A control method of proton exchange membrane fuel cell gas supply system based on fuzzy neural network proportion integration differentiation algorithm
With the rapid development of hydrogen fuel cell technology, the requirements for test equipment are continually advancing. In this study, a test system for a 300 kW-class proton exchange membrane fuel cell (PEMFC) was designed and constructed, and a simulation model for the gas supply system was es...
Saved in:
| Published in | Energy (Oxford) Vol. 315; p. 134355 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.01.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0360-5442 |
| DOI | 10.1016/j.energy.2024.134355 |
Cover
| Abstract | With the rapid development of hydrogen fuel cell technology, the requirements for test equipment are continually advancing. In this study, a test system for a 300 kW-class proton exchange membrane fuel cell (PEMFC) was designed and constructed, and a simulation model for the gas supply system was established using MATLAB/Simulink. On this basis, the fuzzy neural network proportion integration differentiation (FNN-PID) algorithm was proposed to optimize the control of the gas supply system. The results indicate that the developed test system features a wide measuring range, high accuracy and excellent flexibility, enabling real-time monitoring, control and alarm functions for key parameters such as temperature, flow and pressure. Simulink simulations demonstrate that the FNN-PID algorithm exhibits superior control performance, with the fastest response speed and minimal overshoot. Test verification confirms that the FNN-PID algorithm outperforms the other two control algorithms, providing shorter regulation times, reduced overshoot, faster response speeds and enhanced anti-interference capabilities. Specifically, the FNN-PID algorithm reduces the regulation time for inlet pressure control by approximately 42 % compared to the conventional PID (C-PID) algorithm. These findings provide valuable methodological guidance for achieving real-time, efficient, stable and accurate testing of fuel cell systems.
[Display omitted]
•A fuel cell test method with wide range, high stability and strong flexibility was developed.•Fuzzy neural network proportion integration differentiation was proposed to design system controller.•Designed controller provides reduced overshoot and stronger anti-interference capability.•The regulation time for inlet pressure control is reduced by approximately 42 %. |
|---|---|
| AbstractList | With the rapid development of hydrogen fuel cell technology, the requirements for test equipment are continually advancing. In this study, a test system for a 300 kW-class proton exchange membrane fuel cell (PEMFC) was designed and constructed, and a simulation model for the gas supply system was established using MATLAB/Simulink. On this basis, the fuzzy neural network proportion integration differentiation (FNN-PID) algorithm was proposed to optimize the control of the gas supply system. The results indicate that the developed test system features a wide measuring range, high accuracy and excellent flexibility, enabling real-time monitoring, control and alarm functions for key parameters such as temperature, flow and pressure. Simulink simulations demonstrate that the FNN-PID algorithm exhibits superior control performance, with the fastest response speed and minimal overshoot. Test verification confirms that the FNN-PID algorithm outperforms the other two control algorithms, providing shorter regulation times, reduced overshoot, faster response speeds and enhanced anti-interference capabilities. Specifically, the FNN-PID algorithm reduces the regulation time for inlet pressure control by approximately 42 % compared to the conventional PID (C-PID) algorithm. These findings provide valuable methodological guidance for achieving real-time, efficient, stable and accurate testing of fuel cell systems. With the rapid development of hydrogen fuel cell technology, the requirements for test equipment are continually advancing. In this study, a test system for a 300 kW-class proton exchange membrane fuel cell (PEMFC) was designed and constructed, and a simulation model for the gas supply system was established using MATLAB/Simulink. On this basis, the fuzzy neural network proportion integration differentiation (FNN-PID) algorithm was proposed to optimize the control of the gas supply system. The results indicate that the developed test system features a wide measuring range, high accuracy and excellent flexibility, enabling real-time monitoring, control and alarm functions for key parameters such as temperature, flow and pressure. Simulink simulations demonstrate that the FNN-PID algorithm exhibits superior control performance, with the fastest response speed and minimal overshoot. Test verification confirms that the FNN-PID algorithm outperforms the other two control algorithms, providing shorter regulation times, reduced overshoot, faster response speeds and enhanced anti-interference capabilities. Specifically, the FNN-PID algorithm reduces the regulation time for inlet pressure control by approximately 42 % compared to the conventional PID (C-PID) algorithm. These findings provide valuable methodological guidance for achieving real-time, efficient, stable and accurate testing of fuel cell systems. [Display omitted] •A fuel cell test method with wide range, high stability and strong flexibility was developed.•Fuzzy neural network proportion integration differentiation was proposed to design system controller.•Designed controller provides reduced overshoot and stronger anti-interference capability.•The regulation time for inlet pressure control is reduced by approximately 42 %. |
| ArticleNumber | 134355 |
| Author | Fu, Jianqin He, Tingpu Sun, Xilei Zhang, Guanjie Wu, Yue Qin, Boquan |
| Author_xml | – sequence: 1 givenname: Jianqin surname: Fu fullname: Fu, Jianqin organization: State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, 410082, China – sequence: 2 givenname: Boquan surname: Qin fullname: Qin, Boquan organization: State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, 410082, China – sequence: 3 givenname: Yue surname: Wu fullname: Wu, Yue organization: State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, 410082, China – sequence: 4 givenname: Tingpu surname: He fullname: He, Tingpu organization: State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, 410082, China – sequence: 5 givenname: Guanjie surname: Zhang fullname: Zhang, Guanjie organization: State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, 410082, China – sequence: 6 givenname: Xilei orcidid: 0009-0002-7083-6973 surname: Sun fullname: Sun, Xilei email: xileisun@hnu.edu.cn, xileisun@dlut.edu.cn organization: State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, 410082, China |
| BookMark | eNqFkbtu3DAQRVU4QGwnf5CCZZrd8CHqkcKAYeQFGEhj1wRJDbXcUKRMUknkH_HvhmulShFXQ2LuuZiZe1Gd-eChqt4RvCeYNB-Oe_AQx3VPMa33hNWM87PqHLMG73hd09fVRUpHjDHv-v68erpGOvgcg0MT5EMYUDBojiEHj-C3Pkg_QulMKkoPyCzgkAbn0CgTSss8uxWlNWWYkJIJCu2L6PFxRR6WKF0p-VeIP06Wc4jZlr71GcYon9-DNQYi-Gy3v3RjiDYfpjfVKyNdgrd_62V1__nT3c3X3e33L99urm93mrE-7zpWN4MaoGa6MY3mFDOsWq2oUcRQ3FDdko43TLKWEaMkG3reU6VVS6lqO8Uuq_ebbxnwYYGUxWTTacOybliSYKThXUcYr4v04ybVMaQUwQht8_PYOUrrBMHilIA4ii0BcUpAbAkUuP4HnqOdZFxfwq42DMoNflqIImkLXsNgI-gshmD_b_AHpmerLw |
| CitedBy_id | crossref_primary_10_1016_j_applthermaleng_2025_126165 crossref_primary_10_1016_j_cej_2025_161561 |
| Cites_doi | 10.1016/j.ijepes.2015.12.003 10.1016/j.renene.2017.06.027 10.1016/j.ijhydene.2022.10.103 10.1061/(ASCE)EY.1943-7897.0000691 10.1016/j.ijhydene.2022.09.141 10.1016/j.ijhydene.2023.08.292 10.1016/S1452-3981(23)18239-3 10.1016/j.energy.2023.129840 10.1016/j.apenergy.2023.121182 10.1016/j.measurement.2023.112683 10.1016/j.egyr.2023.10.079 10.1016/j.aej.2021.12.072 10.3390/en16010228 10.1016/j.apenergy.2020.115059 10.1016/j.ijhydene.2015.04.080 10.1016/j.ijhydene.2015.05.189 10.1109/ICMTMA.2010.568 10.1504/IJMIC.2021.120202 10.1016/j.ijhydene.2023.08.364 10.1038/s41598-022-08327-5 10.1016/j.ijhydene.2023.10.304 10.1016/j.conengprac.2022.105336 10.1016/j.energy.2021.121267 10.1109/TNN.2002.1000134 10.1016/j.ijhydene.2017.01.014 10.1016/j.egyai.2023.100229 10.1016/j.arcontrol.2021.05.002 10.1016/j.ijhydene.2022.10.156 10.1016/j.ijhydene.2021.07.009 10.1016/j.energy.2024.132078 10.1016/j.ijhydene.2024.08.497 10.1016/j.enconman.2021.114851 10.1109/TIA.2020.2999037 10.1016/j.ijhydene.2010.07.046 10.1016/j.ijhydene.2024.02.254 10.1016/j.egyr.2021.02.043 10.1016/j.jpowsour.2005.08.037 10.1016/j.ijhydene.2022.09.143 10.1016/j.applthermaleng.2024.123049 10.1016/j.egyr.2022.09.034 10.1016/j.enconman.2020.113389 10.1016/j.ijhydene.2017.03.070 10.1007/s11633-008-0145-5 10.1016/j.ifacol.2018.10.004 10.1016/j.energy.2023.126772 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.energy.2024.134355 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| ExternalDocumentID | 10_1016_j_energy_2024_134355 S0360544224041331 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAQXK AATTM AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEUPX AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC WUQ ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-8346dbde43c6f6c52030b7cb2fb1f2062c718563a3731fba3d9592bcb722b78b3 |
| IEDL.DBID | .~1 |
| ISSN | 0360-5442 |
| IngestDate | Wed Oct 01 14:41:58 EDT 2025 Wed Oct 01 00:25:50 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Sat Jan 25 16:00:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | FNN-PID algorithm Gas supply system Test verification PEMFC |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c339t-8346dbde43c6f6c52030b7cb2fb1f2062c718563a3731fba3d9592bcb722b78b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0009-0002-7083-6973 |
| PQID | 3165881354 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_3165881354 crossref_citationtrail_10_1016_j_energy_2024_134355 crossref_primary_10_1016_j_energy_2024_134355 elsevier_sciencedirect_doi_10_1016_j_energy_2024_134355 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-15 |
| PublicationDateYYYYMMDD | 2025-01-15 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Energy (Oxford) |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Zhang, Hu, Gong (bib11) 2022; 128 Li, Wei, Du (bib13) 2023; 10 Rakhtala, Roudbari (bib16) 2016; 78 Somefun, Akingbade, Dahunsi (bib19) 2021; 52 Kuo, Thamma, Wongcharoen (bib30) 2024; 50 Sun, Fu (bib2) 2024; 288 Zuo, Ouyang, Chen (bib5) 2024; 50 Chen, Xu, Liu (bib36) 2020; 224 Yuan, Chen, Xia (bib37) 2023; 12 Er, Wu, Lu (bib41) 2002; 13 Wang, Mao, He (bib38) 2020; 146 Hu, Zhang, Gong (bib45) 2023; 211 Rakhtala (bib31) 2021; 37 Hai, Alazzawi, Zhou (bib44) 2023; 48 Liu, Wang (bib40) 2022; 8 Wang, Li, Feng (bib17) 2021; 249 Ou, Wang, Li (bib28) 2015; 40 Xu, Yan, Ding (bib34) 2022; 47 Kim, Nguyen, Kim (bib8) 2024; 247 Aminudin, Kamarudin, Lim (bib1) 2023; 48 Kuo, Thamma, Wongcharoen (bib46) 2024; 50 Tang, Yang, Zeng (bib21) 2022; 16 Hou, Yang, Ke (bib20) 2020; 269 Chen, Wang, Xu (bib22) 2023; 343 Baroud, Benmiloud, Benalia (bib27) 2017; 42 Li, Yu (bib14) 2021; 7 Zhao, Li, Ma (bib15) 2020; 56 Rezk, Aly, Fathy (bib39) 2021; 234 Daud, Rosli, Majlan (bib18) 2017; 113 Fan, Ma (bib33) 2022; 12 Fang, Xu, Cheng (bib12) 2017; 42 Thiele, Yang, Dirkes (bib10) 2024; 52 Zuo, Li, Chen (bib3) 2022; 47 Benchouia, Derghal, Mahmah (bib29) 2015; 40 Fu, Li, Sun (bib6) 2024; 304 Wei, Quan, Zhu (bib23) 2010; 2 Tekin, Hissel, Pera (bib25) 2006; 156 Sun, Fu, Yang (bib4) 2023; 269 Zhang, Yu, Ma (bib24) 2018; 51 Li, Yu, Yang (bib32) 2021; 46 Rezazadeh, Askarzadeh, Sedighizadeh (bib43) 2011; 6 Liu, Xu, Shi (bib7) 2024; 61 Fu, Zhang, Xu (bib9) 2024; 86 Williams, Liu, Chai (bib26) 2008; 5 AbouOmar, Su, Zhang (bib35) 2022; 61 Ahmed, Yurkovich, Guezennec (bib42) 2010; 35 Tang (10.1016/j.energy.2024.134355_bib21) 2022; 16 Li (10.1016/j.energy.2024.134355_bib14) 2021; 7 Rezazadeh (10.1016/j.energy.2024.134355_bib43) 2011; 6 Wang (10.1016/j.energy.2024.134355_bib17) 2021; 249 Chen (10.1016/j.energy.2024.134355_bib22) 2023; 343 Zuo (10.1016/j.energy.2024.134355_bib5) 2024; 50 Benchouia (10.1016/j.energy.2024.134355_bib29) 2015; 40 Wang (10.1016/j.energy.2024.134355_bib38) 2020; 146 Liu (10.1016/j.energy.2024.134355_bib40) 2022; 8 Ahmed (10.1016/j.energy.2024.134355_bib42) 2010; 35 Aminudin (10.1016/j.energy.2024.134355_bib1) 2023; 48 Ou (10.1016/j.energy.2024.134355_bib28) 2015; 40 Kuo (10.1016/j.energy.2024.134355_bib46) 2024; 50 Fang (10.1016/j.energy.2024.134355_bib12) 2017; 42 Xu (10.1016/j.energy.2024.134355_bib34) 2022; 47 Tekin (10.1016/j.energy.2024.134355_bib25) 2006; 156 Sun (10.1016/j.energy.2024.134355_bib4) 2023; 269 Rakhtala (10.1016/j.energy.2024.134355_bib16) 2016; 78 Wei (10.1016/j.energy.2024.134355_bib23) 2010; 2 Yuan (10.1016/j.energy.2024.134355_bib37) 2023; 12 Hai (10.1016/j.energy.2024.134355_bib44) 2023; 48 Er (10.1016/j.energy.2024.134355_bib41) 2002; 13 Kuo (10.1016/j.energy.2024.134355_bib30) 2024; 50 Zhang (10.1016/j.energy.2024.134355_bib11) 2022; 128 Sun (10.1016/j.energy.2024.134355_bib2) 2024; 288 Rezk (10.1016/j.energy.2024.134355_bib39) 2021; 234 Hou (10.1016/j.energy.2024.134355_bib20) 2020; 269 Liu (10.1016/j.energy.2024.134355_bib7) 2024; 61 Hu (10.1016/j.energy.2024.134355_bib45) 2023; 211 Baroud (10.1016/j.energy.2024.134355_bib27) 2017; 42 Fu (10.1016/j.energy.2024.134355_bib6) 2024; 304 Somefun (10.1016/j.energy.2024.134355_bib19) 2021; 52 Williams (10.1016/j.energy.2024.134355_bib26) 2008; 5 Fu (10.1016/j.energy.2024.134355_bib9) 2024; 86 Zhang (10.1016/j.energy.2024.134355_bib24) 2018; 51 Fan (10.1016/j.energy.2024.134355_bib33) 2022; 12 Zuo (10.1016/j.energy.2024.134355_bib3) 2022; 47 Li (10.1016/j.energy.2024.134355_bib13) 2023; 10 Li (10.1016/j.energy.2024.134355_bib32) 2021; 46 Daud (10.1016/j.energy.2024.134355_bib18) 2017; 113 Rakhtala (10.1016/j.energy.2024.134355_bib31) 2021; 37 AbouOmar (10.1016/j.energy.2024.134355_bib35) 2022; 61 Thiele (10.1016/j.energy.2024.134355_bib10) 2024; 52 Chen (10.1016/j.energy.2024.134355_bib36) 2020; 224 Kim (10.1016/j.energy.2024.134355_bib8) 2024; 247 Zhao (10.1016/j.energy.2024.134355_bib15) 2020; 56 |
| References_xml | – volume: 51 start-page: 15 year: 2018 end-page: 20 ident: bib24 article-title: Oxygen excess ratio control of PEM fuel cell based on self-adaptive fuzzy PID publication-title: IFAC-PapersOnLine – volume: 61 start-page: 7353 year: 2022 end-page: 7375 ident: bib35 article-title: Observer-based interval type-2 fuzzy PID controller for PEMFC air feeding system using novel hybrid neural network algorithm-differential evolution optimizer publication-title: Alex Eng J – volume: 12 year: 2023 ident: bib37 article-title: A novel feature susceptibility approach for a PEMFC control system based on an improved XGBoost-Boruta algorithm publication-title: Energy and AI – volume: 113 start-page: 620 year: 2017 end-page: 638 ident: bib18 article-title: PEM fuel cell system control: a review publication-title: Renew Energy – volume: 42 start-page: 10435 year: 2017 end-page: 10447 ident: bib27 article-title: Novel hybrid fuzzy-PID control scheme for air supply in PEM fuel-cell-based systems publication-title: Int J Hydrogen Energy – volume: 13 start-page: 697 year: 2002 end-page: 710 ident: bib41 article-title: Face recognition with radial basis function (RBF) neural networks publication-title: IEEE Trans Neural Network – volume: 288 year: 2024 ident: bib2 article-title: Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature publication-title: Energy – volume: 42 start-page: 11745 year: 2017 end-page: 11757 ident: bib12 article-title: Sliding-mode-based temperature regulation of a proton exchange membrane fuel cell test bench publication-title: Int J Hydrogen Energy – volume: 78 start-page: 576 year: 2016 end-page: 590 ident: bib16 article-title: Fuzzy PID control of a stand-alone system based on PEM fuel cell publication-title: Int J Electr Power Energy Syst – volume: 37 start-page: 187 year: 2021 end-page: 198 ident: bib31 article-title: Self-tuning fuzzy logic PID controller with a practical view to PEM fuel cell air supply system publication-title: Int J Model Ident Control – volume: 247 year: 2024 ident: bib8 article-title: Experimental investigation of time-dependent electrical load effects through multipoints in-situ measurement of temperature and relative humidity of PEMFC bipolar plate under transient operation publication-title: Appl Therm Eng – volume: 2 start-page: 915 year: 2010 end-page: 918 ident: bib23 article-title: Prediction and control of air supply flow in PEMFC publication-title: International Conference on Measuring Technology and Mechatronics Automation – volume: 12 start-page: 4316 year: 2022 ident: bib33 article-title: Maximum power point tracking of PEMFC based on hybrid artificial bee colony algorithm with fuzzy control publication-title: Sci Rep – volume: 35 start-page: 11291 year: 2010 end-page: 11307 ident: bib42 article-title: Study of nonlinear control schemes for an automotive traction PEM fuel cell system publication-title: Int J Hydrogen Energy – volume: 8 start-page: 13409 year: 2022 end-page: 13416 ident: bib40 article-title: Simulation of an electronic equipment control method based on an improved neural network algorithm publication-title: Energy Rep – volume: 234 year: 2021 ident: bib39 article-title: A novel strategy based on recent equilibrium optimizer to enhance the performance of PEM fuel cell system through optimized fuzzy logic MPPT publication-title: Energy – volume: 249 year: 2021 ident: bib17 article-title: Simulation study on the PEMFC oxygen starvation based on the coupling algorithm of model predictive control and PID publication-title: Energy Convers Manag – volume: 48 start-page: 4430 year: 2023 end-page: 4445 ident: bib44 article-title: Performance improvement of PEM fuel cell power system using fuzzy logic controller-based MPPT technique to extract the maximum power under various conditions publication-title: Int J Hydrogen Energy – volume: 224 year: 2020 ident: bib36 article-title: Active disturbance rejection control strategy applied to cathode humidity control in PEMFC system publication-title: Energy Convers Manag – volume: 50 start-page: 1080 year: 2024 end-page: 1093 ident: bib46 article-title: Optimized fuzzy proportional integral controller for improving output power stability of active hydrogen recovery 10-kW PEM fuel cell system publication-title: Int J Hydrogen Energy – volume: 6 start-page: 3105 year: 2011 end-page: 3117 ident: bib43 article-title: Adaptive inverse control of proton exchange membrane fuel cell using RBF neural network publication-title: Int J Electrochem Sci – volume: 52 start-page: 1065 year: 2024 end-page: 1080 ident: bib10 article-title: Realistic accelerated stress tests for PEM fuel cells: test procedure development based on standardized automotive driving cycles publication-title: Int J Hydrogen Energy – volume: 7 start-page: 1267 year: 2021 end-page: 1279 ident: bib14 article-title: A new adaptive controller based on distributed deep reinforcement learning for PEMFC air supply system publication-title: Energy Rep – volume: 52 start-page: 65 year: 2021 end-page: 74 ident: bib19 article-title: The dilemma of PID tuning publication-title: Annu Rev Control – volume: 10 start-page: 4342 year: 2023 end-page: 4358 ident: bib13 article-title: Control strategy for the anode gas supply system in a proton exchange membrane fuel cell system publication-title: Energy Rep – volume: 47 start-page: 39943 year: 2022 end-page: 39960 ident: bib3 article-title: Optimization of blocked flow field performance of proton exchange membrane fuel cell with auxiliary channels publication-title: Int J Hydrogen Energy – volume: 269 year: 2023 ident: bib4 article-title: An energy management strategy for plug-in hybrid electric vehicles based on deep learning and improved model predictive control publication-title: Energy – volume: 50 start-page: 1080 year: 2024 end-page: 1093 ident: bib30 article-title: Optimized fuzzy proportional integral controller for improving output power stability of active hydrogen recovery 10-kW PEM fuel cell system publication-title: Int J Hydrogen Energy – volume: 47 start-page: 39973 year: 2022 end-page: 39986 ident: bib34 article-title: Sparrow search algorithm applied to temperature control in PEM fuel cell systems publication-title: Int J Hydrogen Energy – volume: 61 start-page: 1015 year: 2024 end-page: 1027 ident: bib7 article-title: Research on PEMFC cathode circulation under low-load conditions and its optimal control in FCV power system for long-term durability publication-title: Int J Hydrogen Energy – volume: 48 start-page: 4371 year: 2023 end-page: 4388 ident: bib1 article-title: An overview: current progress on hydrogen fuel cell vehicles publication-title: Int J Hydrogen Energy – volume: 86 start-page: 823 year: 2024 end-page: 834 ident: bib9 article-title: Experimental investigation for the influence mechanism of air intake method and humidity level on performance of proton exchange membrane fuel cells publication-title: Int J Hydrogen Energy – volume: 156 start-page: 57 year: 2006 end-page: 63 ident: bib25 article-title: Energy consumption reduction of a PEM fuel cell motor-compressor group thanks to efficient control laws publication-title: J Power Sources – volume: 5 start-page: 145 year: 2008 end-page: 151 ident: bib26 article-title: Intelligent control for improvements in PEM fuel cell flow performance publication-title: Int J Autom Comput – volume: 50 start-page: 1391 year: 2024 end-page: 1405 ident: bib5 article-title: Flow characteristics analysis and performance evaluation of a novel rotary proton exchange membrane fuel cell publication-title: Int J Hydrogen Energy – volume: 16 start-page: 228 year: 2022 ident: bib21 article-title: Cascade control method of sliding mode and PID for PEMFC air supply system publication-title: Energies – volume: 40 start-page: 13806 year: 2015 end-page: 13819 ident: bib29 article-title: An adaptive fuzzy logic controller (AFLC) for PEMFC fuel cell publication-title: Int J Hydrogen Energy – volume: 128 year: 2022 ident: bib11 article-title: Design and experimental verification of model-free adaptive sliding controller for air supply system of PEMFCs publication-title: Control Eng Pract – volume: 40 start-page: 11686 year: 2015 end-page: 11695 ident: bib28 article-title: Feedforward fuzzy-PID control for air flow regulation of PEM fuel cell system publication-title: Int J Hydrogen Energy – volume: 304 year: 2024 ident: bib6 article-title: Many-objective optimization for overall performance of an electric sport utility vehicle under multiple temperature conditions based on natural gradient boosting model publication-title: Energy – volume: 211 year: 2023 ident: bib45 article-title: Design of a nonlinear dynamic output feedback controller based on a fixed-time RBF disturbance observer for a PEMFC air supply system publication-title: Measurement – volume: 46 start-page: 33899 year: 2021 end-page: 33914 ident: bib32 article-title: Coordinated control of gas supply system in PEMFC based on multi-agent deep reinforcement learning publication-title: Int J Hydrogen Energy – volume: 56 start-page: 5523 year: 2020 end-page: 5532 ident: bib15 article-title: An unknown input nonlinear observer based fractional order PID control of fuel cell air supply system publication-title: IEEE Trans Ind Appl – volume: 146 year: 2020 ident: bib38 article-title: Fuzzy control based on IQPSO in proton-exchange membrane fuel-cell temperature system publication-title: J Energy Eng – volume: 269 year: 2020 ident: bib20 article-title: Control logics and strategies for air supply in PEM fuel cell engines publication-title: Appl Energy – volume: 343 year: 2023 ident: bib22 article-title: Membrane humidity control of proton exchange membrane fuel cell system using fractional-order PID strategy publication-title: Appl Energy – volume: 78 start-page: 576 year: 2016 ident: 10.1016/j.energy.2024.134355_bib16 article-title: Fuzzy PID control of a stand-alone system based on PEM fuel cell publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2015.12.003 – volume: 113 start-page: 620 year: 2017 ident: 10.1016/j.energy.2024.134355_bib18 article-title: PEM fuel cell system control: a review publication-title: Renew Energy doi: 10.1016/j.renene.2017.06.027 – volume: 48 start-page: 4430 year: 2023 ident: 10.1016/j.energy.2024.134355_bib44 article-title: Performance improvement of PEM fuel cell power system using fuzzy logic controller-based MPPT technique to extract the maximum power under various conditions publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.10.103 – volume: 146 year: 2020 ident: 10.1016/j.energy.2024.134355_bib38 article-title: Fuzzy control based on IQPSO in proton-exchange membrane fuel-cell temperature system publication-title: J Energy Eng doi: 10.1061/(ASCE)EY.1943-7897.0000691 – volume: 47 start-page: 39973 year: 2022 ident: 10.1016/j.energy.2024.134355_bib34 article-title: Sparrow search algorithm applied to temperature control in PEM fuel cell systems publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.09.141 – volume: 52 start-page: 1065 year: 2024 ident: 10.1016/j.energy.2024.134355_bib10 article-title: Realistic accelerated stress tests for PEM fuel cells: test procedure development based on standardized automotive driving cycles publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.08.292 – volume: 6 start-page: 3105 year: 2011 ident: 10.1016/j.energy.2024.134355_bib43 article-title: Adaptive inverse control of proton exchange membrane fuel cell using RBF neural network publication-title: Int J Electrochem Sci doi: 10.1016/S1452-3981(23)18239-3 – volume: 288 year: 2024 ident: 10.1016/j.energy.2024.134355_bib2 article-title: Many-objective optimization of BEV design parameters based on gradient boosting decision tree models and the NSGA-III algorithm considering the ambient temperature publication-title: Energy doi: 10.1016/j.energy.2023.129840 – volume: 343 year: 2023 ident: 10.1016/j.energy.2024.134355_bib22 article-title: Membrane humidity control of proton exchange membrane fuel cell system using fractional-order PID strategy publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.121182 – volume: 211 year: 2023 ident: 10.1016/j.energy.2024.134355_bib45 article-title: Design of a nonlinear dynamic output feedback controller based on a fixed-time RBF disturbance observer for a PEMFC air supply system publication-title: Measurement doi: 10.1016/j.measurement.2023.112683 – volume: 10 start-page: 4342 year: 2023 ident: 10.1016/j.energy.2024.134355_bib13 article-title: Control strategy for the anode gas supply system in a proton exchange membrane fuel cell system publication-title: Energy Rep doi: 10.1016/j.egyr.2023.10.079 – volume: 61 start-page: 7353 year: 2022 ident: 10.1016/j.energy.2024.134355_bib35 article-title: Observer-based interval type-2 fuzzy PID controller for PEMFC air feeding system using novel hybrid neural network algorithm-differential evolution optimizer publication-title: Alex Eng J doi: 10.1016/j.aej.2021.12.072 – volume: 16 start-page: 228 year: 2022 ident: 10.1016/j.energy.2024.134355_bib21 article-title: Cascade control method of sliding mode and PID for PEMFC air supply system publication-title: Energies doi: 10.3390/en16010228 – volume: 269 year: 2020 ident: 10.1016/j.energy.2024.134355_bib20 article-title: Control logics and strategies for air supply in PEM fuel cell engines publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115059 – volume: 40 start-page: 11686 year: 2015 ident: 10.1016/j.energy.2024.134355_bib28 article-title: Feedforward fuzzy-PID control for air flow regulation of PEM fuel cell system publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.04.080 – volume: 40 start-page: 13806 year: 2015 ident: 10.1016/j.energy.2024.134355_bib29 article-title: An adaptive fuzzy logic controller (AFLC) for PEMFC fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.05.189 – volume: 2 start-page: 915 year: 2010 ident: 10.1016/j.energy.2024.134355_bib23 article-title: Prediction and control of air supply flow in PEMFC publication-title: International Conference on Measuring Technology and Mechatronics Automation doi: 10.1109/ICMTMA.2010.568 – volume: 37 start-page: 187 year: 2021 ident: 10.1016/j.energy.2024.134355_bib31 article-title: Self-tuning fuzzy logic PID controller with a practical view to PEM fuel cell air supply system publication-title: Int J Model Ident Control doi: 10.1504/IJMIC.2021.120202 – volume: 50 start-page: 1080 year: 2024 ident: 10.1016/j.energy.2024.134355_bib46 article-title: Optimized fuzzy proportional integral controller for improving output power stability of active hydrogen recovery 10-kW PEM fuel cell system publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.08.364 – volume: 12 start-page: 4316 year: 2022 ident: 10.1016/j.energy.2024.134355_bib33 article-title: Maximum power point tracking of PEMFC based on hybrid artificial bee colony algorithm with fuzzy control publication-title: Sci Rep doi: 10.1038/s41598-022-08327-5 – volume: 50 start-page: 1391 year: 2024 ident: 10.1016/j.energy.2024.134355_bib5 article-title: Flow characteristics analysis and performance evaluation of a novel rotary proton exchange membrane fuel cell publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.10.304 – volume: 128 year: 2022 ident: 10.1016/j.energy.2024.134355_bib11 article-title: Design and experimental verification of model-free adaptive sliding controller for air supply system of PEMFCs publication-title: Control Eng Pract doi: 10.1016/j.conengprac.2022.105336 – volume: 234 year: 2021 ident: 10.1016/j.energy.2024.134355_bib39 article-title: A novel strategy based on recent equilibrium optimizer to enhance the performance of PEM fuel cell system through optimized fuzzy logic MPPT publication-title: Energy doi: 10.1016/j.energy.2021.121267 – volume: 13 start-page: 697 year: 2002 ident: 10.1016/j.energy.2024.134355_bib41 article-title: Face recognition with radial basis function (RBF) neural networks publication-title: IEEE Trans Neural Network doi: 10.1109/TNN.2002.1000134 – volume: 42 start-page: 10435 year: 2017 ident: 10.1016/j.energy.2024.134355_bib27 article-title: Novel hybrid fuzzy-PID control scheme for air supply in PEM fuel-cell-based systems publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.01.014 – volume: 12 year: 2023 ident: 10.1016/j.energy.2024.134355_bib37 article-title: A novel feature susceptibility approach for a PEMFC control system based on an improved XGBoost-Boruta algorithm publication-title: Energy and AI doi: 10.1016/j.egyai.2023.100229 – volume: 52 start-page: 65 year: 2021 ident: 10.1016/j.energy.2024.134355_bib19 article-title: The dilemma of PID tuning publication-title: Annu Rev Control doi: 10.1016/j.arcontrol.2021.05.002 – volume: 48 start-page: 4371 year: 2023 ident: 10.1016/j.energy.2024.134355_bib1 article-title: An overview: current progress on hydrogen fuel cell vehicles publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.10.156 – volume: 46 start-page: 33899 year: 2021 ident: 10.1016/j.energy.2024.134355_bib32 article-title: Coordinated control of gas supply system in PEMFC based on multi-agent deep reinforcement learning publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.07.009 – volume: 304 year: 2024 ident: 10.1016/j.energy.2024.134355_bib6 article-title: Many-objective optimization for overall performance of an electric sport utility vehicle under multiple temperature conditions based on natural gradient boosting model publication-title: Energy doi: 10.1016/j.energy.2024.132078 – volume: 86 start-page: 823 year: 2024 ident: 10.1016/j.energy.2024.134355_bib9 article-title: Experimental investigation for the influence mechanism of air intake method and humidity level on performance of proton exchange membrane fuel cells publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2024.08.497 – volume: 249 year: 2021 ident: 10.1016/j.energy.2024.134355_bib17 article-title: Simulation study on the PEMFC oxygen starvation based on the coupling algorithm of model predictive control and PID publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.114851 – volume: 56 start-page: 5523 year: 2020 ident: 10.1016/j.energy.2024.134355_bib15 article-title: An unknown input nonlinear observer based fractional order PID control of fuel cell air supply system publication-title: IEEE Trans Ind Appl doi: 10.1109/TIA.2020.2999037 – volume: 35 start-page: 11291 year: 2010 ident: 10.1016/j.energy.2024.134355_bib42 article-title: Study of nonlinear control schemes for an automotive traction PEM fuel cell system publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.07.046 – volume: 61 start-page: 1015 year: 2024 ident: 10.1016/j.energy.2024.134355_bib7 article-title: Research on PEMFC cathode circulation under low-load conditions and its optimal control in FCV power system for long-term durability publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2024.02.254 – volume: 7 start-page: 1267 year: 2021 ident: 10.1016/j.energy.2024.134355_bib14 article-title: A new adaptive controller based on distributed deep reinforcement learning for PEMFC air supply system publication-title: Energy Rep doi: 10.1016/j.egyr.2021.02.043 – volume: 156 start-page: 57 year: 2006 ident: 10.1016/j.energy.2024.134355_bib25 article-title: Energy consumption reduction of a PEM fuel cell motor-compressor group thanks to efficient control laws publication-title: J Power Sources doi: 10.1016/j.jpowsour.2005.08.037 – volume: 47 start-page: 39943 year: 2022 ident: 10.1016/j.energy.2024.134355_bib3 article-title: Optimization of blocked flow field performance of proton exchange membrane fuel cell with auxiliary channels publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2022.09.143 – volume: 247 year: 2024 ident: 10.1016/j.energy.2024.134355_bib8 article-title: Experimental investigation of time-dependent electrical load effects through multipoints in-situ measurement of temperature and relative humidity of PEMFC bipolar plate under transient operation publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2024.123049 – volume: 8 start-page: 13409 year: 2022 ident: 10.1016/j.energy.2024.134355_bib40 article-title: Simulation of an electronic equipment control method based on an improved neural network algorithm publication-title: Energy Rep doi: 10.1016/j.egyr.2022.09.034 – volume: 224 year: 2020 ident: 10.1016/j.energy.2024.134355_bib36 article-title: Active disturbance rejection control strategy applied to cathode humidity control in PEMFC system publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.113389 – volume: 42 start-page: 11745 year: 2017 ident: 10.1016/j.energy.2024.134355_bib12 article-title: Sliding-mode-based temperature regulation of a proton exchange membrane fuel cell test bench publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.03.070 – volume: 5 start-page: 145 year: 2008 ident: 10.1016/j.energy.2024.134355_bib26 article-title: Intelligent control for improvements in PEM fuel cell flow performance publication-title: Int J Autom Comput doi: 10.1007/s11633-008-0145-5 – volume: 51 start-page: 15 year: 2018 ident: 10.1016/j.energy.2024.134355_bib24 article-title: Oxygen excess ratio control of PEM fuel cell based on self-adaptive fuzzy PID publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.10.004 – volume: 269 year: 2023 ident: 10.1016/j.energy.2024.134355_bib4 article-title: An energy management strategy for plug-in hybrid electric vehicles based on deep learning and improved model predictive control publication-title: Energy doi: 10.1016/j.energy.2023.126772 – volume: 50 start-page: 1080 year: 2024 ident: 10.1016/j.energy.2024.134355_bib30 article-title: Optimized fuzzy proportional integral controller for improving output power stability of active hydrogen recovery 10-kW PEM fuel cell system publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.08.364 |
| SSID | ssj0005899 |
| Score | 2.5338593 |
| Snippet | With the rapid development of hydrogen fuel cell technology, the requirements for test equipment are continually advancing. In this study, a test system for a... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 134355 |
| SubjectTerms | algorithms control methods energy FNN-PID algorithm Gas supply system hydrogen fuel cells PEMFC simulation models temperature Test verification |
| Title | A control method of proton exchange membrane fuel cell gas supply system based on fuzzy neural network proportion integration differentiation algorithm |
| URI | https://dx.doi.org/10.1016/j.energy.2024.134355 https://www.proquest.com/docview/3165881354 |
| Volume | 315 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcoALKoWKUqiMxNXdxJ_JcVW12oLoBSr1ZtmOXRZtk6rJSrSH_o3-XcZxDBQJVeIWbcbe1b7Jm3E0Mw-hD97IRtZekeBqQXhtOKkro4hnzrOioYVoYqPw51O5OOMfz8X5BjrMvTCxrHLi_sTpI1tPn8ymf3N2tVzOvgD3Qr7BY0wCJh57qTlXUcXg4O6PMo9q1JCMxiRa5_a5scbLj_11cEqk_KBkkDmIf4Wnv4h6jD7HW-j5lDbiefplL9CGb7fR09xV3G-jnaPfHWtgOD2y_Ut0P8dTOTpOatG4CzhOZ-ha7H-kvl-4cwmn5tbjsPYrHF_m4wvT4z5Kft7gNO0Zx4AHq1swur29wXESJnxTm-rI45YxlQeYcR5BEa-zAMuQXACb1UV3vRy-Xb5CZ8dHXw8XZFJjII6xeiAV47KxjefMySCdoEAPVjlLgy0DLSR1EOaEZIYpVgZrWFOLmlpnFaVWVZbtoM22a_1rhFWogqKiKsAtOGxlSq-MVw74Rprg-C5iGQTtplHlUTFjpXNN2nedoNMROp2g20Xk16qrNKrjEXuV8dUPXE5DNHlk5fvsDhqexogKQNSte81KyOiqkgn-5r9330PPaBQZLkpSirdoc7he-3eQ-Qx2f3TtffRkfvJpcfoTiIMIVA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUQPdBL1dKiQmnrSr2aTfwRJ0eEQNsWuBQkbpbt2HSrJUEkKwGH_o3-3c7ESb-kCqm3VXbsrPZN3oyjeTOEvA-2qIsqaBZ9pZisrGRVaTULwgeR1TxTNQqFT06L-bn8eKEu1sjBpIXBssqR-xOnD2w9XpmN_-bserGYfQbuhXxDYkwCJkYt9SOpuMYT2N633-o8ymGIJFozNJ_0c0ORVxgEdnBM5HIvF5A6qH_Fp7-Yegg_R0_JkzFvpPvppz0ja6HZJBuTrLjbJFuHvyRrYDg-s91z8n2fjvXoNI2Lpm2k2J6hbWi4TcJf-OYKjs1NoHEVlhTf5tNL29EOZ37e0dTumWLEg9UNGN3f31FshQl3alIhOW6JuTzgTKceFPh5msDSJx-gdnnZ3iz6L1cvyPnR4dnBnI3jGJgXoupZKWRRuzpI4YtYeMWBH5z2jkeXR54V3EOcU4WwQos8OivqSlXceac5d7p0YousN20TXhKqYxk1V2UGfiFhK5sHbYP2QDiFjV5uEzGBYPzYqxxHZizNVJT21SToDEJnEnTbhP1cdZ16dTxgryd8zR8-ZyCcPLDy3eQOBh5HRAUgaledETmkdGUulNz5793fko352cmxOf5w-ukVecxx4nCWs1ztkvX-ZhVeQxrUuzeDm_8AipoJ6Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+control+method+of+proton+exchange+membrane+fuel+cell+gas+supply+system+based+on+fuzzy+neural+network+proportion+integration+differentiation+algorithm&rft.jtitle=Energy+%28Oxford%29&rft.au=Fu%2C+Jianqin&rft.au=Qin%2C+Boquan&rft.au=Wu%2C+Yue&rft.au=He%2C+Tingpu&rft.date=2025-01-15&rft.issn=0360-5442&rft.volume=315&rft.spage=134355&rft_id=info:doi/10.1016%2Fj.energy.2024.134355&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2024_134355 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |