Predicting below and above-ground peanut biomass and maturity using multi-target regression

[Display omitted] •Innovative multi-output regression algorithms predict peanut growth variables using remote sensing, enhancing precision in crop management.•Integration of satellite imagery enables accurate peanut maturity assessment, reducing subjectivity in in-season crop monitoring.•Promising m...

Full description

Saved in:
Bibliographic Details
Published inComputers and electronics in agriculture Vol. 218; p. 108647
Main Authors Oliveira, Mailson Freire, Carneiro, Franciele Morlin, Ortiz, Brenda V., Thurmond, Megan, Oliveira, Luan Pereira, Bao, Yin, Sanz-Saez, Alvaro, Tedesco, Danilo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2024
Subjects
Online AccessGet full text
ISSN0168-1699
1872-7107
DOI10.1016/j.compag.2024.108647

Cover

Abstract [Display omitted] •Innovative multi-output regression algorithms predict peanut growth variables using remote sensing, enhancing precision in crop management.•Integration of satellite imagery enables accurate peanut maturity assessment, reducing subjectivity in in-season crop monitoring.•Promising method for within-field variability assessment with 9–10 % prediction error in Peanut Maturity Index. Accurate prediction of peanut growth and maturity is crucial to improve crop management and strengthening breeding programs. Remote sensing technology, such as satellites and drones, can facilitate in-season crop growth monitoring through the collection of high temporal and spatial imagery that capture differences in crop spectral reflectance. Current robust algorithms for predicting multiple peanut growth variables have not been proposed. This study aimed to develop algorithms for prediction of multiple peanut growth variables using a multi-output regression (MTR) approach. Two commercial irrigated fields, one of 8.6 ha located in Society Hill Alabama (AL), U.S. (study area 1), and the second of 54.76 ha (ha) located in Eufaula, Alabama (AL), U.S. (Study area 2) were used for data collection. Peanut biomass samples were collected weekly from 20 locations which each field. Two Peanut Maturity Indices (PMI orange to black and brown to black) were measured from manual assessment of maturity using the peanut profile board. MTR models were built to establish a functional relationship between peanut aboveground biomass, maturity, and spectral reflectance changes of the canopy over time using Random Forest (RF) and K-nearest neighbor. Reflectance from individual spectral bands and vegetation indices (VI) of the biomass sampling location were extracted from Planet scope® satellite images. The algorithms were developed using toolkits available in the Scikit-learn python library and were evaluated using the mean absolute error (MAE) metric. The RF algorithm was able to output multiple numeric values of peanut maturity indices upon VI and spectral bands, supporting the hypothesis that MTR can predict peanut maturity at the field level. The use of spectral reflectance from satellite images resulted in a small prediction error of 9 % for PMI using brown to black pods and 10 % when predicting PMI using orange to black pods. The MTR model was also accurate in predicting aboveground biomass (MAE = 1301 kg ha−1) compared to pod weight (MAE = 1103 kg ha−1). The study demonstrated a promising method to assess within-field variability of peanut maturity using remote sensing images, which could reduce the subjectivity of the manual method.
AbstractList [Display omitted] •Innovative multi-output regression algorithms predict peanut growth variables using remote sensing, enhancing precision in crop management.•Integration of satellite imagery enables accurate peanut maturity assessment, reducing subjectivity in in-season crop monitoring.•Promising method for within-field variability assessment with 9–10 % prediction error in Peanut Maturity Index. Accurate prediction of peanut growth and maturity is crucial to improve crop management and strengthening breeding programs. Remote sensing technology, such as satellites and drones, can facilitate in-season crop growth monitoring through the collection of high temporal and spatial imagery that capture differences in crop spectral reflectance. Current robust algorithms for predicting multiple peanut growth variables have not been proposed. This study aimed to develop algorithms for prediction of multiple peanut growth variables using a multi-output regression (MTR) approach. Two commercial irrigated fields, one of 8.6 ha located in Society Hill Alabama (AL), U.S. (study area 1), and the second of 54.76 ha (ha) located in Eufaula, Alabama (AL), U.S. (Study area 2) were used for data collection. Peanut biomass samples were collected weekly from 20 locations which each field. Two Peanut Maturity Indices (PMI orange to black and brown to black) were measured from manual assessment of maturity using the peanut profile board. MTR models were built to establish a functional relationship between peanut aboveground biomass, maturity, and spectral reflectance changes of the canopy over time using Random Forest (RF) and K-nearest neighbor. Reflectance from individual spectral bands and vegetation indices (VI) of the biomass sampling location were extracted from Planet scope® satellite images. The algorithms were developed using toolkits available in the Scikit-learn python library and were evaluated using the mean absolute error (MAE) metric. The RF algorithm was able to output multiple numeric values of peanut maturity indices upon VI and spectral bands, supporting the hypothesis that MTR can predict peanut maturity at the field level. The use of spectral reflectance from satellite images resulted in a small prediction error of 9 % for PMI using brown to black pods and 10 % when predicting PMI using orange to black pods. The MTR model was also accurate in predicting aboveground biomass (MAE = 1301 kg ha−1) compared to pod weight (MAE = 1103 kg ha−1). The study demonstrated a promising method to assess within-field variability of peanut maturity using remote sensing images, which could reduce the subjectivity of the manual method.
Accurate prediction of peanut growth and maturity is crucial to improve crop management and strengthening breeding programs. Remote sensing technology, such as satellites and drones, can facilitate in-season crop growth monitoring through the collection of high temporal and spatial imagery that capture differences in crop spectral reflectance. Current robust algorithms for predicting multiple peanut growth variables have not been proposed. This study aimed to develop algorithms for prediction of multiple peanut growth variables using a multi-output regression (MTR) approach. Two commercial irrigated fields, one of 8.6 ha located in Society Hill Alabama (AL), U.S. (study area 1), and the second of 54.76 ha (ha) located in Eufaula, Alabama (AL), U.S. (Study area 2) were used for data collection. Peanut biomass samples were collected weekly from 20 locations which each field. Two Peanut Maturity Indices (PMI orange to black and brown to black) were measured from manual assessment of maturity using the peanut profile board. MTR models were built to establish a functional relationship between peanut aboveground biomass, maturity, and spectral reflectance changes of the canopy over time using Random Forest (RF) and K-nearest neighbor. Reflectance from individual spectral bands and vegetation indices (VI) of the biomass sampling location were extracted from Planet scope® satellite images. The algorithms were developed using toolkits available in the Scikit-learn python library and were evaluated using the mean absolute error (MAE) metric. The RF algorithm was able to output multiple numeric values of peanut maturity indices upon VI and spectral bands, supporting the hypothesis that MTR can predict peanut maturity at the field level. The use of spectral reflectance from satellite images resulted in a small prediction error of 9 % for PMI using brown to black pods and 10 % when predicting PMI using orange to black pods. The MTR model was also accurate in predicting aboveground biomass (MAE = 1301 kg ha⁻¹) compared to pod weight (MAE = 1103 kg ha⁻¹). The study demonstrated a promising method to assess within-field variability of peanut maturity using remote sensing images, which could reduce the subjectivity of the manual method.
ArticleNumber 108647
Author Ortiz, Brenda V.
Sanz-Saez, Alvaro
Bao, Yin
Oliveira, Mailson Freire
Carneiro, Franciele Morlin
Thurmond, Megan
Oliveira, Luan Pereira
Tedesco, Danilo
Author_xml – sequence: 1
  givenname: Mailson Freire
  surname: Oliveira
  fullname: Oliveira, Mailson Freire
  email: mailson.oliveira@unesp.br
  organization: Auburn University, Department of Crop Soil and Environmental Sciences, Auburn, AL, United States
– sequence: 2
  givenname: Franciele Morlin
  surname: Carneiro
  fullname: Carneiro, Franciele Morlin
  email: fmcarneiro@utfpr.edu.br
  organization: Federal Technological University of Parana, Department of Agriculture, Campus Santa Helena, Brazil
– sequence: 3
  givenname: Brenda V.
  surname: Ortiz
  fullname: Ortiz, Brenda V.
  email: bvo0001@auburn.edu
  organization: Auburn University, Department of Crop Soil and Environmental Sciences, Auburn, AL, United States
– sequence: 4
  givenname: Megan
  surname: Thurmond
  fullname: Thurmond, Megan
  email: tmegan0023@gmail.com
  organization: Auburn University, Department of Crop Soil and Environmental Sciences, Auburn, AL, United States
– sequence: 5
  givenname: Luan Pereira
  surname: Oliveira
  fullname: Oliveira, Luan Pereira
  email: luan@uga.edu
  organization: University of Georgia, Department of Horticulture, Tifton, GA, United States
– sequence: 6
  givenname: Yin
  surname: Bao
  fullname: Bao, Yin
  email: yzb0016@auburn.edu
  organization: Auburn University, Department of Biosystems Engineering, Auburn, AL, United States
– sequence: 7
  givenname: Alvaro
  surname: Sanz-Saez
  fullname: Sanz-Saez, Alvaro
  email: azs0223@auburn.edu
  organization: Auburn University, Department of Crop Soil and Environmental Sciences, Auburn, AL, United States
– sequence: 8
  givenname: Danilo
  surname: Tedesco
  fullname: Tedesco, Danilo
  email: tedesco@ksu.edu
  organization: Kansas State University, Department of Agronomy, Manhattan, KS, United States
BookMark eNqFkD1PwzAQhi1UJFrgHzBkZEnxR5oPBiRU8SVVggEmBuviXCJXSRxsp6j_HpcwMcBkne99TnfPgsx60yMhF4wuGWXp1XapTDdAs-SUJ-ErT5PsiMxZnvE4YzSbkXmI5TFLi-KELJzb0lAXeTYn7y8WK6287puoxNZ8RtBXEZRmh3FjzRiKAaEffVRq04Fz3_0O_Gi130ejO4Dd2Hode7AN-shiY9E5bfozclxD6_D85z0lb_d3r-vHePP88LS-3cRKiMLHAKJIVZ1zhSnQqiyoYCmHmqYZzXhdlyVlArGukyThBQBLmVBYlTwTlHMEcUoup7mDNR8jOi877RS2LfRoRicFW4lVEUSIEL2eosoa5yzWUmkPPizrLehWMioPRuVWTkblwaicjAY4-QUPVndg9_9hNxOGwcFOo5VOaezDCdqi8rIy-u8BX-tIlhY
CitedBy_id crossref_primary_10_1016_j_atech_2025_100808
crossref_primary_10_1186_s13007_025_01358_9
crossref_primary_10_1016_j_atech_2025_100873
crossref_primary_10_3390_agriculture15070689
Cites_doi 10.1016/j.cj.2020.12.004
10.1016/S0176-1617(96)80284-7
10.3146/PS06-052.1
10.1016/0034-4257(88)90106-X
10.1007/s11119-021-09791-1
10.1080/15427528.2017.1422073
10.1038/s41598-021-89779-z
10.1109/LGRS.2011.2109934
10.1016/j.isprsjprs.2016.01.011
10.1016/j.cj.2016.01.008
10.1016/j.eja.2021.126337
10.3146/i0095-3679-8-2-15
10.1016/j.fcr.2013.09.023
10.3390/toxins15020111
10.1109/TGRS.2003.812910
10.3146/0095-3679(2006)33[125:DOMADD]2.0.CO;2
10.1080/02757259409532252
10.3390/rs14010093
10.1016/j.compag.2019.04.028
10.1016/j.compag.2013.10.010
10.1016/j.ins.2017.06.017
10.3390/rs71013251
10.3390/agronomy12071512
10.1007/s42452-019-1356-9
10.1007/s11265-018-1376-5
10.1016/j.cag.2023.05.001
10.1016/j.compag.2021.106544
10.1590/1809-4430-eng.agric.v39nep33-40/2019
10.1007/s10994-016-5546-z
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.compag.2024.108647
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-7107
ExternalDocumentID 10_1016_j_compag_2024_108647
S0168169924000383
GeographicLocations Alabama
GeographicLocations_xml – name: Alabama
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABLVK
ABMAC
ABMYL
ABMZM
ABRWV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AESVU
AEXOQ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LCYCR
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
QYZTP
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACMHX
ACRPL
ACVFH
ADCNI
ADNMO
ADSLC
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-aa396cf82ce6a0db903162af067072ffbb013eeff44429aa1613cedb273022ea3
IEDL.DBID .~1
ISSN 0168-1699
IngestDate Thu Oct 02 06:54:34 EDT 2025
Thu Oct 02 04:25:01 EDT 2025
Thu Apr 24 22:54:01 EDT 2025
Sat Mar 16 16:12:48 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Biomass
Crop maturity
Multi-task learning
Remote sensing
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-aa396cf82ce6a0db903162af067072ffbb013eeff44429aa1613cedb273022ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153597103
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153597103
crossref_citationtrail_10_1016_j_compag_2024_108647
crossref_primary_10_1016_j_compag_2024_108647
elsevier_sciencedirect_doi_10_1016_j_compag_2024_108647
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Computers and electronics in agriculture
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Santos, Lacerda, Rossi, Moreno, Oliveira, Pilon, Silva, Vellidis (b0150) 2022; 14
American Peanut Council, 2020. Peanut industry: peanut types and production [WWW Document]. URL
Xu, Zhou, Yang, Yuan, Zhang, Lu (b0195) 2023; 113
Fu, Yang, Wang, Song, Feng (b0050) 2014; 100
Planet Understanding PlanetScope Instruments. Available online
Rowland, Sorensen, Butts (b0196) 2006; 33
Borchani, Varando, Bielza, Larranaga (b0030) 2015; 5
Colvin, Tseng, Tillman, Rowland, Erickson, Culbreath, Ferrell (b0040) 2018; 32
Huete (b0080) 1988; 25
Gitelson, Merzlyak (b0060) 1996; 148
Melki, Cano, Kecman, Ventura (b0110) 2017; 415
Mastelini, da Costa, Santana, Nakano, Guido, Cerri, Barbon (b0105) 2019; 91
Jiao, Wang, Ma, Zhang, Guo, Zhang, Jensen (b0085) 2021; 9
L.) grown in Kenya. Toxins 15(2), 111. doi: 10.3390/toxins15020111.
Williams, Drexler (b0190) 1981; 8
Belgiu, Drăguţ (b0025) 2016; 114
Jin, Yang, Xu, Yang, Feng, Li, Shen, Lan, Zhao (b0090) 2015; 7
Souza, de Almeida, Freire de Oliveira, Santos, Filho, Meneses, Silva (b0198) 2022; 12
Gnyp, Miao, Yuan, Ustin, Yu, Yao, Huang, Bareth (b0065) 2014; 155
Wang, Zhou, Zhu, Dong, Guo (b0185) 2016; 4
Gao, Niu, Huang, Hou (b0055) 2013; 24
Ali, Neagu, Trundle (b0010) 2019; 1
Goel, Qin (b0070) 1994; 10
Ashish, Nadaf, Gangadhara (b0020) 2014; 5
Khaki, Pham, Wang (b0199) 2021; 11
(accessed on 30 March 2023).
Spyromitros-Xioufis, Tsoumakas, Groves, Vlahavas (b0155) 2016; 104
Rowland, Sorensen, Butts, Faircloth, Sullivan (b0135) 2008; 35
Vellidis, G., Beasley, J., 2013. Using vegetation indices to determine peanut maturity. Report to the Georgia Agricultural Commodity Commission for Peanuts.
Kross, McNairn, Lapen, Sunohara, Champagne (b0100) 2015; 34
Gong, Pu, Biging, Larrieu (b0075) 2003; 41
Rouse, J., 1973. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation (Great Plains Corridor) [Progress Report, Apr.- Sep. 1973].
Santos, Lacerda, Gobbo, Tofannin, Silva, Vellidis (b0140) 2019
Santos, Corrêa, Lacerda, Tedesco-Oliveira, Pilon, Vellidis, da Silva (b0145) 2021; 22
Tuia, Verrelst, Alonso, Pérez-Cruz, Camps-Valls (b0200) 2011; 8
Njoki, L., Okoth, S., Wachira, P., Ouko, A., Mwololo, J., Rizzu, M., Amakhobe, T., 2023. Evaluation of agronomic characteristics, disease incidence, yield performance, and aflatoxin accumulation among six peanut varieties
Tedesco, de Almeida Moreira, Júnior, Papa, da Silva (b0160) 2021; 191
Duan, Li, Wu, Tang, Ma, Zhao, Li (b0045) 2014; 26
Junior, Mastelini, Barbon, Barbin, Calvini, Lopes, Ulrici (b0095) 2020; 7
.
Carneiro, Furlani, Zerbato, Menezes, Gírio (b0035) 2019; 39
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Duchesnay, E., 2019. Scikit-learn: machine learning in Python. 2011. Moon data set
USDA Economic Research Services, 2022. Oil crops data: yearbook tables [WWW Document]. URL
Tedesco, de Oliveira, dos Santos, Silva, de Souza Rolim, da Silva (b0165) 2021; 129
USDA Foreign Agricultural Services, 2020. World agricultural production [WWW Document]. URL
Abd-El Monsef, Smith, Rowland, Abd El Rasol (b0005) 2019; 162
Spyromitros-Xioufis (10.1016/j.compag.2024.108647_b0155) 2016; 104
Jin (10.1016/j.compag.2024.108647_b0090) 2015; 7
Gnyp (10.1016/j.compag.2024.108647_b0065) 2014; 155
Tuia (10.1016/j.compag.2024.108647_b0200) 2011; 8
Xu (10.1016/j.compag.2024.108647_b0195) 2023; 113
Gao (10.1016/j.compag.2024.108647_b0055) 2013; 24
Belgiu (10.1016/j.compag.2024.108647_b0025) 2016; 114
Junior (10.1016/j.compag.2024.108647_b0095) 2020; 7
Rowland (10.1016/j.compag.2024.108647_b0135) 2008; 35
Souza (10.1016/j.compag.2024.108647_b0198) 2022; 12
10.1016/j.compag.2024.108647_b0120
Wang (10.1016/j.compag.2024.108647_b0185) 2016; 4
Santos (10.1016/j.compag.2024.108647_b0140) 2019
Ashish (10.1016/j.compag.2024.108647_b0020) 2014; 5
10.1016/j.compag.2024.108647_b0180
10.1016/j.compag.2024.108647_b0125
Fu (10.1016/j.compag.2024.108647_b0050) 2014; 100
Duan (10.1016/j.compag.2024.108647_b0045) 2014; 26
Mastelini (10.1016/j.compag.2024.108647_b0105) 2019; 91
Melki (10.1016/j.compag.2024.108647_b0110) 2017; 415
Colvin (10.1016/j.compag.2024.108647_b0040) 2018; 32
10.1016/j.compag.2024.108647_b0130
10.1016/j.compag.2024.108647_b0175
Borchani (10.1016/j.compag.2024.108647_b0030) 2015; 5
Jiao (10.1016/j.compag.2024.108647_b0085) 2021; 9
10.1016/j.compag.2024.108647_b0170
Gong (10.1016/j.compag.2024.108647_b0075) 2003; 41
Kross (10.1016/j.compag.2024.108647_b0100) 2015; 34
Santos (10.1016/j.compag.2024.108647_b0145) 2021; 22
Abd-El Monsef (10.1016/j.compag.2024.108647_b0005) 2019; 162
Gitelson (10.1016/j.compag.2024.108647_b0060) 1996; 148
Rowland (10.1016/j.compag.2024.108647_b0196) 2006; 33
Ali (10.1016/j.compag.2024.108647_b0010) 2019; 1
Carneiro (10.1016/j.compag.2024.108647_b0035) 2019; 39
10.1016/j.compag.2024.108647_b0015
Huete (10.1016/j.compag.2024.108647_b0080) 1988; 25
10.1016/j.compag.2024.108647_b0115
Santos (10.1016/j.compag.2024.108647_b0150) 2022; 14
Khaki (10.1016/j.compag.2024.108647_b0199) 2021; 11
Tedesco (10.1016/j.compag.2024.108647_b0160) 2021; 191
Goel (10.1016/j.compag.2024.108647_b0070) 1994; 10
Tedesco (10.1016/j.compag.2024.108647_b0165) 2021; 129
Williams (10.1016/j.compag.2024.108647_b0190) 1981; 8
References_xml – reference: USDA Economic Research Services, 2022. Oil crops data: yearbook tables [WWW Document]. URL
– volume: 415
  start-page: 53
  year: 2017
  end-page: 69
  ident: b0110
  article-title: Multi-target support vector regression via correlation regressor chains
  publication-title: Inf. Sci.
– volume: 100
  start-page: 51
  year: 2014
  end-page: 59
  ident: b0050
  article-title: Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements
  publication-title: Comput. Electron. Agric.
– volume: 155
  start-page: 42
  year: 2014
  end-page: 55
  ident: b0065
  article-title: Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages
  publication-title: Field Crop Res
– volume: 1
  start-page: 1
  year: 2019
  end-page: 15
  ident: b0010
  article-title: Evaluation of k-nearest neighbour classifier performance for heterogeneous data sets
  publication-title: SN Appl. Sci.
– volume: 114
  start-page: 24
  year: 2016
  end-page: 31
  ident: b0025
  article-title: Random forest in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 26
  start-page: 12
  year: 2014
  end-page: 20
  ident: b0045
  article-title: Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data
  publication-title: Int. J. Appl. Earth Observ. Geoinf.
– reference: USDA Foreign Agricultural Services, 2020. World agricultural production [WWW Document]. URL
– start-page: 91
  year: 2019
  end-page: 101
  ident: b0140
  article-title: Using remote sensing to map in-field variability of peanut maturity
  publication-title: Precision Agriculture’19
– volume: 14
  start-page: 93
  year: 2022
  ident: b0150
  article-title: Using UAV and multispectral images to estimate peanut maturity variability on irrigated and rainfed fields applying linear models and artificial neural networks
  publication-title: Remote Sens. (Basel)
– volume: 104
  start-page: 55
  year: 2016
  end-page: 98
  ident: b0155
  article-title: Multi-target regression via input space expansion: treating targets as inputs
  publication-title: Mach. Learn.
– reference: American Peanut Council, 2020. Peanut industry: peanut types and production [WWW Document]. URL <
– volume: 113
  start-page: 10
  year: 2023
  end-page: 20
  ident: b0195
  article-title: NeatSankey: Sankey diagrams with improved readability based on node positioning and edge bundling
  publication-title: Comput. Graph.
– reference: Rouse, J., 1973. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation (Great Plains Corridor) [Progress Report, Apr.- Sep. 1973].
– volume: 8
  start-page: 804
  year: 2011
  end-page: 808
  ident: b0200
  article-title: Multioutput support vector regression for remote sensing biophysical parameter estimation
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 10
  start-page: 309
  year: 1994
  end-page: 347
  ident: b0070
  article-title: Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: a computer simulation
  publication-title: Remote Sens. Rev.
– reference: Planet Understanding PlanetScope Instruments. Available online:
– reference: (accessed on 30 March 2023).
– reference: Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Duchesnay, E., 2019. Scikit-learn: machine learning in Python. 2011. Moon data set:
– volume: 25
  start-page: 295
  year: 1988
  end-page: 309
  ident: b0080
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
– volume: 32
  start-page: 287
  year: 2018
  end-page: 304
  ident: b0040
  article-title: Consideration of peg strength and disease severity in the decision to harvest peanut in southeastern USA
  publication-title: J. Crop Improv.
– volume: 8
  start-page: 134
  year: 1981
  end-page: 141
  ident: b0190
  article-title: A non-destructive method for determining peanut pod maturity
  publication-title: Peanut Sci.
– volume: 22
  start-page: 1464
  year: 2021
  end-page: 1478
  ident: b0145
  article-title: High-resolution satellite image to predict peanut maturity variability in commercial fields
  publication-title: Precis. Agric.
– reference: L.) grown in Kenya. Toxins 15(2), 111. doi: 10.3390/toxins15020111.
– volume: 129
  year: 2021
  ident: b0165
  article-title: Use of remote sensing to characterize the phenological development and to predict sweet potato yield in two growing seasons
  publication-title: Eur. J. Agron.
– volume: 191
  year: 2021
  ident: b0160
  article-title: Predicting on multi-target regression for the yield of sweet potato by the market class of its roots upon vegetation indices
  publication-title: Comput. Electron. Agric.
– volume: 162
  start-page: 561
  year: 2019
  end-page: 572
  ident: b0005
  article-title: Using multispectral imagery to extract a pure spectral canopy signature for predicting peanut maturity
  publication-title: Comput. Electron. Agric.
– volume: 12
  start-page: 1512
  year: 2022
  ident: b0198
  article-title: Integrating satellite and UAV data to predict peanut maturity upon artificial neural networks
  publication-title: Agronomy
– volume: 148
  start-page: 494
  year: 1996
  end-page: 500
  ident: b0060
  article-title: Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll
  publication-title: J. Plant Physiol.
– volume: 11
  start-page: 11132
  year: 2021
  ident: b0199
  article-title: Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning
  publication-title: Sci. Rep.
– volume: 33
  start-page: 125
  year: 2006
  end-page: 136
  ident: b0196
  article-title: Determination of maturity and degree day indices and their success in predicting peanut maturity
  publication-title: Peanut Sci.
– volume: 35
  start-page: 43
  year: 2008
  end-page: 54
  ident: b0135
  article-title: Canopy characteristics and their ability to predict peanut maturity
  publication-title: Peanut Sci.
– reference: >.
– volume: 5
  start-page: 216
  year: 2015
  end-page: 233
  ident: b0030
  article-title: A survey on multi-output regression
  publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov.
– volume: 9
  start-page: 1460
  year: 2021
  end-page: 1469
  ident: b0085
  article-title: The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping
  publication-title: Crop J.
– reference: Njoki, L., Okoth, S., Wachira, P., Ouko, A., Mwololo, J., Rizzu, M., Amakhobe, T., 2023. Evaluation of agronomic characteristics, disease incidence, yield performance, and aflatoxin accumulation among six peanut varieties (
– reference: .
– volume: 7
  start-page: 13251
  year: 2015
  end-page: 13272
  ident: b0090
  article-title: Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data
  publication-title: Remote Sens. (Basel)
– volume: 7
  start-page: 342
  year: 2020
  end-page: 354
  ident: b0095
  article-title: Multi-target prediction of wheat flour quality parameters with near-infrared spectroscopy
  publication-title: Inf. Process. Agric.
– reference: Vellidis, G., Beasley, J., 2013. Using vegetation indices to determine peanut maturity. Report to the Georgia Agricultural Commodity Commission for Peanuts.
– volume: 34
  start-page: 235
  year: 2015
  end-page: 248
  ident: b0100
  article-title: Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops
  publication-title: Int. J. Appl. Earth Observ. Geoinf.
– volume: 39
  start-page: 33
  year: 2019
  end-page: 40
  ident: b0035
  article-title: Correlations among vegetation indices and peanut traits during different crop development stages
  publication-title: Engenharia Agrícola
– volume: 24
  start-page: 1
  year: 2013
  end-page: 8
  ident: b0055
  article-title: Estimating the Leaf Area Index, height and biomass of maize using HJ-1 and RADARSAT-2
  publication-title: Int. J. Appl. Earth Observ. Geoinf.
– volume: 4
  start-page: 212
  year: 2016
  end-page: 219
  ident: b0185
  article-title: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data
  publication-title: Crop J.
– volume: 5
  start-page: 109
  year: 2014
  end-page: 114
  ident: b0020
  article-title: Genetic analysis of rust and late leaf spot in advanced generation recombinant inbred lines of groundnut (
  publication-title: Int. J. Genet. Eng. Biotechnol.
– volume: 41
  start-page: 1355
  year: 2003
  end-page: 1362
  ident: b0075
  article-title: Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 91
  start-page: 191
  year: 2019
  end-page: 215
  ident: b0105
  article-title: Multi-output tree chaining: an interpretative modelling and lightweight multi-target approach
  publication-title: J. Signal Process. Syst.
– volume: 9
  start-page: 1460
  issue: 6
  year: 2021
  ident: 10.1016/j.compag.2024.108647_b0085
  article-title: The importance of aboveground and belowground interspecific interactions in determining crop growth and advantages of peanut/maize intercropping
  publication-title: Crop J.
  doi: 10.1016/j.cj.2020.12.004
– volume: 148
  start-page: 494
  issue: 3–4
  year: 1996
  ident: 10.1016/j.compag.2024.108647_b0060
  article-title: Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll
  publication-title: J. Plant Physiol.
  doi: 10.1016/S0176-1617(96)80284-7
– volume: 35
  start-page: 43
  issue: 1
  year: 2008
  ident: 10.1016/j.compag.2024.108647_b0135
  article-title: Canopy characteristics and their ability to predict peanut maturity
  publication-title: Peanut Sci.
  doi: 10.3146/PS06-052.1
– volume: 25
  start-page: 295
  issue: 3
  year: 1988
  ident: 10.1016/j.compag.2024.108647_b0080
  article-title: A soil-adjusted vegetation index (SAVI)
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(88)90106-X
– volume: 22
  start-page: 1464
  issue: 5
  year: 2021
  ident: 10.1016/j.compag.2024.108647_b0145
  article-title: High-resolution satellite image to predict peanut maturity variability in commercial fields
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-021-09791-1
– volume: 32
  start-page: 287
  issue: 3
  year: 2018
  ident: 10.1016/j.compag.2024.108647_b0040
  article-title: Consideration of peg strength and disease severity in the decision to harvest peanut in southeastern USA
  publication-title: J. Crop Improv.
  doi: 10.1080/15427528.2017.1422073
– volume: 11
  start-page: 11132
  year: 2021
  ident: 10.1016/j.compag.2024.108647_b0199
  article-title: Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-89779-z
– volume: 8
  start-page: 804
  year: 2011
  ident: 10.1016/j.compag.2024.108647_b0200
  article-title: Multioutput support vector regression for remote sensing biophysical parameter estimation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2011.2109934
– start-page: 91
  year: 2019
  ident: 10.1016/j.compag.2024.108647_b0140
  article-title: Using remote sensing to map in-field variability of peanut maturity
– volume: 114
  start-page: 24
  year: 2016
  ident: 10.1016/j.compag.2024.108647_b0025
  article-title: Random forest in remote sensing: a review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 26
  start-page: 12
  year: 2014
  ident: 10.1016/j.compag.2024.108647_b0045
  article-title: Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data
  publication-title: Int. J. Appl. Earth Observ. Geoinf.
– volume: 4
  start-page: 212
  issue: 3
  year: 2016
  ident: 10.1016/j.compag.2024.108647_b0185
  article-title: Estimation of biomass in wheat using random forest regression algorithm and remote sensing data
  publication-title: Crop J.
  doi: 10.1016/j.cj.2016.01.008
– volume: 129
  year: 2021
  ident: 10.1016/j.compag.2024.108647_b0165
  article-title: Use of remote sensing to characterize the phenological development and to predict sweet potato yield in two growing seasons
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2021.126337
– volume: 5
  start-page: 216
  issue: 5
  year: 2015
  ident: 10.1016/j.compag.2024.108647_b0030
  article-title: A survey on multi-output regression
  publication-title: Wiley Interdiscip. Rev.: Data Min. Knowl. Discov.
– volume: 8
  start-page: 134
  issue: 2
  year: 1981
  ident: 10.1016/j.compag.2024.108647_b0190
  article-title: A non-destructive method for determining peanut pod maturity
  publication-title: Peanut Sci.
  doi: 10.3146/i0095-3679-8-2-15
– volume: 155
  start-page: 42
  year: 2014
  ident: 10.1016/j.compag.2024.108647_b0065
  article-title: Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2013.09.023
– ident: 10.1016/j.compag.2024.108647_b0125
– ident: 10.1016/j.compag.2024.108647_b0175
– ident: 10.1016/j.compag.2024.108647_b0115
  doi: 10.3390/toxins15020111
– volume: 41
  start-page: 1355
  issue: 6
  year: 2003
  ident: 10.1016/j.compag.2024.108647_b0075
  article-title: Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.812910
– volume: 7
  start-page: 342
  issue: 2
  year: 2020
  ident: 10.1016/j.compag.2024.108647_b0095
  article-title: Multi-target prediction of wheat flour quality parameters with near-infrared spectroscopy
  publication-title: Inf. Process. Agric.
– volume: 34
  start-page: 235
  year: 2015
  ident: 10.1016/j.compag.2024.108647_b0100
  article-title: Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops
  publication-title: Int. J. Appl. Earth Observ. Geoinf.
– ident: 10.1016/j.compag.2024.108647_b0130
– volume: 33
  start-page: 125
  year: 2006
  ident: 10.1016/j.compag.2024.108647_b0196
  article-title: Determination of maturity and degree day indices and their success in predicting peanut maturity
  publication-title: Peanut Sci.
  doi: 10.3146/0095-3679(2006)33[125:DOMADD]2.0.CO;2
– volume: 10
  start-page: 309
  issue: 4
  year: 1994
  ident: 10.1016/j.compag.2024.108647_b0070
  article-title: Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: a computer simulation
  publication-title: Remote Sens. Rev.
  doi: 10.1080/02757259409532252
– volume: 14
  start-page: 93
  issue: 1
  year: 2022
  ident: 10.1016/j.compag.2024.108647_b0150
  article-title: Using UAV and multispectral images to estimate peanut maturity variability on irrigated and rainfed fields applying linear models and artificial neural networks
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs14010093
– volume: 162
  start-page: 561
  year: 2019
  ident: 10.1016/j.compag.2024.108647_b0005
  article-title: Using multispectral imagery to extract a pure spectral canopy signature for predicting peanut maturity
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.04.028
– volume: 100
  start-page: 51
  year: 2014
  ident: 10.1016/j.compag.2024.108647_b0050
  article-title: Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2013.10.010
– volume: 415
  start-page: 53
  year: 2017
  ident: 10.1016/j.compag.2024.108647_b0110
  article-title: Multi-target support vector regression via correlation regressor chains
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.06.017
– volume: 5
  start-page: 109
  issue: 2
  year: 2014
  ident: 10.1016/j.compag.2024.108647_b0020
  article-title: Genetic analysis of rust and late leaf spot in advanced generation recombinant inbred lines of groundnut (Arachis hypogaea L.)
  publication-title: Int. J. Genet. Eng. Biotechnol.
– volume: 7
  start-page: 13251
  issue: 10
  year: 2015
  ident: 10.1016/j.compag.2024.108647_b0090
  article-title: Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data
  publication-title: Remote Sens. (Basel)
  doi: 10.3390/rs71013251
– volume: 12
  start-page: 1512
  year: 2022
  ident: 10.1016/j.compag.2024.108647_b0198
  article-title: Integrating satellite and UAV data to predict peanut maturity upon artificial neural networks
  publication-title: Agronomy
  doi: 10.3390/agronomy12071512
– ident: 10.1016/j.compag.2024.108647_b0180
– volume: 1
  start-page: 1
  issue: 12
  year: 2019
  ident: 10.1016/j.compag.2024.108647_b0010
  article-title: Evaluation of k-nearest neighbour classifier performance for heterogeneous data sets
  publication-title: SN Appl. Sci.
  doi: 10.1007/s42452-019-1356-9
– volume: 91
  start-page: 191
  issue: 2
  year: 2019
  ident: 10.1016/j.compag.2024.108647_b0105
  article-title: Multi-output tree chaining: an interpretative modelling and lightweight multi-target approach
  publication-title: J. Signal Process. Syst.
  doi: 10.1007/s11265-018-1376-5
– volume: 113
  start-page: 10
  year: 2023
  ident: 10.1016/j.compag.2024.108647_b0195
  article-title: NeatSankey: Sankey diagrams with improved readability based on node positioning and edge bundling
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2023.05.001
– ident: 10.1016/j.compag.2024.108647_b0120
– volume: 191
  year: 2021
  ident: 10.1016/j.compag.2024.108647_b0160
  article-title: Predicting on multi-target regression for the yield of sweet potato by the market class of its roots upon vegetation indices
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2021.106544
– ident: 10.1016/j.compag.2024.108647_b0170
– ident: 10.1016/j.compag.2024.108647_b0015
– volume: 39
  start-page: 33
  year: 2019
  ident: 10.1016/j.compag.2024.108647_b0035
  article-title: Correlations among vegetation indices and peanut traits during different crop development stages
  publication-title: Engenharia Agrícola
  doi: 10.1590/1809-4430-eng.agric.v39nep33-40/2019
– volume: 24
  start-page: 1
  year: 2013
  ident: 10.1016/j.compag.2024.108647_b0055
  article-title: Estimating the Leaf Area Index, height and biomass of maize using HJ-1 and RADARSAT-2
  publication-title: Int. J. Appl. Earth Observ. Geoinf.
– volume: 104
  start-page: 55
  year: 2016
  ident: 10.1016/j.compag.2024.108647_b0155
  article-title: Multi-target regression via input space expansion: treating targets as inputs
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-016-5546-z
SSID ssj0016987
Score 2.4250457
Snippet [Display omitted] •Innovative multi-output regression algorithms predict peanut growth variables using remote sensing, enhancing precision in crop...
Accurate prediction of peanut growth and maturity is crucial to improve crop management and strengthening breeding programs. Remote sensing technology, such as...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108647
SubjectTerms aboveground biomass
agriculture
Alabama
algorithms
Biomass
canopy
computer software
crop management
Crop maturity
data collection
electronics
irrigation
Machine learning
Multi-task learning
peanuts
prediction
reflectance
Remote sensing
satellites
vegetation
Title Predicting below and above-ground peanut biomass and maturity using multi-target regression
URI https://dx.doi.org/10.1016/j.compag.2024.108647
https://www.proquest.com/docview/3153597103
Volume 218
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7107
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016987
  issn: 0168-1699
  databaseCode: AKRWK
  dateStart: 19851001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6iFz2IT6yPEsFrbLvZZnePpViqoggqCB5CnkWp21JbvfnbnUl2BUUQPGY3WZYvyTySb2YIOcmTjlKKF0zZ1LLUii7TxufMiIx3dW6NDrUBr67F8D69eOg-LJF-HQuDtMpK9keZHqR19aRVodmaPj21bsFYyTuiKJAF2QZHCyPY0wyrGJx-fNE8oEMeQ6YFeEvQuw6fCxyvwPMegZeYpKHkEBZZ-V09_RDUQfsMNsh6ZTbSXvyzTbLkyi2y1hvNqtQZbps83szw0gVpzFS78eSdqtJSmOM3xzB2Axp47L6YUwy5B5s5vH_BxJ5giVMkwI9o4BeySA-nMzeKLNlyh9wPzu76Q1aVTmCG82LOEH4BmCfGCdW2uoC9KxLlMSonS7zX4fjTeZ-moJCUAruPA-IajBlQ6k7xXbJcTkq3R6h1JstACnlvwXoRhdK5MR1v29oaa3jWILxGTJoqrziWtxjLmkD2LCPOEnGWEecGYV-jpjGvxh_9s3oy5Lf1IUH0_zHyuJ47CVsH70NU6SaLV8lB2oM_1Wnz_X9__YCsYiuy0g7J8ny2cEdgpsx1M6zDJlnpnV8Orz8BwwXqZw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aD-pBfOLbCF5j2802u3sUUeoTQQXBQ8izVHRbaqs3f7szya6gCILH3STL8iWZR_LNDCEHedJWSvGCKZtallrRYdr4nBmR8Y7OrdGhNuDVtejep-cPnYcpclzHwiCtspL9UaYHaV29aVZoNof9fvMWjJW8LYoCWZAtcLSmyUzaSTL0wA4_vnge0COPMdMC3CXoXsfPBZJXIHr3wE1M0lBzCKus_K6ffkjqoH5OF8lCZTfSo_hrS2TKlctk_qg3qnJnuBXyeDPCWxfkMVPtngfvVJWWwiS_OYbBG_CA5-6TMcWYezCaQ_sLZvYEU5wiA75HA8GQRX44HblepMmWq-T-9OTuuMuq2gnMcF6MGeIvAPTEOKFaVheweUWiPIblZIn3Opx_Ou_TFDSSUmD4cYBcgzUDWt0pvkYa5aB064RaZ7IMxJD3FswXUSidG9P2tqWtsYZnG4TXiElTJRbH-hbPsmaQPcmIs0ScZcR5g7CvUcOYWOOP_lk9GfLbApEg-_8YuV_PnYS9gxciqnSDyavkIO7BoWq3-Oa_v75HZrt3V5fy8uz6YovMYUukqG2Txng0cTtgs4z1bliTnzuD6_w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+below+and+above-ground+peanut+biomass+and+maturity+using+multi-target+regression&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Oliveira%2C+Mailson+Freire&rft.au=Carneiro%2C+Franciele+Morlin&rft.au=Ortiz%2C+Brenda+V.&rft.au=Thurmond%2C+Megan&rft.date=2024-03-01&rft.issn=0168-1699&rft.volume=218&rft.spage=108647&rft_id=info:doi/10.1016%2Fj.compag.2024.108647&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compag_2024_108647
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon