Wavelet-based 3-phase hybrid SVR model trained with satellite-derived predictors, particle swarm optimization and maximum overlap discrete wavelet transform for solar radiation prediction

The accurate prediction of global solar radiation (GSR) with remote sensing in metropolitan, regional and remote, yet solar-rich sites, is a core requisite for cleaner energy utilization, monitoring and conversion of renewable energy into usable power. Data-driven models that investigate the feasibi...

Full description

Saved in:
Bibliographic Details
Published inRenewable & sustainable energy reviews Vol. 113; p. 109247
Main Authors Ghimire, Sujan, Deo, Ravinesh C., Raj, Nawin, Mi, Jianchun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2019
Subjects
Online AccessGet full text
ISSN1364-0321
1879-0690
DOI10.1016/j.rser.2019.109247

Cover

Abstract The accurate prediction of global solar radiation (GSR) with remote sensing in metropolitan, regional and remote, yet solar-rich sites, is a core requisite for cleaner energy utilization, monitoring and conversion of renewable energy into usable power. Data-driven models that investigate the feasibility of solar-fueled energies, face challenges in respect to identifying their appropriate input data as such variables may not be available at all sites due to a lack of environmental monitoring system. In this paper, the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-derived predictors are employed to train three-phase hybrid SVR model for monthly GSR prediction. Firstly, to acquire relevant model input features, MODIS variables are screened with the Particle Swarm Optimization (PSO) algorithm, and secondly, a Gaussian emulation method of sensitivity analysis is incorporated on all screened variables to ascertain their relative role in predicting GSR. To address pertinent issues of non-stationarities, PSO selected variables are decomposed with Maximum Overlap Discrete Wavelet Transformation prior to its incorporation in Support Vector Regression (SVR), constructing a three-phase PSO-W-SVR hybrid model where the hyper-parameters are acquired by evolutionary (i.e., PSO & Genetic Algorithm) and Grid Search methods. Three-phase PSO-W-SVR hybrid model is benchmarked with alternative machine learning models. Thirty-nine model scenarios are formulated: 13 without feature selection (e.g., SVR), 13 with feature selection (e.g., PSO-SVR for two-phase models) and the remainder 13 with feature selection strategy coupled with data decomposition algorithm (e.g., PSO-W-SVR leading to a three-phase model). Metrics such as skill score (RMSESS), root mean square error (RMSE), mean absolute error (MAE), Willmott’s (WI), Legates & McCabe’s (E1) and Nash–Sutcliffe coefficients (ENS) are applied to comprehensively evaluate prescribed models. Empirical results register high performance of three-phase hybrid PSO-W-SVR models, exceeding the prescribed alternative models. High predictive ability evidenced by a low RRMSE and high E1 ascertains PSO-W-SVR hybrid model as considerably favorable in its capability to be enriched by MODIS satellite-derived variables. Maximum Overlap Discrete Wavelet Transform algorithm is also seen to provide resolved patterns in satellite variables, leading to a superior performance compared to the other data-driven model. The research avers that a three-phase hybrid PSO-W-SVR model can be a viable tool to predict GSR using satellite derived data as predictors, and is particularly useful for exploration of renewable energies where satellite footprint are present but regular environmental monitoring systems may be absent. [Display omitted] •SVR (predictive model), PSO (feature selection) and maximum overlap DWT (frequency resolution wavelet model) is integrated.•Three-phase PSO-W-SVR hybrid model is trained with satellite inputs for solar energy prediction.•Hybrid PSO-W-SVR outperforms all tested data-driven models.•Hybrid PSO-W-SVR model is a potential tool for long-term solar energy exploration.
AbstractList The accurate prediction of global solar radiation (GSR) with remote sensing in metropolitan, regional and remote, yet solar-rich sites, is a core requisite for cleaner energy utilization, monitoring and conversion of renewable energy into usable power. Data-driven models that investigate the feasibility of solar-fueled energies, face challenges in respect to identifying their appropriate input data as such variables may not be available at all sites due to a lack of environmental monitoring system. In this paper, the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-derived predictors are employed to train three-phase hybrid SVR model for monthly GSR prediction. Firstly, to acquire relevant model input features, MODIS variables are screened with the Particle Swarm Optimization (PSO) algorithm, and secondly, a Gaussian emulation method of sensitivity analysis is incorporated on all screened variables to ascertain their relative role in predicting GSR. To address pertinent issues of non-stationarities, PSO selected variables are decomposed with Maximum Overlap Discrete Wavelet Transformation prior to its incorporation in Support Vector Regression (SVR), constructing a three-phase PSO-W-SVR hybrid model where the hyper-parameters are acquired by evolutionary (i.e., PSO & Genetic Algorithm) and Grid Search methods. Three-phase PSO-W-SVR hybrid model is benchmarked with alternative machine learning models. Thirty-nine model scenarios are formulated: 13 without feature selection (e.g., SVR), 13 with feature selection (e.g., PSO-SVR for two-phase models) and the remainder 13 with feature selection strategy coupled with data decomposition algorithm (e.g., PSO-W-SVR leading to a three-phase model). Metrics such as skill score (RMSESS), root mean square error (RMSE), mean absolute error (MAE), Willmott’s (WI), Legates & McCabe’s (E1) and Nash–Sutcliffe coefficients (ENS) are applied to comprehensively evaluate prescribed models. Empirical results register high performance of three-phase hybrid PSO-W-SVR models, exceeding the prescribed alternative models. High predictive ability evidenced by a low RRMSE and high E1 ascertains PSO-W-SVR hybrid model as considerably favorable in its capability to be enriched by MODIS satellite-derived variables. Maximum Overlap Discrete Wavelet Transform algorithm is also seen to provide resolved patterns in satellite variables, leading to a superior performance compared to the other data-driven model. The research avers that a three-phase hybrid PSO-W-SVR model can be a viable tool to predict GSR using satellite derived data as predictors, and is particularly useful for exploration of renewable energies where satellite footprint are present but regular environmental monitoring systems may be absent. [Display omitted] •SVR (predictive model), PSO (feature selection) and maximum overlap DWT (frequency resolution wavelet model) is integrated.•Three-phase PSO-W-SVR hybrid model is trained with satellite inputs for solar energy prediction.•Hybrid PSO-W-SVR outperforms all tested data-driven models.•Hybrid PSO-W-SVR model is a potential tool for long-term solar energy exploration.
ArticleNumber 109247
Author Deo, Ravinesh C.
Mi, Jianchun
Ghimire, Sujan
Raj, Nawin
Author_xml – sequence: 1
  givenname: Sujan
  surname: Ghimire
  fullname: Ghimire, Sujan
  email: sujan.ghimire@usq.edu.au
  organization: School of Agricultural Computational and Environmental Sciences, Centre for Sustainable Agricultural Systems, Centre for Applied Climate Sciences, University of Southern Queensland, Springfield, QLD, 4300, Australia
– sequence: 2
  givenname: Ravinesh C.
  surname: Deo
  fullname: Deo, Ravinesh C.
  email: ravinesh.deo@usq.edu.au
  organization: School of Agricultural Computational and Environmental Sciences, Centre for Sustainable Agricultural Systems, Centre for Applied Climate Sciences, University of Southern Queensland, Springfield, QLD, 4300, Australia
– sequence: 3
  givenname: Nawin
  surname: Raj
  fullname: Raj, Nawin
  organization: School of Agricultural Computational and Environmental Sciences, Centre for Sustainable Agricultural Systems, Centre for Applied Climate Sciences, University of Southern Queensland, Springfield, QLD, 4300, Australia
– sequence: 4
  givenname: Jianchun
  surname: Mi
  fullname: Mi, Jianchun
  organization: Department of Energy & Resources Engineering, College of Engineering, Peking University, Beijing, China
BookMark eNp9kE2O1DAQhSM0SMwMXICVD0Aa_6STWGKDRjAgjYTE7zJy7LK6Wk4clU03w9W4HA6ZFYvZ2KV6_qr83lV1MccZquql4DvBRfv6uKMEtJNc6NLQsumeVJei73TNW80vSq3apuZKimfVVUpHzsW-79Rl9eeHOUGAXI8mgWOqXg6lYIf7kdCxL98_syk6CCyTwbk8OGM-sGQyhIAZageEp9JeCBzaHCm9YouhjDYAS2dDE4tLxgl_m4xxZmZ2bDK_cPpZhBNQMAtzmCxBBnbevrLumpOPhS0HSzEYYmQcbiMeVpXyefXUm5DgxcN9XX17_-7rzYf67tPtx5u3d7VVSue6G2Xvpe3aUcl941RnuTZWS8O5aqwffT8q0UOz93urhWz6FpS3rWy9kaCLeF3Jba6lmBKBHxbCydD9IPiwxj8chzX-YY1_2OIvUP8fZDH_c7BGGR5H32woFFMnLGqyCLMtvglsHlzEx_C_miSpWQ
CitedBy_id crossref_primary_10_1016_j_enconman_2020_112909
crossref_primary_10_2139_ssrn_4125018
crossref_primary_10_1016_j_engappai_2022_104860
crossref_primary_10_3390_en15166063
crossref_primary_10_1016_j_rser_2019_109393
crossref_primary_10_1016_j_eswa_2022_117690
crossref_primary_10_1007_s13369_021_05669_6
crossref_primary_10_1007_s40808_024_02282_y
crossref_primary_10_1016_j_dsp_2020_102741
crossref_primary_10_1016_j_measurement_2022_111759
crossref_primary_10_1016_j_enconman_2021_113960
crossref_primary_10_1016_j_energy_2021_121216
crossref_primary_10_1016_j_jhydrol_2020_125335
crossref_primary_10_1016_j_energy_2020_118374
crossref_primary_10_1088_2631_8695_ad4e07
crossref_primary_10_1016_j_physrep_2022_02_002
crossref_primary_10_3390_app13116662
crossref_primary_10_1038_s41598_022_13652_w
crossref_primary_10_1007_s13762_024_06210_6
crossref_primary_10_1016_j_energy_2021_119887
crossref_primary_10_3390_en15031061
crossref_primary_10_1016_j_egyr_2022_08_176
crossref_primary_10_3390_ani12233300
crossref_primary_10_4018_IJITSA_322411
crossref_primary_10_1140_epjp_s13360_021_02263_5
crossref_primary_10_1016_j_icheatmasstransfer_2024_107839
crossref_primary_10_1016_j_measurement_2023_113825
crossref_primary_10_1007_s00477_022_02188_0
crossref_primary_10_1109_ACCESS_2022_3153475
crossref_primary_10_1007_s12559_022_10070_y
crossref_primary_10_1007_s10098_022_02434_7
crossref_primary_10_1088_1748_9326_ab9467
crossref_primary_10_1111_sum_12772
crossref_primary_10_3390_su151411275
crossref_primary_10_3390_su142215298
crossref_primary_10_3390_en16031085
crossref_primary_10_3390_en17246222
crossref_primary_10_3390_math10234533
crossref_primary_10_1016_j_apenergy_2021_117211
crossref_primary_10_1109_LGRS_2024_3436042
crossref_primary_10_1016_j_oceaneng_2024_116814
crossref_primary_10_1016_j_susmat_2022_e00429
crossref_primary_10_1109_ACCESS_2024_3429073
crossref_primary_10_1007_s00170_023_12797_w
crossref_primary_10_1016_j_renene_2022_07_041
crossref_primary_10_1016_j_rser_2019_109570
crossref_primary_10_3390_en13092307
crossref_primary_10_1007_s12652_021_03639_2
crossref_primary_10_32604_cmc_2020_012537
crossref_primary_10_1016_j_rser_2019_109293
crossref_primary_10_1080_19942060_2021_1984992
crossref_primary_10_1007_s13369_022_06655_2
crossref_primary_10_1016_j_engappai_2023_106199
crossref_primary_10_1186_s10086_022_02068_9
crossref_primary_10_1016_j_aej_2024_08_037
crossref_primary_10_1016_j_apenergy_2022_119069
crossref_primary_10_1016_j_jenvman_2021_112438
crossref_primary_10_1016_j_egyr_2020_11_033
crossref_primary_10_1016_j_apenergy_2019_113541
crossref_primary_10_1016_j_ipm_2024_103953
crossref_primary_10_1007_s41365_020_0745_5
crossref_primary_10_1016_j_geodrs_2020_e00317
crossref_primary_10_1016_j_caeai_2024_100331
crossref_primary_10_4018_JGIM_293288
crossref_primary_10_1021_acs_iecr_4c03264
crossref_primary_10_1038_s41598_024_57398_z
crossref_primary_10_3390_rs12010181
crossref_primary_10_1016_j_apenergy_2021_117193
crossref_primary_10_1016_j_apenergy_2024_123920
crossref_primary_10_1016_j_enconman_2020_112582
crossref_primary_10_1016_j_engappai_2022_105172
crossref_primary_10_1080_15567036_2020_1801903
crossref_primary_10_1016_j_egyr_2023_09_097
crossref_primary_10_1007_s00024_024_03472_6
crossref_primary_10_2139_ssrn_4076358
Cites_doi 10.1016/j.chaos.2015.10.019
10.1016/j.ijheatmasstransfer.2015.01.017
10.1061/(ASCE)1084-0699(2000)5:2(124)
10.1016/j.jhydrol.2014.03.057
10.1016/j.renene.2012.10.009
10.1590/S0103-97332009000100002
10.1016/j.jhydrol.2013.09.025
10.1023/A:1010933404324
10.1016/j.apenergy.2016.01.130
10.1016/j.ijhydene.2017.06.042
10.1016/j.enconman.2016.03.082
10.1016/j.solener.2018.07.071
10.1016/j.knosys.2017.07.014
10.1016/j.renene.2017.09.078
10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
10.1016/j.renene.2010.06.024
10.1016/j.rser.2015.11.055
10.1016/j.apenergy.2017.09.100
10.1016/j.ijhydene.2017.04.044
10.1016/j.rse.2010.02.007
10.1016/j.rser.2017.01.114
10.1016/j.envint.2011.11.011
10.1016/j.eswa.2014.02.047
10.1016/j.atmosres.2017.06.014
10.1051/e3sconf/20186408001
10.1016/0022-1694(70)90255-6
10.1016/j.renene.2017.11.011
10.1016/j.solener.2017.10.035
10.1016/j.enconman.2014.12.050
10.1002/2013WR014650
10.1007/s13042-011-0019-y
10.1080/00401706.1970.10488634
10.1016/j.apm.2013.10.002
10.1016/j.renene.2017.12.024
10.1515/jaiscr-2015-0031
10.1162/neco.1997.9.8.1735
10.1016/j.rser.2014.07.108
10.1016/j.asoc.2015.03.036
10.1002/er.3030
10.1016/j.rser.2018.03.084
10.1007/s00477-016-1265-z
10.5194/gmd-7-1247-2014
10.1016/j.neucom.2016.05.103
10.1016/j.renene.2013.06.024
10.1016/j.enconman.2003.09.019
10.1016/j.jweia.2017.12.019
10.1016/j.jhydrol.2004.06.021
10.1016/j.asoc.2013.09.018
10.1016/j.oceaneng.2016.05.049
10.1016/j.solener.2015.03.015
10.1016/j.conengprac.2015.07.013
10.1016/j.ress.2005.11.025
10.1016/j.renene.2017.10.113
10.1016/j.rser.2015.07.156
10.1016/j.apenergy.2018.02.140
10.1016/j.bbe.2017.08.003
10.1016/j.enpol.2015.09.017
10.1016/j.ijhydene.2016.07.212
10.3390/w9070525
10.1016/j.apenergy.2017.10.076
10.1016/j.geoderma.2011.10.010
10.1016/j.rser.2019.01.009
10.1007/s10462-016-9497-3
10.1029/1998WR900018
10.1016/j.energy.2013.09.008
10.1016/j.jclepro.2019.01.158
10.1016/j.enconman.2013.06.034
10.1016/j.aei.2017.11.002
10.1016/j.jlp.2013.02.009
10.1016/S0968-090X(02)00009-8
10.1016/j.jastp.2017.02.002
10.1016/j.neunet.2016.12.002
10.1109/TEVC.2008.928176
10.1016/j.ecolind.2015.08.036
10.1007/s10661-016-5094-9
10.1016/j.rse.2018.05.003
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.rser.2019.109247
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0690
ExternalDocumentID 10_1016_j_rser_2019_109247
S1364032119304472
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SSZ
T5K
Y6R
ZCA
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c339t-7b28f2c76b3254d37c09ac92a0034cfbf8b318e45f5c912486e3fc626fa2e98b3
IEDL.DBID .~1
ISSN 1364-0321
IngestDate Wed Oct 29 21:09:14 EDT 2025
Thu Apr 24 22:51:35 EDT 2025
Fri Feb 23 02:32:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Support vector regression
Hybrid energy prediction model
Renewable energy exploration
MODIS satellite
Remote sensing
Maximum overlap discrete wavelet
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-7b28f2c76b3254d37c09ac92a0034cfbf8b318e45f5c912486e3fc626fa2e98b3
ParticipantIDs crossref_primary_10_1016_j_rser_2019_109247
crossref_citationtrail_10_1016_j_rser_2019_109247
elsevier_sciencedirect_doi_10_1016_j_rser_2019_109247
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Renewable & sustainable energy reviews
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hoerl, Kennard (bib58) 1970; 12
Yang, Zhang, Liu, Lu, Yang, Yang (bib96) 2016; 60
Quej, Almorox, Arnaldo, Saito (bib97) 2017; 155
Willmott (bib109) 1982; 63
Birol (bib2) 2017
Agency IE. World Energy Outlook 20182018.
Legates, McCabe (bib107) 1999; 35
Nash, Sutcliffe (bib110) 1970; 10
Zhu, Wang, Fan (bib27) 2014; 38
Zeng, Qiao (bib37) 2013; 52
Walsh, Munro, Spencer (bib16) 1983
Cheng, Shiu (bib68) 2014
Sun (bib54) 2009
Linares-Rodriguez, Ruiz-Arias, Pozo-Vazquez, Tovar-Pescador (bib18) 2013; 61
Mohanad, Ravinesh, Yan (bib39) 2018; 64
Yadav, Malik, Chandel (bib87) 2015; 52
Cohen, Tiplica, Kobi (bib102) 2016; 49
Chai, Draxler (bib105) 2014; 7
Dayal, Deo, Apan (bib8) 2017
Alfadda, Adhikari, Kuzlu, Rahman (bib25) 2017
Wen, Feng, Deo, Wu, Si (bib111) 2016; 48
Drisya, Asokan, Kumar (bib114) 2018; 119
Ramedani, Omid, Keyhani, Shamshirband, Khoshnevisan (bib35) 2014; 39
Gant, Kelsey, McNally, Witlox, Bilio (bib92) 2013; 26
Ghimire, Deo, Downs, Raj (bib4) 2018; 212
Bowden, Dandy, Maier (bib24) 2005; 301
Chen, Li, Wu (bib36) 2013; 75
Song, Dai (bib55) 2017; 134
Byrnes, Brown, Foster, Wagner (bib82) 2013; 60
Breiman (bib52) 2001; 45
Hu, Yan, Liu, Wang (bib67) 2015
Smith, Williams, Oswald (bib63) 2002; 10
Sui, He, Li (bib75) 2014
Kim, Kim, Jang, Lee (bib118) 2017; 87
The Climate Institute (bib85) 2017
Williams, Nitschke, Weinstein, Pisaniello, Parton, Bi (bib79) 2012; 40
Penney, Ball, Hitchins (bib81) 2012
Ghimire, Deo, Downs, Raj (bib10) 2019; 216
Rathinasamy, Khosa, Adamowski, Partheepan, Anand, Narsimlu (bib73) 2014; 50
Tayal, Rauland (bib84) 2017; 19
Aghdam, Heidari (bib72) 2015; 5
Havas, Ballweg, Penna, Race (bib78) 2015; 87
Deo, Ghorbani, Samadianfard, Maraseni, Bilgili, Biazar (bib44) 2018; 116
Deo, Wen, Qi (bib15) 2016; 168
(bib106) 2000; 5
Rezakazemi, Dashti, Asghari, Shirazian (bib56) 2017; 42
Bouzgou, Gueymard (bib6) 2017; 158
Prasad, Deo, Li, Maraseni (bib30) 2017; 197
Deo, Sahin, Adamowski, Jianchun (bib21) 2019; 104
Jinlian, Yufen, Jiaxuan (bib47) 2017
O'Hagan (bib91) 2006; 91
Soufi, Bechouat, Kahla (bib13) 2017; 42
Chen, Ersi, Yang, Lu, Zhao (bib42) 2004; 45
Çakıt, Karwowski (bib45) 2017; 48
Deo, Wen, Qi (bib32) 2016; 168
Hsu, Chang, Lin (bib66) 2003
Deo, Ghimire, Downs, Raj (bib9) 2018
Salcedo-Sanz, Deo, Cornejo-Bueno, Camacho-Gómez, Ghimire (bib19) 2018; 209
Eseye, Zhang, Zheng (bib101) 2017; 118
Rasmussen, Williams (bib49) 2006
Goyal, Bharti, Quilty, Adamowski, Pandey (bib64) 2014; 41
Deo, Wen, Feng (bib62) 2016; 168
Willcock, Che, McCluskey (bib80) 2013
Olatomiwa, Mekhilef, Shamshirband, Mohammadi, Petković, Sudheer (bib34) 2015; 115
Yu, Chen, Wang, Lai (bib48) 2009; 13
Percival, Walden (bib74) 2006
Sui, He, Li (bib77) 2014
Hochreiter, Schmidhuber (bib116) 1997; 9
Deo, Tiwari, Adamowski, Quilty (bib98) 2017; 31
Cristianini, Shawe-Taylor (bib51) 2000
Şahin, Kaya, Uyar, Yıldırım (bib17) 2014; 38
Tian, Pan (bib117) 2015
Belaid, Mellit (bib41) 2016; 118
Ahila, Sadasivam, Manimala (bib112) 2015; 32
Kennedy, Eberhart (bib70) 1995
UN (bib3) 2015
Bisht, Bras (bib22) 2010; 114
(bib76) 2000
Shamshirband, Mohammadi, Khorasanizadeh, Yee, Lee, Petković (bib33) 2016; 56
Wan (bib86) 1999
Al-Musaylh, Deo, Adamowski, Li (bib40) 2018; 35
Deo, Şahin (bib94) 2016; 188
Peng, Ling (bib93) 2015; 84
Deo, Sahin (bib20) 2017; 72
Bolzan, Guarnieri, Vieira (bib103) 2009; 39
Hussain, AlAlili (bib99) 2017; 208
Jothimani, Shankar, Yadav (bib28) 2016
Fentis, Bahatti, Mestari, Chouri (bib14) 2017
Sreekumar, Sharma, Bhakar (bib53) 2016
Mohammadi, Shamshirband, Tong, Arif, Petković, Ch (bib65) 2015; 92
Ließ, Glaser, Huwe (bib95) 2012; 170
Willmott (bib108) 1984
Ajay, Dixon, Sowmya, Soman (bib61) 2016
Huang, Wang, Lan (bib46) 2011; 2
Qi, Zhou, Sun, Song, Hu, Wang (bib23) 2017; 220
Salcedo-Sanz, Deo, Cornejo-Bueno, Camacho-Gómez, Ghimire (bib5) 2018; 209
Seo, Choi, Choi (bib104) 2017; 9
Duan, Han, Huang, Zhao, Wang (bib59) 2016; 124
Zhu, Zhou, Feng, Hu, Yuan (bib26) 2017; 42
Liu, Wang (bib60) 2016; 89
Rathinasamy, Adamowski, Khosa (bib29) 2013; 507
Strohmann, Grudic (bib50) 2003
Ahmad (bib71) 2015; 11
Jiang, Huang, Peng, Li, Yang (bib113) 2018; 174
Xue, Zhang, Browne (bib69) 2014; 18
Kennedy (bib90) 2005
Verbois, Rusydi, Thiery (bib11) 2018; 173
Chaudhary, Rizwan (bib100) 2017; 118
Li, Chen, Zhang (bib31) 2017; 37
Zahedi (bib83) 2016
Deo, Tiwari, Adamowski, Quilty (bib89) 2017; 31
Sarikprueck, Lee, Kulvanitchaiyanunt, Chen, Rosenberger (bib7) 2017
Nourani, Baghanam, Adamowski, Kisi (bib115) 2014; 514
Ayvazoğluyüksel, Filik (bib12) 2018; 91
Chen, Liu, Wu, Xie (bib38) 2011; 36
Dinggui, Xuejun, Qing (bib88) 2004; 40
Al-Musaylh, Deo, Adamowski, Li (bib43) 2018; 17
Vapnik (bib57) 1995
Smith (10.1016/j.rser.2019.109247_bib63) 2002; 10
Fentis (10.1016/j.rser.2019.109247_bib14) 2017
Sui (10.1016/j.rser.2019.109247_bib77) 2014
Rezakazemi (10.1016/j.rser.2019.109247_bib56) 2017; 42
Ayvazoğluyüksel (10.1016/j.rser.2019.109247_bib12) 2018; 91
Prasad (10.1016/j.rser.2019.109247_bib30) 2017; 197
Byrnes (10.1016/j.rser.2019.109247_bib82) 2013; 60
Ghimire (10.1016/j.rser.2019.109247_bib10) 2019; 216
Ghimire (10.1016/j.rser.2019.109247_bib4) 2018; 212
Tayal (10.1016/j.rser.2019.109247_bib84) 2017; 19
Al-Musaylh (10.1016/j.rser.2019.109247_bib43) 2018; 17
Sarikprueck (10.1016/j.rser.2019.109247_bib7) 2017
Huang (10.1016/j.rser.2019.109247_bib46) 2011; 2
Eseye (10.1016/j.rser.2019.109247_bib101) 2017; 118
Tian (10.1016/j.rser.2019.109247_bib117) 2015
Hsu (10.1016/j.rser.2019.109247_bib66) 2003
Shamshirband (10.1016/j.rser.2019.109247_bib33) 2016; 56
Ahila (10.1016/j.rser.2019.109247_bib112) 2015; 32
Williams (10.1016/j.rser.2019.109247_bib79) 2012; 40
UN (10.1016/j.rser.2019.109247_bib3) 2015
Belaid (10.1016/j.rser.2019.109247_bib41) 2016; 118
Qi (10.1016/j.rser.2019.109247_bib23) 2017; 220
Zeng (10.1016/j.rser.2019.109247_bib37) 2013; 52
Breiman (10.1016/j.rser.2019.109247_bib52) 2001; 45
Mohammadi (10.1016/j.rser.2019.109247_bib65) 2015; 92
Drisya (10.1016/j.rser.2019.109247_bib114) 2018; 119
Ajay (10.1016/j.rser.2019.109247_bib61) 2016
Chen (10.1016/j.rser.2019.109247_bib42) 2004; 45
Dinggui (10.1016/j.rser.2019.109247_bib88) 2004; 40
Zhu (10.1016/j.rser.2019.109247_bib26) 2017; 42
Kennedy (10.1016/j.rser.2019.109247_bib70) 1995
Peng (10.1016/j.rser.2019.109247_bib93) 2015; 84
Sun (10.1016/j.rser.2019.109247_bib54) 2009
Bisht (10.1016/j.rser.2019.109247_bib22) 2010; 114
Sreekumar (10.1016/j.rser.2019.109247_bib53) 2016
Zhu (10.1016/j.rser.2019.109247_bib27) 2014; 38
Birol (10.1016/j.rser.2019.109247_bib2) 2017
Dayal (10.1016/j.rser.2019.109247_bib8) 2017
Chen (10.1016/j.rser.2019.109247_bib36) 2013; 75
Song (10.1016/j.rser.2019.109247_bib55) 2017; 134
Ramedani (10.1016/j.rser.2019.109247_bib35) 2014; 39
Quej (10.1016/j.rser.2019.109247_bib97) 2017; 155
Bowden (10.1016/j.rser.2019.109247_bib24) 2005; 301
Yu (10.1016/j.rser.2019.109247_bib48) 2009; 13
Ahmad (10.1016/j.rser.2019.109247_bib71) 2015; 11
Havas (10.1016/j.rser.2019.109247_bib78) 2015; 87
10.1016/j.rser.2019.109247_bib1
Verbois (10.1016/j.rser.2019.109247_bib11) 2018; 173
Willcock (10.1016/j.rser.2019.109247_bib80) 2013
Linares-Rodriguez (10.1016/j.rser.2019.109247_bib18) 2013; 61
Rathinasamy (10.1016/j.rser.2019.109247_bib29) 2013; 507
Xue (10.1016/j.rser.2019.109247_bib69) 2014; 18
Walsh (10.1016/j.rser.2019.109247_bib16) 1983
Bouzgou (10.1016/j.rser.2019.109247_bib6) 2017; 158
Percival (10.1016/j.rser.2019.109247_bib74) 2006
Ließ (10.1016/j.rser.2019.109247_bib95) 2012; 170
Cheng (10.1016/j.rser.2019.109247_bib68) 2014
Aghdam (10.1016/j.rser.2019.109247_bib72) 2015; 5
Şahin (10.1016/j.rser.2019.109247_bib17) 2014; 38
Hu (10.1016/j.rser.2019.109247_bib67) 2015
Jothimani (10.1016/j.rser.2019.109247_bib28) 2016
(10.1016/j.rser.2019.109247_bib106) 2000; 5
Salcedo-Sanz (10.1016/j.rser.2019.109247_bib5) 2018; 209
Hussain (10.1016/j.rser.2019.109247_bib99) 2017; 208
Hoerl (10.1016/j.rser.2019.109247_bib58) 1970; 12
The Climate Institute (10.1016/j.rser.2019.109247_bib85) 2017
Li (10.1016/j.rser.2019.109247_bib31) 2017; 37
Deo (10.1016/j.rser.2019.109247_bib44) 2018; 116
Duan (10.1016/j.rser.2019.109247_bib59) 2016; 124
Cohen (10.1016/j.rser.2019.109247_bib102) 2016; 49
Deo (10.1016/j.rser.2019.109247_bib94) 2016; 188
Goyal (10.1016/j.rser.2019.109247_bib64) 2014; 41
Seo (10.1016/j.rser.2019.109247_bib104) 2017; 9
Yang (10.1016/j.rser.2019.109247_bib96) 2016; 60
Deo (10.1016/j.rser.2019.109247_bib89) 2017; 31
Willmott (10.1016/j.rser.2019.109247_bib108) 1984
Al-Musaylh (10.1016/j.rser.2019.109247_bib40) 2018; 35
Kim (10.1016/j.rser.2019.109247_bib118) 2017; 87
Soufi (10.1016/j.rser.2019.109247_bib13) 2017; 42
Alfadda (10.1016/j.rser.2019.109247_bib25) 2017
Wan (10.1016/j.rser.2019.109247_bib86) 1999
Wen (10.1016/j.rser.2019.109247_bib111) 2016; 48
Gant (10.1016/j.rser.2019.109247_bib92) 2013; 26
Deo (10.1016/j.rser.2019.109247_bib98) 2017; 31
Jinlian (10.1016/j.rser.2019.109247_bib47) 2017
Zahedi (10.1016/j.rser.2019.109247_bib83) 2016
Salcedo-Sanz (10.1016/j.rser.2019.109247_bib19) 2018; 209
Kennedy (10.1016/j.rser.2019.109247_bib90) 2005
Çakıt (10.1016/j.rser.2019.109247_bib45) 2017; 48
Legates (10.1016/j.rser.2019.109247_bib107) 1999; 35
Olatomiwa (10.1016/j.rser.2019.109247_bib34) 2015; 115
Penney (10.1016/j.rser.2019.109247_bib81) 2012
Sui (10.1016/j.rser.2019.109247_bib75) 2014
Hochreiter (10.1016/j.rser.2019.109247_bib116) 1997; 9
Willmott (10.1016/j.rser.2019.109247_bib109) 1982; 63
Mohanad (10.1016/j.rser.2019.109247_bib39) 2018; 64
Nourani (10.1016/j.rser.2019.109247_bib115) 2014; 514
Nash (10.1016/j.rser.2019.109247_bib110) 1970; 10
O'Hagan (10.1016/j.rser.2019.109247_bib91) 2006; 91
Deo (10.1016/j.rser.2019.109247_bib20) 2017; 72
Rathinasamy (10.1016/j.rser.2019.109247_bib73) 2014; 50
Liu (10.1016/j.rser.2019.109247_bib60) 2016; 89
Vapnik (10.1016/j.rser.2019.109247_bib57) 1995
Jiang (10.1016/j.rser.2019.109247_bib113) 2018; 174
Rasmussen (10.1016/j.rser.2019.109247_bib49) 2006
Deo (10.1016/j.rser.2019.109247_bib32) 2016; 168
(10.1016/j.rser.2019.109247_bib76) 2000
Deo (10.1016/j.rser.2019.109247_bib15) 2016; 168
Strohmann (10.1016/j.rser.2019.109247_bib50) 2003
Yadav (10.1016/j.rser.2019.109247_bib87) 2015; 52
Deo (10.1016/j.rser.2019.109247_bib9) 2018
Cristianini (10.1016/j.rser.2019.109247_bib51) 2000
Deo (10.1016/j.rser.2019.109247_bib62) 2016; 168
Chen (10.1016/j.rser.2019.109247_bib38) 2011; 36
Deo (10.1016/j.rser.2019.109247_bib21) 2019; 104
Chaudhary (10.1016/j.rser.2019.109247_bib100) 2017; 118
Bolzan (10.1016/j.rser.2019.109247_bib103) 2009; 39
Chai (10.1016/j.rser.2019.109247_bib105) 2014; 7
References_xml – volume: 9
  start-page: 525
  year: 2017
  ident: bib104
  article-title: River stage modeling by combining maximal overlap discrete wavelet transform, support vector machines and genetic algorithm
  publication-title: Water
– volume: 104
  start-page: 235
  year: 2019
  end-page: 261
  ident: bib21
  article-title: Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: a new approach
  publication-title: Renew Sustain Energy Rev
– start-page: 1929
  year: 2016
  end-page: 1932
  ident: bib53
  article-title: Optimized Support Vector Regression models for short term solar radiation forecasting in smart environment
  publication-title: 2016 IEEE Region 10 Conference (TENCON)
– volume: 31
  start-page: 1211
  year: 2017
  end-page: 1240
  ident: bib89
  article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model
  publication-title: Stoch Environ Res Risk Assess
– volume: 301
  start-page: 75
  year: 2005
  end-page: 92
  ident: bib24
  article-title: Input determination for neural network models in water resources applications. Part 1—background and methodology
  publication-title: J Hydrol
– volume: 64
  year: 2018
  ident: bib39
  article-title: Particle swarm optimized–support vector regression hybrid model for daily horizon electricity demand forecasting using climate dataset
  publication-title: E3S Web Conf
– volume: 12
  start-page: 55
  year: 1970
  end-page: 67
  ident: bib58
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Technometrics
– volume: 49
  start-page: 129
  year: 2016
  end-page: 138
  ident: bib102
  article-title: Design of experiments and statistical process control using wavelets analysis
  publication-title: Contr Eng Pract
– volume: 92
  start-page: 162
  year: 2015
  end-page: 171
  ident: bib65
  article-title: A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation
  publication-title: Energy Convers Manag
– volume: 188
  start-page: 90
  year: 2016
  ident: bib94
  article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland
  publication-title: Environ Monit Assess
– volume: 75
  start-page: 311
  year: 2013
  end-page: 318
  ident: bib36
  article-title: Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration
  publication-title: Energy Convers Manag
– volume: 124
  start-page: 54
  year: 2016
  end-page: 73
  ident: bib59
  article-title: A hybrid EMD-SVR model for the short-term prediction of significant wave height
  publication-title: Ocean Eng
– start-page: 443
  year: 1984
  end-page: 460
  ident: bib108
  article-title: On the evaluation of model performance in physical geography
  publication-title: Spatial statistics and models
– volume: 118
  start-page: 928
  year: 2017
  end-page: 946
  ident: bib100
  article-title: Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system
  publication-title: Renew Energy
– volume: 48
  year: 2016
  ident: bib111
  article-title: Wavelet analysis–artificial neural network conjunction models for multi-scale monthly groundwater level predicting in an arid inland river basin, northwestern China
  publication-title: Nord Hydrol
– volume: 31
  start-page: 1211
  year: 2017
  end-page: 1240
  ident: bib98
  article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model
  publication-title: Stoch Environ Res Risk Assess
– volume: 220
  start-page: 181
  year: 2017
  end-page: 190
  ident: bib23
  article-title: Feature selection and multiple kernel boosting framework based on PSO with mutation mechanism for hyperspectral classification
  publication-title: Neurocomputing
– volume: 91
  start-page: 1290
  year: 2006
  end-page: 1300
  ident: bib91
  article-title: Bayesian analysis of computer code outputs: a tutorial
  publication-title: Reliab Eng Syst Saf
– volume: 208
  start-page: 540
  year: 2017
  end-page: 550
  ident: bib99
  article-title: A hybrid solar radiation modeling approach using wavelet multiresolution analysis and artificial neural networks
  publication-title: Appl Energy
– volume: 209
  start-page: 79
  year: 2018
  end-page: 94
  ident: bib5
  article-title: An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia
  publication-title: Appl Energy
– year: 2006
  ident: bib49
  article-title: Gaussian Processes for Machine Learning
– volume: 10
  start-page: 303
  year: 2002
  end-page: 321
  ident: bib63
  article-title: Comparison of parametric and nonparametric models for traffic flow forecasting
  publication-title: Transport Res C Emerg Technol
– volume: 168
  start-page: 568
  year: 2016
  end-page: 593
  ident: bib62
  article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset
  publication-title: Appl Energy
– volume: 37
  start-page: 679
  year: 2017
  end-page: 689
  ident: bib31
  article-title: Application of MODWT and log-normal distribution model for automatic epilepsy identification
  publication-title: Biocybernetics Biomed. Eng.
– volume: 18
  start-page: 261
  year: 2014
  end-page: 276
  ident: bib69
  article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms
  publication-title: Appl Soft Comput
– volume: 87
  start-page: 109
  year: 2017
  end-page: 121
  ident: bib118
  article-title: Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection
  publication-title: Neural Network
– volume: 216
  start-page: 288
  year: 2019
  end-page: 310
  ident: bib10
  article-title: Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cites of queensland Australia
  publication-title: J Clean Prod
– volume: 50
  start-page: 9721
  year: 2014
  end-page: 9737
  ident: bib73
  article-title: Wavelet‐based multiscale performance analysis: an approach to assess and improve hydrological models
  publication-title: Water Resour Res
– year: 2016
  ident: bib28
  article-title: Discrete wavelet transform-based prediction of stock index: a study on National Stock Exchange Fifty index
– volume: 5
  start-page: 124
  year: 2000
  end-page: 137
  ident: bib106
  article-title: ASCE. Artificial neural networks in hydrology. II: hydrologic applications
  publication-title: J Hydrol Eng
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib52
  article-title: Random forests
  publication-title: Mach Learn
– volume: 19
  start-page: 59
  year: 2017
  end-page: 69
  ident: bib84
  article-title: Future business models for Western Australian electricity utilities
  publication-title: Sustain Energy Technol Assess
– volume: 38
  start-page: 1859
  year: 2014
  end-page: 1865
  ident: bib27
  article-title: MODWT-ARMA model for time series prediction
  publication-title: Appl Math Model
– volume: 32
  start-page: 23
  year: 2015
  end-page: 37
  ident: bib112
  article-title: An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances
  publication-title: Appl Soft Comput
– volume: 118
  start-page: 105
  year: 2016
  end-page: 118
  ident: bib41
  article-title: Prediction of daily and mean monthly global solar radiation using support vector machine in an arid climate
  publication-title: Energy Convers Manag
– volume: 13
  start-page: 87
  year: 2009
  end-page: 102
  ident: bib48
  article-title: Evolving least squares support vector machines for stock market trend mining
  publication-title: IEEE Trans Evol Comput
– volume: 155
  start-page: 62
  year: 2017
  end-page: 70
  ident: bib97
  article-title: ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment
  publication-title: J Atmos Sol Terr Phys
– start-page: 153
  year: 2015
  end-page: 158
  ident: bib117
  article-title: Predicting short-term traffic flow by long short-term memory recurrent neural network
  publication-title: Smart City/SocialCom/SustainCom (SmartCity), 2015 IEEE International Conference on
– volume: 40
  start-page: 33
  year: 2012
  end-page: 38
  ident: bib79
  article-title: The impact of summer temperatures and heatwaves on mortality and morbidity in Perth, Australia 1994–2008
  publication-title: Environ Int
– volume: 197
  start-page: 42
  year: 2017
  end-page: 63
  ident: bib30
  article-title: Input selection and performance optimization of ANN-based streamflow forecasts in a drought-prone Murray Darling Basin using IIS and MODWT algorithm
  publication-title: Atmos Res
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib116
  article-title: Long short-term memory
  publication-title: Neural Comput
– volume: 60
  start-page: 711
  year: 2013
  end-page: 721
  ident: bib82
  article-title: Australian renewable energy policy: barriers and challenges
  publication-title: Renew Energy
– start-page: 177
  year: 2017
  end-page: 198
  ident: bib8
  article-title: Drought modelling based on artificial intelligence and neural network algorithms: a case study in Queensland, Australia. Climate Change Adaptation in Pacific Countries
– start-page: 1135
  year: 2014
  end-page: 1140
  ident: bib75
  article-title: Research on the tail risk spillover between shanghai and shenzhen stock markets based on MODWT and time-varying Clayton Copula
  publication-title: Management Science & Engineering (ICMSE), 2014 International Conference on
– volume: 158
  start-page: 595
  year: 2017
  end-page: 609
  ident: bib6
  article-title: Minimum redundancy – maximum relevance with extreme learning machines for global solar radiation forecasting: toward an optimized dimensionality reduction for solar time series
  publication-title: Sol Energy
– volume: 115
  start-page: 632
  year: 2015
  end-page: 644
  ident: bib34
  article-title: A support vector machine–firefly algorithm-based model for global solar radiation prediction
  publication-title: Sol Energy
– volume: 11
  start-page: 806954
  year: 2015
  ident: bib71
  article-title: Feature selection using particle swarm optimization in intrusion detection
  publication-title: Int J Distributed Sens Netw
– volume: 134
  start-page: 31
  year: 2017
  end-page: 49
  ident: bib55
  article-title: A novel double deep ELMs ensemble system for time series forecasting
  publication-title: Knowl Based Syst
– volume: 89
  start-page: 153
  year: 2016
  end-page: 159
  ident: bib60
  article-title: Study on network traffic forecast model of SVR optimized by GAFSA
  publication-title: Chaos, Solit Fractals
– year: 2005
  ident: bib90
  article-title: GEM-SA, Version 1.1. Software: Gaussian Emulation Machine for Sensitivity Analysis
– volume: 39
  start-page: 12
  year: 2009
  end-page: 17
  ident: bib103
  article-title: Comparisons between two wavelet functions in extracting coherent structures from solar wind time series
  publication-title: Braz J Phys
– start-page: 1
  year: 2017
  ident: bib7
  article-title: Bounds for optimal control of a regional plug-in electric vehicle charging station system
  publication-title: IEEE Trans Ind Appl
– year: 2012
  ident: bib81
  article-title: Bureau of Resources and Energy Economics, Energy in Australia
– volume: 5
  start-page: 231
  year: 2015
  end-page: 238
  ident: bib72
  article-title: Feature selection using particle swarm optimization in text categorization
  publication-title: J Artif Intell Soft Comput Res
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  ident: bib110
  article-title: River flow forecasting through conceptual models part I—a discussion of principles
  publication-title: J Hydrol
– volume: 17
  start-page: 422
  year: 2018
  end-page: 439
  ident: bib43
  article-title: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting
  publication-title: Appl Energy
– volume: 39
  start-page: 1005
  year: 2014
  end-page: 1011
  ident: bib35
  article-title: Potential of radial basis function based support vector regression for global solar radiation prediction
  publication-title: Renew Sustain Energy Rev
– start-page: 321
  year: 2009
  end-page: 324
  ident: bib54
  article-title: Modelling of chaotic time series using minimax probability machine regression
  publication-title: 2009 WRI International Conference on Communications and Mobile Computing
– start-page: 0396
  year: 2016
  end-page: 0401
  ident: bib61
  article-title: Aerial image classification using GURLS and LIBSVM. 2016 International Conference on Communication and Signal Processing
– volume: 35
  start-page: 233
  year: 1999
  end-page: 241
  ident: bib107
  article-title: Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resour Res
– volume: 52
  start-page: 118
  year: 2013
  end-page: 127
  ident: bib37
  article-title: Short-term solar power prediction using a support vector machine
  publication-title: Renew Energy
– start-page: 1
  year: 2016
  end-page: 4
  ident: bib83
  article-title: Solar PV for Australian tropical region; the most affordable and an appropriate power supply option
– volume: 168
  start-page: 568
  year: 2016
  end-page: 593
  ident: bib15
  article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset
  publication-title: Appl Energy
– volume: 168
  start-page: 568
  year: 2016
  end-page: 593
  ident: bib32
  article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset
  publication-title: Appl Energy
– reference: Agency IE. World Energy Outlook 20182018.
– volume: 507
  start-page: 186
  year: 2013
  end-page: 200
  ident: bib29
  article-title: Multiscale streamflow forecasting using a new Bayesian model average based ensemble multi-wavelet Volterra nonlinear method
  publication-title: J Hydrol
– year: 1995
  ident: bib57
  publication-title: The nature of statistical learning theory
– year: 2006
  ident: bib74
  article-title: Wavelet methods for time series analysis
– year: 2000
  ident: bib51
  article-title: An introduction to support vector machines and other kernel-based learning methods
– volume: 48
  start-page: 139
  year: 2017
  end-page: 155
  ident: bib45
  article-title: Predicting the occurrence of adverse events using an adaptive neuro-fuzzy inference system (ANFIS) approach with the help of ANFIS input selection
  publication-title: Artif Intell Rev
– volume: 42
  start-page: 15211
  year: 2017
  end-page: 15225
  ident: bib56
  article-title: H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS
  publication-title: Int J Hydrogen Energy
– start-page: 785
  year: 2003
  end-page: 792
  ident: bib50
  article-title: A formulation for minimax probability machine regression
  publication-title: Adv Neural Inf Process Syst
– volume: 42
  start-page: 8680
  year: 2017
  end-page: 8688
  ident: bib13
  article-title: Fuzzy-PSO controller design for maximum power point tracking in photovoltaic system
  publication-title: Int J Hydrogen Energy
– volume: 45
  start-page: 1759
  year: 2004
  end-page: 1769
  ident: bib42
  article-title: Validation of five global radiation models with measured daily data in China
  publication-title: Energy Convers Manag
– year: 2017
  ident: bib2
  article-title: Key World Energy Statistics 2017
– year: 1983
  ident: bib16
  article-title: An Australian climatic data bank for use in the estimation of building energy use
– volume: 36
  start-page: 413
  year: 2011
  end-page: 420
  ident: bib38
  article-title: Estimation of monthly solar radiation from measured temperatures using support vector machines–a case study
  publication-title: Renew Energy
– year: 2015
  ident: bib3
  article-title: Resolution adopted by the General Assembly on 25 September 2015. 70/1. Transforming our world: the 2030 Agenda for Sustainable Development
– volume: 514
  start-page: 358
  year: 2014
  end-page: 377
  ident: bib115
  article-title: Applications of hybrid wavelet–Artificial Intelligence models in hydrology: a review
  publication-title: J Hydrol
– start-page: 405
  year: 2017
  end-page: 408
  ident: bib14
  article-title: Short-term solar power forecasting using Support Vector Regression and feed-forward NN
  publication-title: 2017 15th IEEE International New Circuits and Systems Conference
– volume: 119
  start-page: 540
  year: 2018
  end-page: 550
  ident: bib114
  article-title: Diverse dynamical characteristics across the frequency spectrum of wind speed fluctuations
  publication-title: Renew Energy
– volume: 116
  start-page: 309
  year: 2018
  end-page: 323
  ident: bib44
  article-title: Multi-layer perceptron hybrid model integrated with the firefly optimizer algorithm for windspeed prediction of target site using a limited set of neighboring reference station data
  publication-title: Renew Energy
– start-page: 553
  year: 2015
  end-page: 561
  ident: bib67
  article-title: PSO-SVR: a hybrid short-term traffic flow forecasting method
  publication-title: 2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS)
– volume: 40
  start-page: 296
  year: 2004
  end-page: 302
  ident: bib88
  article-title: The application of ANN realized by MATLAB to underground water quality assessment
  publication-title: Acta Sci Nauralium Univ Pekin
– start-page: 395
  year: 2014
  end-page: 399
  ident: bib68
  article-title: A novel GA-SVR time series model based on selected indicators method for forecasting stock price
  publication-title: 2014 International Conference on Information Science, Electronics and Electrical Engineering
– volume: 52
  start-page: 1093
  year: 2015
  end-page: 1106
  ident: bib87
  article-title: Application of rapid miner in ANN based prediction of solar radiation for assessment of solar energy resource potential of 76 sites in Northwestern India
  publication-title: Renew Sustain Energy Rev
– volume: 26
  start-page: 792
  year: 2013
  end-page: 802
  ident: bib92
  article-title: Methodology for global sensitivity analysis of consequence models
  publication-title: J Loss Prev Process Ind
– volume: 2
  start-page: 107
  year: 2011
  end-page: 122
  ident: bib46
  article-title: Extreme learning machines: a survey
  publication-title: Int J Mach Learn Cybern
– volume: 91
  start-page: 639
  year: 2018
  end-page: 653
  ident: bib12
  article-title: Estimation methods of global solar radiation, cell temperature and solar power forecasting: a review and case study in Eskişehir
  publication-title: Renew Sustain Energy Rev
– volume: 114
  start-page: 1522
  year: 2010
  end-page: 1534
  ident: bib22
  article-title: Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study
  publication-title: Remote Sens Environ
– volume: 42
  start-page: 19389
  year: 2017
  end-page: 19394
  ident: bib26
  article-title: Influences of solar energy on the energy efficiency design index for new building ships
  publication-title: Int J Hydrogen Energy
– year: 1995
  ident: bib70
  article-title: Particle swarm optimization [a] proceedings of the ieee international conference on neural networks [c] piscataway
– start-page: 159
  year: 2000
  end-page: 205
  ident: bib76
  article-title: The maximal overlap discrete wavelet transform
  publication-title: Wavelet Methods for Time Series Analysis
– start-page: 1135
  year: 2014
  end-page: 1140
  ident: bib77
  article-title: Research on the tail risk spillover between shanghai and shenzhen stock markets based on MODWT and time-varying Clayton Copula
  publication-title: 2014 International Conference on Management Science & Engineering 21th Annual Conference Proceedings
– volume: 56
  start-page: 428
  year: 2016
  end-page: 435
  ident: bib33
  article-title: Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model
  publication-title: Renew Sustain Energy Rev
– year: 2017
  ident: bib85
  article-title: Climate of the Nation 2017 Australian attitudes on climate change
– volume: 63
  start-page: 1309
  year: 1982
  end-page: 1313
  ident: bib109
  article-title: Some comments on the evaluation of model performance
  publication-title: Bull Am Meteorol Soc
– volume: 87
  start-page: 325
  year: 2015
  end-page: 333
  ident: bib78
  article-title: Power to change: analysis of household participation in a renewable energy and energy efficiency programme in Central Australia
  publication-title: Energy Policy
– start-page: 964
  year: 2017
  end-page: 969
  ident: bib47
  article-title: Long and medium term power load forecasting based on a combination model of GMDH, PSO and LSSVM
  publication-title: Control And Decision Conference (CCDC), 2017 29th Chinese
– volume: 60
  start-page: 870
  year: 2016
  end-page: 878
  ident: bib96
  article-title: Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem
  publication-title: Ecol Indicat
– volume: 72
  start-page: 828
  year: 2017
  end-page: 848
  ident: bib20
  article-title: Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland
  publication-title: Renew Sustain Energy Rev
– volume: 170
  start-page: 70
  year: 2012
  end-page: 79
  ident: bib95
  article-title: Uncertainty in the spatial prediction of soil texture: comparison of regression tree and random forest models
  publication-title: Geoderma
– volume: 84
  start-page: 203
  year: 2015
  end-page: 213
  ident: bib93
  article-title: Predicting thermal–hydraulic performances in compact heat exchangers by support vector regression
  publication-title: Int J Heat Mass Transf
– year: 2003
  ident: bib66
  article-title: A practical guide to support vector classification
– volume: 173
  start-page: 313
  year: 2018
  end-page: 327
  ident: bib11
  article-title: Probabilistic forecasting of day-ahead solar irradiance using quantile gradient boosting
  publication-title: Sol Energy
– volume: 118
  start-page: 357
  year: 2017
  end-page: 367
  ident: bib101
  article-title: Short-term photovoltaic solar power forecasting using a hybrid wavelet-PSO-SVM model based on SCADA and meteorological information
  publication-title: Renew Energy
– year: 2013
  ident: bib80
  article-title: Bureau of Resources and Energy Economics, Energy in Australia
– volume: 212
  start-page: 176
  year: 2018
  end-page: 198
  ident: bib4
  article-title: Self-adaptive differential evolutionary extreme learning machines for long-term solar radiation prediction with remotely-sensed MODIS satellite and Reanalysis atmospheric products in solar-rich cities
  publication-title: Remote Sens Environ
– volume: 38
  start-page: 205
  year: 2014
  end-page: 212
  ident: bib17
  article-title: Application of extreme learning machine for estimating solar radiation from satellite data
  publication-title: Int J Energy Res
– year: 1999
  ident: bib86
  article-title: MODIS Land-Surface Temperature Algorithm Basis Document (LST ATBD): version 3.3
– start-page: 328
  year: 2018
  end-page: 359
  ident: bib9
  article-title: Optimization of windspeed prediction using an artificial neural network compared with a genetic programming model
  publication-title: Handb. Res. Predict. Model. Optim. Methods Sci. Eng.
– volume: 61
  start-page: 636
  year: 2013
  end-page: 645
  ident: bib18
  article-title: An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images
  publication-title: Energy
– start-page: 1
  year: 2017
  end-page: 5
  ident: bib25
  article-title: Hour-ahead solar PV power forecasting using SVR based approach
  publication-title: 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)
– volume: 209
  start-page: 79
  year: 2018
  end-page: 94
  ident: bib19
  article-title: An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia
  publication-title: Appl Energy
– volume: 35
  start-page: 1
  year: 2018
  end-page: 16
  ident: bib40
  article-title: Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia
  publication-title: Adv Eng Inf
– volume: 41
  start-page: 5267
  year: 2014
  end-page: 5276
  ident: bib64
  article-title: Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS
  publication-title: Expert Syst Appl
– volume: 174
  start-page: 28
  year: 2018
  end-page: 38
  ident: bib113
  article-title: A novel wind speed prediction method: hybrid of correlation-aided DWT, LSSVM and GARCH
  publication-title: J Wind Eng Ind Aerodyn
– volume: 7
  start-page: 1247
  year: 2014
  end-page: 1250
  ident: bib105
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature
  publication-title: Geosci Model Dev (GMD)
– year: 2017
  ident: 10.1016/j.rser.2019.109247_bib85
– volume: 89
  start-page: 153
  year: 2016
  ident: 10.1016/j.rser.2019.109247_bib60
  article-title: Study on network traffic forecast model of SVR optimized by GAFSA
  publication-title: Chaos, Solit Fractals
  doi: 10.1016/j.chaos.2015.10.019
– volume: 84
  start-page: 203
  year: 2015
  ident: 10.1016/j.rser.2019.109247_bib93
  article-title: Predicting thermal–hydraulic performances in compact heat exchangers by support vector regression
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2015.01.017
– volume: 5
  start-page: 124
  year: 2000
  ident: 10.1016/j.rser.2019.109247_bib106
  article-title: ASCE. Artificial neural networks in hydrology. II: hydrologic applications
  publication-title: J Hydrol Eng
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(124)
– volume: 514
  start-page: 358
  year: 2014
  ident: 10.1016/j.rser.2019.109247_bib115
  article-title: Applications of hybrid wavelet–Artificial Intelligence models in hydrology: a review
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2014.03.057
– volume: 52
  start-page: 118
  year: 2013
  ident: 10.1016/j.rser.2019.109247_bib37
  article-title: Short-term solar power prediction using a support vector machine
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.10.009
– volume: 39
  start-page: 12
  year: 2009
  ident: 10.1016/j.rser.2019.109247_bib103
  article-title: Comparisons between two wavelet functions in extracting coherent structures from solar wind time series
  publication-title: Braz J Phys
  doi: 10.1590/S0103-97332009000100002
– start-page: 159
  year: 2000
  ident: 10.1016/j.rser.2019.109247_bib76
  article-title: The maximal overlap discrete wavelet transform
– volume: 507
  start-page: 186
  year: 2013
  ident: 10.1016/j.rser.2019.109247_bib29
  article-title: Multiscale streamflow forecasting using a new Bayesian model average based ensemble multi-wavelet Volterra nonlinear method
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2013.09.025
– year: 2000
  ident: 10.1016/j.rser.2019.109247_bib51
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.rser.2019.109247_bib52
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 168
  start-page: 568
  year: 2016
  ident: 10.1016/j.rser.2019.109247_bib62
  article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.01.130
– start-page: 153
  year: 2015
  ident: 10.1016/j.rser.2019.109247_bib117
  article-title: Predicting short-term traffic flow by long short-term memory recurrent neural network
– start-page: 785
  year: 2003
  ident: 10.1016/j.rser.2019.109247_bib50
  article-title: A formulation for minimax probability machine regression
  publication-title: Adv Neural Inf Process Syst
– start-page: 321
  year: 2009
  ident: 10.1016/j.rser.2019.109247_bib54
  article-title: Modelling of chaotic time series using minimax probability machine regression
– ident: 10.1016/j.rser.2019.109247_bib1
– volume: 42
  start-page: 19389
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib26
  article-title: Influences of solar energy on the energy efficiency design index for new building ships
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.06.042
– volume: 118
  start-page: 105
  year: 2016
  ident: 10.1016/j.rser.2019.109247_bib41
  article-title: Prediction of daily and mean monthly global solar radiation using support vector machine in an arid climate
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.03.082
– volume: 173
  start-page: 313
  year: 2018
  ident: 10.1016/j.rser.2019.109247_bib11
  article-title: Probabilistic forecasting of day-ahead solar irradiance using quantile gradient boosting
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2018.07.071
– volume: 134
  start-page: 31
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib55
  article-title: A novel double deep ELMs ensemble system for time series forecasting
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2017.07.014
– volume: 116
  start-page: 309
  year: 2018
  ident: 10.1016/j.rser.2019.109247_bib44
  article-title: Multi-layer perceptron hybrid model integrated with the firefly optimizer algorithm for windspeed prediction of target site using a limited set of neighboring reference station data
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.09.078
– volume: 63
  start-page: 1309
  year: 1982
  ident: 10.1016/j.rser.2019.109247_bib109
  article-title: Some comments on the evaluation of model performance
  publication-title: Bull Am Meteorol Soc
  doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2
– volume: 36
  start-page: 413
  year: 2011
  ident: 10.1016/j.rser.2019.109247_bib38
  article-title: Estimation of monthly solar radiation from measured temperatures using support vector machines–a case study
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2010.06.024
– volume: 56
  start-page: 428
  year: 2016
  ident: 10.1016/j.rser.2019.109247_bib33
  article-title: Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.11.055
– volume: 208
  start-page: 540
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib99
  article-title: A hybrid solar radiation modeling approach using wavelet multiresolution analysis and artificial neural networks
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.09.100
– volume: 42
  start-page: 15211
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib56
  article-title: H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.04.044
– volume: 114
  start-page: 1522
  year: 2010
  ident: 10.1016/j.rser.2019.109247_bib22
  article-title: Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2010.02.007
– volume: 72
  start-page: 828
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib20
  article-title: Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.01.114
– year: 2005
  ident: 10.1016/j.rser.2019.109247_bib90
– start-page: 443
  year: 1984
  ident: 10.1016/j.rser.2019.109247_bib108
  article-title: On the evaluation of model performance in physical geography
– volume: 40
  start-page: 33
  year: 2012
  ident: 10.1016/j.rser.2019.109247_bib79
  article-title: The impact of summer temperatures and heatwaves on mortality and morbidity in Perth, Australia 1994–2008
  publication-title: Environ Int
  doi: 10.1016/j.envint.2011.11.011
– volume: 168
  start-page: 568
  year: 2016
  ident: 10.1016/j.rser.2019.109247_bib32
  article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.01.130
– year: 1995
  ident: 10.1016/j.rser.2019.109247_bib57
– volume: 41
  start-page: 5267
  year: 2014
  ident: 10.1016/j.rser.2019.109247_bib64
  article-title: Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2014.02.047
– volume: 197
  start-page: 42
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib30
  article-title: Input selection and performance optimization of ANN-based streamflow forecasts in a drought-prone Murray Darling Basin using IIS and MODWT algorithm
  publication-title: Atmos Res
  doi: 10.1016/j.atmosres.2017.06.014
– start-page: 964
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib47
  article-title: Long and medium term power load forecasting based on a combination model of GMDH, PSO and LSSVM
– volume: 64
  year: 2018
  ident: 10.1016/j.rser.2019.109247_bib39
  article-title: Particle swarm optimized–support vector regression hybrid model for daily horizon electricity demand forecasting using climate dataset
  publication-title: E3S Web Conf
  doi: 10.1051/e3sconf/20186408001
– year: 2006
  ident: 10.1016/j.rser.2019.109247_bib74
– volume: 168
  start-page: 568
  year: 2016
  ident: 10.1016/j.rser.2019.109247_bib15
  article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.01.130
– volume: 10
  start-page: 282
  year: 1970
  ident: 10.1016/j.rser.2019.109247_bib110
  article-title: River flow forecasting through conceptual models part I—a discussion of principles
  publication-title: J Hydrol
  doi: 10.1016/0022-1694(70)90255-6
– volume: 48
  year: 2016
  ident: 10.1016/j.rser.2019.109247_bib111
  article-title: Wavelet analysis–artificial neural network conjunction models for multi-scale monthly groundwater level predicting in an arid inland river basin, northwestern China
  publication-title: Nord Hydrol
– volume: 118
  start-page: 357
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib101
  article-title: Short-term photovoltaic solar power forecasting using a hybrid wavelet-PSO-SVM model based on SCADA and meteorological information
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.11.011
– volume: 158
  start-page: 595
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib6
  article-title: Minimum redundancy – maximum relevance with extreme learning machines for global solar radiation forecasting: toward an optimized dimensionality reduction for solar time series
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2017.10.035
– volume: 92
  start-page: 162
  year: 2015
  ident: 10.1016/j.rser.2019.109247_bib65
  article-title: A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.12.050
– volume: 11
  start-page: 806954
  year: 2015
  ident: 10.1016/j.rser.2019.109247_bib71
  article-title: Feature selection using particle swarm optimization in intrusion detection
  publication-title: Int J Distributed Sens Netw
– volume: 50
  start-page: 9721
  year: 2014
  ident: 10.1016/j.rser.2019.109247_bib73
  article-title: Wavelet‐based multiscale performance analysis: an approach to assess and improve hydrological models
  publication-title: Water Resour Res
  doi: 10.1002/2013WR014650
– year: 1999
  ident: 10.1016/j.rser.2019.109247_bib86
– volume: 2
  start-page: 107
  year: 2011
  ident: 10.1016/j.rser.2019.109247_bib46
  article-title: Extreme learning machines: a survey
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-011-0019-y
– volume: 12
  start-page: 55
  year: 1970
  ident: 10.1016/j.rser.2019.109247_bib58
  article-title: Ridge regression: biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 38
  start-page: 1859
  year: 2014
  ident: 10.1016/j.rser.2019.109247_bib27
  article-title: MODWT-ARMA model for time series prediction
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2013.10.002
– volume: 119
  start-page: 540
  year: 2018
  ident: 10.1016/j.rser.2019.109247_bib114
  article-title: Diverse dynamical characteristics across the frequency spectrum of wind speed fluctuations
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.12.024
– volume: 5
  start-page: 231
  year: 2015
  ident: 10.1016/j.rser.2019.109247_bib72
  article-title: Feature selection using particle swarm optimization in text categorization
  publication-title: J Artif Intell Soft Comput Res
  doi: 10.1515/jaiscr-2015-0031
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.rser.2019.109247_bib116
  article-title: Long short-term memory
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– year: 2017
  ident: 10.1016/j.rser.2019.109247_bib2
– volume: 39
  start-page: 1005
  year: 2014
  ident: 10.1016/j.rser.2019.109247_bib35
  article-title: Potential of radial basis function based support vector regression for global solar radiation prediction
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.07.108
– year: 2006
  ident: 10.1016/j.rser.2019.109247_bib49
– volume: 32
  start-page: 23
  year: 2015
  ident: 10.1016/j.rser.2019.109247_bib112
  article-title: An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2015.03.036
– volume: 38
  start-page: 205
  year: 2014
  ident: 10.1016/j.rser.2019.109247_bib17
  article-title: Application of extreme learning machine for estimating solar radiation from satellite data
  publication-title: Int J Energy Res
  doi: 10.1002/er.3030
– year: 1995
  ident: 10.1016/j.rser.2019.109247_bib70
– volume: 91
  start-page: 639
  year: 2018
  ident: 10.1016/j.rser.2019.109247_bib12
  article-title: Estimation methods of global solar radiation, cell temperature and solar power forecasting: a review and case study in Eskişehir
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.03.084
– volume: 31
  start-page: 1211
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib89
  article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-016-1265-z
– volume: 7
  start-page: 1247
  year: 2014
  ident: 10.1016/j.rser.2019.109247_bib105
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature
  publication-title: Geosci Model Dev (GMD)
  doi: 10.5194/gmd-7-1247-2014
– start-page: 1
  year: 2016
  ident: 10.1016/j.rser.2019.109247_bib83
– start-page: 1135
  year: 2014
  ident: 10.1016/j.rser.2019.109247_bib77
  article-title: Research on the tail risk spillover between shanghai and shenzhen stock markets based on MODWT and time-varying Clayton Copula
– year: 2003
  ident: 10.1016/j.rser.2019.109247_bib66
– volume: 220
  start-page: 181
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib23
  article-title: Feature selection and multiple kernel boosting framework based on PSO with mutation mechanism for hyperspectral classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.05.103
– volume: 60
  start-page: 711
  year: 2013
  ident: 10.1016/j.rser.2019.109247_bib82
  article-title: Australian renewable energy policy: barriers and challenges
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2013.06.024
– start-page: 395
  year: 2014
  ident: 10.1016/j.rser.2019.109247_bib68
  article-title: A novel GA-SVR time series model based on selected indicators method for forecasting stock price
– volume: 45
  start-page: 1759
  year: 2004
  ident: 10.1016/j.rser.2019.109247_bib42
  article-title: Validation of five global radiation models with measured daily data in China
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2003.09.019
– volume: 174
  start-page: 28
  year: 2018
  ident: 10.1016/j.rser.2019.109247_bib113
  article-title: A novel wind speed prediction method: hybrid of correlation-aided DWT, LSSVM and GARCH
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2017.12.019
– volume: 31
  start-page: 1211
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib98
  article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-016-1265-z
– volume: 301
  start-page: 75
  year: 2005
  ident: 10.1016/j.rser.2019.109247_bib24
  article-title: Input determination for neural network models in water resources applications. Part 1—background and methodology
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2004.06.021
– volume: 18
  start-page: 261
  year: 2014
  ident: 10.1016/j.rser.2019.109247_bib69
  article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.09.018
– volume: 124
  start-page: 54
  year: 2016
  ident: 10.1016/j.rser.2019.109247_bib59
  article-title: A hybrid EMD-SVR model for the short-term prediction of significant wave height
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2016.05.049
– volume: 115
  start-page: 632
  year: 2015
  ident: 10.1016/j.rser.2019.109247_bib34
  article-title: A support vector machine–firefly algorithm-based model for global solar radiation prediction
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2015.03.015
– volume: 49
  start-page: 129
  year: 2016
  ident: 10.1016/j.rser.2019.109247_bib102
  article-title: Design of experiments and statistical process control using wavelets analysis
  publication-title: Contr Eng Pract
  doi: 10.1016/j.conengprac.2015.07.013
– volume: 91
  start-page: 1290
  year: 2006
  ident: 10.1016/j.rser.2019.109247_bib91
  article-title: Bayesian analysis of computer code outputs: a tutorial
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2005.11.025
– volume: 118
  start-page: 928
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib100
  article-title: Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.10.113
– volume: 52
  start-page: 1093
  year: 2015
  ident: 10.1016/j.rser.2019.109247_bib87
  article-title: Application of rapid miner in ANN based prediction of solar radiation for assessment of solar energy resource potential of 76 sites in Northwestern India
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.07.156
– volume: 17
  start-page: 422
  year: 2018
  ident: 10.1016/j.rser.2019.109247_bib43
  article-title: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.02.140
– start-page: 1929
  year: 2016
  ident: 10.1016/j.rser.2019.109247_bib53
  article-title: Optimized Support Vector Regression models for short term solar radiation forecasting in smart environment
– volume: 37
  start-page: 679
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib31
  article-title: Application of MODWT and log-normal distribution model for automatic epilepsy identification
  publication-title: Biocybernetics Biomed. Eng.
  doi: 10.1016/j.bbe.2017.08.003
– volume: 87
  start-page: 325
  year: 2015
  ident: 10.1016/j.rser.2019.109247_bib78
  article-title: Power to change: analysis of household participation in a renewable energy and energy efficiency programme in Central Australia
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2015.09.017
– volume: 42
  start-page: 8680
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib13
  article-title: Fuzzy-PSO controller design for maximum power point tracking in photovoltaic system
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.07.212
– start-page: 1
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib25
  article-title: Hour-ahead solar PV power forecasting using SVR based approach
– start-page: 1135
  year: 2014
  ident: 10.1016/j.rser.2019.109247_bib75
  article-title: Research on the tail risk spillover between shanghai and shenzhen stock markets based on MODWT and time-varying Clayton Copula
– volume: 40
  start-page: 296
  year: 2004
  ident: 10.1016/j.rser.2019.109247_bib88
  article-title: The application of ANN realized by MATLAB to underground water quality assessment
  publication-title: Acta Sci Nauralium Univ Pekin
– volume: 9
  start-page: 525
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib104
  article-title: River stage modeling by combining maximal overlap discrete wavelet transform, support vector machines and genetic algorithm
  publication-title: Water
  doi: 10.3390/w9070525
– start-page: 328
  year: 2018
  ident: 10.1016/j.rser.2019.109247_bib9
  article-title: Optimization of windspeed prediction using an artificial neural network compared with a genetic programming model
  publication-title: Handb. Res. Predict. Model. Optim. Methods Sci. Eng.
– start-page: 1
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib7
  article-title: Bounds for optimal control of a regional plug-in electric vehicle charging station system
  publication-title: IEEE Trans Ind Appl
– volume: 209
  start-page: 79
  year: 2018
  ident: 10.1016/j.rser.2019.109247_bib19
  article-title: An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.10.076
– volume: 170
  start-page: 70
  year: 2012
  ident: 10.1016/j.rser.2019.109247_bib95
  article-title: Uncertainty in the spatial prediction of soil texture: comparison of regression tree and random forest models
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.10.010
– year: 1983
  ident: 10.1016/j.rser.2019.109247_bib16
– start-page: 177
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib8
– start-page: 553
  year: 2015
  ident: 10.1016/j.rser.2019.109247_bib67
  article-title: PSO-SVR: a hybrid short-term traffic flow forecasting method
– volume: 104
  start-page: 235
  year: 2019
  ident: 10.1016/j.rser.2019.109247_bib21
  article-title: Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: a new approach
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2019.01.009
– volume: 48
  start-page: 139
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib45
  article-title: Predicting the occurrence of adverse events using an adaptive neuro-fuzzy inference system (ANFIS) approach with the help of ANFIS input selection
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-016-9497-3
– volume: 35
  start-page: 233
  year: 1999
  ident: 10.1016/j.rser.2019.109247_bib107
  article-title: Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation
  publication-title: Water Resour Res
  doi: 10.1029/1998WR900018
– year: 2015
  ident: 10.1016/j.rser.2019.109247_bib3
– year: 2012
  ident: 10.1016/j.rser.2019.109247_bib81
– volume: 209
  start-page: 79
  year: 2018
  ident: 10.1016/j.rser.2019.109247_bib5
  article-title: An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.10.076
– volume: 61
  start-page: 636
  year: 2013
  ident: 10.1016/j.rser.2019.109247_bib18
  article-title: An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images
  publication-title: Energy
  doi: 10.1016/j.energy.2013.09.008
– volume: 216
  start-page: 288
  year: 2019
  ident: 10.1016/j.rser.2019.109247_bib10
  article-title: Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cites of queensland Australia
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.01.158
– volume: 75
  start-page: 311
  year: 2013
  ident: 10.1016/j.rser.2019.109247_bib36
  article-title: Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2013.06.034
– volume: 35
  start-page: 1
  year: 2018
  ident: 10.1016/j.rser.2019.109247_bib40
  article-title: Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia
  publication-title: Adv Eng Inf
  doi: 10.1016/j.aei.2017.11.002
– volume: 19
  start-page: 59
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib84
  article-title: Future business models for Western Australian electricity utilities
  publication-title: Sustain Energy Technol Assess
– start-page: 0396
  year: 2016
  ident: 10.1016/j.rser.2019.109247_bib61
– volume: 26
  start-page: 792
  year: 2013
  ident: 10.1016/j.rser.2019.109247_bib92
  article-title: Methodology for global sensitivity analysis of consequence models
  publication-title: J Loss Prev Process Ind
  doi: 10.1016/j.jlp.2013.02.009
– volume: 10
  start-page: 303
  year: 2002
  ident: 10.1016/j.rser.2019.109247_bib63
  article-title: Comparison of parametric and nonparametric models for traffic flow forecasting
  publication-title: Transport Res C Emerg Technol
  doi: 10.1016/S0968-090X(02)00009-8
– start-page: 405
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib14
  article-title: Short-term solar power forecasting using Support Vector Regression and feed-forward NN
– year: 2016
  ident: 10.1016/j.rser.2019.109247_bib28
– volume: 155
  start-page: 62
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib97
  article-title: ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment
  publication-title: J Atmos Sol Terr Phys
  doi: 10.1016/j.jastp.2017.02.002
– volume: 87
  start-page: 109
  year: 2017
  ident: 10.1016/j.rser.2019.109247_bib118
  article-title: Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection
  publication-title: Neural Network
  doi: 10.1016/j.neunet.2016.12.002
– volume: 13
  start-page: 87
  year: 2009
  ident: 10.1016/j.rser.2019.109247_bib48
  article-title: Evolving least squares support vector machines for stock market trend mining
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2008.928176
– volume: 60
  start-page: 870
  year: 2016
  ident: 10.1016/j.rser.2019.109247_bib96
  article-title: Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem
  publication-title: Ecol Indicat
  doi: 10.1016/j.ecolind.2015.08.036
– volume: 188
  start-page: 90
  year: 2016
  ident: 10.1016/j.rser.2019.109247_bib94
  article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-016-5094-9
– volume: 212
  start-page: 176
  year: 2018
  ident: 10.1016/j.rser.2019.109247_bib4
  article-title: Self-adaptive differential evolutionary extreme learning machines for long-term solar radiation prediction with remotely-sensed MODIS satellite and Reanalysis atmospheric products in solar-rich cities
  publication-title: Remote Sens Environ
  doi: 10.1016/j.rse.2018.05.003
– year: 2013
  ident: 10.1016/j.rser.2019.109247_bib80
SSID ssj0015873
Score 2.5593822
Snippet The accurate prediction of global solar radiation (GSR) with remote sensing in metropolitan, regional and remote, yet solar-rich sites, is a core requisite for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109247
SubjectTerms Hybrid energy prediction model
Maximum overlap discrete wavelet
MODIS satellite
Remote sensing
Renewable energy exploration
Support vector regression
Title Wavelet-based 3-phase hybrid SVR model trained with satellite-derived predictors, particle swarm optimization and maximum overlap discrete wavelet transform for solar radiation prediction
URI https://dx.doi.org/10.1016/j.rser.2019.109247
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0690
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015873
  issn: 1364-0321
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0690
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015873
  issn: 1364-0321
  databaseCode: ACRLP
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0690
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015873
  issn: 1364-0321
  databaseCode: AIKHN
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0690
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015873
  issn: 1364-0321
  databaseCode: .~1
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0690
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015873
  issn: 1364-0321
  databaseCode: AKRWK
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JTtww1BpNL_RQtYWqUIreoTcwk4mz-YhGRdMFhFjnFtmOLQYxQ5QJSy_9sf5c30ucEUiIA5c48R4_6y32Wxj7JnWhhCgsD9NY8cjEmkujLc-UsiIWIUoIZO98cJiMz6Kfk3jSY6POFobUKj3ub3F6g619zsCv5qCcTgcnQ5FEgSAPZSiSRynhYUpwT-_-Xap5DOOsuWWmypxqe8OZVserQjCTepckr0ohhVh5jjg9Ijj779k7zynCXjuZD6xn5x_Z20f-A1fZvwtFcSNqTrSoAMHLS3yByz9khgUn58fQBLqBJg4EVqBDV1ioxglnbXmB3dxhdlnRbQ2F3dmB0v88LO5VNYMbxCgzb6oJal7ATD1MZ7dYcEcHgSWQVW-FjDfct1OhsVpOGPABC5KcoSIHCE0Xfih8XWNn-99PR2PuozFwI4SsearDzIUmTbRAobIQqQmkMjJU5OLGOO0yjfjBRrGLjUSuIUuscAblJadCK7HwE-vPb-b2MwOHSFW6RA8jF0RpIHVkUxdm2FgWKK8W62zYgSE33lU5rdR13umkXeUEupxAl7egW2fbyzZl66jjxdpxB938yXbLkZK80G7jle2-sBX6arUAN1m_rm7tV-Rmar3VbNct9mZvdPz7iNIfv8aH_wEOa_vY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NTxUxsCF4QA9GUCMqOAduWt97_djdHgmBPOXjIKDcNm23Dc_4Hpt9C-iFP8afY2a3j2BiOHjZNO1M2-0005l2PhjbMq6yUlaBi1xbrrx23HgXeGFtkFoK1BDI3_nwKBufqq9n-myJ7Sx8YcisMvH-nqd33DrVDNJqDurJZHA8kpkaSopQhiq5ypEPP1Fa5KSBfb65t_MY6aJ7ZiZoTuDJc6Y38mqQzmTfZSiskqAcK_86nR6cOHsv2PMkKsJ2P5tVthRma-zZgwCCL9ntD0uJI1pOh1EFktfnWIDzP-SHBcffv0GX6Qa6RBAIQLeuMLddFM428Aq7ucLquqHnGsq78wnq9Pcwv7bNFC6QpUyTrybYWQVT-3syvcSGK7oJrIHcehuUvOG6nwqN1YvCgB-Yk-oMDUVA6LpIQ2HxFTvd2z3ZGfOUjoF7KU3LcyeKKHyeOYlaZSVzPzTWG2Epxo2PLhYOGURQOmpvUGwosiCjR4UpWhEMNr5my7OLWXjDICJXNTFzIxWHKh8ap0IeRYHIpkKFtVpnowUZSp9ildNK_SoXRmk_SyJdSaQre9Kts4_3OHUfqeNRaL2gbvnXfivxKHkE7-1_4n1gK-OTw4Py4MvR_jv2lFp6k8D3bLltLsMGijat2-y27h321vvY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelet-based+3-phase+hybrid+SVR+model+trained+with+satellite-derived+predictors%2C+particle+swarm+optimization+and+maximum+overlap+discrete+wavelet+transform+for+solar+radiation+prediction&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Ghimire%2C+Sujan&rft.au=Deo%2C+Ravinesh+C.&rft.au=Raj%2C+Nawin&rft.au=Mi%2C+Jianchun&rft.date=2019-10-01&rft.issn=1364-0321&rft.volume=113&rft.spage=109247&rft_id=info:doi/10.1016%2Fj.rser.2019.109247&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rser_2019_109247
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon