Linear dichroism transition and polarization-sensitive photodetector of quasi-one-dimensional palladium bromide

Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quasi-one-dimensional PdBr 2 by using combined measurements of the angle-resolved polar...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 33; no. 6; pp. 68101 - 538
Main Authors Zhu, Wan-Li, Zhen, Wei-Li, Niu, Rui, Jiao, Ke-Ke, Yue, Zhi-Lai, Hu, Hui-Jie, Xue, Fei, Zhang, Chang-Jin
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.05.2024
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
2058-3834
DOI10.1088/1674-1056/ad36ba

Cover

Abstract Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quasi-one-dimensional PdBr 2 by using combined measurements of the angle-resolved polarized Raman spectroscopy (ARPRS) and anisotropic optical absorption spectrum. The analyses of ARPRS data validate the anisotropic Raman properties of the PdBr 2 flake. And anisotropic optical absorption spectrum of PdBr 2 nanoflake demonstrates distinct optical linear dichroism reversal. Photodetector constructed by PdBr 2 nanowire exhibits high responsivity of 747 A⋅W −1 and specific detectivity of 5.8 × 10 12 Jones. And the photodetector demonstrates prominent polarization-sensitive photoresponsivity under 405-nm light irradiation with large photocurrent anisotropy ratio of 1.56, which is superior to those of most of previously reported quasi-one-dimensional counterparts. Our study offers fundamental insights into the strong optical anisotropy exhibited by PdBr 2 , establishing it as a promising candidate for miniaturization and integration trends of polarization-related applications.
AbstractList Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices.We perform a systematical study on the in-plane optical anisotropy of quasi-one-dimensional PdBr2 by using combined measurements of the angle-resolved polarized Raman spectroscopy(ARPRS)and anisotropic opti-cal absorption spectrum.The analyses of ARPRS data validate the anisotropic Raman properties of the PdBr2 flake.And anisotropic optical absorption spectrum of PdBr2 nanoflake demonstrates distinct optical linear dichroism rever-sal.Photodetector constructed by PdBr2 nanowire exhibits high responsivity of 747 A·W-1 and specific detectivity of 5.8×1012 Jones.And the photodetector demonstrates prominent polarization-sensitive photoresponsivity under 405-nm light irradiation with large photocurrent anisotropy ratio of 1.56,which is superior to those of most of previously reported quasi-one-dimensional counterparts.Our study offers fundamental insights into the strong optical anisotropy exhibited by PdBr2,establishing it as a promising candidate for miniaturization and integration trends of polarization-related applica-tions.
Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a systematical study on the in-plane optical anisotropy of quasi-one-dimensional PdBr 2 by using combined measurements of the angle-resolved polarized Raman spectroscopy (ARPRS) and anisotropic optical absorption spectrum. The analyses of ARPRS data validate the anisotropic Raman properties of the PdBr 2 flake. And anisotropic optical absorption spectrum of PdBr 2 nanoflake demonstrates distinct optical linear dichroism reversal. Photodetector constructed by PdBr 2 nanowire exhibits high responsivity of 747 A⋅W −1 and specific detectivity of 5.8 × 10 12 Jones. And the photodetector demonstrates prominent polarization-sensitive photoresponsivity under 405-nm light irradiation with large photocurrent anisotropy ratio of 1.56, which is superior to those of most of previously reported quasi-one-dimensional counterparts. Our study offers fundamental insights into the strong optical anisotropy exhibited by PdBr 2 , establishing it as a promising candidate for miniaturization and integration trends of polarization-related applications.
Author Zhen, Wei-Li
Niu, Rui
Jiao, Ke-Ke
Hu, Hui-Jie
Yue, Zhi-Lai
Zhang, Chang-Jin
Xue, Fei
Zhu, Wan-Li
Author_xml – sequence: 1
  givenname: Wan-Li
  surname: Zhu
  fullname: Zhu, Wan-Li
  organization: Science Island Branch, Graduate School of University of Science and Technology of China , China
– sequence: 2
  givenname: Wei-Li
  surname: Zhen
  fullname: Zhen, Wei-Li
  organization: Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences , China
– sequence: 3
  givenname: Rui
  surname: Niu
  fullname: Niu, Rui
  organization: Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences , China
– sequence: 4
  givenname: Ke-Ke
  surname: Jiao
  fullname: Jiao, Ke-Ke
  organization: Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences , China
– sequence: 5
  givenname: Zhi-Lai
  surname: Yue
  fullname: Yue, Zhi-Lai
  organization: Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences , China
– sequence: 6
  givenname: Hui-Jie
  surname: Hu
  fullname: Hu, Hui-Jie
  organization: Anhui Key Laboratory of Low-energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences , China
– sequence: 7
  givenname: Fei
  surname: Xue
  fullname: Xue, Fei
  organization: School of Physics, Hefei University of Technology , China
– sequence: 8
  givenname: Chang-Jin
  surname: Zhang
  fullname: Zhang, Chang-Jin
  organization: Collaborative Innovation Center of Advanced Microstructures, Nanjing University , China
BookMark eNqVkDtPxDAQhC0EEsejp3RHQ2Ad53xOiRAv6SQaqK2NH2CU2MHOcYJfT8IhaKCgWmn3m9Hs7JHtEIMl5IjBKQMpz5hYVAWDuThDw0WDW2RWwlwWXPJqm8y-z7tkL-dnAMGg5DMSlz5YTNR4_ZSizx0dEobsBx8DxWBoH1tM_h2nRZHt5-nV0v4pDtHYweohJhodfVlh9sWYqTC-m7AYsKU9ti0av-pok2LnjT0gOw7bbA-_5j55uLq8v7gplnfXtxfny0JzXg-FtDWrnJDaVZYtmoUptXRMskVdVs7NGdeNKw0IZzkwXRspUNQlb5AD1lJrvk_YxncVenxbjzFUn3yH6U0xUFNjaqpETZWoTWOj5nijWWNwGB7Vc1yl8Yus3h_XrbIllBUIEHwkYUPqFHNO1v3D3Mf-x1j3jeJcCQVCMmCqN24kT34h_zT-ALtJnM4
Cites_doi 10.1039/D3MH00733B
10.1002/adma.202305594
10.1063/5.0078819
10.1038/s41467-020-16529-6
10.1016/S0262-8856(96)01123-7
10.1063/5.0146303
10.1021/acsphotonics.3c01352
10.1039/D3NR01765F
10.34133/2019/4641739
10.1016/j.nanoen.2020.104991
10.1021/acsami.2c19660
10.1088/1674-1056/acd3e4
10.1016/j.jmst.2021.07.031
10.1038/s41467-021-26919-z
10.1103/PhysRevLett.77.3865
10.1039/D1NR07126B
10.1063/5.0150243
10.1039/D3TA01223A
10.1088/1674-4926/40/6/061001
10.1002/adma.202309371
10.1029/RS010i004p00421
10.1038/s41928-022-00747-5
10.1038/s41565-018-0135-x
10.1088/1674-1056/ad04c3
10.1038/s41467-022-30951-y
10.1021/acs.chemrev.6b00136
10.1002/adma.201804541
10.1038/s41467-021-23592-0
10.1016/j.cej.2022.138531
10.1039/D2NR03587A
10.1002/sstr.202200061
10.1103/PhysRevB.101.214439
10.1002/adom.202300905
10.1002/adfm.202208807
10.1002/adma.202306772
10.1021/acsnano.0c04499
10.1002/adfm.202207688
10.1007/s11571-018-9490-4
10.1002/smll.201700894
10.1002/smll.202300246
10.1002/inf2.12258
10.1016/j.optcom.2023.130118
10.1088/0256-307X/39/5/058501
10.1002/admi.202200448
10.1016/j.nantod.2016.10.007
10.1038/s42254-019-0110-y
10.1088/0256-307X/38/6/068103
10.1039/D2TC03201E
10.1038/s41467-023-42678-5
10.1038/s41467-023-37623-5
10.1088/1674-1056/ac1b8b
10.1016/j.jallcom.2021.160195
10.1021/acs.nanolett.9b04598
10.1007/s40843-020-1535-9
10.1021/acsami.3c13839
10.1021/jacs.1c08281
10.1016/j.mtelec.2022.100013
10.1007/s12274-014-0442-y
10.1039/C8TC05732J
10.1021/acs.chemrev.9b00164
ContentType Journal Article
Copyright 2024 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2024 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
ADTOC
UNPAY
DOI 10.1088/1674-1056/ad36ba
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-3834
EndPage 538
ExternalDocumentID 10.1088/1674-1056/ad36ba
zgwl_e202406063
10_1088_1674_1056_ad36ba
cpb_33_6_068101
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
UCJ
W28
AAYXX
ADEQX
AEINN
CITATION
Q--
02O
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
PSX
Q02
ADTOC
UNPAY
ID FETCH-LOGICAL-c339t-8e914f68cf4e17b7d2c8f1817924ff513cbf2d06fe301c9d86a6923ba30a98cc3
IEDL.DBID IOP
ISSN 1674-1056
2058-3834
IngestDate Sun Sep 07 11:16:36 EDT 2025
Thu May 29 04:07:18 EDT 2025
Wed Oct 01 02:56:38 EDT 2025
Sun Aug 18 17:00:26 EDT 2024
Tue Aug 20 22:17:06 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords polarization sensitivity
linear dichroism reversal
polarized photodetector
anisotropy
Language English
License This article is available under the terms of the IOP-Standard License.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-8e914f68cf4e17b7d2c8f1817924ff513cbf2d06fe301c9d86a6923ba30a98cc3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1674-1056/ad36ba
PageCount 8
ParticipantIDs iop_journals_10_1088_1674_1056_ad36ba
unpaywall_primary_10_1088_1674_1056_ad36ba
wanfang_journals_zgwl_e202406063
crossref_primary_10_1088_1674_1056_ad36ba
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationTitle_FL Chinese Physics B
PublicationYear 2024
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Chen (cpb_33_6_068101bib26) 2023; 33
Wang (cpb_33_6_068101bib13) 2023; 14
Xin (cpb_33_6_068101bib4) 2024; 36
Han (cpb_33_6_068101bib16) 2023; 35
Bass (cpb_33_6_068101bib2) 2009
McCormick (cpb_33_6_068101bib3) 1975; 10
Fu (cpb_33_6_068101bib39) 2022; 120
Manser (cpb_33_6_068101bib35) 2016; 116
Wang (cpb_33_6_068101bib1) 2018; 12
Sakamoto (cpb_33_6_068101bib7) 2024; 552
Wang (cpb_33_6_068101bib20) 2023; 122
Yu (cpb_33_6_068101bib48) 2020; 20
Wolff (cpb_33_6_068101bib6) 1997; 15
Zhu (cpb_33_6_068101bib43) 2023; 10
Gou (cpb_33_6_068101bib58) 2023; 15
Jia (cpb_33_6_068101bib27) 2019; 119
Wang (cpb_33_6_068101bib59) 2023; 15
Ye (cpb_33_6_068101bib55) 2023; 19
Ding (cpb_33_6_068101bib34) 2019; 7
Yao (cpb_33_6_068101bib22) 2022; 31
Mak (cpb_33_6_068101bib40) 2019; 1
Li (cpb_33_6_068101bib51) 2022; 14
Qin (cpb_33_6_068101bib50) 2023; 11
Otnes (cpb_33_6_068101bib29) 2017; 12
Li (cpb_33_6_068101bib60) 2022; 10
Taghizadeh (cpb_33_6_068101bib46) 2020; 11
Wang (cpb_33_6_068101bib19) 2024; 36
Tien (cpb_33_6_068101bib32) 2021; 876
Zhou (cpb_33_6_068101bib14) 2019; 40
Jiang (cpb_33_6_068101bib23) 2019; 2019
Yu (cpb_33_6_068101bib15) 2022; 39
Wang (cpb_33_6_068101bib25) 2017; 13
Jiang (cpb_33_6_068101bib36) 2018; 13
Zhang (cpb_33_6_068101bib53) 2021; 143
Wang (cpb_33_6_068101bib9) 2023; 32
Ran (cpb_33_6_068101bib10) 2021; 12
Yu (cpb_33_6_068101bib31) 2022; 2
Bai (cpb_33_6_068101bib61) 2022; 4
Pi (cpb_33_6_068101bib18) 2022; 5
Chen (cpb_33_6_068101bib21) 2022; 105
Cui (cpb_33_6_068101bib38) 2020; 101
Perdew (cpb_33_6_068101bib44) 1996; 77
Wan (cpb_33_6_068101bib12) 2022; 32
Lian (cpb_33_6_068101bib24) 2021; 12
Wu (cpb_33_6_068101bib11) 2022; 13
Lei (cpb_33_6_068101bib45) 2022; 14
Liu (cpb_33_6_068101bib37) 2020; 14
Li (cpb_33_6_068101bib47) 2018; 30
Zhang (cpb_33_6_068101bib52) 2022; 9
Yi (cpb_33_6_068101bib54) 2023; 10
Anttu (cpb_33_6_068101bib28) 2014; 7
Chen (cpb_33_6_068101bib42) 2023; 32
Xie (cpb_33_6_068101bib49) 2023; 15
Yan (cpb_33_6_068101bib33) 2021; 38
Huang (cpb_33_6_068101bib8) 2023; 14
Nehra (cpb_33_6_068101bib30) 2020; 76
Das (cpb_33_6_068101bib41) 2023; 122
Li (cpb_33_6_068101bib57) 2023; 451
Wang (cpb_33_6_068101bib5) 2021; 64
Li (cpb_33_6_068101bib17) 2023; 11
Yang (cpb_33_6_068101bib56) 2022; 3
References_xml – volume: 10
  start-page: 3369
  year: 2023
  ident: cpb_33_6_068101bib54
  publication-title: Mater. Horiz.
  doi: 10.1039/D3MH00733B
– volume: 35
  year: 2023
  ident: cpb_33_6_068101bib16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202305594
– volume: 120
  year: 2022
  ident: cpb_33_6_068101bib39
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0078819
– volume: 11
  start-page: 3011
  year: 2020
  ident: cpb_33_6_068101bib46
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16529-6
– volume: 15
  start-page: 81
  year: 1997
  ident: cpb_33_6_068101bib6
  publication-title: Image and Vision Computing
  doi: 10.1016/S0262-8856(96)01123-7
– volume: 122
  year: 2023
  ident: cpb_33_6_068101bib20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0146303
– volume: 10
  start-page: 4465
  year: 2023
  ident: cpb_33_6_068101bib43
  publication-title: ACS Photon.
  doi: 10.1021/acsphotonics.3c01352
– volume: 15
  year: 2023
  ident: cpb_33_6_068101bib49
  publication-title: Nanoscale
  doi: 10.1039/D3NR01765F
– volume: 2019
  year: 2019
  ident: cpb_33_6_068101bib23
  publication-title: Research
  doi: 10.34133/2019/4641739
– volume: 76
  year: 2020
  ident: cpb_33_6_068101bib30
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104991
– volume: 15
  start-page: 3357
  year: 2023
  ident: cpb_33_6_068101bib59
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c19660
– volume: 32
  year: 2023
  ident: cpb_33_6_068101bib9
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/acd3e4
– volume: 105
  start-page: 259
  year: 2022
  ident: cpb_33_6_068101bib21
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.07.031
– volume: 12
  start-page: 6476
  year: 2021
  ident: cpb_33_6_068101bib10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-26919-z
– volume: 77
  start-page: 3865
  year: 1996
  ident: cpb_33_6_068101bib44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 14
  start-page: 4181
  year: 2022
  ident: cpb_33_6_068101bib45
  publication-title: Nanoscale
  doi: 10.1039/D1NR07126B
– volume: 122
  year: 2023
  ident: cpb_33_6_068101bib41
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0150243
– volume: 11
  year: 2023
  ident: cpb_33_6_068101bib50
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D3TA01223A
– volume: 40
  year: 2019
  ident: cpb_33_6_068101bib14
  publication-title: J. Semicond.
  doi: 10.1088/1674-4926/40/6/061001
– volume: 36
  year: 2024
  ident: cpb_33_6_068101bib19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202309371
– volume: 10
  start-page: 421
  year: 1975
  ident: cpb_33_6_068101bib3
  publication-title: Radio Sci.
  doi: 10.1029/RS010i004p00421
– volume: 5
  start-page: 248
  year: 2022
  ident: cpb_33_6_068101bib18
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-022-00747-5
– volume: 13
  start-page: 549
  year: 2018
  ident: cpb_33_6_068101bib36
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0135-x
– volume: 32
  year: 2023
  ident: cpb_33_6_068101bib42
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ad04c3
– volume: 13
  start-page: 3198
  year: 2022
  ident: cpb_33_6_068101bib11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30951-y
– volume: 116
  year: 2016
  ident: cpb_33_6_068101bib35
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00136
– volume: 30
  year: 2018
  ident: cpb_33_6_068101bib47
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804541
– volume: 12
  start-page: 3260
  year: 2021
  ident: cpb_33_6_068101bib24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23592-0
– volume: 451
  year: 2023
  ident: cpb_33_6_068101bib57
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.138531
– volume: 14
  year: 2022
  ident: cpb_33_6_068101bib51
  publication-title: Nanoscale
  doi: 10.1039/D2NR03587A
– volume: 3
  year: 2022
  ident: cpb_33_6_068101bib56
  publication-title: Small Structures
  doi: 10.1002/sstr.202200061
– volume: 101
  year: 2020
  ident: cpb_33_6_068101bib38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.214439
– volume: 11
  year: 2023
  ident: cpb_33_6_068101bib17
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202300905
– volume: 33
  year: 2023
  ident: cpb_33_6_068101bib26
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202208807
– volume: 36
  year: 2024
  ident: cpb_33_6_068101bib4
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202306772
– volume: 14
  year: 2020
  ident: cpb_33_6_068101bib37
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c04499
– volume: 32
  year: 2022
  ident: cpb_33_6_068101bib12
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202207688
– volume: 12
  start-page: 615
  year: 2018
  ident: cpb_33_6_068101bib1
  publication-title: Cogn. Neurodynamics
  doi: 10.1007/s11571-018-9490-4
– volume: 13
  year: 2017
  ident: cpb_33_6_068101bib25
  publication-title: Small
  doi: 10.1002/smll.201700894
– volume: 19
  year: 2023
  ident: cpb_33_6_068101bib55
  publication-title: Small
  doi: 10.1002/smll.202300246
– volume: 4
  year: 2022
  ident: cpb_33_6_068101bib61
  publication-title: InfoMat
  doi: 10.1002/inf2.12258
– volume: 552
  year: 2024
  ident: cpb_33_6_068101bib7
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2023.130118
– volume: 39
  year: 2022
  ident: cpb_33_6_068101bib15
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/39/5/058501
– volume: 9
  year: 2022
  ident: cpb_33_6_068101bib52
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202200448
– volume: 12
  start-page: 31
  year: 2017
  ident: cpb_33_6_068101bib29
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2016.10.007
– volume: 1
  start-page: 646
  year: 2019
  ident: cpb_33_6_068101bib40
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0110-y
– volume: 38
  year: 2021
  ident: cpb_33_6_068101bib33
  publication-title: Chin. Phys. Lett.
  doi: 10.1088/0256-307X/38/6/068103
– volume: 10
  year: 2022
  ident: cpb_33_6_068101bib60
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D2TC03201E
– volume: 14
  start-page: 6855
  year: 2023
  ident: cpb_33_6_068101bib8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-42678-5
– year: 2009
  ident: cpb_33_6_068101bib2
– volume: 14
  start-page: 1938
  year: 2023
  ident: cpb_33_6_068101bib13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37623-5
– volume: 31
  year: 2022
  ident: cpb_33_6_068101bib22
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ac1b8b
– volume: 876
  year: 2021
  ident: cpb_33_6_068101bib32
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2021.160195
– volume: 20
  start-page: 1172
  year: 2020
  ident: cpb_33_6_068101bib48
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b04598
– volume: 64
  start-page: 1230
  year: 2021
  ident: cpb_33_6_068101bib5
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-020-1535-9
– volume: 15
  year: 2023
  ident: cpb_33_6_068101bib58
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c13839
– volume: 143
  year: 2021
  ident: cpb_33_6_068101bib53
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c08281
– volume: 2
  year: 2022
  ident: cpb_33_6_068101bib31
  publication-title: Mater. Today Electron.
  doi: 10.1016/j.mtelec.2022.100013
– volume: 7
  start-page: 816
  year: 2014
  ident: cpb_33_6_068101bib28
  publication-title: Nano Res.
  doi: 10.1007/s12274-014-0442-y
– volume: 7
  start-page: 1690
  year: 2019
  ident: cpb_33_6_068101bib34
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC05732J
– volume: 119
  start-page: 9074
  year: 2019
  ident: cpb_33_6_068101bib27
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00164
SSID ssj0061023
Score 2.3417158
Snippet Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices. We perform a...
Perpendicular optical reversal of the linear dichroism transition has promising applications in polarization-sensitive optoelectronic devices.We perform a...
SourceID unpaywall
wanfang
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 68101
SubjectTerms anisotropy
linear dichroism reversal
polarization sensitivity
polarized photodetector
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVgK0Q5lG-xtCAf4ACSSxInXudYVa2qSq04sFI5WbbHbiN2k3STUNFfzzhJgUUVKudMPIpnnJlnj98Q8s5HIG0kcKXx2LI0dpwZ63PGJYBwItem70N2ciqO5unxWXY27neEuzBr5_cIzkKRPAvd4T9p4MJgJrQhMsTJE7IxP_289zXgqRuR0EcuyiTq4el4InnbEGsR6H5R1Y_Iw66s9Y8rvVj0d3dKr8vzP8LM4eOB86jp2QlDdcm33a41u_b6L-7Gu3zBE7I15pp0b3COp-SeK5-RB33Np22ekwpxKPo5hcJerKqiWdI2BK6-hovqEmgdYO94T5M1rn_03dH6omorcG2_308rTy873RSsKh2D0Ctg4Pmgddiih6JbUrOqlgW4F2R-ePBl_4iN_ReY5TxvmXR5nHohrU9dPDMzSKz0mBHMELN5n8XcGp9AJLzDv4TNQQotMF80mkc6l9byl2RSovJXhMZem9x47QHDoZeZjDERQWiXwCzRGaRT8uHGJqoeaDZUfzwupQoTqMIEqmECp-Q9Gk2Na635hxxdk7O1UZwroaLAwRarGvyUfPxl-TvopaNr_B7z-vxqoVwSiOIQCfLX_zPeNtkMLw7Vkztk0q469wYznNa8HZ37JwSI9Ao
  priority: 102
  providerName: Unpaywall
Title Linear dichroism transition and polarization-sensitive photodetector of quasi-one-dimensional palladium bromide
URI https://iopscience.iop.org/article/10.1088/1674-1056/ad36ba
https://d.wanfangdata.com.cn/periodical/zgwl-e202406063
https://doi.org/10.1088/1674-1056/ad36ba
UnpaywallVersion publishedVersion
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 2058-3834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061023
  issn: 2058-3834
  databaseCode: IOP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9qi6gPflY8W8s-6IPCXpNsbm9Dn4pYqmDtgwcVhGU_2-BdEi-Jxf71zia51opI8S2Qye5mdnZnZmf2NwAvfWSFiTiuNBYbmsaOUW18RpmwljueKd3VIft4xA9n6YeTycka7F3ehSmrYesf42MPFNyzcEiIE7shb56GgvG7yjKu0TjaCNGtIN7vPx2vtmEeMAmCt7WiHmKUf2vhmk66hf3egzttUamf52o-727zFF4Vp78pnoMH8HU15D7f5Nu4bfTYXPyB5vif__QQ7g8GKdnvSR_Bmisew-0uMdTUT6BEZxUXA7G5OVuWeb0gTdBuXaIXUYUlVfCNh8uctHbdqx-OVGdlU1rXdEEBUnryvVV1TsvCURsKCvRgIKQK5_g2bxdEL8tFbt0mzA7efX57SIciDdQwljVUuCxOPRfGpy6e6qlNjPBoNkzRsfN-EjOjfWIj7h1uJSazgiuORqVWLFKZMIY9hfUCO38GJPZKZ9orb1FnepzSGK0V9P8SO03UxKYjeL2aJln1WByyi6ELIQMDZWCg7Bk4glfIazksyPofdOQanam0ZExyGQWgtlhW1o_gzaUw3KBfMkjLVZsXp-dz6ZKAJofuInt-w6Ftwd3wTZ9duQ3rzbJ1L9ACavROJ-k7sDE7Ot7_8gtk5QIo
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH6iRWwHtoI6LYsPcADJM0mceJxjBYxaltIDlXozXtuImSSdJFTtr8d2MkARQpW4RYq3PC_vvbzP3wN4YSPNVETdTiOxwmlsCJbK5pgwramhuZAhD9mnfbp7mL4_yo6GPKfhLkxVD0f_2D32RMG9CAdAHJt43Dz2CeMnQhMqxaTWdg2uZ05zekzf3ueD1VFMPS-B97hWNYY45d9auaSX1lzfd-BWV9bi_EzM5-FGT2lFefyb8pndg6-rYfeYk2_jrpVjdfEHo-N_fNd9uDsYpminL_4ArpnyIdwIAFHVbEDlnFa3KZAu1MmyKpoFar2WC4AvJEqNau8jD5c6cWPCq-8G1SdVW2nThuAAqiw67URT4Ko0WPvEAj0pCKr9_3xddAskl9Wi0OYRHM7efXmzi4dkDVgRkreYmTxOLWXKpiaeyqlOFLPOfJg6B8_aLCZK2kRH1Bp3pKhcMyqoMy6lIJHImVLkMayXrvNNQLEVMpdWWO10p2UZi53V4vzARE8Tkel0BK9WU8XrnpODh1g6Y9wLkXsh8l6II3jp5M2Hjdn8oxy6VE7VkhPCKY88YVvM3VyM4PXPBXGFftGwYn61eXF8Nucm8axyzm0kW1cc2nO4efB2xj_u7X_Yhtu-eg-4fALr7bIzT51R1MpnYeH_ALbtBdk
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVgK0Q5lG-xtCAf4ACSSxInXudYVa2qSq04sFI5WbbHbiN2k3STUNFfzzhJgUUVKudMPIpnnJlnj98Q8s5HIG0kcKXx2LI0dpwZ63PGJYBwItem70N2ciqO5unxWXY27neEuzBr5_cIzkKRPAvd4T9p4MJgJrQhMsTJE7IxP_289zXgqRuR0EcuyiTq4el4InnbEGsR6H5R1Y_Iw66s9Y8rvVj0d3dKr8vzP8LM4eOB86jp2QlDdcm33a41u_b6L-7Gu3zBE7I15pp0b3COp-SeK5-RB33Np22ekwpxKPo5hcJerKqiWdI2BK6-hovqEmgdYO94T5M1rn_03dH6omorcG2_308rTy873RSsKh2D0Ctg4Pmgddiih6JbUrOqlgW4F2R-ePBl_4iN_ReY5TxvmXR5nHohrU9dPDMzSKz0mBHMELN5n8XcGp9AJLzDv4TNQQotMF80mkc6l9byl2RSovJXhMZem9x47QHDoZeZjDERQWiXwCzRGaRT8uHGJqoeaDZUfzwupQoTqMIEqmECp-Q9Gk2Na635hxxdk7O1UZwroaLAwRarGvyUfPxl-TvopaNr_B7z-vxqoVwSiOIQCfLX_zPeNtkMLw7Vkztk0q469wYznNa8HZ37JwSI9Ao
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+dichroism+transition+and+polarization-sensitive+photodetector+of+quasi-one-dimensional+palladium+bromide&rft.jtitle=Chinese+physics+B&rft.au=Zhu+%E6%9C%B1%2C+Wan-Li+%E4%B8%87%E9%87%8C&rft.au=Zhen+%E7%94%84%2C+Wei-Li+%E4%BC%9F%E7%AB%8B&rft.au=Niu+%E7%89%9B%2C+Rui+%E7%91%9E&rft.au=Jiao+%E7%84%A6%2C+Ke-Ke+%E7%8F%82%E7%8F%82&rft.date=2024-05-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.volume=33&rft.issue=6&rft.spage=68101&rft_id=info:doi/10.1088%2F1674-1056%2Fad36ba&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_ad36ba
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg