.1016/j.compag.2019.04.028 10.1016/j.compag.2013.10.010 10.1016/j.ins.2017.06.017 10.3390/rs71013251 10.3390/agronomy12071512 10.1007/s42452-019-1356-9 10.1007/s11265-018-1376-5 10.1016/j.cag.2023.05.001 10.1016/j.compag.2021.106544 10.1590/1809-4430-eng.agric.v39nep33-40/2019 10.1007/s10994-016-5546-z  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2024 Elsevier B.V. | 
    
| DBID | AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1016/j.compag.2024.108647 | 
    
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Agriculture | 
    
| EISSN | 1872-7107 | 
    
| ExternalDocumentID | 10_1016_j_compag_2024_108647 S0168169924000383  | 
    
| GeographicLocations | Alabama | 
    
| GeographicLocations_xml | – name: Alabama | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO AAYFN ABBOA ABBQC ABFNM ABFRF ABGRD ABJNI ABKYH ABLVK ABMAC ABMYL ABMZM ABRWV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACIWK ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADQTV AEBSH AEFWE AEKER AENEX AEQOU AESVU AEXOQ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLV HLZ HVGLF HZ~ IHE J1W KOM LCYCR LG9 LW9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 QYZTP R2- RIG ROL RPZ SAB SBC SDF SDG SES SEW SNL SPC SPCBC SSA SSH SSV SSZ T5K UHS UNMZH WUQ Y6R ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACMHX ACRPL ACVFH ADCNI ADNMO ADSLC AEIPS AEUPX AFJKZ AFPUW AGQPQ AGWPP AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c339t-aa396cf82ce6a0db903162af067072ffbb013eeff44429aa1613cedb273022ea3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0168-1699 | 
    
| IngestDate | Thu Oct 02 06:54:34 EDT 2025 Thu Oct 02 04:25:01 EDT 2025 Thu Apr 24 22:54:01 EDT 2025 Sat Mar 16 16:12:48 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Biomass Crop maturity Multi-task learning Remote sensing Machine learning  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c339t-aa396cf82ce6a0db903162af067072ffbb013eeff44429aa1613cedb273022ea3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 3153597103 | 
    
| PQPubID | 24069 | 
    
| ParticipantIDs | proquest_miscellaneous_3153597103 crossref_citationtrail_10_1016_j_compag_2024_108647 crossref_primary_10_1016_j_compag_2024_108647 elsevier_sciencedirect_doi_10_1016_j_compag_2024_108647  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | March 2024 2024-03-00 20240301  | 
    
| PublicationDateYYYYMMDD | 2024-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2024 text: March 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Computers and electronics in agriculture | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Santos, Lacerda, Rossi, Moreno, Oliveira, Pilon, Silva, Vellidis (b0150) 2022; 14 American Peanut Council, 2020. Peanut industry: peanut types and production [WWW Document]. URL Xu, Zhou, Yang, Yuan, Zhang, Lu (b0195) 2023; 113 Fu, Yang, Wang, Song, Feng (b0050) 2014; 100 Planet Understanding PlanetScope Instruments. Available online Rowland, Sorensen, Butts (b0196) 2006; 33 Borchani, Varando, Bielza, Larranaga (b0030) 2015; 5 Colvin, Tseng, Tillman, Rowland, Erickson, Culbreath, Ferrell (b0040) 2018; 32 Huete (b0080) 1988; 25 Gitelson, Merzlyak (b0060) 1996; 148 Melki, Cano, Kecman, Ventura (b0110) 2017; 415 Mastelini, da Costa, Santana, Nakano, Guido, Cerri, Barbon (b0105) 2019; 91 Jiao, Wang, Ma, Zhang, Guo, Zhang, Jensen (b0085) 2021; 9 L.) grown in Kenya. Toxins 15(2), 111. doi: 10.3390/toxins15020111. Williams, Drexler (b0190) 1981; 8 Belgiu, Drăguţ (b0025) 2016; 114 Jin, Yang, Xu, Yang, Feng, Li, Shen, Lan, Zhao (b0090) 2015; 7 Souza, de Almeida, Freire de Oliveira, Santos, Filho, Meneses, Silva (b0198) 2022; 12 Gnyp, Miao, Yuan, Ustin, Yu, Yao, Huang, Bareth (b0065) 2014; 155 Wang, Zhou, Zhu, Dong, Guo (b0185) 2016; 4 Gao, Niu, Huang, Hou (b0055) 2013; 24 Ali, Neagu, Trundle (b0010) 2019; 1 Goel, Qin (b0070) 1994; 10 Ashish, Nadaf, Gangadhara (b0020) 2014; 5 Khaki, Pham, Wang (b0199) 2021; 11 (accessed on 30 March 2023). Spyromitros-Xioufis, Tsoumakas, Groves, Vlahavas (b0155) 2016; 104 Rowland, Sorensen, Butts, Faircloth, Sullivan (b0135) 2008; 35 Vellidis, G., Beasley, J., 2013. Using vegetation indices to determine peanut maturity. Report to the Georgia Agricultural Commodity Commission for Peanuts. Kross, McNairn, Lapen, Sunohara, Champagne (b0100) 2015; 34 Gong, Pu, Biging, Larrieu (b0075) 2003; 41 Rouse, J., 1973. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation (Great Plains Corridor) [Progress Report, Apr.- Sep. 1973]. Santos, Lacerda, Gobbo, Tofannin, Silva, Vellidis (b0140) 2019 Santos, Corrêa, Lacerda, Tedesco-Oliveira, Pilon, Vellidis, da Silva (b0145) 2021; 22 Tuia, Verrelst, Alonso, Pérez-Cruz, Camps-Valls (b0200) 2011; 8 Njoki, L., Okoth, S., Wachira, P., Ouko, A., Mwololo, J., Rizzu, M., Amakhobe, T., 2023. Evaluation of agronomic characteristics, disease incidence, yield performance, and aflatoxin accumulation among six peanut varieties Tedesco, de Almeida Moreira, Júnior, Papa, da Silva (b0160) 2021; 191 Duan, Li, Wu, Tang, Ma, Zhao, Li (b0045) 2014; 26 Junior, Mastelini, Barbon, Barbin, Calvini, Lopes, Ulrici (b0095) 2020; 7 . Carneiro, Furlani, Zerbato, Menezes, Gírio (b0035) 2019; 39 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Duchesnay, E., 2019. Scikit-learn: machine learning in Python. 2011. Moon data set USDA Economic Research Services, 2022. Oil crops data: yearbook tables [WWW Document]. URL Tedesco, de Oliveira, dos Santos, Silva, de Souza Rolim, da Silva (b0165) 2021; 129 USDA Foreign Agricultural Services, 2020. World agricultural production [WWW Document]. URL Abd-El Monsef, Smith, Rowland, Abd El Rasol (b0005) 2019; 162 Spyromitros-Xioufis (10.1016/j.compag.2024.108647_b0155) 2016; 104 Jin (10.1016/j.compag.2024.108647_b0090) 2015; 7 Gnyp (10.1016/j.compag.2024.108647_b0065) 2014; 155 Tuia (10.1016/j.compag.2024.108647_b0200) 2011; 8 Xu (10.1016/j.compag.2024.108647_b0195) 2023; 113 Gao (10.1016/j.compag.2024.108647_b0055) 2013; 24 Belgiu (10.1016/j.compag.2024.108647_b0025) 2016; 114 Junior (10.1016/j.compag.2024.108647_b0095) 2020; 7 Rowland (10.1016/j.compag.2024.108647_b0135) 2008; 35 Souza (10.1016/j.compag.2024.108647_b0198) 2022; 12 10.1016/j.compag.2024.108647_b0120 Wang (10.1016/j.compag.2024.108647_b0185) 2016; 4 Santos (10.1016/j.compag.2024.108647_b0140) 2019 Ashish (10.1016/j.compag.2024.108647_b0020) 2014; 5 10.1016/j.compag.2024.108647_b0180 10.1016/j.compag.2024.108647_b0125 Fu (10.1016/j.compag.2024.108647_b0050) 2014; 100 Duan (10.1016/j.compag.2024.108647_b0045) 2014; 26 Mastelini (10.1016/j.compag.2024.108647_b0105) 2019; 91 Melki (10.1016/j.compag.2024.108647_b0110) 2017; 415 Colvin (10.1016/j.compag.2024.108647_b0040) 2018; 32 10.1016/j.compag.2024.108647_b0130 10.1016/j.compag.2024.108647_b0175 Borchani (10.1016/j.compag.2024.108647_b0030) 2015; 5 Jiao (10.1016/j.compag.2024.108647_b0085) 2021; 9 10.1016/j.compag.2024.108647_b0170 Gong (10.1016/j.compag.2024.108647_b0075) 2003; 41 Kross (10.1016/j.compag.2024.108647_b0100) 2015; 34 Santos (10.1016/j.compag.2024.108647_b0145) 2021; 22 Abd-El Monsef (10.1016/j.compag.2024.108647_b0005) 2019; 162 Gitelson (10.1016/j.compag.2024.108647_b0060) 1996; 148 Rowland (10.1016/j.compag.2024.108647_b0196) 2006; 33 Ali (10.1016/j.compag.2024.108647_b0010) 2019; 1 Carneiro (10.1016/j.compag.2024.108647_b0035) 2019; 39 10.1016/j.compag.2024.108647_b0015 Huete (10.1016/j.compag.2024.108647_b0080) 1988; 25 10.1016/j.compag.2024.108647_b0115 Santos (10.1016/j.compag.2024.108647_b0150) 2022; 14 Khaki (10.1016/j.compag.2024.108647_b0199) 2021; 11 Tedesco (10.1016/j.compag.2024.108647_b0160) 2021; 191 Goel (10.1016/j.compag.2024.108647_b0070) 1994; 10 Tedesco (10.1016/j.compag.2024.108647_b0165) 2021; 129 Williams (10.1016/j.compag.2024.108647_b0190) 1981; 8  | 
    
| References_xml | – reference: USDA Economic Research Services, 2022. Oil crops data: yearbook tables [WWW Document]. URL – volume: 415 start-page: 53 year: 2017 end-page: 69 ident: b0110 article-title: Multi-target support vector regression via correlation regressor chains publication-title: Inf. Sci. – volume: 100 start-page: 51 year: 2014 end-page: 59 ident: b0050 article-title: Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements publication-title: Comput. Electron. Agric. – volume: 155 start-page: 42 year: 2014 end-page: 55 ident: b0065 article-title: Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages publication-title: Field Crop Res – volume: 1 start-page: 1 year: 2019 end-page: 15 ident: b0010 article-title: Evaluation of k-nearest neighbour classifier performance for heterogeneous data sets publication-title: SN Appl. Sci. – volume: 114 start-page: 24 year: 2016 end-page: 31 ident: b0025 article-title: Random forest in remote sensing: a review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 26 start-page: 12 year: 2014 end-page: 20 ident: b0045 article-title: Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data publication-title: Int. J. Appl. Earth Observ. Geoinf. – reference: USDA Foreign Agricultural Services, 2020. World agricultural production [WWW Document]. URL – start-page: 91 year: 2019 end-page: 101 ident: b0140 article-title: Using remote sensing to map in-field variability of peanut maturity publication-title: Precision Agriculture’19 – volume: 14 start-page: 93 year: 2022 ident: b0150 article-title: Using UAV and multispectral images to estimate peanut maturity variability on irrigated and rainfed fields applying linear models and artificial neural networks publication-title: Remote Sens. (Basel) – volume: 104 start-page: 55 year: 2016 end-page: 98 ident: b0155 article-title: Multi-target regression via input space expansion: treating targets as inputs publication-title: Mach. Learn. – reference: American Peanut Council, 2020. Peanut industry: peanut types and production [WWW Document]. URL < – volume: 113 start-page: 10 year: 2023 end-page: 20 ident: b0195 article-title: NeatSankey: Sankey diagrams with improved readability based on node positioning and edge bundling publication-title: Comput. Graph. – reference: Rouse, J., 1973. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation (Great Plains Corridor) [Progress Report, Apr.- Sep. 1973]. – volume: 8 start-page: 804 year: 2011 end-page: 808 ident: b0200 article-title: Multioutput support vector regression for remote sensing biophysical parameter estimation publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 10 start-page: 309 year: 1994 end-page: 347 ident: b0070 article-title: Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: a computer simulation publication-title: Remote Sens. Rev. – reference: Planet Understanding PlanetScope Instruments. Available online: – reference: (accessed on 30 March 2023). – reference: Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Duchesnay, E., 2019. Scikit-learn: machine learning in Python. 2011. Moon data set: – volume: 25 start-page: 295 year: 1988 end-page: 309 ident: b0080 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. – volume: 32 start-page: 287 year: 2018 end-page: 304 ident: b0040 article-title: Consideration of peg strength and disease severity in the decision to harvest peanut in southeastern USA publication-title: J. Crop Improv. – volume: 8 start-page: 134 year: 1981 end-page: 141 ident: b0190 article-title: A non-destructive method for determining peanut pod maturity publication-title: Peanut Sci. – volume: 22 start-page: 1464 year: 2021 end-page: 1478 ident: b0145 article-title: High-resolution satellite image to predict peanut maturity variability in commercial fields publication-title: Precis. Agric. – reference: L.) grown in Kenya. Toxins 15(2), 111. doi: 10.3390/toxins15020111. – volume: 129 year: 2021 ident: b0165 article-title: Use of remote sensing to characterize the phenological development and to predict sweet potato yield in two growing seasons publication-title: Eur. J. Agron. – volume: 191 year: 2021 ident: b0160 article-title: Predicting on multi-target regression for the yield of sweet potato by the market class of its roots upon vegetation indices publication-title: Comput. Electron. Agric. – volume: 162 start-page: 561 year: 2019 end-page: 572 ident: b0005 article-title: Using multispectral imagery to extract a pure spectral canopy signature for predicting peanut maturity publication-title: Comput. Electron. Agric. – volume: 12 start-page: 1512 year: 2022 ident: b0198 article-title: Integrating satellite and UAV data to predict peanut maturity upon artificial neural networks publication-title: Agronomy – volume: 148 start-page: 494 year: 1996 end-page: 500 ident: b0060 article-title: Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll publication-title: J. Plant Physiol. – volume: 11 start-page: 11132 year: 2021 ident: b0199 article-title: Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning publication-title: Sci. Rep. – volume: 33 start-page: 125 year: 2006 end-page: 136 ident: b0196 article-title: Determination of maturity and degree day indices and their success in predicting peanut maturity publication-title: Peanut Sci. – volume: 35 start-page: 43 year: 2008 end-page: 54 ident: b0135 article-title: Canopy characteristics and their ability to predict peanut maturity publication-title: Peanut Sci. – reference: >. – volume: 5 start-page: 216 year: 2015 end-page: 233 ident: b0030 article-title: A survey on multi-output regression publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. – volume: 9 start-page: 1460 year: 2021 end-page: 1469 ident: b0085 article-title: The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping publication-title: Crop J. – reference: Njoki, L., Okoth, S., Wachira, P., Ouko, A., Mwololo, J., Rizzu, M., Amakhobe, T., 2023. Evaluation of agronomic characteristics, disease incidence, yield performance, and aflatoxin accumulation among six peanut varieties ( – reference: . – volume: 7 start-page: 13251 year: 2015 end-page: 13272 ident: b0090 article-title: Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data publication-title: Remote Sens. (Basel) – volume: 7 start-page: 342 year: 2020 end-page: 354 ident: b0095 article-title: Multi-target prediction of wheat flour quality parameters with near-infrared spectroscopy publication-title: Inf. Process. Agric. – reference: Vellidis, G., Beasley, J., 2013. Using vegetation indices to determine peanut maturity. Report to the Georgia Agricultural Commodity Commission for Peanuts. – volume: 34 start-page: 235 year: 2015 end-page: 248 ident: b0100 article-title: Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops publication-title: Int. J. Appl. Earth Observ. Geoinf. – volume: 39 start-page: 33 year: 2019 end-page: 40 ident: b0035 article-title: Correlations among vegetation indices and peanut traits during different crop development stages publication-title: Engenharia Agrícola – volume: 24 start-page: 1 year: 2013 end-page: 8 ident: b0055 article-title: Estimating the Leaf Area Index, height and biomass of maize using HJ-1 and RADARSAT-2 publication-title: Int. J. Appl. Earth Observ. Geoinf. – volume: 4 start-page: 212 year: 2016 end-page: 219 ident: b0185 article-title: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data publication-title: Crop J. – volume: 5 start-page: 109 year: 2014 end-page: 114 ident: b0020 article-title: Genetic analysis of rust and late leaf spot in advanced generation recombinant inbred lines of groundnut ( publication-title: Int. J. Genet. Eng. Biotechnol. – volume: 41 start-page: 1355 year: 2003 end-page: 1362 ident: b0075 article-title: Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 91 start-page: 191 year: 2019 end-page: 215 ident: b0105 article-title: Multi-output tree chaining: an interpretative modelling and lightweight multi-target approach publication-title: J. Signal Process. Syst. – volume: 9 start-page: 1460 issue: 6 year: 2021 ident: 10.1016/j.compag.2024.108647_b0085 article-title: The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping publication-title: Crop J. doi: 10.1016/j.cj.2020.12.004 – volume: 148 start-page: 494 issue: 3–4 year: 1996 ident: 10.1016/j.compag.2024.108647_b0060 article-title: Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll publication-title: J. Plant Physiol. doi: 10.1016/S0176-1617(96)80284-7 – volume: 35 start-page: 43 issue: 1 year: 2008 ident: 10.1016/j.compag.2024.108647_b0135 article-title: Canopy characteristics and their ability to predict peanut maturity publication-title: Peanut Sci. doi: 10.3146/PS06-052.1 – volume: 25 start-page: 295 issue: 3 year: 1988 ident: 10.1016/j.compag.2024.108647_b0080 article-title: A soil-adjusted vegetation index (SAVI) publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(88)90106-X – volume: 22 start-page: 1464 issue: 5 year: 2021 ident: 10.1016/j.compag.2024.108647_b0145 article-title: High-resolution satellite image to predict peanut maturity variability in commercial fields publication-title: Precis. Agric. doi: 10.1007/s11119-021-09791-1 – volume: 32 start-page: 287 issue: 3 year: 2018 ident: 10.1016/j.compag.2024.108647_b0040 article-title: Consideration of peg strength and disease severity in the decision to harvest peanut in southeastern USA publication-title: J. Crop Improv. doi: 10.1080/15427528.2017.1422073 – volume: 11 start-page: 11132 year: 2021 ident: 10.1016/j.compag.2024.108647_b0199 article-title: Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning publication-title: Sci. Rep. doi: 10.1038/s41598-021-89779-z – volume: 8 start-page: 804 year: 2011 ident: 10.1016/j.compag.2024.108647_b0200 article-title: Multioutput support vector regression for remote sensing biophysical parameter estimation publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2011.2109934 – start-page: 91 year: 2019 ident: 10.1016/j.compag.2024.108647_b0140 article-title: Using remote sensing to map in-field variability of peanut maturity – volume: 114 start-page: 24 year: 2016 ident: 10.1016/j.compag.2024.108647_b0025 article-title: Random forest in remote sensing: a review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – volume: 26 start-page: 12 year: 2014 ident: 10.1016/j.compag.2024.108647_b0045 article-title: Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data publication-title: Int. J. Appl. Earth Observ. Geoinf. – volume: 4 start-page: 212 issue: 3 year: 2016 ident: 10.1016/j.compag.2024.108647_b0185 article-title: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data publication-title: Crop J. doi: 10.1016/j.cj.2016.01.008 – volume: 129 year: 2021 ident: 10.1016/j.compag.2024.108647_b0165 article-title: Use of remote sensing to characterize the phenological development and to predict sweet potato yield in two growing seasons publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2021.126337 – volume: 5 start-page: 216 issue: 5 year: 2015 ident: 10.1016/j.compag.2024.108647_b0030 article-title: A survey on multi-output regression publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. – volume: 8 start-page: 134 issue: 2 year: 1981 ident: 10.1016/j.compag.2024.108647_b0190 article-title: A non-destructive method for determining peanut pod maturity publication-title: Peanut Sci. doi: 10.3146/i0095-3679-8-2-15 – volume: 155 start-page: 42 year: 2014 ident: 10.1016/j.compag.2024.108647_b0065 article-title: Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages publication-title: Field Crop Res doi: 10.1016/j.fcr.2013.09.023 – ident: 10.1016/j.compag.2024.108647_b0125 – ident: 10.1016/j.compag.2024.108647_b0175 – ident: 10.1016/j.compag.2024.108647_b0115 doi: 10.3390/toxins15020111 – volume: 41 start-page: 1355 issue: 6 year: 2003 ident: 10.1016/j.compag.2024.108647_b0075 article-title: Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.812910 – volume: 7 start-page: 342 issue: 2 year: 2020 ident: 10.1016/j.compag.2024.108647_b0095 article-title: Multi-target prediction of wheat flour quality parameters with near-infrared spectroscopy publication-title: Inf. Process. Agric. – volume: 34 start-page: 235 year: 2015 ident: 10.1016/j.compag.2024.108647_b0100 article-title: Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops publication-title: Int. J. Appl. Earth Observ. Geoinf. – ident: 10.1016/j.compag.2024.108647_b0130 – volume: 33 start-page: 125 year: 2006 ident: 10.1016/j.compag.2024.108647_b0196 article-title: Determination of maturity and degree day indices and their success in predicting peanut maturity publication-title: Peanut Sci. doi: 10.3146/0095-3679(2006)33[125:DOMADD]2.0.CO;2 – volume: 10 start-page: 309 issue: 4 year: 1994 ident: 10.1016/j.compag.2024.108647_b0070 article-title: Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: a computer simulation publication-title: Remote Sens. Rev. doi: 10.1080/02757259409532252 – volume: 14 start-page: 93 issue: 1 year: 2022 ident: 10.1016/j.compag.2024.108647_b0150 article-title: Using UAV and multispectral images to estimate peanut maturity variability on irrigated and rainfed fields applying linear models and artificial neural networks publication-title: Remote Sens. (Basel) doi: 10.3390/rs14010093 – volume: 162 start-page: 561 year: 2019 ident: 10.1016/j.compag.2024.108647_b0005 article-title: Using multispectral imagery to extract a pure spectral canopy signature for predicting peanut maturity publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2019.04.028 – volume: 100 start-page: 51 year: 2014 ident: 10.1016/j.compag.2024.108647_b0050 article-title: Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2013.10.010 – volume: 415 start-page: 53 year: 2017 ident: 10.1016/j.compag.2024.108647_b0110 article-title: Multi-target support vector regression via correlation regressor chains publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.06.017 – volume: 5 start-page: 109 issue: 2 year: 2014 ident: 10.1016/j.compag.2024.108647_b0020 article-title: Genetic analysis of rust and late leaf spot in advanced generation recombinant inbred lines of groundnut (Arachis hypogaea L.) publication-title: Int. J. Genet. Eng. Biotechnol. – volume: 7 start-page: 13251 issue: 10 year: 2015 ident: 10.1016/j.compag.2024.108647_b0090 article-title: Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data publication-title: Remote Sens. (Basel) doi: 10.3390/rs71013251 – volume: 12 start-page: 1512 year: 2022 ident: 10.1016/j.compag.2024.108647_b0198 article-title: Integrating satellite and UAV data to predict peanut maturity upon artificial neural networks publication-title: Agronomy doi: 10.3390/agronomy12071512 – ident: 10.1016/j.compag.2024.108647_b0180 – volume: 1 start-page: 1 issue: 12 year: 2019 ident: 10.1016/j.compag.2024.108647_b0010 article-title: Evaluation of k-nearest neighbour classifier performance for heterogeneous data sets publication-title: SN Appl. Sci. doi: 10.1007/s42452-019-1356-9 – volume: 91 start-page: 191 issue: 2 year: 2019 ident: 10.1016/j.compag.2024.108647_b0105 article-title: Multi-output tree chaining: an interpretative modelling and lightweight multi-target approach publication-title: J. Signal Process. Syst. doi: 10.1007/s11265-018-1376-5 – volume: 113 start-page: 10 year: 2023 ident: 10.1016/j.compag.2024.108647_b0195 article-title: NeatSankey: Sankey diagrams with improved readability based on node positioning and edge bundling publication-title: Comput. Graph. doi: 10.1016/j.cag.2023.05.001 – ident: 10.1016/j.compag.2024.108647_b0120 – volume: 191 year: 2021 ident: 10.1016/j.compag.2024.108647_b0160 article-title: Predicting on multi-target regression for the yield of sweet potato by the market class of its roots upon vegetation indices publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2021.106544 – ident: 10.1016/j.compag.2024.108647_b0170 – ident: 10.1016/j.compag.2024.108647_b0015 – volume: 39 start-page: 33 year: 2019 ident: 10.1016/j.compag.2024.108647_b0035 article-title: Correlations among vegetation indices and peanut traits during different crop development stages publication-title: Engenharia Agrícola doi: 10.1590/1809-4430-eng.agric.v39nep33-40/2019 – volume: 24 start-page: 1 year: 2013 ident: 10.1016/j.compag.2024.108647_b0055 article-title: Estimating the Leaf Area Index, height and biomass of maize using HJ-1 and RADARSAT-2 publication-title: Int. J. Appl. Earth Observ. Geoinf. – volume: 104 start-page: 55 year: 2016 ident: 10.1016/j.compag.2024.108647_b0155 article-title: Multi-target regression via input space expansion: treating targets as inputs publication-title: Mach. Learn. doi: 10.1007/s10994-016-5546-z  | 
    
| SSID | ssj0016987 | 
    
| Score | 2.4250457 | 
    
| Snippet | [Display omitted]
•Innovative multi-output regression algorithms predict peanut growth variables using remote sensing, enhancing precision in crop... Accurate prediction of peanut growth and maturity is crucial to improve crop management and strengthening breeding programs. Remote sensing technology, such as...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 108647 | 
    
| SubjectTerms | aboveground biomass agriculture Alabama algorithms Biomass canopy computer software crop management Crop maturity data collection electronics irrigation Machine learning Multi-task learning peanuts prediction reflectance Remote sensing satellites vegetation  | 
    
| Title | Predicting below and above-ground peanut biomass and maturity using multi-target regression | 
    
| URI | https://dx.doi.org/10.1016/j.compag.2024.108647 https://www.proquest.com/docview/3153597103  | 
    
| Volume | 218 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7107 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016987 issn: 0168-1699 databaseCode: AKRWK dateStart: 19851001 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFz2IT6yPEsFrbLvZZnePpViqoggqCB5CnkWp21JbvfnbnUl2BUUQPGY3WZYvyTySb2YIOcmTjlKKF0zZ1LLUii7TxufMiIx3dW6NDrUBr67F8D69eOg-LJF-HQuDtMpK9keZHqR19aRVodmaPj21bsFYyTuiKJAF2QZHCyPY0wyrGJx-fNE8oEMeQ6YFeEvQuw6fCxyvwPMegZeYpKHkEBZZ-V09_RDUQfsMNsh6ZTbSXvyzTbLkyi2y1hvNqtQZbps83szw0gVpzFS78eSdqtJSmOM3xzB2Axp47L6YUwy5B5s5vH_BxJ5giVMkwI9o4BeySA-nMzeKLNlyh9wPzu76Q1aVTmCG82LOEH4BmCfGCdW2uoC9KxLlMSonS7zX4fjTeZ-moJCUAruPA-IajBlQ6k7xXbJcTkq3R6h1JstACnlvwXoRhdK5MR1v29oaa3jWILxGTJoqrziWtxjLmkD2LCPOEnGWEecGYV-jpjGvxh_9s3oy5Lf1IUH0_zHyuJ47CVsH70NU6SaLV8lB2oM_1Wnz_X9__YCsYiuy0g7J8ny2cEdgpsx1M6zDJlnpnV8Orz8BwwXqZw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aD-pBfOLbCF5j2802u3sUUeoTQQXBQ8izVHRbaqs3f7szya6gCILH3STL8iWZR_LNDCEHedJWSvGCKZtallrRYdr4nBmR8Y7OrdGhNuDVtejep-cPnYcpclzHwiCtspL9UaYHaV29aVZoNof9fvMWjJW8LYoCWZAtcLSmyUzaSTL0wA4_vnge0COPMdMC3CXoXsfPBZJXIHr3wE1M0lBzCKus_K6ffkjqoH5OF8lCZTfSo_hrS2TKlctk_qg3qnJnuBXyeDPCWxfkMVPtngfvVJWWwiS_OYbBG_CA5-6TMcWYezCaQ_sLZvYEU5wiA75HA8GQRX44HblepMmWq-T-9OTuuMuq2gnMcF6MGeIvAPTEOKFaVheweUWiPIblZIn3Opx_Ou_TFDSSUmD4cYBcgzUDWt0pvkYa5aB064RaZ7IMxJD3FswXUSidG9P2tqWtsYZnG4TXiElTJRbH-hbPsmaQPcmIs0ScZcR5g7CvUcOYWOOP_lk9GfLbApEg-_8YuV_PnYS9gxciqnSDyavkIO7BoWq3-Oa_v75HZrt3V5fy8uz6YovMYUukqG2Txng0cTtgs4z1bliTnzuD6_w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+below+and+above-ground+peanut+biomass+and+maturity+using+multi-target+regression&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Oliveira%2C+Mailson+Freire&rft.au=Carneiro%2C+Franciele+Morlin&rft.au=Ortiz%2C+Brenda+V.&rft.au=Thurmond%2C+Megan&rft.date=2024-03-01&rft.issn=0168-1699&rft.volume=218&rft.spage=108647&rft_id=info:doi/10.1016%2Fj.compag.2024.108647&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compag_2024_108647 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon |