Wavelet-based 3-phase hybrid SVR model trained with satellite-derived predictors, particle swarm optimization and maximum overlap discrete wavelet transform for solar radiation prediction
The accurate prediction of global solar radiation (GSR) with remote sensing in metropolitan, regional and remote, yet solar-rich sites, is a core requisite for cleaner energy utilization, monitoring and conversion of renewable energy into usable power. Data-driven models that investigate the feasibi...
        Saved in:
      
    
          | Published in | Renewable & sustainable energy reviews Vol. 113; p. 109247 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.10.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1364-0321 1879-0690  | 
| DOI | 10.1016/j.rser.2019.109247 | 
Cover
| Abstract | The accurate prediction of global solar radiation (GSR) with remote sensing in metropolitan, regional and remote, yet solar-rich sites, is a core requisite for cleaner energy utilization, monitoring and conversion of renewable energy into usable power. Data-driven models that investigate the feasibility of solar-fueled energies, face challenges in respect to identifying their appropriate input data as such variables may not be available at all sites due to a lack of environmental monitoring system. In this paper, the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-derived predictors are employed to train three-phase hybrid SVR model for monthly GSR prediction. Firstly, to acquire relevant model input features, MODIS variables are screened with the Particle Swarm Optimization (PSO) algorithm, and secondly, a Gaussian emulation method of sensitivity analysis is incorporated on all screened variables to ascertain their relative role in predicting GSR. To address pertinent issues of non-stationarities, PSO selected variables are decomposed with Maximum Overlap Discrete Wavelet Transformation prior to its incorporation in Support Vector Regression (SVR), constructing a three-phase PSO-W-SVR hybrid model where the hyper-parameters are acquired by evolutionary (i.e., PSO & Genetic Algorithm) and Grid Search methods. Three-phase PSO-W-SVR hybrid model is benchmarked with alternative machine learning models. Thirty-nine model scenarios are formulated: 13 without feature selection (e.g., SVR), 13 with feature selection (e.g., PSO-SVR for two-phase models) and the remainder 13 with feature selection strategy coupled with data decomposition algorithm (e.g., PSO-W-SVR leading to a three-phase model). Metrics such as skill score (RMSESS), root mean square error (RMSE), mean absolute error (MAE), Willmott’s (WI), Legates & McCabe’s (E1) and Nash–Sutcliffe coefficients (ENS) are applied to comprehensively evaluate prescribed models. Empirical results register high performance of three-phase hybrid PSO-W-SVR models, exceeding the prescribed alternative models. High predictive ability evidenced by a low RRMSE and high E1 ascertains PSO-W-SVR hybrid model as considerably favorable in its capability to be enriched by MODIS satellite-derived variables. Maximum Overlap Discrete Wavelet Transform algorithm is also seen to provide resolved patterns in satellite variables, leading to a superior performance compared to the other data-driven model. The research avers that a three-phase hybrid PSO-W-SVR model can be a viable tool to predict GSR using satellite derived data as predictors, and is particularly useful for exploration of renewable energies where satellite footprint are present but regular environmental monitoring systems may be absent.
[Display omitted]
•SVR (predictive model), PSO (feature selection) and maximum overlap DWT (frequency resolution wavelet model) is integrated.•Three-phase PSO-W-SVR hybrid model is trained with satellite inputs for solar energy prediction.•Hybrid PSO-W-SVR outperforms all tested data-driven models.•Hybrid PSO-W-SVR model is a potential tool for long-term solar energy exploration. | 
    
|---|---|
| AbstractList | The accurate prediction of global solar radiation (GSR) with remote sensing in metropolitan, regional and remote, yet solar-rich sites, is a core requisite for cleaner energy utilization, monitoring and conversion of renewable energy into usable power. Data-driven models that investigate the feasibility of solar-fueled energies, face challenges in respect to identifying their appropriate input data as such variables may not be available at all sites due to a lack of environmental monitoring system. In this paper, the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-derived predictors are employed to train three-phase hybrid SVR model for monthly GSR prediction. Firstly, to acquire relevant model input features, MODIS variables are screened with the Particle Swarm Optimization (PSO) algorithm, and secondly, a Gaussian emulation method of sensitivity analysis is incorporated on all screened variables to ascertain their relative role in predicting GSR. To address pertinent issues of non-stationarities, PSO selected variables are decomposed with Maximum Overlap Discrete Wavelet Transformation prior to its incorporation in Support Vector Regression (SVR), constructing a three-phase PSO-W-SVR hybrid model where the hyper-parameters are acquired by evolutionary (i.e., PSO & Genetic Algorithm) and Grid Search methods. Three-phase PSO-W-SVR hybrid model is benchmarked with alternative machine learning models. Thirty-nine model scenarios are formulated: 13 without feature selection (e.g., SVR), 13 with feature selection (e.g., PSO-SVR for two-phase models) and the remainder 13 with feature selection strategy coupled with data decomposition algorithm (e.g., PSO-W-SVR leading to a three-phase model). Metrics such as skill score (RMSESS), root mean square error (RMSE), mean absolute error (MAE), Willmott’s (WI), Legates & McCabe’s (E1) and Nash–Sutcliffe coefficients (ENS) are applied to comprehensively evaluate prescribed models. Empirical results register high performance of three-phase hybrid PSO-W-SVR models, exceeding the prescribed alternative models. High predictive ability evidenced by a low RRMSE and high E1 ascertains PSO-W-SVR hybrid model as considerably favorable in its capability to be enriched by MODIS satellite-derived variables. Maximum Overlap Discrete Wavelet Transform algorithm is also seen to provide resolved patterns in satellite variables, leading to a superior performance compared to the other data-driven model. The research avers that a three-phase hybrid PSO-W-SVR model can be a viable tool to predict GSR using satellite derived data as predictors, and is particularly useful for exploration of renewable energies where satellite footprint are present but regular environmental monitoring systems may be absent.
[Display omitted]
•SVR (predictive model), PSO (feature selection) and maximum overlap DWT (frequency resolution wavelet model) is integrated.•Three-phase PSO-W-SVR hybrid model is trained with satellite inputs for solar energy prediction.•Hybrid PSO-W-SVR outperforms all tested data-driven models.•Hybrid PSO-W-SVR model is a potential tool for long-term solar energy exploration. | 
    
| ArticleNumber | 109247 | 
    
| Author | Deo, Ravinesh C. Mi, Jianchun Ghimire, Sujan Raj, Nawin  | 
    
| Author_xml | – sequence: 1 givenname: Sujan surname: Ghimire fullname: Ghimire, Sujan email: sujan.ghimire@usq.edu.au organization: School of Agricultural Computational and Environmental Sciences, Centre for Sustainable Agricultural Systems, Centre for Applied Climate Sciences, University of Southern Queensland, Springfield, QLD, 4300, Australia – sequence: 2 givenname: Ravinesh C. surname: Deo fullname: Deo, Ravinesh C. email: ravinesh.deo@usq.edu.au organization: School of Agricultural Computational and Environmental Sciences, Centre for Sustainable Agricultural Systems, Centre for Applied Climate Sciences, University of Southern Queensland, Springfield, QLD, 4300, Australia – sequence: 3 givenname: Nawin surname: Raj fullname: Raj, Nawin organization: School of Agricultural Computational and Environmental Sciences, Centre for Sustainable Agricultural Systems, Centre for Applied Climate Sciences, University of Southern Queensland, Springfield, QLD, 4300, Australia – sequence: 4 givenname: Jianchun surname: Mi fullname: Mi, Jianchun organization: Department of Energy & Resources Engineering, College of Engineering, Peking University, Beijing, China  | 
    
| BookMark | eNp9kE2O1DAQhSM0SMwMXICVD0Aa_6STWGKDRjAgjYTE7zJy7LK6Wk4clU03w9W4HA6ZFYvZ2KV6_qr83lV1MccZquql4DvBRfv6uKMEtJNc6NLQsumeVJei73TNW80vSq3apuZKimfVVUpHzsW-79Rl9eeHOUGAXI8mgWOqXg6lYIf7kdCxL98_syk6CCyTwbk8OGM-sGQyhIAZageEp9JeCBzaHCm9YouhjDYAS2dDE4tLxgl_m4xxZmZ2bDK_cPpZhBNQMAtzmCxBBnbevrLumpOPhS0HSzEYYmQcbiMeVpXyefXUm5DgxcN9XX17_-7rzYf67tPtx5u3d7VVSue6G2Xvpe3aUcl941RnuTZWS8O5aqwffT8q0UOz93urhWz6FpS3rWy9kaCLeF3Jba6lmBKBHxbCydD9IPiwxj8chzX-YY1_2OIvUP8fZDH_c7BGGR5H32woFFMnLGqyCLMtvglsHlzEx_C_miSpWQ | 
    
| CitedBy_id | crossref_primary_10_1016_j_enconman_2020_112909 crossref_primary_10_2139_ssrn_4125018 crossref_primary_10_1016_j_engappai_2022_104860 crossref_primary_10_3390_en15166063 crossref_primary_10_1016_j_rser_2019_109393 crossref_primary_10_1016_j_eswa_2022_117690 crossref_primary_10_1007_s13369_021_05669_6 crossref_primary_10_1007_s40808_024_02282_y crossref_primary_10_1016_j_dsp_2020_102741 crossref_primary_10_1016_j_measurement_2022_111759 crossref_primary_10_1016_j_enconman_2021_113960 crossref_primary_10_1016_j_energy_2021_121216 crossref_primary_10_1016_j_jhydrol_2020_125335 crossref_primary_10_1016_j_energy_2020_118374 crossref_primary_10_1088_2631_8695_ad4e07 crossref_primary_10_1016_j_physrep_2022_02_002 crossref_primary_10_3390_app13116662 crossref_primary_10_1038_s41598_022_13652_w crossref_primary_10_1007_s13762_024_06210_6 crossref_primary_10_1016_j_energy_2021_119887 crossref_primary_10_3390_en15031061 crossref_primary_10_1016_j_egyr_2022_08_176 crossref_primary_10_3390_ani12233300 crossref_primary_10_4018_IJITSA_322411 crossref_primary_10_1140_epjp_s13360_021_02263_5 crossref_primary_10_1016_j_icheatmasstransfer_2024_107839 crossref_primary_10_1016_j_measurement_2023_113825 crossref_primary_10_1007_s00477_022_02188_0 crossref_primary_10_1109_ACCESS_2022_3153475 crossref_primary_10_1007_s12559_022_10070_y crossref_primary_10_1007_s10098_022_02434_7 crossref_primary_10_1088_1748_9326_ab9467 crossref_primary_10_1111_sum_12772 crossref_primary_10_3390_su151411275 crossref_primary_10_3390_su142215298 crossref_primary_10_3390_en16031085 crossref_primary_10_3390_en17246222 crossref_primary_10_3390_math10234533 crossref_primary_10_1016_j_apenergy_2021_117211 crossref_primary_10_1109_LGRS_2024_3436042 crossref_primary_10_1016_j_oceaneng_2024_116814 crossref_primary_10_1016_j_susmat_2022_e00429 crossref_primary_10_1109_ACCESS_2024_3429073 crossref_primary_10_1007_s00170_023_12797_w crossref_primary_10_1016_j_renene_2022_07_041 crossref_primary_10_1016_j_rser_2019_109570 crossref_primary_10_3390_en13092307 crossref_primary_10_1007_s12652_021_03639_2 crossref_primary_10_32604_cmc_2020_012537 crossref_primary_10_1016_j_rser_2019_109293 crossref_primary_10_1080_19942060_2021_1984992 crossref_primary_10_1007_s13369_022_06655_2 crossref_primary_10_1016_j_engappai_2023_106199 crossref_primary_10_1186_s10086_022_02068_9 crossref_primary_10_1016_j_aej_2024_08_037 crossref_primary_10_1016_j_apenergy_2022_119069 crossref_primary_10_1016_j_jenvman_2021_112438 crossref_primary_10_1016_j_egyr_2020_11_033 crossref_primary_10_1016_j_apenergy_2019_113541 crossref_primary_10_1016_j_ipm_2024_103953 crossref_primary_10_1007_s41365_020_0745_5 crossref_primary_10_1016_j_geodrs_2020_e00317 crossref_primary_10_1016_j_caeai_2024_100331 crossref_primary_10_4018_JGIM_293288 crossref_primary_10_1021_acs_iecr_4c03264 crossref_primary_10_1038_s41598_024_57398_z crossref_primary_10_3390_rs12010181 crossref_primary_10_1016_j_apenergy_2021_117193 crossref_primary_10_1016_j_apenergy_2024_123920 crossref_primary_10_1016_j_enconman_2020_112582 crossref_primary_10_1016_j_engappai_2022_105172 crossref_primary_10_1080_15567036_2020_1801903 crossref_primary_10_1016_j_egyr_2023_09_097 crossref_primary_10_1007_s00024_024_03472_6 crossref_primary_10_2139_ssrn_4076358  | 
    
| Cites_doi | 10.1016/j.chaos.2015.10.019 10.1016/j.ijheatmasstransfer.2015.01.017 10.1061/(ASCE)1084-0699(2000)5:2(124) 10.1016/j.jhydrol.2014.03.057 10.1016/j.renene.2012.10.009 10.1590/S0103-97332009000100002 10.1016/j.jhydrol.2013.09.025 10.1023/A:1010933404324 10.1016/j.apenergy.2016.01.130 10.1016/j.ijhydene.2017.06.042 10.1016/j.enconman.2016.03.082 10.1016/j.solener.2018.07.071 10.1016/j.knosys.2017.07.014 10.1016/j.renene.2017.09.078 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2 10.1016/j.renene.2010.06.024 10.1016/j.rser.2015.11.055 10.1016/j.apenergy.2017.09.100 10.1016/j.ijhydene.2017.04.044 10.1016/j.rse.2010.02.007 10.1016/j.rser.2017.01.114 10.1016/j.envint.2011.11.011 10.1016/j.eswa.2014.02.047 10.1016/j.atmosres.2017.06.014 10.1051/e3sconf/20186408001 10.1016/0022-1694(70)90255-6 10.1016/j.renene.2017.11.011 10.1016/j.solener.2017.10.035 10.1016/j.enconman.2014.12.050 10.1002/2013WR014650 10.1007/s13042-011-0019-y 10.1080/00401706.1970.10488634 10.1016/j.apm.2013.10.002 10.1016/j.renene.2017.12.024 10.1515/jaiscr-2015-0031 10.1162/neco.1997.9.8.1735 10.1016/j.rser.2014.07.108 10.1016/j.asoc.2015.03.036 10.1002/er.3030 10.1016/j.rser.2018.03.084 10.1007/s00477-016-1265-z 10.5194/gmd-7-1247-2014 10.1016/j.neucom.2016.05.103 10.1016/j.renene.2013.06.024 10.1016/j.enconman.2003.09.019 10.1016/j.jweia.2017.12.019 10.1016/j.jhydrol.2004.06.021 10.1016/j.asoc.2013.09.018 10.1016/j.oceaneng.2016.05.049 10.1016/j.solener.2015.03.015 10.1016/j.conengprac.2015.07.013 10.1016/j.ress.2005.11.025 10.1016/j.renene.2017.10.113 10.1016/j.rser.2015.07.156 10.1016/j.apenergy.2018.02.140 10.1016/j.bbe.2017.08.003 10.1016/j.enpol.2015.09.017 10.1016/j.ijhydene.2016.07.212 10.3390/w9070525 10.1016/j.apenergy.2017.10.076 10.1016/j.geoderma.2011.10.010 10.1016/j.rser.2019.01.009 10.1007/s10462-016-9497-3 10.1029/1998WR900018 10.1016/j.energy.2013.09.008 10.1016/j.jclepro.2019.01.158 10.1016/j.enconman.2013.06.034 10.1016/j.aei.2017.11.002 10.1016/j.jlp.2013.02.009 10.1016/S0968-090X(02)00009-8 10.1016/j.jastp.2017.02.002 10.1016/j.neunet.2016.12.002 10.1109/TEVC.2008.928176 10.1016/j.ecolind.2015.08.036 10.1007/s10661-016-5094-9 10.1016/j.rse.2018.05.003  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2019 Elsevier Ltd | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.rser.2019.109247 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1879-0690 | 
    
| ExternalDocumentID | 10_1016_j_rser_2019_109247 S1364032119304472  | 
    
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADHUB ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSR SSZ T5K Y6R ZCA ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c339t-7b28f2c76b3254d37c09ac92a0034cfbf8b318e45f5c912486e3fc626fa2e98b3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1364-0321 | 
    
| IngestDate | Wed Oct 29 21:09:14 EDT 2025 Thu Apr 24 22:51:35 EDT 2025 Fri Feb 23 02:32:57 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Support vector regression Hybrid energy prediction model Renewable energy exploration MODIS satellite Remote sensing Maximum overlap discrete wavelet  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c339t-7b28f2c76b3254d37c09ac92a0034cfbf8b318e45f5c912486e3fc626fa2e98b3 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_rser_2019_109247 crossref_citationtrail_10_1016_j_rser_2019_109247 elsevier_sciencedirect_doi_10_1016_j_rser_2019_109247  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-10-01 | 
    
| PublicationDateYYYYMMDD | 2019-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Renewable & sustainable energy reviews | 
    
| PublicationYear | 2019 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Hoerl, Kennard (bib58) 1970; 12 Yang, Zhang, Liu, Lu, Yang, Yang (bib96) 2016; 60 Quej, Almorox, Arnaldo, Saito (bib97) 2017; 155 Willmott (bib109) 1982; 63 Birol (bib2) 2017 Agency IE. World Energy Outlook 20182018. Legates, McCabe (bib107) 1999; 35 Nash, Sutcliffe (bib110) 1970; 10 Zhu, Wang, Fan (bib27) 2014; 38 Zeng, Qiao (bib37) 2013; 52 Walsh, Munro, Spencer (bib16) 1983 Cheng, Shiu (bib68) 2014 Sun (bib54) 2009 Linares-Rodriguez, Ruiz-Arias, Pozo-Vazquez, Tovar-Pescador (bib18) 2013; 61 Mohanad, Ravinesh, Yan (bib39) 2018; 64 Yadav, Malik, Chandel (bib87) 2015; 52 Cohen, Tiplica, Kobi (bib102) 2016; 49 Chai, Draxler (bib105) 2014; 7 Dayal, Deo, Apan (bib8) 2017 Alfadda, Adhikari, Kuzlu, Rahman (bib25) 2017 Wen, Feng, Deo, Wu, Si (bib111) 2016; 48 Drisya, Asokan, Kumar (bib114) 2018; 119 Ramedani, Omid, Keyhani, Shamshirband, Khoshnevisan (bib35) 2014; 39 Gant, Kelsey, McNally, Witlox, Bilio (bib92) 2013; 26 Ghimire, Deo, Downs, Raj (bib4) 2018; 212 Bowden, Dandy, Maier (bib24) 2005; 301 Chen, Li, Wu (bib36) 2013; 75 Song, Dai (bib55) 2017; 134 Byrnes, Brown, Foster, Wagner (bib82) 2013; 60 Breiman (bib52) 2001; 45 Hu, Yan, Liu, Wang (bib67) 2015 Smith, Williams, Oswald (bib63) 2002; 10 Sui, He, Li (bib75) 2014 Kim, Kim, Jang, Lee (bib118) 2017; 87 The Climate Institute (bib85) 2017 Williams, Nitschke, Weinstein, Pisaniello, Parton, Bi (bib79) 2012; 40 Penney, Ball, Hitchins (bib81) 2012 Ghimire, Deo, Downs, Raj (bib10) 2019; 216 Rathinasamy, Khosa, Adamowski, Partheepan, Anand, Narsimlu (bib73) 2014; 50 Tayal, Rauland (bib84) 2017; 19 Aghdam, Heidari (bib72) 2015; 5 Havas, Ballweg, Penna, Race (bib78) 2015; 87 Deo, Ghorbani, Samadianfard, Maraseni, Bilgili, Biazar (bib44) 2018; 116 Deo, Wen, Qi (bib15) 2016; 168 (bib106) 2000; 5 Rezakazemi, Dashti, Asghari, Shirazian (bib56) 2017; 42 Bouzgou, Gueymard (bib6) 2017; 158 Prasad, Deo, Li, Maraseni (bib30) 2017; 197 Deo, Sahin, Adamowski, Jianchun (bib21) 2019; 104 Jinlian, Yufen, Jiaxuan (bib47) 2017 O'Hagan (bib91) 2006; 91 Soufi, Bechouat, Kahla (bib13) 2017; 42 Chen, Ersi, Yang, Lu, Zhao (bib42) 2004; 45 Çakıt, Karwowski (bib45) 2017; 48 Deo, Wen, Qi (bib32) 2016; 168 Hsu, Chang, Lin (bib66) 2003 Deo, Ghimire, Downs, Raj (bib9) 2018 Salcedo-Sanz, Deo, Cornejo-Bueno, Camacho-Gómez, Ghimire (bib19) 2018; 209 Eseye, Zhang, Zheng (bib101) 2017; 118 Rasmussen, Williams (bib49) 2006 Goyal, Bharti, Quilty, Adamowski, Pandey (bib64) 2014; 41 Deo, Wen, Feng (bib62) 2016; 168 Willcock, Che, McCluskey (bib80) 2013 Olatomiwa, Mekhilef, Shamshirband, Mohammadi, Petković, Sudheer (bib34) 2015; 115 Yu, Chen, Wang, Lai (bib48) 2009; 13 Percival, Walden (bib74) 2006 Sui, He, Li (bib77) 2014 Hochreiter, Schmidhuber (bib116) 1997; 9 Deo, Tiwari, Adamowski, Quilty (bib98) 2017; 31 Cristianini, Shawe-Taylor (bib51) 2000 Şahin, Kaya, Uyar, Yıldırım (bib17) 2014; 38 Tian, Pan (bib117) 2015 Belaid, Mellit (bib41) 2016; 118 Ahila, Sadasivam, Manimala (bib112) 2015; 32 Kennedy, Eberhart (bib70) 1995 UN (bib3) 2015 Bisht, Bras (bib22) 2010; 114 (bib76) 2000 Shamshirband, Mohammadi, Khorasanizadeh, Yee, Lee, Petković (bib33) 2016; 56 Wan (bib86) 1999 Al-Musaylh, Deo, Adamowski, Li (bib40) 2018; 35 Deo, Şahin (bib94) 2016; 188 Peng, Ling (bib93) 2015; 84 Deo, Sahin (bib20) 2017; 72 Bolzan, Guarnieri, Vieira (bib103) 2009; 39 Hussain, AlAlili (bib99) 2017; 208 Jothimani, Shankar, Yadav (bib28) 2016 Fentis, Bahatti, Mestari, Chouri (bib14) 2017 Sreekumar, Sharma, Bhakar (bib53) 2016 Mohammadi, Shamshirband, Tong, Arif, Petković, Ch (bib65) 2015; 92 Ließ, Glaser, Huwe (bib95) 2012; 170 Willmott (bib108) 1984 Ajay, Dixon, Sowmya, Soman (bib61) 2016 Huang, Wang, Lan (bib46) 2011; 2 Qi, Zhou, Sun, Song, Hu, Wang (bib23) 2017; 220 Salcedo-Sanz, Deo, Cornejo-Bueno, Camacho-Gómez, Ghimire (bib5) 2018; 209 Seo, Choi, Choi (bib104) 2017; 9 Duan, Han, Huang, Zhao, Wang (bib59) 2016; 124 Zhu, Zhou, Feng, Hu, Yuan (bib26) 2017; 42 Liu, Wang (bib60) 2016; 89 Rathinasamy, Adamowski, Khosa (bib29) 2013; 507 Strohmann, Grudic (bib50) 2003 Ahmad (bib71) 2015; 11 Jiang, Huang, Peng, Li, Yang (bib113) 2018; 174 Xue, Zhang, Browne (bib69) 2014; 18 Kennedy (bib90) 2005 Verbois, Rusydi, Thiery (bib11) 2018; 173 Chaudhary, Rizwan (bib100) 2017; 118 Li, Chen, Zhang (bib31) 2017; 37 Zahedi (bib83) 2016 Deo, Tiwari, Adamowski, Quilty (bib89) 2017; 31 Sarikprueck, Lee, Kulvanitchaiyanunt, Chen, Rosenberger (bib7) 2017 Nourani, Baghanam, Adamowski, Kisi (bib115) 2014; 514 Ayvazoğluyüksel, Filik (bib12) 2018; 91 Chen, Liu, Wu, Xie (bib38) 2011; 36 Dinggui, Xuejun, Qing (bib88) 2004; 40 Al-Musaylh, Deo, Adamowski, Li (bib43) 2018; 17 Vapnik (bib57) 1995 Smith (10.1016/j.rser.2019.109247_bib63) 2002; 10 Fentis (10.1016/j.rser.2019.109247_bib14) 2017 Sui (10.1016/j.rser.2019.109247_bib77) 2014 Rezakazemi (10.1016/j.rser.2019.109247_bib56) 2017; 42 Ayvazoğluyüksel (10.1016/j.rser.2019.109247_bib12) 2018; 91 Prasad (10.1016/j.rser.2019.109247_bib30) 2017; 197 Byrnes (10.1016/j.rser.2019.109247_bib82) 2013; 60 Ghimire (10.1016/j.rser.2019.109247_bib10) 2019; 216 Ghimire (10.1016/j.rser.2019.109247_bib4) 2018; 212 Tayal (10.1016/j.rser.2019.109247_bib84) 2017; 19 Al-Musaylh (10.1016/j.rser.2019.109247_bib43) 2018; 17 Sarikprueck (10.1016/j.rser.2019.109247_bib7) 2017 Huang (10.1016/j.rser.2019.109247_bib46) 2011; 2 Eseye (10.1016/j.rser.2019.109247_bib101) 2017; 118 Tian (10.1016/j.rser.2019.109247_bib117) 2015 Hsu (10.1016/j.rser.2019.109247_bib66) 2003 Shamshirband (10.1016/j.rser.2019.109247_bib33) 2016; 56 Ahila (10.1016/j.rser.2019.109247_bib112) 2015; 32 Williams (10.1016/j.rser.2019.109247_bib79) 2012; 40 UN (10.1016/j.rser.2019.109247_bib3) 2015 Belaid (10.1016/j.rser.2019.109247_bib41) 2016; 118 Qi (10.1016/j.rser.2019.109247_bib23) 2017; 220 Zeng (10.1016/j.rser.2019.109247_bib37) 2013; 52 Breiman (10.1016/j.rser.2019.109247_bib52) 2001; 45 Mohammadi (10.1016/j.rser.2019.109247_bib65) 2015; 92 Drisya (10.1016/j.rser.2019.109247_bib114) 2018; 119 Ajay (10.1016/j.rser.2019.109247_bib61) 2016 Chen (10.1016/j.rser.2019.109247_bib42) 2004; 45 Dinggui (10.1016/j.rser.2019.109247_bib88) 2004; 40 Zhu (10.1016/j.rser.2019.109247_bib26) 2017; 42 Kennedy (10.1016/j.rser.2019.109247_bib70) 1995 Peng (10.1016/j.rser.2019.109247_bib93) 2015; 84 Sun (10.1016/j.rser.2019.109247_bib54) 2009 Bisht (10.1016/j.rser.2019.109247_bib22) 2010; 114 Sreekumar (10.1016/j.rser.2019.109247_bib53) 2016 Zhu (10.1016/j.rser.2019.109247_bib27) 2014; 38 Birol (10.1016/j.rser.2019.109247_bib2) 2017 Dayal (10.1016/j.rser.2019.109247_bib8) 2017 Chen (10.1016/j.rser.2019.109247_bib36) 2013; 75 Song (10.1016/j.rser.2019.109247_bib55) 2017; 134 Ramedani (10.1016/j.rser.2019.109247_bib35) 2014; 39 Quej (10.1016/j.rser.2019.109247_bib97) 2017; 155 Bowden (10.1016/j.rser.2019.109247_bib24) 2005; 301 Yu (10.1016/j.rser.2019.109247_bib48) 2009; 13 Ahmad (10.1016/j.rser.2019.109247_bib71) 2015; 11 Havas (10.1016/j.rser.2019.109247_bib78) 2015; 87 10.1016/j.rser.2019.109247_bib1 Verbois (10.1016/j.rser.2019.109247_bib11) 2018; 173 Willcock (10.1016/j.rser.2019.109247_bib80) 2013 Linares-Rodriguez (10.1016/j.rser.2019.109247_bib18) 2013; 61 Rathinasamy (10.1016/j.rser.2019.109247_bib29) 2013; 507 Xue (10.1016/j.rser.2019.109247_bib69) 2014; 18 Walsh (10.1016/j.rser.2019.109247_bib16) 1983 Bouzgou (10.1016/j.rser.2019.109247_bib6) 2017; 158 Percival (10.1016/j.rser.2019.109247_bib74) 2006 Ließ (10.1016/j.rser.2019.109247_bib95) 2012; 170 Cheng (10.1016/j.rser.2019.109247_bib68) 2014 Aghdam (10.1016/j.rser.2019.109247_bib72) 2015; 5 Şahin (10.1016/j.rser.2019.109247_bib17) 2014; 38 Hu (10.1016/j.rser.2019.109247_bib67) 2015 Jothimani (10.1016/j.rser.2019.109247_bib28) 2016 (10.1016/j.rser.2019.109247_bib106) 2000; 5 Salcedo-Sanz (10.1016/j.rser.2019.109247_bib5) 2018; 209 Hussain (10.1016/j.rser.2019.109247_bib99) 2017; 208 Hoerl (10.1016/j.rser.2019.109247_bib58) 1970; 12 The Climate Institute (10.1016/j.rser.2019.109247_bib85) 2017 Li (10.1016/j.rser.2019.109247_bib31) 2017; 37 Deo (10.1016/j.rser.2019.109247_bib44) 2018; 116 Duan (10.1016/j.rser.2019.109247_bib59) 2016; 124 Cohen (10.1016/j.rser.2019.109247_bib102) 2016; 49 Deo (10.1016/j.rser.2019.109247_bib94) 2016; 188 Goyal (10.1016/j.rser.2019.109247_bib64) 2014; 41 Seo (10.1016/j.rser.2019.109247_bib104) 2017; 9 Yang (10.1016/j.rser.2019.109247_bib96) 2016; 60 Deo (10.1016/j.rser.2019.109247_bib89) 2017; 31 Willmott (10.1016/j.rser.2019.109247_bib108) 1984 Al-Musaylh (10.1016/j.rser.2019.109247_bib40) 2018; 35 Kim (10.1016/j.rser.2019.109247_bib118) 2017; 87 Soufi (10.1016/j.rser.2019.109247_bib13) 2017; 42 Alfadda (10.1016/j.rser.2019.109247_bib25) 2017 Wan (10.1016/j.rser.2019.109247_bib86) 1999 Wen (10.1016/j.rser.2019.109247_bib111) 2016; 48 Gant (10.1016/j.rser.2019.109247_bib92) 2013; 26 Deo (10.1016/j.rser.2019.109247_bib98) 2017; 31 Jinlian (10.1016/j.rser.2019.109247_bib47) 2017 Zahedi (10.1016/j.rser.2019.109247_bib83) 2016 Salcedo-Sanz (10.1016/j.rser.2019.109247_bib19) 2018; 209 Kennedy (10.1016/j.rser.2019.109247_bib90) 2005 Çakıt (10.1016/j.rser.2019.109247_bib45) 2017; 48 Legates (10.1016/j.rser.2019.109247_bib107) 1999; 35 Olatomiwa (10.1016/j.rser.2019.109247_bib34) 2015; 115 Penney (10.1016/j.rser.2019.109247_bib81) 2012 Sui (10.1016/j.rser.2019.109247_bib75) 2014 Hochreiter (10.1016/j.rser.2019.109247_bib116) 1997; 9 Willmott (10.1016/j.rser.2019.109247_bib109) 1982; 63 Mohanad (10.1016/j.rser.2019.109247_bib39) 2018; 64 Nourani (10.1016/j.rser.2019.109247_bib115) 2014; 514 Nash (10.1016/j.rser.2019.109247_bib110) 1970; 10 O'Hagan (10.1016/j.rser.2019.109247_bib91) 2006; 91 Deo (10.1016/j.rser.2019.109247_bib20) 2017; 72 Rathinasamy (10.1016/j.rser.2019.109247_bib73) 2014; 50 Liu (10.1016/j.rser.2019.109247_bib60) 2016; 89 Vapnik (10.1016/j.rser.2019.109247_bib57) 1995 Jiang (10.1016/j.rser.2019.109247_bib113) 2018; 174 Rasmussen (10.1016/j.rser.2019.109247_bib49) 2006 Deo (10.1016/j.rser.2019.109247_bib32) 2016; 168 (10.1016/j.rser.2019.109247_bib76) 2000 Deo (10.1016/j.rser.2019.109247_bib15) 2016; 168 Strohmann (10.1016/j.rser.2019.109247_bib50) 2003 Yadav (10.1016/j.rser.2019.109247_bib87) 2015; 52 Deo (10.1016/j.rser.2019.109247_bib9) 2018 Cristianini (10.1016/j.rser.2019.109247_bib51) 2000 Deo (10.1016/j.rser.2019.109247_bib62) 2016; 168 Chen (10.1016/j.rser.2019.109247_bib38) 2011; 36 Deo (10.1016/j.rser.2019.109247_bib21) 2019; 104 Chaudhary (10.1016/j.rser.2019.109247_bib100) 2017; 118 Bolzan (10.1016/j.rser.2019.109247_bib103) 2009; 39 Chai (10.1016/j.rser.2019.109247_bib105) 2014; 7  | 
    
| References_xml | – volume: 9 start-page: 525 year: 2017 ident: bib104 article-title: River stage modeling by combining maximal overlap discrete wavelet transform, support vector machines and genetic algorithm publication-title: Water – volume: 104 start-page: 235 year: 2019 end-page: 261 ident: bib21 article-title: Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: a new approach publication-title: Renew Sustain Energy Rev – start-page: 1929 year: 2016 end-page: 1932 ident: bib53 article-title: Optimized Support Vector Regression models for short term solar radiation forecasting in smart environment publication-title: 2016 IEEE Region 10 Conference (TENCON) – volume: 31 start-page: 1211 year: 2017 end-page: 1240 ident: bib89 article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model publication-title: Stoch Environ Res Risk Assess – volume: 301 start-page: 75 year: 2005 end-page: 92 ident: bib24 article-title: Input determination for neural network models in water resources applications. Part 1—background and methodology publication-title: J Hydrol – volume: 64 year: 2018 ident: bib39 article-title: Particle swarm optimized–support vector regression hybrid model for daily horizon electricity demand forecasting using climate dataset publication-title: E3S Web Conf – volume: 12 start-page: 55 year: 1970 end-page: 67 ident: bib58 article-title: Ridge regression: biased estimation for nonorthogonal problems publication-title: Technometrics – volume: 49 start-page: 129 year: 2016 end-page: 138 ident: bib102 article-title: Design of experiments and statistical process control using wavelets analysis publication-title: Contr Eng Pract – volume: 92 start-page: 162 year: 2015 end-page: 171 ident: bib65 article-title: A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation publication-title: Energy Convers Manag – volume: 188 start-page: 90 year: 2016 ident: bib94 article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland publication-title: Environ Monit Assess – volume: 75 start-page: 311 year: 2013 end-page: 318 ident: bib36 article-title: Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration publication-title: Energy Convers Manag – volume: 124 start-page: 54 year: 2016 end-page: 73 ident: bib59 article-title: A hybrid EMD-SVR model for the short-term prediction of significant wave height publication-title: Ocean Eng – start-page: 443 year: 1984 end-page: 460 ident: bib108 article-title: On the evaluation of model performance in physical geography publication-title: Spatial statistics and models – volume: 118 start-page: 928 year: 2017 end-page: 946 ident: bib100 article-title: Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system publication-title: Renew Energy – volume: 48 year: 2016 ident: bib111 article-title: Wavelet analysis–artificial neural network conjunction models for multi-scale monthly groundwater level predicting in an arid inland river basin, northwestern China publication-title: Nord Hydrol – volume: 31 start-page: 1211 year: 2017 end-page: 1240 ident: bib98 article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model publication-title: Stoch Environ Res Risk Assess – volume: 220 start-page: 181 year: 2017 end-page: 190 ident: bib23 article-title: Feature selection and multiple kernel boosting framework based on PSO with mutation mechanism for hyperspectral classification publication-title: Neurocomputing – volume: 91 start-page: 1290 year: 2006 end-page: 1300 ident: bib91 article-title: Bayesian analysis of computer code outputs: a tutorial publication-title: Reliab Eng Syst Saf – volume: 208 start-page: 540 year: 2017 end-page: 550 ident: bib99 article-title: A hybrid solar radiation modeling approach using wavelet multiresolution analysis and artificial neural networks publication-title: Appl Energy – volume: 209 start-page: 79 year: 2018 end-page: 94 ident: bib5 article-title: An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia publication-title: Appl Energy – year: 2006 ident: bib49 article-title: Gaussian Processes for Machine Learning – volume: 10 start-page: 303 year: 2002 end-page: 321 ident: bib63 article-title: Comparison of parametric and nonparametric models for traffic flow forecasting publication-title: Transport Res C Emerg Technol – volume: 168 start-page: 568 year: 2016 end-page: 593 ident: bib62 article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset publication-title: Appl Energy – volume: 37 start-page: 679 year: 2017 end-page: 689 ident: bib31 article-title: Application of MODWT and log-normal distribution model for automatic epilepsy identification publication-title: Biocybernetics Biomed. Eng. – volume: 18 start-page: 261 year: 2014 end-page: 276 ident: bib69 article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms publication-title: Appl Soft Comput – volume: 87 start-page: 109 year: 2017 end-page: 121 ident: bib118 article-title: Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection publication-title: Neural Network – volume: 216 start-page: 288 year: 2019 end-page: 310 ident: bib10 article-title: Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cites of queensland Australia publication-title: J Clean Prod – volume: 50 start-page: 9721 year: 2014 end-page: 9737 ident: bib73 article-title: Wavelet‐based multiscale performance analysis: an approach to assess and improve hydrological models publication-title: Water Resour Res – year: 2016 ident: bib28 article-title: Discrete wavelet transform-based prediction of stock index: a study on National Stock Exchange Fifty index – volume: 5 start-page: 124 year: 2000 end-page: 137 ident: bib106 article-title: ASCE. Artificial neural networks in hydrology. II: hydrologic applications publication-title: J Hydrol Eng – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib52 article-title: Random forests publication-title: Mach Learn – volume: 19 start-page: 59 year: 2017 end-page: 69 ident: bib84 article-title: Future business models for Western Australian electricity utilities publication-title: Sustain Energy Technol Assess – volume: 38 start-page: 1859 year: 2014 end-page: 1865 ident: bib27 article-title: MODWT-ARMA model for time series prediction publication-title: Appl Math Model – volume: 32 start-page: 23 year: 2015 end-page: 37 ident: bib112 article-title: An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances publication-title: Appl Soft Comput – volume: 118 start-page: 105 year: 2016 end-page: 118 ident: bib41 article-title: Prediction of daily and mean monthly global solar radiation using support vector machine in an arid climate publication-title: Energy Convers Manag – volume: 13 start-page: 87 year: 2009 end-page: 102 ident: bib48 article-title: Evolving least squares support vector machines for stock market trend mining publication-title: IEEE Trans Evol Comput – volume: 155 start-page: 62 year: 2017 end-page: 70 ident: bib97 article-title: ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment publication-title: J Atmos Sol Terr Phys – start-page: 153 year: 2015 end-page: 158 ident: bib117 article-title: Predicting short-term traffic flow by long short-term memory recurrent neural network publication-title: Smart City/SocialCom/SustainCom (SmartCity), 2015 IEEE International Conference on – volume: 40 start-page: 33 year: 2012 end-page: 38 ident: bib79 article-title: The impact of summer temperatures and heatwaves on mortality and morbidity in Perth, Australia 1994–2008 publication-title: Environ Int – volume: 197 start-page: 42 year: 2017 end-page: 63 ident: bib30 article-title: Input selection and performance optimization of ANN-based streamflow forecasts in a drought-prone Murray Darling Basin using IIS and MODWT algorithm publication-title: Atmos Res – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib116 article-title: Long short-term memory publication-title: Neural Comput – volume: 60 start-page: 711 year: 2013 end-page: 721 ident: bib82 article-title: Australian renewable energy policy: barriers and challenges publication-title: Renew Energy – start-page: 177 year: 2017 end-page: 198 ident: bib8 article-title: Drought modelling based on artificial intelligence and neural network algorithms: a case study in Queensland, Australia. Climate Change Adaptation in Pacific Countries – start-page: 1135 year: 2014 end-page: 1140 ident: bib75 article-title: Research on the tail risk spillover between shanghai and shenzhen stock markets based on MODWT and time-varying Clayton Copula publication-title: Management Science & Engineering (ICMSE), 2014 International Conference on – volume: 158 start-page: 595 year: 2017 end-page: 609 ident: bib6 article-title: Minimum redundancy – maximum relevance with extreme learning machines for global solar radiation forecasting: toward an optimized dimensionality reduction for solar time series publication-title: Sol Energy – volume: 115 start-page: 632 year: 2015 end-page: 644 ident: bib34 article-title: A support vector machine–firefly algorithm-based model for global solar radiation prediction publication-title: Sol Energy – volume: 11 start-page: 806954 year: 2015 ident: bib71 article-title: Feature selection using particle swarm optimization in intrusion detection publication-title: Int J Distributed Sens Netw – volume: 134 start-page: 31 year: 2017 end-page: 49 ident: bib55 article-title: A novel double deep ELMs ensemble system for time series forecasting publication-title: Knowl Based Syst – volume: 89 start-page: 153 year: 2016 end-page: 159 ident: bib60 article-title: Study on network traffic forecast model of SVR optimized by GAFSA publication-title: Chaos, Solit Fractals – year: 2005 ident: bib90 article-title: GEM-SA, Version 1.1. Software: Gaussian Emulation Machine for Sensitivity Analysis – volume: 39 start-page: 12 year: 2009 end-page: 17 ident: bib103 article-title: Comparisons between two wavelet functions in extracting coherent structures from solar wind time series publication-title: Braz J Phys – start-page: 1 year: 2017 ident: bib7 article-title: Bounds for optimal control of a regional plug-in electric vehicle charging station system publication-title: IEEE Trans Ind Appl – year: 2012 ident: bib81 article-title: Bureau of Resources and Energy Economics, Energy in Australia – volume: 5 start-page: 231 year: 2015 end-page: 238 ident: bib72 article-title: Feature selection using particle swarm optimization in text categorization publication-title: J Artif Intell Soft Comput Res – volume: 10 start-page: 282 year: 1970 end-page: 290 ident: bib110 article-title: River flow forecasting through conceptual models part I—a discussion of principles publication-title: J Hydrol – volume: 17 start-page: 422 year: 2018 end-page: 439 ident: bib43 article-title: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting publication-title: Appl Energy – volume: 39 start-page: 1005 year: 2014 end-page: 1011 ident: bib35 article-title: Potential of radial basis function based support vector regression for global solar radiation prediction publication-title: Renew Sustain Energy Rev – start-page: 321 year: 2009 end-page: 324 ident: bib54 article-title: Modelling of chaotic time series using minimax probability machine regression publication-title: 2009 WRI International Conference on Communications and Mobile Computing – start-page: 0396 year: 2016 end-page: 0401 ident: bib61 article-title: Aerial image classification using GURLS and LIBSVM. 2016 International Conference on Communication and Signal Processing – volume: 35 start-page: 233 year: 1999 end-page: 241 ident: bib107 article-title: Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation publication-title: Water Resour Res – volume: 52 start-page: 118 year: 2013 end-page: 127 ident: bib37 article-title: Short-term solar power prediction using a support vector machine publication-title: Renew Energy – start-page: 1 year: 2016 end-page: 4 ident: bib83 article-title: Solar PV for Australian tropical region; the most affordable and an appropriate power supply option – volume: 168 start-page: 568 year: 2016 end-page: 593 ident: bib15 article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset publication-title: Appl Energy – volume: 168 start-page: 568 year: 2016 end-page: 593 ident: bib32 article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset publication-title: Appl Energy – reference: Agency IE. World Energy Outlook 20182018. – volume: 507 start-page: 186 year: 2013 end-page: 200 ident: bib29 article-title: Multiscale streamflow forecasting using a new Bayesian model average based ensemble multi-wavelet Volterra nonlinear method publication-title: J Hydrol – year: 1995 ident: bib57 publication-title: The nature of statistical learning theory – year: 2006 ident: bib74 article-title: Wavelet methods for time series analysis – year: 2000 ident: bib51 article-title: An introduction to support vector machines and other kernel-based learning methods – volume: 48 start-page: 139 year: 2017 end-page: 155 ident: bib45 article-title: Predicting the occurrence of adverse events using an adaptive neuro-fuzzy inference system (ANFIS) approach with the help of ANFIS input selection publication-title: Artif Intell Rev – volume: 42 start-page: 15211 year: 2017 end-page: 15225 ident: bib56 article-title: H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS publication-title: Int J Hydrogen Energy – start-page: 785 year: 2003 end-page: 792 ident: bib50 article-title: A formulation for minimax probability machine regression publication-title: Adv Neural Inf Process Syst – volume: 42 start-page: 8680 year: 2017 end-page: 8688 ident: bib13 article-title: Fuzzy-PSO controller design for maximum power point tracking in photovoltaic system publication-title: Int J Hydrogen Energy – volume: 45 start-page: 1759 year: 2004 end-page: 1769 ident: bib42 article-title: Validation of five global radiation models with measured daily data in China publication-title: Energy Convers Manag – year: 2017 ident: bib2 article-title: Key World Energy Statistics 2017 – year: 1983 ident: bib16 article-title: An Australian climatic data bank for use in the estimation of building energy use – volume: 36 start-page: 413 year: 2011 end-page: 420 ident: bib38 article-title: Estimation of monthly solar radiation from measured temperatures using support vector machines–a case study publication-title: Renew Energy – year: 2015 ident: bib3 article-title: Resolution adopted by the General Assembly on 25 September 2015. 70/1. Transforming our world: the 2030 Agenda for Sustainable Development – volume: 514 start-page: 358 year: 2014 end-page: 377 ident: bib115 article-title: Applications of hybrid wavelet–Artificial Intelligence models in hydrology: a review publication-title: J Hydrol – start-page: 405 year: 2017 end-page: 408 ident: bib14 article-title: Short-term solar power forecasting using Support Vector Regression and feed-forward NN publication-title: 2017 15th IEEE International New Circuits and Systems Conference – volume: 119 start-page: 540 year: 2018 end-page: 550 ident: bib114 article-title: Diverse dynamical characteristics across the frequency spectrum of wind speed fluctuations publication-title: Renew Energy – volume: 116 start-page: 309 year: 2018 end-page: 323 ident: bib44 article-title: Multi-layer perceptron hybrid model integrated with the firefly optimizer algorithm for windspeed prediction of target site using a limited set of neighboring reference station data publication-title: Renew Energy – start-page: 553 year: 2015 end-page: 561 ident: bib67 article-title: PSO-SVR: a hybrid short-term traffic flow forecasting method publication-title: 2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS) – volume: 40 start-page: 296 year: 2004 end-page: 302 ident: bib88 article-title: The application of ANN realized by MATLAB to underground water quality assessment publication-title: Acta Sci Nauralium Univ Pekin – start-page: 395 year: 2014 end-page: 399 ident: bib68 article-title: A novel GA-SVR time series model based on selected indicators method for forecasting stock price publication-title: 2014 International Conference on Information Science, Electronics and Electrical Engineering – volume: 52 start-page: 1093 year: 2015 end-page: 1106 ident: bib87 article-title: Application of rapid miner in ANN based prediction of solar radiation for assessment of solar energy resource potential of 76 sites in Northwestern India publication-title: Renew Sustain Energy Rev – volume: 26 start-page: 792 year: 2013 end-page: 802 ident: bib92 article-title: Methodology for global sensitivity analysis of consequence models publication-title: J Loss Prev Process Ind – volume: 2 start-page: 107 year: 2011 end-page: 122 ident: bib46 article-title: Extreme learning machines: a survey publication-title: Int J Mach Learn Cybern – volume: 91 start-page: 639 year: 2018 end-page: 653 ident: bib12 article-title: Estimation methods of global solar radiation, cell temperature and solar power forecasting: a review and case study in Eskişehir publication-title: Renew Sustain Energy Rev – volume: 114 start-page: 1522 year: 2010 end-page: 1534 ident: bib22 article-title: Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study publication-title: Remote Sens Environ – volume: 42 start-page: 19389 year: 2017 end-page: 19394 ident: bib26 article-title: Influences of solar energy on the energy efficiency design index for new building ships publication-title: Int J Hydrogen Energy – year: 1995 ident: bib70 article-title: Particle swarm optimization [a] proceedings of the ieee international conference on neural networks [c] piscataway – start-page: 159 year: 2000 end-page: 205 ident: bib76 article-title: The maximal overlap discrete wavelet transform publication-title: Wavelet Methods for Time Series Analysis – start-page: 1135 year: 2014 end-page: 1140 ident: bib77 article-title: Research on the tail risk spillover between shanghai and shenzhen stock markets based on MODWT and time-varying Clayton Copula publication-title: 2014 International Conference on Management Science & Engineering 21th Annual Conference Proceedings – volume: 56 start-page: 428 year: 2016 end-page: 435 ident: bib33 article-title: Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model publication-title: Renew Sustain Energy Rev – year: 2017 ident: bib85 article-title: Climate of the Nation 2017 Australian attitudes on climate change – volume: 63 start-page: 1309 year: 1982 end-page: 1313 ident: bib109 article-title: Some comments on the evaluation of model performance publication-title: Bull Am Meteorol Soc – volume: 87 start-page: 325 year: 2015 end-page: 333 ident: bib78 article-title: Power to change: analysis of household participation in a renewable energy and energy efficiency programme in Central Australia publication-title: Energy Policy – start-page: 964 year: 2017 end-page: 969 ident: bib47 article-title: Long and medium term power load forecasting based on a combination model of GMDH, PSO and LSSVM publication-title: Control And Decision Conference (CCDC), 2017 29th Chinese – volume: 60 start-page: 870 year: 2016 end-page: 878 ident: bib96 article-title: Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem publication-title: Ecol Indicat – volume: 72 start-page: 828 year: 2017 end-page: 848 ident: bib20 article-title: Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland publication-title: Renew Sustain Energy Rev – volume: 170 start-page: 70 year: 2012 end-page: 79 ident: bib95 article-title: Uncertainty in the spatial prediction of soil texture: comparison of regression tree and random forest models publication-title: Geoderma – volume: 84 start-page: 203 year: 2015 end-page: 213 ident: bib93 article-title: Predicting thermal–hydraulic performances in compact heat exchangers by support vector regression publication-title: Int J Heat Mass Transf – year: 2003 ident: bib66 article-title: A practical guide to support vector classification – volume: 173 start-page: 313 year: 2018 end-page: 327 ident: bib11 article-title: Probabilistic forecasting of day-ahead solar irradiance using quantile gradient boosting publication-title: Sol Energy – volume: 118 start-page: 357 year: 2017 end-page: 367 ident: bib101 article-title: Short-term photovoltaic solar power forecasting using a hybrid wavelet-PSO-SVM model based on SCADA and meteorological information publication-title: Renew Energy – year: 2013 ident: bib80 article-title: Bureau of Resources and Energy Economics, Energy in Australia – volume: 212 start-page: 176 year: 2018 end-page: 198 ident: bib4 article-title: Self-adaptive differential evolutionary extreme learning machines for long-term solar radiation prediction with remotely-sensed MODIS satellite and Reanalysis atmospheric products in solar-rich cities publication-title: Remote Sens Environ – volume: 38 start-page: 205 year: 2014 end-page: 212 ident: bib17 article-title: Application of extreme learning machine for estimating solar radiation from satellite data publication-title: Int J Energy Res – year: 1999 ident: bib86 article-title: MODIS Land-Surface Temperature Algorithm Basis Document (LST ATBD): version 3.3 – start-page: 328 year: 2018 end-page: 359 ident: bib9 article-title: Optimization of windspeed prediction using an artificial neural network compared with a genetic programming model publication-title: Handb. Res. Predict. Model. Optim. Methods Sci. Eng. – volume: 61 start-page: 636 year: 2013 end-page: 645 ident: bib18 article-title: An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images publication-title: Energy – start-page: 1 year: 2017 end-page: 5 ident: bib25 article-title: Hour-ahead solar PV power forecasting using SVR based approach publication-title: 2017 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT) – volume: 209 start-page: 79 year: 2018 end-page: 94 ident: bib19 article-title: An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia publication-title: Appl Energy – volume: 35 start-page: 1 year: 2018 end-page: 16 ident: bib40 article-title: Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia publication-title: Adv Eng Inf – volume: 41 start-page: 5267 year: 2014 end-page: 5276 ident: bib64 article-title: Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS publication-title: Expert Syst Appl – volume: 174 start-page: 28 year: 2018 end-page: 38 ident: bib113 article-title: A novel wind speed prediction method: hybrid of correlation-aided DWT, LSSVM and GARCH publication-title: J Wind Eng Ind Aerodyn – volume: 7 start-page: 1247 year: 2014 end-page: 1250 ident: bib105 article-title: Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature publication-title: Geosci Model Dev (GMD) – year: 2017 ident: 10.1016/j.rser.2019.109247_bib85 – volume: 89 start-page: 153 year: 2016 ident: 10.1016/j.rser.2019.109247_bib60 article-title: Study on network traffic forecast model of SVR optimized by GAFSA publication-title: Chaos, Solit Fractals doi: 10.1016/j.chaos.2015.10.019 – volume: 84 start-page: 203 year: 2015 ident: 10.1016/j.rser.2019.109247_bib93 article-title: Predicting thermal–hydraulic performances in compact heat exchangers by support vector regression publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2015.01.017 – volume: 5 start-page: 124 year: 2000 ident: 10.1016/j.rser.2019.109247_bib106 article-title: ASCE. Artificial neural networks in hydrology. II: hydrologic applications publication-title: J Hydrol Eng doi: 10.1061/(ASCE)1084-0699(2000)5:2(124) – volume: 514 start-page: 358 year: 2014 ident: 10.1016/j.rser.2019.109247_bib115 article-title: Applications of hybrid wavelet–Artificial Intelligence models in hydrology: a review publication-title: J Hydrol doi: 10.1016/j.jhydrol.2014.03.057 – volume: 52 start-page: 118 year: 2013 ident: 10.1016/j.rser.2019.109247_bib37 article-title: Short-term solar power prediction using a support vector machine publication-title: Renew Energy doi: 10.1016/j.renene.2012.10.009 – volume: 39 start-page: 12 year: 2009 ident: 10.1016/j.rser.2019.109247_bib103 article-title: Comparisons between two wavelet functions in extracting coherent structures from solar wind time series publication-title: Braz J Phys doi: 10.1590/S0103-97332009000100002 – start-page: 159 year: 2000 ident: 10.1016/j.rser.2019.109247_bib76 article-title: The maximal overlap discrete wavelet transform – volume: 507 start-page: 186 year: 2013 ident: 10.1016/j.rser.2019.109247_bib29 article-title: Multiscale streamflow forecasting using a new Bayesian model average based ensemble multi-wavelet Volterra nonlinear method publication-title: J Hydrol doi: 10.1016/j.jhydrol.2013.09.025 – year: 2000 ident: 10.1016/j.rser.2019.109247_bib51 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.rser.2019.109247_bib52 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 168 start-page: 568 year: 2016 ident: 10.1016/j.rser.2019.109247_bib62 article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.01.130 – start-page: 153 year: 2015 ident: 10.1016/j.rser.2019.109247_bib117 article-title: Predicting short-term traffic flow by long short-term memory recurrent neural network – start-page: 785 year: 2003 ident: 10.1016/j.rser.2019.109247_bib50 article-title: A formulation for minimax probability machine regression publication-title: Adv Neural Inf Process Syst – start-page: 321 year: 2009 ident: 10.1016/j.rser.2019.109247_bib54 article-title: Modelling of chaotic time series using minimax probability machine regression – ident: 10.1016/j.rser.2019.109247_bib1 – volume: 42 start-page: 19389 year: 2017 ident: 10.1016/j.rser.2019.109247_bib26 article-title: Influences of solar energy on the energy efficiency design index for new building ships publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.06.042 – volume: 118 start-page: 105 year: 2016 ident: 10.1016/j.rser.2019.109247_bib41 article-title: Prediction of daily and mean monthly global solar radiation using support vector machine in an arid climate publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.03.082 – volume: 173 start-page: 313 year: 2018 ident: 10.1016/j.rser.2019.109247_bib11 article-title: Probabilistic forecasting of day-ahead solar irradiance using quantile gradient boosting publication-title: Sol Energy doi: 10.1016/j.solener.2018.07.071 – volume: 134 start-page: 31 year: 2017 ident: 10.1016/j.rser.2019.109247_bib55 article-title: A novel double deep ELMs ensemble system for time series forecasting publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2017.07.014 – volume: 116 start-page: 309 year: 2018 ident: 10.1016/j.rser.2019.109247_bib44 article-title: Multi-layer perceptron hybrid model integrated with the firefly optimizer algorithm for windspeed prediction of target site using a limited set of neighboring reference station data publication-title: Renew Energy doi: 10.1016/j.renene.2017.09.078 – volume: 63 start-page: 1309 year: 1982 ident: 10.1016/j.rser.2019.109247_bib109 article-title: Some comments on the evaluation of model performance publication-title: Bull Am Meteorol Soc doi: 10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2 – volume: 36 start-page: 413 year: 2011 ident: 10.1016/j.rser.2019.109247_bib38 article-title: Estimation of monthly solar radiation from measured temperatures using support vector machines–a case study publication-title: Renew Energy doi: 10.1016/j.renene.2010.06.024 – volume: 56 start-page: 428 year: 2016 ident: 10.1016/j.rser.2019.109247_bib33 article-title: Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.11.055 – volume: 208 start-page: 540 year: 2017 ident: 10.1016/j.rser.2019.109247_bib99 article-title: A hybrid solar radiation modeling approach using wavelet multiresolution analysis and artificial neural networks publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.09.100 – volume: 42 start-page: 15211 year: 2017 ident: 10.1016/j.rser.2019.109247_bib56 article-title: H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.04.044 – volume: 114 start-page: 1522 year: 2010 ident: 10.1016/j.rser.2019.109247_bib22 article-title: Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study publication-title: Remote Sens Environ doi: 10.1016/j.rse.2010.02.007 – volume: 72 start-page: 828 year: 2017 ident: 10.1016/j.rser.2019.109247_bib20 article-title: Forecasting long-term global solar radiation with an ANN algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in Queensland publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.01.114 – year: 2005 ident: 10.1016/j.rser.2019.109247_bib90 – start-page: 443 year: 1984 ident: 10.1016/j.rser.2019.109247_bib108 article-title: On the evaluation of model performance in physical geography – volume: 40 start-page: 33 year: 2012 ident: 10.1016/j.rser.2019.109247_bib79 article-title: The impact of summer temperatures and heatwaves on mortality and morbidity in Perth, Australia 1994–2008 publication-title: Environ Int doi: 10.1016/j.envint.2011.11.011 – volume: 168 start-page: 568 year: 2016 ident: 10.1016/j.rser.2019.109247_bib32 article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.01.130 – year: 1995 ident: 10.1016/j.rser.2019.109247_bib57 – volume: 41 start-page: 5267 year: 2014 ident: 10.1016/j.rser.2019.109247_bib64 article-title: Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2014.02.047 – volume: 197 start-page: 42 year: 2017 ident: 10.1016/j.rser.2019.109247_bib30 article-title: Input selection and performance optimization of ANN-based streamflow forecasts in a drought-prone Murray Darling Basin using IIS and MODWT algorithm publication-title: Atmos Res doi: 10.1016/j.atmosres.2017.06.014 – start-page: 964 year: 2017 ident: 10.1016/j.rser.2019.109247_bib47 article-title: Long and medium term power load forecasting based on a combination model of GMDH, PSO and LSSVM – volume: 64 year: 2018 ident: 10.1016/j.rser.2019.109247_bib39 article-title: Particle swarm optimized–support vector regression hybrid model for daily horizon electricity demand forecasting using climate dataset publication-title: E3S Web Conf doi: 10.1051/e3sconf/20186408001 – year: 2006 ident: 10.1016/j.rser.2019.109247_bib74 – volume: 168 start-page: 568 year: 2016 ident: 10.1016/j.rser.2019.109247_bib15 article-title: A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.01.130 – volume: 10 start-page: 282 year: 1970 ident: 10.1016/j.rser.2019.109247_bib110 article-title: River flow forecasting through conceptual models part I—a discussion of principles publication-title: J Hydrol doi: 10.1016/0022-1694(70)90255-6 – volume: 48 year: 2016 ident: 10.1016/j.rser.2019.109247_bib111 article-title: Wavelet analysis–artificial neural network conjunction models for multi-scale monthly groundwater level predicting in an arid inland river basin, northwestern China publication-title: Nord Hydrol – volume: 118 start-page: 357 year: 2017 ident: 10.1016/j.rser.2019.109247_bib101 article-title: Short-term photovoltaic solar power forecasting using a hybrid wavelet-PSO-SVM model based on SCADA and meteorological information publication-title: Renew Energy doi: 10.1016/j.renene.2017.11.011 – volume: 158 start-page: 595 year: 2017 ident: 10.1016/j.rser.2019.109247_bib6 article-title: Minimum redundancy – maximum relevance with extreme learning machines for global solar radiation forecasting: toward an optimized dimensionality reduction for solar time series publication-title: Sol Energy doi: 10.1016/j.solener.2017.10.035 – volume: 92 start-page: 162 year: 2015 ident: 10.1016/j.rser.2019.109247_bib65 article-title: A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.12.050 – volume: 11 start-page: 806954 year: 2015 ident: 10.1016/j.rser.2019.109247_bib71 article-title: Feature selection using particle swarm optimization in intrusion detection publication-title: Int J Distributed Sens Netw – volume: 50 start-page: 9721 year: 2014 ident: 10.1016/j.rser.2019.109247_bib73 article-title: Wavelet‐based multiscale performance analysis: an approach to assess and improve hydrological models publication-title: Water Resour Res doi: 10.1002/2013WR014650 – year: 1999 ident: 10.1016/j.rser.2019.109247_bib86 – volume: 2 start-page: 107 year: 2011 ident: 10.1016/j.rser.2019.109247_bib46 article-title: Extreme learning machines: a survey publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-011-0019-y – volume: 12 start-page: 55 year: 1970 ident: 10.1016/j.rser.2019.109247_bib58 article-title: Ridge regression: biased estimation for nonorthogonal problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488634 – volume: 38 start-page: 1859 year: 2014 ident: 10.1016/j.rser.2019.109247_bib27 article-title: MODWT-ARMA model for time series prediction publication-title: Appl Math Model doi: 10.1016/j.apm.2013.10.002 – volume: 119 start-page: 540 year: 2018 ident: 10.1016/j.rser.2019.109247_bib114 article-title: Diverse dynamical characteristics across the frequency spectrum of wind speed fluctuations publication-title: Renew Energy doi: 10.1016/j.renene.2017.12.024 – volume: 5 start-page: 231 year: 2015 ident: 10.1016/j.rser.2019.109247_bib72 article-title: Feature selection using particle swarm optimization in text categorization publication-title: J Artif Intell Soft Comput Res doi: 10.1515/jaiscr-2015-0031 – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.rser.2019.109247_bib116 article-title: Long short-term memory publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – year: 2017 ident: 10.1016/j.rser.2019.109247_bib2 – volume: 39 start-page: 1005 year: 2014 ident: 10.1016/j.rser.2019.109247_bib35 article-title: Potential of radial basis function based support vector regression for global solar radiation prediction publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.07.108 – year: 2006 ident: 10.1016/j.rser.2019.109247_bib49 – volume: 32 start-page: 23 year: 2015 ident: 10.1016/j.rser.2019.109247_bib112 article-title: An integrated PSO for parameter determination and feature selection of ELM and its application in classification of power system disturbances publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2015.03.036 – volume: 38 start-page: 205 year: 2014 ident: 10.1016/j.rser.2019.109247_bib17 article-title: Application of extreme learning machine for estimating solar radiation from satellite data publication-title: Int J Energy Res doi: 10.1002/er.3030 – year: 1995 ident: 10.1016/j.rser.2019.109247_bib70 – volume: 91 start-page: 639 year: 2018 ident: 10.1016/j.rser.2019.109247_bib12 article-title: Estimation methods of global solar radiation, cell temperature and solar power forecasting: a review and case study in Eskişehir publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2018.03.084 – volume: 31 start-page: 1211 year: 2017 ident: 10.1016/j.rser.2019.109247_bib89 article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-016-1265-z – volume: 7 start-page: 1247 year: 2014 ident: 10.1016/j.rser.2019.109247_bib105 article-title: Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature publication-title: Geosci Model Dev (GMD) doi: 10.5194/gmd-7-1247-2014 – start-page: 1 year: 2016 ident: 10.1016/j.rser.2019.109247_bib83 – start-page: 1135 year: 2014 ident: 10.1016/j.rser.2019.109247_bib77 article-title: Research on the tail risk spillover between shanghai and shenzhen stock markets based on MODWT and time-varying Clayton Copula – year: 2003 ident: 10.1016/j.rser.2019.109247_bib66 – volume: 220 start-page: 181 year: 2017 ident: 10.1016/j.rser.2019.109247_bib23 article-title: Feature selection and multiple kernel boosting framework based on PSO with mutation mechanism for hyperspectral classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.05.103 – volume: 60 start-page: 711 year: 2013 ident: 10.1016/j.rser.2019.109247_bib82 article-title: Australian renewable energy policy: barriers and challenges publication-title: Renew Energy doi: 10.1016/j.renene.2013.06.024 – start-page: 395 year: 2014 ident: 10.1016/j.rser.2019.109247_bib68 article-title: A novel GA-SVR time series model based on selected indicators method for forecasting stock price – volume: 45 start-page: 1759 year: 2004 ident: 10.1016/j.rser.2019.109247_bib42 article-title: Validation of five global radiation models with measured daily data in China publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2003.09.019 – volume: 174 start-page: 28 year: 2018 ident: 10.1016/j.rser.2019.109247_bib113 article-title: A novel wind speed prediction method: hybrid of correlation-aided DWT, LSSVM and GARCH publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2017.12.019 – volume: 31 start-page: 1211 year: 2017 ident: 10.1016/j.rser.2019.109247_bib98 article-title: Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-016-1265-z – volume: 301 start-page: 75 year: 2005 ident: 10.1016/j.rser.2019.109247_bib24 article-title: Input determination for neural network models in water resources applications. Part 1—background and methodology publication-title: J Hydrol doi: 10.1016/j.jhydrol.2004.06.021 – volume: 18 start-page: 261 year: 2014 ident: 10.1016/j.rser.2019.109247_bib69 article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.09.018 – volume: 124 start-page: 54 year: 2016 ident: 10.1016/j.rser.2019.109247_bib59 article-title: A hybrid EMD-SVR model for the short-term prediction of significant wave height publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2016.05.049 – volume: 115 start-page: 632 year: 2015 ident: 10.1016/j.rser.2019.109247_bib34 article-title: A support vector machine–firefly algorithm-based model for global solar radiation prediction publication-title: Sol Energy doi: 10.1016/j.solener.2015.03.015 – volume: 49 start-page: 129 year: 2016 ident: 10.1016/j.rser.2019.109247_bib102 article-title: Design of experiments and statistical process control using wavelets analysis publication-title: Contr Eng Pract doi: 10.1016/j.conengprac.2015.07.013 – volume: 91 start-page: 1290 year: 2006 ident: 10.1016/j.rser.2019.109247_bib91 article-title: Bayesian analysis of computer code outputs: a tutorial publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2005.11.025 – volume: 118 start-page: 928 year: 2017 ident: 10.1016/j.rser.2019.109247_bib100 article-title: Energy management supporting high penetration of solar photovoltaic generation for smart grid using solar forecasts and pumped hydro storage system publication-title: Renew Energy doi: 10.1016/j.renene.2017.10.113 – volume: 52 start-page: 1093 year: 2015 ident: 10.1016/j.rser.2019.109247_bib87 article-title: Application of rapid miner in ANN based prediction of solar radiation for assessment of solar energy resource potential of 76 sites in Northwestern India publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.07.156 – volume: 17 start-page: 422 year: 2018 ident: 10.1016/j.rser.2019.109247_bib43 article-title: Two-phase particle swarm optimized-support vector regression hybrid model integrated with improved empirical mode decomposition with adaptive noise for multiple-horizon electricity demand forecasting publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.02.140 – start-page: 1929 year: 2016 ident: 10.1016/j.rser.2019.109247_bib53 article-title: Optimized Support Vector Regression models for short term solar radiation forecasting in smart environment – volume: 37 start-page: 679 year: 2017 ident: 10.1016/j.rser.2019.109247_bib31 article-title: Application of MODWT and log-normal distribution model for automatic epilepsy identification publication-title: Biocybernetics Biomed. Eng. doi: 10.1016/j.bbe.2017.08.003 – volume: 87 start-page: 325 year: 2015 ident: 10.1016/j.rser.2019.109247_bib78 article-title: Power to change: analysis of household participation in a renewable energy and energy efficiency programme in Central Australia publication-title: Energy Policy doi: 10.1016/j.enpol.2015.09.017 – volume: 42 start-page: 8680 year: 2017 ident: 10.1016/j.rser.2019.109247_bib13 article-title: Fuzzy-PSO controller design for maximum power point tracking in photovoltaic system publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.07.212 – start-page: 1 year: 2017 ident: 10.1016/j.rser.2019.109247_bib25 article-title: Hour-ahead solar PV power forecasting using SVR based approach – start-page: 1135 year: 2014 ident: 10.1016/j.rser.2019.109247_bib75 article-title: Research on the tail risk spillover between shanghai and shenzhen stock markets based on MODWT and time-varying Clayton Copula – volume: 40 start-page: 296 year: 2004 ident: 10.1016/j.rser.2019.109247_bib88 article-title: The application of ANN realized by MATLAB to underground water quality assessment publication-title: Acta Sci Nauralium Univ Pekin – volume: 9 start-page: 525 year: 2017 ident: 10.1016/j.rser.2019.109247_bib104 article-title: River stage modeling by combining maximal overlap discrete wavelet transform, support vector machines and genetic algorithm publication-title: Water doi: 10.3390/w9070525 – start-page: 328 year: 2018 ident: 10.1016/j.rser.2019.109247_bib9 article-title: Optimization of windspeed prediction using an artificial neural network compared with a genetic programming model publication-title: Handb. Res. Predict. Model. Optim. Methods Sci. Eng. – start-page: 1 year: 2017 ident: 10.1016/j.rser.2019.109247_bib7 article-title: Bounds for optimal control of a regional plug-in electric vehicle charging station system publication-title: IEEE Trans Ind Appl – volume: 209 start-page: 79 year: 2018 ident: 10.1016/j.rser.2019.109247_bib19 article-title: An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.10.076 – volume: 170 start-page: 70 year: 2012 ident: 10.1016/j.rser.2019.109247_bib95 article-title: Uncertainty in the spatial prediction of soil texture: comparison of regression tree and random forest models publication-title: Geoderma doi: 10.1016/j.geoderma.2011.10.010 – year: 1983 ident: 10.1016/j.rser.2019.109247_bib16 – start-page: 177 year: 2017 ident: 10.1016/j.rser.2019.109247_bib8 – start-page: 553 year: 2015 ident: 10.1016/j.rser.2019.109247_bib67 article-title: PSO-SVR: a hybrid short-term traffic flow forecasting method – volume: 104 start-page: 235 year: 2019 ident: 10.1016/j.rser.2019.109247_bib21 article-title: Universally deployable extreme learning machines integrated with remotely sensed MODIS satellite predictors over Australia to forecast global solar radiation: a new approach publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2019.01.009 – volume: 48 start-page: 139 year: 2017 ident: 10.1016/j.rser.2019.109247_bib45 article-title: Predicting the occurrence of adverse events using an adaptive neuro-fuzzy inference system (ANFIS) approach with the help of ANFIS input selection publication-title: Artif Intell Rev doi: 10.1007/s10462-016-9497-3 – volume: 35 start-page: 233 year: 1999 ident: 10.1016/j.rser.2019.109247_bib107 article-title: Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation publication-title: Water Resour Res doi: 10.1029/1998WR900018 – year: 2015 ident: 10.1016/j.rser.2019.109247_bib3 – year: 2012 ident: 10.1016/j.rser.2019.109247_bib81 – volume: 209 start-page: 79 year: 2018 ident: 10.1016/j.rser.2019.109247_bib5 article-title: An efficient neuro-evolutionary hybrid modelling mechanism for the estimation of daily global solar radiation in the Sunshine State of Australia publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.10.076 – volume: 61 start-page: 636 year: 2013 ident: 10.1016/j.rser.2019.109247_bib18 article-title: An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images publication-title: Energy doi: 10.1016/j.energy.2013.09.008 – volume: 216 start-page: 288 year: 2019 ident: 10.1016/j.rser.2019.109247_bib10 article-title: Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cites of queensland Australia publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.01.158 – volume: 75 start-page: 311 year: 2013 ident: 10.1016/j.rser.2019.109247_bib36 article-title: Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2013.06.034 – volume: 35 start-page: 1 year: 2018 ident: 10.1016/j.rser.2019.109247_bib40 article-title: Short-term electricity demand forecasting with MARS, SVR and ARIMA models using aggregated demand data in Queensland, Australia publication-title: Adv Eng Inf doi: 10.1016/j.aei.2017.11.002 – volume: 19 start-page: 59 year: 2017 ident: 10.1016/j.rser.2019.109247_bib84 article-title: Future business models for Western Australian electricity utilities publication-title: Sustain Energy Technol Assess – start-page: 0396 year: 2016 ident: 10.1016/j.rser.2019.109247_bib61 – volume: 26 start-page: 792 year: 2013 ident: 10.1016/j.rser.2019.109247_bib92 article-title: Methodology for global sensitivity analysis of consequence models publication-title: J Loss Prev Process Ind doi: 10.1016/j.jlp.2013.02.009 – volume: 10 start-page: 303 year: 2002 ident: 10.1016/j.rser.2019.109247_bib63 article-title: Comparison of parametric and nonparametric models for traffic flow forecasting publication-title: Transport Res C Emerg Technol doi: 10.1016/S0968-090X(02)00009-8 – start-page: 405 year: 2017 ident: 10.1016/j.rser.2019.109247_bib14 article-title: Short-term solar power forecasting using Support Vector Regression and feed-forward NN – year: 2016 ident: 10.1016/j.rser.2019.109247_bib28 – volume: 155 start-page: 62 year: 2017 ident: 10.1016/j.rser.2019.109247_bib97 article-title: ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment publication-title: J Atmos Sol Terr Phys doi: 10.1016/j.jastp.2017.02.002 – volume: 87 start-page: 109 year: 2017 ident: 10.1016/j.rser.2019.109247_bib118 article-title: Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection publication-title: Neural Network doi: 10.1016/j.neunet.2016.12.002 – volume: 13 start-page: 87 year: 2009 ident: 10.1016/j.rser.2019.109247_bib48 article-title: Evolving least squares support vector machines for stock market trend mining publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2008.928176 – volume: 60 start-page: 870 year: 2016 ident: 10.1016/j.rser.2019.109247_bib96 article-title: Comparison of boosted regression tree and random forest models for mapping topsoil organic carbon concentration in an alpine ecosystem publication-title: Ecol Indicat doi: 10.1016/j.ecolind.2015.08.036 – volume: 188 start-page: 90 year: 2016 ident: 10.1016/j.rser.2019.109247_bib94 article-title: An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland publication-title: Environ Monit Assess doi: 10.1007/s10661-016-5094-9 – volume: 212 start-page: 176 year: 2018 ident: 10.1016/j.rser.2019.109247_bib4 article-title: Self-adaptive differential evolutionary extreme learning machines for long-term solar radiation prediction with remotely-sensed MODIS satellite and Reanalysis atmospheric products in solar-rich cities publication-title: Remote Sens Environ doi: 10.1016/j.rse.2018.05.003 – year: 2013 ident: 10.1016/j.rser.2019.109247_bib80  | 
    
| SSID | ssj0015873 | 
    
| Score | 2.5593822 | 
    
| Snippet | The accurate prediction of global solar radiation (GSR) with remote sensing in metropolitan, regional and remote, yet solar-rich sites, is a core requisite for... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 109247 | 
    
| SubjectTerms | Hybrid energy prediction model Maximum overlap discrete wavelet MODIS satellite Remote sensing Renewable energy exploration Support vector regression  | 
    
| Title | Wavelet-based 3-phase hybrid SVR model trained with satellite-derived predictors, particle swarm optimization and maximum overlap discrete wavelet transform for solar radiation prediction | 
    
| URI | https://dx.doi.org/10.1016/j.rser.2019.109247 | 
    
| Volume | 113 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0690 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015873 issn: 1364-0321 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0690 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015873 issn: 1364-0321 databaseCode: ACRLP dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0690 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015873 issn: 1364-0321 databaseCode: AIKHN dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0690 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015873 issn: 1364-0321 databaseCode: .~1 dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0690 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015873 issn: 1364-0321 databaseCode: AKRWK dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3JTtww1BpNL_RQtYWqUIreoTcwk4mz-YhGRdMFhFjnFtmOLQYxQ5QJSy_9sf5c30ucEUiIA5c48R4_6y32Wxj7JnWhhCgsD9NY8cjEmkujLc-UsiIWIUoIZO98cJiMz6Kfk3jSY6POFobUKj3ub3F6g619zsCv5qCcTgcnQ5FEgSAPZSiSRynhYUpwT-_-Xap5DOOsuWWmypxqe8OZVserQjCTepckr0ohhVh5jjg9Ijj779k7zynCXjuZD6xn5x_Z20f-A1fZvwtFcSNqTrSoAMHLS3yByz9khgUn58fQBLqBJg4EVqBDV1ioxglnbXmB3dxhdlnRbQ2F3dmB0v88LO5VNYMbxCgzb6oJal7ATD1MZ7dYcEcHgSWQVW-FjDfct1OhsVpOGPABC5KcoSIHCE0Xfih8XWNn-99PR2PuozFwI4SsearDzIUmTbRAobIQqQmkMjJU5OLGOO0yjfjBRrGLjUSuIUuscAblJadCK7HwE-vPb-b2MwOHSFW6RA8jF0RpIHVkUxdm2FgWKK8W62zYgSE33lU5rdR13umkXeUEupxAl7egW2fbyzZl66jjxdpxB938yXbLkZK80G7jle2-sBX6arUAN1m_rm7tV-Rmar3VbNct9mZvdPz7iNIfv8aH_wEOa_vY | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NTxUxsCF4QA9GUCMqOAduWt97_djdHgmBPOXjIKDcNm23Dc_4Hpt9C-iFP8afY2a3j2BiOHjZNO1M2-0005l2PhjbMq6yUlaBi1xbrrx23HgXeGFtkFoK1BDI3_nwKBufqq9n-myJ7Sx8YcisMvH-nqd33DrVDNJqDurJZHA8kpkaSopQhiq5ypEPP1Fa5KSBfb65t_MY6aJ7ZiZoTuDJc6Y38mqQzmTfZSiskqAcK_86nR6cOHsv2PMkKsJ2P5tVthRma-zZgwCCL9ntD0uJI1pOh1EFktfnWIDzP-SHBcffv0GX6Qa6RBAIQLeuMLddFM428Aq7ucLquqHnGsq78wnq9Pcwv7bNFC6QpUyTrybYWQVT-3syvcSGK7oJrIHcehuUvOG6nwqN1YvCgB-Yk-oMDUVA6LpIQ2HxFTvd2z3ZGfOUjoF7KU3LcyeKKHyeOYlaZSVzPzTWG2Epxo2PLhYOGURQOmpvUGwosiCjR4UpWhEMNr5my7OLWXjDICJXNTFzIxWHKh8ap0IeRYHIpkKFtVpnowUZSp9ildNK_SoXRmk_SyJdSaQre9Kts4_3OHUfqeNRaL2gbvnXfivxKHkE7-1_4n1gK-OTw4Py4MvR_jv2lFp6k8D3bLltLsMGijat2-y27h321vvY | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelet-based+3-phase+hybrid+SVR+model+trained+with+satellite-derived+predictors%2C+particle+swarm+optimization+and+maximum+overlap+discrete+wavelet+transform+for+solar+radiation+prediction&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Ghimire%2C+Sujan&rft.au=Deo%2C+Ravinesh+C.&rft.au=Raj%2C+Nawin&rft.au=Mi%2C+Jianchun&rft.date=2019-10-01&rft.issn=1364-0321&rft.volume=113&rft.spage=109247&rft_id=info:doi/10.1016%2Fj.rser.2019.109247&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rser_2019_109247 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon |