Functionalized nanoporous graphene membrane with ultrafast and stable nanofiltration
Herein, a functionalized nanoporous graphene (FNG) membrane was developed to mitigate the contemporary issues affecting graphene oxide (GO) membranes, such as the low flux induced by its long tortuosity and poor membrane stability in aqueous solvents. GO was thermally activated at 650 °C to prepare...
Saved in:
Published in | Journal of membrane science Vol. 618; p. 118635 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0376-7388 1873-3123 |
DOI | 10.1016/j.memsci.2020.118635 |
Cover
Abstract | Herein, a functionalized nanoporous graphene (FNG) membrane was developed to mitigate the contemporary issues affecting graphene oxide (GO) membranes, such as the low flux induced by its long tortuosity and poor membrane stability in aqueous solvents. GO was thermally activated at 650 °C to prepare a nanoporous carbon sheet with a turbostratic structure (pore size < 4 nm). Thereafter, the nanoporous graphene (NG) was consecutively functionalized with oxygen-containing groups by KMnO4 treatment and re-dispersed in water to deposit an FNG layer on a porous polymeric support. The FNG membrane exhibited ultrafast water permeance (586 Lm-2h-1bar-1) and precise molecular separation (molecular weight cut off: 269 Da). The membrane performance surpasses the upper bound of previously reported polymers and two dimensional-material-based nanofiltration membranes by the synergistic effect of nanopores and oxygen-containing groups. Furthermore, the practical operation of the FNG membrane is feasible under cross-flow, and water-flux decline by filtered molecules is highly suppressed by the presence of abundant nanopores as compared to conventional GO membranes.
[Display omitted]
•Water-soluble nanoporous graphene was synthesized and used for membrane fabrication.•The membrane can stand harsh conditions under cross-flow filtration.•The membrane exhibited ultrafast water permeance (586 Lm-2h-1bar-1) and precise molecular separation (molecular weight cut off: 269 Da).•Flux decline of the membrane by filtered molecules can be suppressed in the presence of nanopores. |
---|---|
AbstractList | Herein, a functionalized nanoporous graphene (FNG) membrane was developed to mitigate the contemporary issues affecting graphene oxide (GO) membranes, such as the low flux induced by its long tortuosity and poor membrane stability in aqueous solvents. GO was thermally activated at 650 °C to prepare a nanoporous carbon sheet with a turbostratic structure (pore size < 4 nm). Thereafter, the nanoporous graphene (NG) was consecutively functionalized with oxygen-containing groups by KMnO₄ treatment and re-dispersed in water to deposit an FNG layer on a porous polymeric support. The FNG membrane exhibited ultrafast water permeance (586 Lm⁻²h⁻¹bar⁻¹) and precise molecular separation (molecular weight cut off: 269 Da). The membrane performance surpasses the upper bound of previously reported polymers and two dimensional-material-based nanofiltration membranes by the synergistic effect of nanopores and oxygen-containing groups. Furthermore, the practical operation of the FNG membrane is feasible under cross-flow, and water-flux decline by filtered molecules is highly suppressed by the presence of abundant nanopores as compared to conventional GO membranes. Herein, a functionalized nanoporous graphene (FNG) membrane was developed to mitigate the contemporary issues affecting graphene oxide (GO) membranes, such as the low flux induced by its long tortuosity and poor membrane stability in aqueous solvents. GO was thermally activated at 650 °C to prepare a nanoporous carbon sheet with a turbostratic structure (pore size < 4 nm). Thereafter, the nanoporous graphene (NG) was consecutively functionalized with oxygen-containing groups by KMnO4 treatment and re-dispersed in water to deposit an FNG layer on a porous polymeric support. The FNG membrane exhibited ultrafast water permeance (586 Lm-2h-1bar-1) and precise molecular separation (molecular weight cut off: 269 Da). The membrane performance surpasses the upper bound of previously reported polymers and two dimensional-material-based nanofiltration membranes by the synergistic effect of nanopores and oxygen-containing groups. Furthermore, the practical operation of the FNG membrane is feasible under cross-flow, and water-flux decline by filtered molecules is highly suppressed by the presence of abundant nanopores as compared to conventional GO membranes. [Display omitted] •Water-soluble nanoporous graphene was synthesized and used for membrane fabrication.•The membrane can stand harsh conditions under cross-flow filtration.•The membrane exhibited ultrafast water permeance (586 Lm-2h-1bar-1) and precise molecular separation (molecular weight cut off: 269 Da).•Flux decline of the membrane by filtered molecules can be suppressed in the presence of nanopores. |
ArticleNumber | 118635 |
Author | Kim, Ji Hoon Choi, Eunji Kwon, Ohchan Choi, Yunkyu Choi, Seung Eun Kang, Junhyeok Kim, Dae Woo |
Author_xml | – sequence: 1 givenname: Junhyeok surname: Kang fullname: Kang, Junhyeok – sequence: 2 givenname: Yunkyu surname: Choi fullname: Choi, Yunkyu – sequence: 3 givenname: Ji Hoon surname: Kim fullname: Kim, Ji Hoon – sequence: 4 givenname: Eunji surname: Choi fullname: Choi, Eunji – sequence: 5 givenname: Seung Eun surname: Choi fullname: Choi, Seung Eun – sequence: 6 givenname: Ohchan surname: Kwon fullname: Kwon, Ohchan – sequence: 7 givenname: Dae Woo orcidid: 0000-0001-6533-8086 surname: Kim fullname: Kim, Dae Woo email: audw1105@yonsei.ac.kr |
BookMark | eNqFkL1OwzAUhS1UJNrCGzBkZEnxTxI7DEioooBUiaXMluM41FViB9sBwdPjNEwMMF3r3nOOjr8FmBlrFACXCK4QRMX1YdWpzku9whDHFWIFyU_AHDFKUoIwmYE5JLRIKWHsDCy8P0CIKGTlHOw2g5FBWyNa_aXqxAhje-vs4JNXJ_q9MiqJ4ZUT8fGhwz4Z2uBEI3xIhKkTH0TVqqOt0eNlzDoHp41ovbr4mUvwsrnfrR_T7fPD0_pum0pCypBSVmayqlBNCBK4IQ3EqCiQIiSDeYmhZATiTNRUZhUtC8kghEW8lg2rcVlXZAmuptze2bdB-cA77aVq21g2_oDjPMeQ5FlJo_RmkkpnvXeq4VKHY9nYWbccQT6i5Ac-oeQjSj6hjObsl7l3uhPu8z_b7WRTkcG7Vo5HhTJS1dopGXht9d8B36T6kqE |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2023_157962 crossref_primary_10_1038_s41598_021_81759_7 crossref_primary_10_1016_j_memsci_2022_120604 crossref_primary_10_2139_ssrn_3968864 crossref_primary_10_1016_j_seppur_2021_120361 crossref_primary_10_1021_acsami_3c06103 crossref_primary_10_1016_j_cej_2022_135484 crossref_primary_10_1002_admi_202300250 crossref_primary_10_1016_j_coco_2022_101216 crossref_primary_10_3390_nano12122103 crossref_primary_10_1016_j_memsci_2024_122983 crossref_primary_10_1039_D2RA00725H crossref_primary_10_1016_j_jcis_2021_10_162 crossref_primary_10_3390_nano12111785 crossref_primary_10_1002_adma_202206524 crossref_primary_10_1016_j_desal_2021_115448 crossref_primary_10_1016_j_memsci_2024_123386 crossref_primary_10_1002_adfm_202011146 crossref_primary_10_1016_j_jece_2023_111839 crossref_primary_10_1039_D1CC02946K crossref_primary_10_1002_aic_17981 crossref_primary_10_1016_j_nanoen_2023_109205 crossref_primary_10_1016_j_memsci_2021_119620 crossref_primary_10_1021_acs_langmuir_1c00643 crossref_primary_10_1016_j_desal_2022_115621 crossref_primary_10_1016_j_seppur_2021_120301 crossref_primary_10_1016_j_apsusc_2023_156327 crossref_primary_10_1002_app_54616 crossref_primary_10_1016_j_cej_2021_131805 crossref_primary_10_3390_w16070988 crossref_primary_10_1021_acsenvironau_4c00088 crossref_primary_10_1038_s41467_023_36524_x crossref_primary_10_3390_nano11030757 crossref_primary_10_1016_j_memsci_2022_120354 crossref_primary_10_1080_20550324_2024_2335690 crossref_primary_10_1016_j_apsusc_2022_155150 crossref_primary_10_1016_j_ccr_2024_215873 crossref_primary_10_3390_ma16062188 crossref_primary_10_1002_cplu_202300173 crossref_primary_10_1016_j_cej_2022_141217 crossref_primary_10_1016_j_memsci_2023_121590 crossref_primary_10_1002_asia_202301065 crossref_primary_10_1002_masy_202300099 crossref_primary_10_1021_acsnano_1c01448 crossref_primary_10_1016_j_carbon_2023_03_008 crossref_primary_10_1016_j_chemosphere_2022_137056 |
Cites_doi | 10.1126/sciadv.aaz9184 10.1021/es400571g 10.1126/science.1249097 10.1016/j.carbon.2011.12.016 10.1021/acs.est.6b02834 10.1016/j.cej.2020.124375 10.1016/j.memsci.2018.12.046 10.1016/j.cej.2019.123347 10.1016/j.cej.2018.04.069 10.1039/C9TA07684K 10.1016/j.memsci.2017.07.055 10.1080/01496395.2018.1525400 10.1126/science.1157996 10.1016/j.memsci.2018.12.052 10.1021/acs.langmuir.6b03937 10.1021/acsami.6b09912 10.1016/j.atmosenv.2013.04.072 10.1038/s41570-017-0100 10.1016/j.carbon.2016.04.062 10.1039/c3cc46136j 10.1039/c4ra01495b 10.1021/nn203507y 10.1002/adfm.201202601 10.1002/anie.201401061 10.1039/C6TA06381K 10.1016/j.carbon.2019.03.039 10.1016/j.jcis.2008.09.028 10.1038/ncomms3979 10.1016/j.cej.2018.06.180 10.1038/nnano.2008.215 10.1002/adfm.201502955 10.1039/D0TA00804D 10.1038/ncomms9335 10.1021/cm5007873 10.1021/nn204156n 10.1021/acsami.7b10932 10.1038/nnano.2015.37 10.1016/j.cej.2019.04.179 10.1021/acs.jpcc.8b03318 10.1016/j.seppur.2010.07.016 10.1039/C5TA00366K 10.1038/s41467-018-04294-6 10.1021/la404134x 10.1038/ncomms10891 10.1016/j.memsci.2019.05.028 10.1021/acsami.9b09037 |
ContentType | Journal Article |
Copyright | 2020 Elsevier B.V. |
Copyright_xml | – notice: 2020 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.memsci.2020.118635 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3123 |
ExternalDocumentID | 10_1016_j_memsci_2020_118635 S0376738820312114 |
GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABJNI ABMAC ABNUV ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSG SSM SSZ T5K XPP Y6R ZMT ~G- 29L AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- RIG SCE SEW SSH VH1 WUQ 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c339t-7894cbb1d331a2f3f021661e33405920c83024ad7c4b796c80006e339f8d29db3 |
IEDL.DBID | AIKHN |
ISSN | 0376-7388 |
IngestDate | Thu Sep 04 23:30:04 EDT 2025 Thu Apr 24 22:52:19 EDT 2025 Tue Jul 01 02:49:42 EDT 2025 Fri Feb 23 02:39:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Flux decline Nanofiltration Cross-flow Nanopore Functionalization Graphene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-7894cbb1d331a2f3f021661e33405920c83024ad7c4b796c80006e339f8d29db3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6533-8086 |
PQID | 2552035497 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2552035497 crossref_citationtrail_10_1016_j_memsci_2020_118635 crossref_primary_10_1016_j_memsci_2020_118635 elsevier_sciencedirect_doi_10_1016_j_memsci_2020_118635 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-15 |
PublicationDateYYYYMMDD | 2021-01-15 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of membrane science |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Celebi, Buchheim, Wyss, Droudian, Gasser, Shorubalko, Kye, Lee, Park (bib17) 2014; 344 Huh, Park, Kim, Kim, Hong, Nam (bib19) 2011; 5 Fan, Zhao, Li, Yan, Ren, Feng, Wei (bib20) 2012; 50 Kim, Eum, Kim, Kim, de Mello, Park, Tsapatsis (bib21) 2019; 372 Zhao, Hu, Zhao, He, Zhu (bib13) 2019; 585 Hu, Mi (bib39) 2013; 47 Nie, Goh, Wang, Lee, Huang, Karahan, Zhou, Guiver, Bae (bib16) 2020; 6 Yu, He, Xiao, Fan, Ma, Gao, Hou, Yin, Wang, Mei (bib32) 2020; 389 Akbari, Sheath, Martin, Shinde, Shaibani, Banerjee, Tkacz, Bhattacharyya, Majumder (bib1) 2016; 7 Surwade, Smirnov, Vlassiouk, Unocic, Veith, Dai, Mahurin (bib18) 2015; 10 Wang, Tarabara (bib31) 2008; 328 Kim, Kim, Jin, Ellison (bib9) 2019; 148 Huang, Liu, Lou, Dong, Shen, Jin (bib36) 2014; 53 Han, Xu, Gao (bib38) 2013; 23 Lee, Wei, Kysar, Hone (bib7) 2008; 321 Cheng, Huang, Wang, Tang, Wang, Zhao, Liu, Zhang, Kipper, Wickramasinghe (bib11) 2019; 54 Huang, Song, Wei, Shi, Mao, Ying, Sun, Xu, Peng (bib10) 2013; 4 Hung, Tsou, De Guzman, An, Liu, Zhang, Hu, Lee, Lai (bib14) 2014; 26 Cho, Lee, Nam, Kim, Kim, Kang, Ruiz Torres, Kim, Jung (bib15) 2019; 11 Guan, Zhao, Zhang, Shen, Zhou, Liu, Jin (bib40) 2017; 542 Wang, Tian, Wei, Li, Zhang, Huang (bib24) 2013; 77 Jang, Nam, Kim, Kim, Kim, Jung (bib25) 2020; 8 Lin, Grossman (bib22) 2015; 6 Wollbrink, Volgmann, Koch, Kanthasamy, Tegenkamp, Li, Richter, Kämnitz, Steinbach, Feldhoff, Caro (bib28) 2016; 106 Zhang, Gong, Zeng, Song, Cao, Liu, Huan, Peng (bib41) 2019; 574 Prasai, Tuberquia, Harl, Jennings, Bolotin (bib6) 2012; 6 Mondala, De (bib33) 2010; 75 Goh, Jiang, Karahan, Zhai, Wei, Yu, Fane, Wang, Chen (bib42) 2015; 25 Gao, Su, Wang, Li (bib44) 2019; 574 Wang, Narita, Müllen (bib8) 2017; 2 Kang, Kim, Ren, Cho, Kim, Choi, Nam, Gogotsi, Jung (bib4) 2017; 9 Sun, Huang, Peng (bib2) 2013; 49 Nam, Choi, Kang, Kim, Jung (bib34) 2016; 8 Chen, Li, Wen, Zhang, Chen, Chen, Si, Feng, Li, Lou, Ci (bib5) 2018; 347 Yang, Yang, He, Wang, Ding, Xie (bib27) 2017; 33 Ying, Sun, Wang, Fan, Peng (bib35) 2014; 4 Kim, Choi, Kim, Jung (bib29) 2016; 4 Wu, Liu, Gao, Muñoz-Carpena, Zhang, Chen, Zhou, Wang (bib30) 2013; 29 Wang, Wu, Zhao, Zhang, Tahir, Wang, Wang (bib46) 2020; 384 Kim, Jang, Kim, Nam, Jung, Jung (bib26) 2018; 122 Chen, Wang, Liu, Yang, Liu, Ruoff, Lei (bib3) 2018; 9 Jang, Woo, Lee, Han (bib37) 2016; 50 Gao, Su, Li, Cheng (bib12) 2018; 352 Hernandez, Nicolosi, Lotya, Blighe, Sun, De, McGovern, Holland, Byrne, Gun’Ko, Boland, Niraj, Duesberg, Krishnamurthy, Goodhue, Hutchison, Scardaci, Ferrari, Coleman (bib23) 2008; 3 Kong, Pang, Tang, Fan, Sun, Wang, Feng, Feng, Fan, Kang, Guo, Kang, Sun (bib45) 2019; 7 Gao, Qin, Liu, Jin (bib43) 2015; 3 Lee (10.1016/j.memsci.2020.118635_bib7) 2008; 321 Hernandez (10.1016/j.memsci.2020.118635_bib23) 2008; 3 Prasai (10.1016/j.memsci.2020.118635_bib6) 2012; 6 Surwade (10.1016/j.memsci.2020.118635_bib18) 2015; 10 Ying (10.1016/j.memsci.2020.118635_bib35) 2014; 4 Jang (10.1016/j.memsci.2020.118635_bib25) 2020; 8 Wang (10.1016/j.memsci.2020.118635_bib46) 2020; 384 Gao (10.1016/j.memsci.2020.118635_bib44) 2019; 574 Chen (10.1016/j.memsci.2020.118635_bib5) 2018; 347 Cho (10.1016/j.memsci.2020.118635_bib15) 2019; 11 Mondala (10.1016/j.memsci.2020.118635_bib33) 2010; 75 Nie (10.1016/j.memsci.2020.118635_bib16) 2020; 6 Gao (10.1016/j.memsci.2020.118635_bib12) 2018; 352 Cheng (10.1016/j.memsci.2020.118635_bib11) 2019; 54 Wollbrink (10.1016/j.memsci.2020.118635_bib28) 2016; 106 Wang (10.1016/j.memsci.2020.118635_bib24) 2013; 77 Fan (10.1016/j.memsci.2020.118635_bib20) 2012; 50 Nam (10.1016/j.memsci.2020.118635_bib34) 2016; 8 Huh (10.1016/j.memsci.2020.118635_bib19) 2011; 5 Huang (10.1016/j.memsci.2020.118635_bib10) 2013; 4 Huang (10.1016/j.memsci.2020.118635_bib36) 2014; 53 Kim (10.1016/j.memsci.2020.118635_bib26) 2018; 122 Han (10.1016/j.memsci.2020.118635_bib38) 2013; 23 Wang (10.1016/j.memsci.2020.118635_bib8) 2017; 2 Akbari (10.1016/j.memsci.2020.118635_bib1) 2016; 7 Sun (10.1016/j.memsci.2020.118635_bib2) 2013; 49 Kang (10.1016/j.memsci.2020.118635_bib4) 2017; 9 Hu (10.1016/j.memsci.2020.118635_bib39) 2013; 47 Lin (10.1016/j.memsci.2020.118635_bib22) 2015; 6 Yu (10.1016/j.memsci.2020.118635_bib32) 2020; 389 Yang (10.1016/j.memsci.2020.118635_bib27) 2017; 33 Guan (10.1016/j.memsci.2020.118635_bib40) 2017; 542 Kong (10.1016/j.memsci.2020.118635_bib45) 2019; 7 Kim (10.1016/j.memsci.2020.118635_bib29) 2016; 4 Chen (10.1016/j.memsci.2020.118635_bib3) 2018; 9 Zhao (10.1016/j.memsci.2020.118635_bib13) 2019; 585 Kim (10.1016/j.memsci.2020.118635_bib9) 2019; 148 Wang (10.1016/j.memsci.2020.118635_bib31) 2008; 328 Jang (10.1016/j.memsci.2020.118635_bib37) 2016; 50 Gao (10.1016/j.memsci.2020.118635_bib43) 2015; 3 Goh (10.1016/j.memsci.2020.118635_bib42) 2015; 25 Hung (10.1016/j.memsci.2020.118635_bib14) 2014; 26 Kim (10.1016/j.memsci.2020.118635_bib21) 2019; 372 Wu (10.1016/j.memsci.2020.118635_bib30) 2013; 29 Celebi (10.1016/j.memsci.2020.118635_bib17) 2014; 344 Zhang (10.1016/j.memsci.2020.118635_bib41) 2019; 574 |
References_xml | – volume: 3 start-page: 563 year: 2008 end-page: 568 ident: bib23 article-title: High-yield production of graphene by liquid-phase exfoliation of graphite publication-title: Nat. Nanotechnol. – volume: 2 year: 2017 ident: bib8 article-title: Precision synthesis versus bulk-scale fabrication of graphenes publication-title: Nat. Rev. Chem. – volume: 352 start-page: 10 year: 2018 end-page: 19 ident: bib12 article-title: Graphene oxide hybrid poly(p-phenylene sulfide) nanofiltration membrane intercalated by bis(triethoxysilyl)ethane publication-title: Chem. Eng. J. – volume: 574 start-page: 55 year: 2019 end-page: 64 ident: bib44 article-title: A metal-nano GO frameworks/PPS membrane with super water flux and high dyes interception publication-title: J. Membr. Sci. – volume: 122 start-page: 17507 year: 2018 end-page: 17517 ident: bib26 article-title: Revealing the role of oxygen debris and functional groups on the water flux and molecular separation of graphene oxide membrane: a combined experimental and theoretical study publication-title: J. Phys. Chem. C – volume: 384 start-page: 123347 year: 2020 ident: bib46 article-title: Interfacial polymerized and pore-variable covalent organic framework composite membrane for dye separation publication-title: Chem. Eng. J. – volume: 585 start-page: 29 year: 2019 end-page: 37 ident: bib13 article-title: High flux nanofiltration membranes prepared with a graphene oxide homo-structure publication-title: J. Membr. Sci. – volume: 33 start-page: 913 year: 2017 end-page: 919 ident: bib27 article-title: Insights into the oxidation mechanism of sp publication-title: Langmuir – volume: 4 start-page: 17773 year: 2016 end-page: 17781 ident: bib29 article-title: Enhanced water permeation based on nanoporous multilayer graphene membranes: the role of pore size and density publication-title: J. Mater. Chem. A. – volume: 574 start-page: 112 year: 2019 end-page: 123 ident: bib41 article-title: Novel “loose” GO/MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure publication-title: J. Membr. Sci. – volume: 9 start-page: 44687 year: 2017 end-page: 44694 ident: bib4 article-title: Selective molecular separation on Ti3C2Tx–graphene oxide membranes during pressure-driven filtration: Comparison with graphene oxide and MXenes publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: eaaz9184 year: 2020 ident: bib16 article-title: Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration publication-title: Sci. Adv. – volume: 10 start-page: 459 year: 2015 end-page: 464 ident: bib18 article-title: Water desalination using nanoporous single-layer graphene publication-title: Nat. Nanotechnol. – volume: 50 start-page: 10024 year: 2016 end-page: 10030 ident: bib37 article-title: Ambivalent effect of thermal reduction in mass rejection through graphene oxide membrane publication-title: Environ. Sci. Technol. – volume: 50 start-page: 1699 year: 2012 end-page: 1703 ident: bib20 article-title: Easy synthesis of porous graphene nanosheets and their use in supercapacitors publication-title: Carbon – volume: 29 start-page: 15174 year: 2013 end-page: 15181 ident: bib30 article-title: Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling publication-title: Langmuir – volume: 347 start-page: 12 year: 2018 end-page: 18 ident: bib5 article-title: Graphene oxide based membrane intercalated by nanoparticles for high performance nanofiltration application publication-title: Chem. Eng. J. – volume: 106 start-page: 93 year: 2016 end-page: 105 ident: bib28 article-title: Amorphous, turbostratic and crystalline carbon membranes with hydrogen selectivity publication-title: Carbon – volume: 542 start-page: 41 year: 2017 end-page: 51 ident: bib40 article-title: 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance publication-title: J. Membr. Sci. – volume: 23 start-page: 3693 year: 2013 end-page: 3700 ident: bib38 article-title: Ultrathin graphene nanofiltration membrane for water purification publication-title: Adv. Funct. Mater. – volume: 7 start-page: 24301 year: 2019 end-page: 24310 ident: bib45 article-title: Efficient dye nanofiltration of a graphene oxide membrane via combination with a covalent organic framework by hot pressing publication-title: J. Mater. Chem. – volume: 4 start-page: 21425 year: 2014 end-page: 21428 ident: bib35 article-title: In-plane mesoporous graphene oxide nanosheet assembled membranes for molecular separation publication-title: RSC Adv. – volume: 26 start-page: 2983 year: 2014 end-page: 2990 ident: bib14 article-title: Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing publication-title: Chem. Mater. – volume: 372 start-page: 509 year: 2019 end-page: 515 ident: bib21 article-title: Continuous ZIF-8/reduced graphene oxide nanocoating for ultrafast oil/water separation publication-title: Chem. Eng. J. – volume: 328 start-page: 464 year: 2008 end-page: 469 ident: bib31 article-title: Pore blocking mechanisms during early stages of membrane fouling by colloids publication-title: J. Colloid Interface Sci. – volume: 321 start-page: 385 year: 2008 end-page: 388 ident: bib7 article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene publication-title: Science – volume: 49 start-page: 10718 year: 2013 end-page: 10720 ident: bib2 article-title: Laminar MoS publication-title: Chem. Commun. – volume: 11 start-page: 27004 year: 2019 end-page: 27010 ident: bib15 article-title: Ultrafast-selective nanofiltration of an hybrid membrane comprising laminated reduced graphene oxide/graphene oxide nanoribbons publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 1102 year: 2012 end-page: 1108 ident: bib6 article-title: Graphene: corrosion-inhibiting coating publication-title: ACS Nano – volume: 7 start-page: 10891 year: 2016 ident: bib1 article-title: Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide publication-title: Nat. Commun. – volume: 9 start-page: 1902 year: 2018 ident: bib3 article-title: Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation publication-title: Nat. Commun. – volume: 5 start-page: 9799 year: 2011 end-page: 9806 ident: bib19 article-title: UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering publication-title: ACS Nano – volume: 389 start-page: 124375 year: 2020 ident: bib32 article-title: The roles of oxygen-containing functional groups in modulating water purification performance of graphene oxide-based membrane publication-title: Chem. Eng. J. – volume: 25 start-page: 7348 year: 2015 end-page: 7359 ident: bib42 article-title: All-carbon nanoarchitectures as high-performance separation membranes with superior stability publication-title: Adv. Funct. Mater. – volume: 53 start-page: 6929 year: 2014 end-page: 6932 ident: bib36 article-title: A graphene oxide membrane with highly selective molecular separation of aqueous organic solution publication-title: Angew. Chem. Int. Ed. – volume: 344 start-page: 289 year: 2014 end-page: 292 ident: bib17 article-title: Ultimate permeation across atomically thin porous graphene publication-title: Science – volume: 75 start-page: 222 year: 2010 end-page: 228 ident: bib33 article-title: A fouling model for steady state crossflow membrane filtration considering sequential intermediate pore blocking and cake formation publication-title: Separ. Purif. Technol. – volume: 8 start-page: 27376 year: 2016 end-page: 27382 ident: bib34 article-title: Enhanced stability of laminated graphene oxide membranes for nanofiltration via interstitial amide bonding publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 8335 year: 2015 ident: bib22 article-title: Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations publication-title: Nat. Commun. – volume: 77 start-page: 166 year: 2013 end-page: 171 ident: bib24 article-title: Study on the association between residential exposure to N, N-dimethylformamide and hospitalization for respiratory disease publication-title: Atmos. Environ. – volume: 8 start-page: 8292 year: 2020 end-page: 8299 ident: bib25 article-title: Turbostratic nanoporous carbon sheet membrane for ultrafast and selective nanofiltration in viscous green solvents publication-title: J. Mater. Chem. – volume: 47 start-page: 3715 year: 2013 end-page: 3723 ident: bib39 article-title: Enabling graphene oxide nanosheets as water separation membranes publication-title: Environ. Sci. Technol. – volume: 148 start-page: 28 year: 2019 end-page: 35 ident: bib9 article-title: Impermeable gas barrier coating by facilitated diffusion of ethylenediamine through graphene oxide liquid crystals publication-title: Carbon – volume: 3 start-page: 6649 year: 2015 end-page: 6654 ident: bib43 article-title: SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules publication-title: J. Mater. Chem. – volume: 4 start-page: 2979 year: 2013 ident: bib10 article-title: Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes publication-title: Nat. Commun. – volume: 54 start-page: 1079 year: 2019 end-page: 1085 ident: bib11 article-title: Reduced graphene oxide–gold nanoparticle membrane for water purification publication-title: Separ. Sci. Technol. – volume: 6 start-page: eaaz9184 year: 2020 ident: 10.1016/j.memsci.2020.118635_bib16 article-title: Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration publication-title: Sci. Adv. doi: 10.1126/sciadv.aaz9184 – volume: 47 start-page: 3715 year: 2013 ident: 10.1016/j.memsci.2020.118635_bib39 article-title: Enabling graphene oxide nanosheets as water separation membranes publication-title: Environ. Sci. Technol. doi: 10.1021/es400571g – volume: 344 start-page: 289 year: 2014 ident: 10.1016/j.memsci.2020.118635_bib17 article-title: Ultimate permeation across atomically thin porous graphene publication-title: Science doi: 10.1126/science.1249097 – volume: 50 start-page: 1699 year: 2012 ident: 10.1016/j.memsci.2020.118635_bib20 article-title: Easy synthesis of porous graphene nanosheets and their use in supercapacitors publication-title: Carbon doi: 10.1016/j.carbon.2011.12.016 – volume: 50 start-page: 10024 year: 2016 ident: 10.1016/j.memsci.2020.118635_bib37 article-title: Ambivalent effect of thermal reduction in mass rejection through graphene oxide membrane publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b02834 – volume: 389 start-page: 124375 year: 2020 ident: 10.1016/j.memsci.2020.118635_bib32 article-title: The roles of oxygen-containing functional groups in modulating water purification performance of graphene oxide-based membrane publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124375 – volume: 574 start-page: 112 year: 2019 ident: 10.1016/j.memsci.2020.118635_bib41 article-title: Novel “loose” GO/MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.12.046 – volume: 384 start-page: 123347 year: 2020 ident: 10.1016/j.memsci.2020.118635_bib46 article-title: Interfacial polymerized and pore-variable covalent organic framework composite membrane for dye separation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123347 – volume: 347 start-page: 12 year: 2018 ident: 10.1016/j.memsci.2020.118635_bib5 article-title: Graphene oxide based membrane intercalated by nanoparticles for high performance nanofiltration application publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.04.069 – volume: 7 start-page: 24301 year: 2019 ident: 10.1016/j.memsci.2020.118635_bib45 article-title: Efficient dye nanofiltration of a graphene oxide membrane via combination with a covalent organic framework by hot pressing publication-title: J. Mater. Chem. doi: 10.1039/C9TA07684K – volume: 542 start-page: 41 year: 2017 ident: 10.1016/j.memsci.2020.118635_bib40 article-title: 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2017.07.055 – volume: 54 start-page: 1079 year: 2019 ident: 10.1016/j.memsci.2020.118635_bib11 article-title: Reduced graphene oxide–gold nanoparticle membrane for water purification publication-title: Separ. Sci. Technol. doi: 10.1080/01496395.2018.1525400 – volume: 321 start-page: 385 year: 2008 ident: 10.1016/j.memsci.2020.118635_bib7 article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene publication-title: Science doi: 10.1126/science.1157996 – volume: 574 start-page: 55 year: 2019 ident: 10.1016/j.memsci.2020.118635_bib44 article-title: A metal-nano GO frameworks/PPS membrane with super water flux and high dyes interception publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2018.12.052 – volume: 33 start-page: 913 year: 2017 ident: 10.1016/j.memsci.2020.118635_bib27 article-title: Insights into the oxidation mechanism of sp2–sp3 Hybrid carbon materials: preparation of a water-soluble 2D porous conductive network and detectable molecule separation publication-title: Langmuir doi: 10.1021/acs.langmuir.6b03937 – volume: 8 start-page: 27376 year: 2016 ident: 10.1016/j.memsci.2020.118635_bib34 article-title: Enhanced stability of laminated graphene oxide membranes for nanofiltration via interstitial amide bonding publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b09912 – volume: 77 start-page: 166 year: 2013 ident: 10.1016/j.memsci.2020.118635_bib24 article-title: Study on the association between residential exposure to N, N-dimethylformamide and hospitalization for respiratory disease publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2013.04.072 – volume: 2 year: 2017 ident: 10.1016/j.memsci.2020.118635_bib8 article-title: Precision synthesis versus bulk-scale fabrication of graphenes publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0100 – volume: 106 start-page: 93 year: 2016 ident: 10.1016/j.memsci.2020.118635_bib28 article-title: Amorphous, turbostratic and crystalline carbon membranes with hydrogen selectivity publication-title: Carbon doi: 10.1016/j.carbon.2016.04.062 – volume: 49 start-page: 10718 year: 2013 ident: 10.1016/j.memsci.2020.118635_bib2 article-title: Laminar MoS2 membranes for molecule separation publication-title: Chem. Commun. doi: 10.1039/c3cc46136j – volume: 4 start-page: 21425 year: 2014 ident: 10.1016/j.memsci.2020.118635_bib35 article-title: In-plane mesoporous graphene oxide nanosheet assembled membranes for molecular separation publication-title: RSC Adv. doi: 10.1039/c4ra01495b – volume: 6 start-page: 1102 year: 2012 ident: 10.1016/j.memsci.2020.118635_bib6 article-title: Graphene: corrosion-inhibiting coating publication-title: ACS Nano doi: 10.1021/nn203507y – volume: 23 start-page: 3693 year: 2013 ident: 10.1016/j.memsci.2020.118635_bib38 article-title: Ultrathin graphene nanofiltration membrane for water purification publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202601 – volume: 53 start-page: 6929 year: 2014 ident: 10.1016/j.memsci.2020.118635_bib36 article-title: A graphene oxide membrane with highly selective molecular separation of aqueous organic solution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201401061 – volume: 4 start-page: 17773 year: 2016 ident: 10.1016/j.memsci.2020.118635_bib29 article-title: Enhanced water permeation based on nanoporous multilayer graphene membranes: the role of pore size and density publication-title: J. Mater. Chem. A. doi: 10.1039/C6TA06381K – volume: 148 start-page: 28 year: 2019 ident: 10.1016/j.memsci.2020.118635_bib9 article-title: Impermeable gas barrier coating by facilitated diffusion of ethylenediamine through graphene oxide liquid crystals publication-title: Carbon doi: 10.1016/j.carbon.2019.03.039 – volume: 328 start-page: 464 year: 2008 ident: 10.1016/j.memsci.2020.118635_bib31 article-title: Pore blocking mechanisms during early stages of membrane fouling by colloids publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2008.09.028 – volume: 4 start-page: 2979 year: 2013 ident: 10.1016/j.memsci.2020.118635_bib10 article-title: Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes publication-title: Nat. Commun. doi: 10.1038/ncomms3979 – volume: 352 start-page: 10 year: 2018 ident: 10.1016/j.memsci.2020.118635_bib12 article-title: Graphene oxide hybrid poly(p-phenylene sulfide) nanofiltration membrane intercalated by bis(triethoxysilyl)ethane publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.06.180 – volume: 3 start-page: 563 year: 2008 ident: 10.1016/j.memsci.2020.118635_bib23 article-title: High-yield production of graphene by liquid-phase exfoliation of graphite publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2008.215 – volume: 25 start-page: 7348 year: 2015 ident: 10.1016/j.memsci.2020.118635_bib42 article-title: All-carbon nanoarchitectures as high-performance separation membranes with superior stability publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502955 – volume: 8 start-page: 8292 year: 2020 ident: 10.1016/j.memsci.2020.118635_bib25 article-title: Turbostratic nanoporous carbon sheet membrane for ultrafast and selective nanofiltration in viscous green solvents publication-title: J. Mater. Chem. doi: 10.1039/D0TA00804D – volume: 6 start-page: 8335 year: 2015 ident: 10.1016/j.memsci.2020.118635_bib22 article-title: Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations publication-title: Nat. Commun. doi: 10.1038/ncomms9335 – volume: 26 start-page: 2983 year: 2014 ident: 10.1016/j.memsci.2020.118635_bib14 article-title: Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing publication-title: Chem. Mater. doi: 10.1021/cm5007873 – volume: 5 start-page: 9799 year: 2011 ident: 10.1016/j.memsci.2020.118635_bib19 article-title: UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering publication-title: ACS Nano doi: 10.1021/nn204156n – volume: 9 start-page: 44687 year: 2017 ident: 10.1016/j.memsci.2020.118635_bib4 article-title: Selective molecular separation on Ti3C2Tx–graphene oxide membranes during pressure-driven filtration: Comparison with graphene oxide and MXenes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b10932 – volume: 10 start-page: 459 year: 2015 ident: 10.1016/j.memsci.2020.118635_bib18 article-title: Water desalination using nanoporous single-layer graphene publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.37 – volume: 372 start-page: 509 year: 2019 ident: 10.1016/j.memsci.2020.118635_bib21 article-title: Continuous ZIF-8/reduced graphene oxide nanocoating for ultrafast oil/water separation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.04.179 – volume: 122 start-page: 17507 year: 2018 ident: 10.1016/j.memsci.2020.118635_bib26 article-title: Revealing the role of oxygen debris and functional groups on the water flux and molecular separation of graphene oxide membrane: a combined experimental and theoretical study publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b03318 – volume: 75 start-page: 222 year: 2010 ident: 10.1016/j.memsci.2020.118635_bib33 article-title: A fouling model for steady state crossflow membrane filtration considering sequential intermediate pore blocking and cake formation publication-title: Separ. Purif. Technol. doi: 10.1016/j.seppur.2010.07.016 – volume: 3 start-page: 6649 year: 2015 ident: 10.1016/j.memsci.2020.118635_bib43 article-title: SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules publication-title: J. Mater. Chem. doi: 10.1039/C5TA00366K – volume: 9 start-page: 1902 year: 2018 ident: 10.1016/j.memsci.2020.118635_bib3 article-title: Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation publication-title: Nat. Commun. doi: 10.1038/s41467-018-04294-6 – volume: 29 start-page: 15174 year: 2013 ident: 10.1016/j.memsci.2020.118635_bib30 article-title: Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling publication-title: Langmuir doi: 10.1021/la404134x – volume: 7 start-page: 10891 year: 2016 ident: 10.1016/j.memsci.2020.118635_bib1 article-title: Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide publication-title: Nat. Commun. doi: 10.1038/ncomms10891 – volume: 585 start-page: 29 year: 2019 ident: 10.1016/j.memsci.2020.118635_bib13 article-title: High flux nanofiltration membranes prepared with a graphene oxide homo-structure publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2019.05.028 – volume: 11 start-page: 27004 year: 2019 ident: 10.1016/j.memsci.2020.118635_bib15 article-title: Ultrafast-selective nanofiltration of an hybrid membrane comprising laminated reduced graphene oxide/graphene oxide nanoribbons publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b09037 |
SSID | ssj0017089 |
Score | 2.5362637 |
Snippet | Herein, a functionalized nanoporous graphene (FNG) membrane was developed to mitigate the contemporary issues affecting graphene oxide (GO) membranes, such as... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 118635 |
SubjectTerms | Cross-flow Flux decline Functionalization Graphene graphene oxide molecular weight Nanofiltration Nanopore nanopores polymers porosity synergism |
Title | Functionalized nanoporous graphene membrane with ultrafast and stable nanofiltration |
URI | https://dx.doi.org/10.1016/j.memsci.2020.118635 https://www.proquest.com/docview/2552035497 |
Volume | 618 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7c9aIH8YnPJYLXuG2TbZvjsrisil50YW8hr0JlrYvWiwd_u5M-FhVhwVtpMyFMpt_Ml0wmABeBSlPHAkOTQGjKY2eo4i6m2joV2FBpXu2e393Hkym_mQ1mazBqz8L4tMoG-2tMr9C6edNvtNlf5Hn_IfCFSBhGiGiXSGN4B9Yj9PZpF9aH17eT--VmQhJUN-H59tQLtCfoqjSvZ_eMvSNRjDx8pHF179ufHuoXVlcOaLwNW03kSIb14HZgzRW7sPmtnuAePI7RS9WLe_mHs6RQxQvG10juSVWYGnGN4EiQIOODX4El7_PyVWXqrSSqsAQjRT13lViWz5uCuvswHV89jia0uTaBGsZESZNUcKN1aBkLVZSxDN04emHHGAZnIgqML_nFlU0M14mITepdFn4VWWojYTU7gG7xUrhDIKFNEP4EhrbccWY8ORJGxFmUWWRqNjwC1qpKmqamuL_aYi7b5LEnWStYegXLWsFHQJdSi7qmxor2STsL8odtSIT9FZLn7aRJ_G38XggqGLUukUmh3SA5To7_3fsJbEQ-wyUIaTg4hW75-u7OMEQpdQ86l59hrzHEL7Ex5sY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPfRvC6NMmuSfZYxNLa2ost9LbsKxBpo2h68dc7m0dREQRvIdldltnJN_Ptzs4A3PgySSz1NYl9rgiLrCaS2YgoY6VvAqlYeXr-OIkGM_Ywv5234K65C-PCKmvsrzC9ROv6TbeWZvc1y7pPvktEQtFDRL1EGsM2oMNcUes2dHrD0WCyPkyI_bISnmtPXIfmBl0Z5rW0SxwdiWLo4COJyrpvv1qoH1hdGqD-LuzUnqPXqya3By2b78P2l3yCBzDto5WqNveyD2u8XOYv6F8juffKxNSIax7OBAkyPrgdWG-1KN5kKt8LT-bGQ09RLWzZLc0WdULdQ5j176d3A1KXTSCaUl6QOOFMKxUYSgMZpjRFM45W2FKKzhkPfe1SfjFpYs1UzCOdOJOFX3mamJAbRY-gnb_k9hi8wMQIfxxdW2YZ1Y4ccc2jNEwNMjUTnABtRCV0nVPclbZYiCZ47FlUAhZOwKIS8AmQda_XKqfGH-3jZhXEN90QCPt_9LxuFk3gb-POQlDAKHWBTAr1BslxfPrv0a9gczB9HIvxcDI6g63QRbv4AQluz6FdvK3sBborhbqs1fETI6XorA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functionalized+nanoporous+graphene+membrane+with+ultrafast+and+stable+nanofiltration&rft.jtitle=Journal+of+membrane+science&rft.au=Kang%2C+Junhyeok&rft.au=Choi%2C+Yunkyu&rft.au=Kim%2C+Ji+Hoon&rft.au=Choi%2C+Eunji&rft.date=2021-01-15&rft.pub=Elsevier+B.V&rft.issn=0376-7388&rft.eissn=1873-3123&rft.volume=618&rft_id=info:doi/10.1016%2Fj.memsci.2020.118635&rft.externalDocID=S0376738820312114 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon |