Functionalized nanoporous graphene membrane with ultrafast and stable nanofiltration

Herein, a functionalized nanoporous graphene (FNG) membrane was developed to mitigate the contemporary issues affecting graphene oxide (GO) membranes, such as the low flux induced by its long tortuosity and poor membrane stability in aqueous solvents. GO was thermally activated at 650 °C to prepare...

Full description

Saved in:
Bibliographic Details
Published inJournal of membrane science Vol. 618; p. 118635
Main Authors Kang, Junhyeok, Choi, Yunkyu, Kim, Ji Hoon, Choi, Eunji, Choi, Seung Eun, Kwon, Ohchan, Kim, Dae Woo
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.01.2021
Subjects
Online AccessGet full text
ISSN0376-7388
1873-3123
DOI10.1016/j.memsci.2020.118635

Cover

Abstract Herein, a functionalized nanoporous graphene (FNG) membrane was developed to mitigate the contemporary issues affecting graphene oxide (GO) membranes, such as the low flux induced by its long tortuosity and poor membrane stability in aqueous solvents. GO was thermally activated at 650 °C to prepare a nanoporous carbon sheet with a turbostratic structure (pore size < 4 nm). Thereafter, the nanoporous graphene (NG) was consecutively functionalized with oxygen-containing groups by KMnO4 treatment and re-dispersed in water to deposit an FNG layer on a porous polymeric support. The FNG membrane exhibited ultrafast water permeance (586 Lm-2h-1bar-1) and precise molecular separation (molecular weight cut off: 269 Da). The membrane performance surpasses the upper bound of previously reported polymers and two dimensional-material-based nanofiltration membranes by the synergistic effect of nanopores and oxygen-containing groups. Furthermore, the practical operation of the FNG membrane is feasible under cross-flow, and water-flux decline by filtered molecules is highly suppressed by the presence of abundant nanopores as compared to conventional GO membranes. [Display omitted] •Water-soluble nanoporous graphene was synthesized and used for membrane fabrication.•The membrane can stand harsh conditions under cross-flow filtration.•The membrane exhibited ultrafast water permeance (586 Lm-2h-1bar-1) and precise molecular separation (molecular weight cut off: 269 Da).•Flux decline of the membrane by filtered molecules can be suppressed in the presence of nanopores.
AbstractList Herein, a functionalized nanoporous graphene (FNG) membrane was developed to mitigate the contemporary issues affecting graphene oxide (GO) membranes, such as the low flux induced by its long tortuosity and poor membrane stability in aqueous solvents. GO was thermally activated at 650 °C to prepare a nanoporous carbon sheet with a turbostratic structure (pore size < 4 nm). Thereafter, the nanoporous graphene (NG) was consecutively functionalized with oxygen-containing groups by KMnO₄ treatment and re-dispersed in water to deposit an FNG layer on a porous polymeric support. The FNG membrane exhibited ultrafast water permeance (586 Lm⁻²h⁻¹bar⁻¹) and precise molecular separation (molecular weight cut off: 269 Da). The membrane performance surpasses the upper bound of previously reported polymers and two dimensional-material-based nanofiltration membranes by the synergistic effect of nanopores and oxygen-containing groups. Furthermore, the practical operation of the FNG membrane is feasible under cross-flow, and water-flux decline by filtered molecules is highly suppressed by the presence of abundant nanopores as compared to conventional GO membranes.
Herein, a functionalized nanoporous graphene (FNG) membrane was developed to mitigate the contemporary issues affecting graphene oxide (GO) membranes, such as the low flux induced by its long tortuosity and poor membrane stability in aqueous solvents. GO was thermally activated at 650 °C to prepare a nanoporous carbon sheet with a turbostratic structure (pore size < 4 nm). Thereafter, the nanoporous graphene (NG) was consecutively functionalized with oxygen-containing groups by KMnO4 treatment and re-dispersed in water to deposit an FNG layer on a porous polymeric support. The FNG membrane exhibited ultrafast water permeance (586 Lm-2h-1bar-1) and precise molecular separation (molecular weight cut off: 269 Da). The membrane performance surpasses the upper bound of previously reported polymers and two dimensional-material-based nanofiltration membranes by the synergistic effect of nanopores and oxygen-containing groups. Furthermore, the practical operation of the FNG membrane is feasible under cross-flow, and water-flux decline by filtered molecules is highly suppressed by the presence of abundant nanopores as compared to conventional GO membranes. [Display omitted] •Water-soluble nanoporous graphene was synthesized and used for membrane fabrication.•The membrane can stand harsh conditions under cross-flow filtration.•The membrane exhibited ultrafast water permeance (586 Lm-2h-1bar-1) and precise molecular separation (molecular weight cut off: 269 Da).•Flux decline of the membrane by filtered molecules can be suppressed in the presence of nanopores.
ArticleNumber 118635
Author Kim, Ji Hoon
Choi, Eunji
Kwon, Ohchan
Choi, Yunkyu
Choi, Seung Eun
Kang, Junhyeok
Kim, Dae Woo
Author_xml – sequence: 1
  givenname: Junhyeok
  surname: Kang
  fullname: Kang, Junhyeok
– sequence: 2
  givenname: Yunkyu
  surname: Choi
  fullname: Choi, Yunkyu
– sequence: 3
  givenname: Ji Hoon
  surname: Kim
  fullname: Kim, Ji Hoon
– sequence: 4
  givenname: Eunji
  surname: Choi
  fullname: Choi, Eunji
– sequence: 5
  givenname: Seung Eun
  surname: Choi
  fullname: Choi, Seung Eun
– sequence: 6
  givenname: Ohchan
  surname: Kwon
  fullname: Kwon, Ohchan
– sequence: 7
  givenname: Dae Woo
  orcidid: 0000-0001-6533-8086
  surname: Kim
  fullname: Kim, Dae Woo
  email: audw1105@yonsei.ac.kr
BookMark eNqFkL1OwzAUhS1UJNrCGzBkZEnxTxI7DEioooBUiaXMluM41FViB9sBwdPjNEwMMF3r3nOOjr8FmBlrFACXCK4QRMX1YdWpzku9whDHFWIFyU_AHDFKUoIwmYE5JLRIKWHsDCy8P0CIKGTlHOw2g5FBWyNa_aXqxAhje-vs4JNXJ_q9MiqJ4ZUT8fGhwz4Z2uBEI3xIhKkTH0TVqqOt0eNlzDoHp41ovbr4mUvwsrnfrR_T7fPD0_pum0pCypBSVmayqlBNCBK4IQ3EqCiQIiSDeYmhZATiTNRUZhUtC8kghEW8lg2rcVlXZAmuptze2bdB-cA77aVq21g2_oDjPMeQ5FlJo_RmkkpnvXeq4VKHY9nYWbccQT6i5Ac-oeQjSj6hjObsl7l3uhPu8z_b7WRTkcG7Vo5HhTJS1dopGXht9d8B36T6kqE
CitedBy_id crossref_primary_10_1016_j_apsusc_2023_157962
crossref_primary_10_1038_s41598_021_81759_7
crossref_primary_10_1016_j_memsci_2022_120604
crossref_primary_10_2139_ssrn_3968864
crossref_primary_10_1016_j_seppur_2021_120361
crossref_primary_10_1021_acsami_3c06103
crossref_primary_10_1016_j_cej_2022_135484
crossref_primary_10_1002_admi_202300250
crossref_primary_10_1016_j_coco_2022_101216
crossref_primary_10_3390_nano12122103
crossref_primary_10_1016_j_memsci_2024_122983
crossref_primary_10_1039_D2RA00725H
crossref_primary_10_1016_j_jcis_2021_10_162
crossref_primary_10_3390_nano12111785
crossref_primary_10_1002_adma_202206524
crossref_primary_10_1016_j_desal_2021_115448
crossref_primary_10_1016_j_memsci_2024_123386
crossref_primary_10_1002_adfm_202011146
crossref_primary_10_1016_j_jece_2023_111839
crossref_primary_10_1039_D1CC02946K
crossref_primary_10_1002_aic_17981
crossref_primary_10_1016_j_nanoen_2023_109205
crossref_primary_10_1016_j_memsci_2021_119620
crossref_primary_10_1021_acs_langmuir_1c00643
crossref_primary_10_1016_j_desal_2022_115621
crossref_primary_10_1016_j_seppur_2021_120301
crossref_primary_10_1016_j_apsusc_2023_156327
crossref_primary_10_1002_app_54616
crossref_primary_10_1016_j_cej_2021_131805
crossref_primary_10_3390_w16070988
crossref_primary_10_1021_acsenvironau_4c00088
crossref_primary_10_1038_s41467_023_36524_x
crossref_primary_10_3390_nano11030757
crossref_primary_10_1016_j_memsci_2022_120354
crossref_primary_10_1080_20550324_2024_2335690
crossref_primary_10_1016_j_apsusc_2022_155150
crossref_primary_10_1016_j_ccr_2024_215873
crossref_primary_10_3390_ma16062188
crossref_primary_10_1002_cplu_202300173
crossref_primary_10_1016_j_cej_2022_141217
crossref_primary_10_1016_j_memsci_2023_121590
crossref_primary_10_1002_asia_202301065
crossref_primary_10_1002_masy_202300099
crossref_primary_10_1021_acsnano_1c01448
crossref_primary_10_1016_j_carbon_2023_03_008
crossref_primary_10_1016_j_chemosphere_2022_137056
Cites_doi 10.1126/sciadv.aaz9184
10.1021/es400571g
10.1126/science.1249097
10.1016/j.carbon.2011.12.016
10.1021/acs.est.6b02834
10.1016/j.cej.2020.124375
10.1016/j.memsci.2018.12.046
10.1016/j.cej.2019.123347
10.1016/j.cej.2018.04.069
10.1039/C9TA07684K
10.1016/j.memsci.2017.07.055
10.1080/01496395.2018.1525400
10.1126/science.1157996
10.1016/j.memsci.2018.12.052
10.1021/acs.langmuir.6b03937
10.1021/acsami.6b09912
10.1016/j.atmosenv.2013.04.072
10.1038/s41570-017-0100
10.1016/j.carbon.2016.04.062
10.1039/c3cc46136j
10.1039/c4ra01495b
10.1021/nn203507y
10.1002/adfm.201202601
10.1002/anie.201401061
10.1039/C6TA06381K
10.1016/j.carbon.2019.03.039
10.1016/j.jcis.2008.09.028
10.1038/ncomms3979
10.1016/j.cej.2018.06.180
10.1038/nnano.2008.215
10.1002/adfm.201502955
10.1039/D0TA00804D
10.1038/ncomms9335
10.1021/cm5007873
10.1021/nn204156n
10.1021/acsami.7b10932
10.1038/nnano.2015.37
10.1016/j.cej.2019.04.179
10.1021/acs.jpcc.8b03318
10.1016/j.seppur.2010.07.016
10.1039/C5TA00366K
10.1038/s41467-018-04294-6
10.1021/la404134x
10.1038/ncomms10891
10.1016/j.memsci.2019.05.028
10.1021/acsami.9b09037
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.memsci.2020.118635
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3123
ExternalDocumentID 10_1016_j_memsci_2020_118635
S0376738820312114
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSM
SSZ
T5K
XPP
Y6R
ZMT
~G-
29L
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
RIG
SCE
SEW
SSH
VH1
WUQ
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c339t-7894cbb1d331a2f3f021661e33405920c83024ad7c4b796c80006e339f8d29db3
IEDL.DBID AIKHN
ISSN 0376-7388
IngestDate Thu Sep 04 23:30:04 EDT 2025
Thu Apr 24 22:52:19 EDT 2025
Tue Jul 01 02:49:42 EDT 2025
Fri Feb 23 02:39:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Flux decline
Nanofiltration
Cross-flow
Nanopore
Functionalization
Graphene
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-7894cbb1d331a2f3f021661e33405920c83024ad7c4b796c80006e339f8d29db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6533-8086
PQID 2552035497
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2552035497
crossref_citationtrail_10_1016_j_memsci_2020_118635
crossref_primary_10_1016_j_memsci_2020_118635
elsevier_sciencedirect_doi_10_1016_j_memsci_2020_118635
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-15
PublicationDateYYYYMMDD 2021-01-15
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of membrane science
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Celebi, Buchheim, Wyss, Droudian, Gasser, Shorubalko, Kye, Lee, Park (bib17) 2014; 344
Huh, Park, Kim, Kim, Hong, Nam (bib19) 2011; 5
Fan, Zhao, Li, Yan, Ren, Feng, Wei (bib20) 2012; 50
Kim, Eum, Kim, Kim, de Mello, Park, Tsapatsis (bib21) 2019; 372
Zhao, Hu, Zhao, He, Zhu (bib13) 2019; 585
Hu, Mi (bib39) 2013; 47
Nie, Goh, Wang, Lee, Huang, Karahan, Zhou, Guiver, Bae (bib16) 2020; 6
Yu, He, Xiao, Fan, Ma, Gao, Hou, Yin, Wang, Mei (bib32) 2020; 389
Akbari, Sheath, Martin, Shinde, Shaibani, Banerjee, Tkacz, Bhattacharyya, Majumder (bib1) 2016; 7
Surwade, Smirnov, Vlassiouk, Unocic, Veith, Dai, Mahurin (bib18) 2015; 10
Wang, Tarabara (bib31) 2008; 328
Kim, Kim, Jin, Ellison (bib9) 2019; 148
Huang, Liu, Lou, Dong, Shen, Jin (bib36) 2014; 53
Han, Xu, Gao (bib38) 2013; 23
Lee, Wei, Kysar, Hone (bib7) 2008; 321
Cheng, Huang, Wang, Tang, Wang, Zhao, Liu, Zhang, Kipper, Wickramasinghe (bib11) 2019; 54
Huang, Song, Wei, Shi, Mao, Ying, Sun, Xu, Peng (bib10) 2013; 4
Hung, Tsou, De Guzman, An, Liu, Zhang, Hu, Lee, Lai (bib14) 2014; 26
Cho, Lee, Nam, Kim, Kim, Kang, Ruiz Torres, Kim, Jung (bib15) 2019; 11
Guan, Zhao, Zhang, Shen, Zhou, Liu, Jin (bib40) 2017; 542
Wang, Tian, Wei, Li, Zhang, Huang (bib24) 2013; 77
Jang, Nam, Kim, Kim, Kim, Jung (bib25) 2020; 8
Lin, Grossman (bib22) 2015; 6
Wollbrink, Volgmann, Koch, Kanthasamy, Tegenkamp, Li, Richter, Kämnitz, Steinbach, Feldhoff, Caro (bib28) 2016; 106
Zhang, Gong, Zeng, Song, Cao, Liu, Huan, Peng (bib41) 2019; 574
Prasai, Tuberquia, Harl, Jennings, Bolotin (bib6) 2012; 6
Mondala, De (bib33) 2010; 75
Goh, Jiang, Karahan, Zhai, Wei, Yu, Fane, Wang, Chen (bib42) 2015; 25
Gao, Su, Wang, Li (bib44) 2019; 574
Wang, Narita, Müllen (bib8) 2017; 2
Kang, Kim, Ren, Cho, Kim, Choi, Nam, Gogotsi, Jung (bib4) 2017; 9
Sun, Huang, Peng (bib2) 2013; 49
Nam, Choi, Kang, Kim, Jung (bib34) 2016; 8
Chen, Li, Wen, Zhang, Chen, Chen, Si, Feng, Li, Lou, Ci (bib5) 2018; 347
Yang, Yang, He, Wang, Ding, Xie (bib27) 2017; 33
Ying, Sun, Wang, Fan, Peng (bib35) 2014; 4
Kim, Choi, Kim, Jung (bib29) 2016; 4
Wu, Liu, Gao, Muñoz-Carpena, Zhang, Chen, Zhou, Wang (bib30) 2013; 29
Wang, Wu, Zhao, Zhang, Tahir, Wang, Wang (bib46) 2020; 384
Kim, Jang, Kim, Nam, Jung, Jung (bib26) 2018; 122
Chen, Wang, Liu, Yang, Liu, Ruoff, Lei (bib3) 2018; 9
Jang, Woo, Lee, Han (bib37) 2016; 50
Gao, Su, Li, Cheng (bib12) 2018; 352
Hernandez, Nicolosi, Lotya, Blighe, Sun, De, McGovern, Holland, Byrne, Gun’Ko, Boland, Niraj, Duesberg, Krishnamurthy, Goodhue, Hutchison, Scardaci, Ferrari, Coleman (bib23) 2008; 3
Kong, Pang, Tang, Fan, Sun, Wang, Feng, Feng, Fan, Kang, Guo, Kang, Sun (bib45) 2019; 7
Gao, Qin, Liu, Jin (bib43) 2015; 3
Lee (10.1016/j.memsci.2020.118635_bib7) 2008; 321
Hernandez (10.1016/j.memsci.2020.118635_bib23) 2008; 3
Prasai (10.1016/j.memsci.2020.118635_bib6) 2012; 6
Surwade (10.1016/j.memsci.2020.118635_bib18) 2015; 10
Ying (10.1016/j.memsci.2020.118635_bib35) 2014; 4
Jang (10.1016/j.memsci.2020.118635_bib25) 2020; 8
Wang (10.1016/j.memsci.2020.118635_bib46) 2020; 384
Gao (10.1016/j.memsci.2020.118635_bib44) 2019; 574
Chen (10.1016/j.memsci.2020.118635_bib5) 2018; 347
Cho (10.1016/j.memsci.2020.118635_bib15) 2019; 11
Mondala (10.1016/j.memsci.2020.118635_bib33) 2010; 75
Nie (10.1016/j.memsci.2020.118635_bib16) 2020; 6
Gao (10.1016/j.memsci.2020.118635_bib12) 2018; 352
Cheng (10.1016/j.memsci.2020.118635_bib11) 2019; 54
Wollbrink (10.1016/j.memsci.2020.118635_bib28) 2016; 106
Wang (10.1016/j.memsci.2020.118635_bib24) 2013; 77
Fan (10.1016/j.memsci.2020.118635_bib20) 2012; 50
Nam (10.1016/j.memsci.2020.118635_bib34) 2016; 8
Huh (10.1016/j.memsci.2020.118635_bib19) 2011; 5
Huang (10.1016/j.memsci.2020.118635_bib10) 2013; 4
Huang (10.1016/j.memsci.2020.118635_bib36) 2014; 53
Kim (10.1016/j.memsci.2020.118635_bib26) 2018; 122
Han (10.1016/j.memsci.2020.118635_bib38) 2013; 23
Wang (10.1016/j.memsci.2020.118635_bib8) 2017; 2
Akbari (10.1016/j.memsci.2020.118635_bib1) 2016; 7
Sun (10.1016/j.memsci.2020.118635_bib2) 2013; 49
Kang (10.1016/j.memsci.2020.118635_bib4) 2017; 9
Hu (10.1016/j.memsci.2020.118635_bib39) 2013; 47
Lin (10.1016/j.memsci.2020.118635_bib22) 2015; 6
Yu (10.1016/j.memsci.2020.118635_bib32) 2020; 389
Yang (10.1016/j.memsci.2020.118635_bib27) 2017; 33
Guan (10.1016/j.memsci.2020.118635_bib40) 2017; 542
Kong (10.1016/j.memsci.2020.118635_bib45) 2019; 7
Kim (10.1016/j.memsci.2020.118635_bib29) 2016; 4
Chen (10.1016/j.memsci.2020.118635_bib3) 2018; 9
Zhao (10.1016/j.memsci.2020.118635_bib13) 2019; 585
Kim (10.1016/j.memsci.2020.118635_bib9) 2019; 148
Wang (10.1016/j.memsci.2020.118635_bib31) 2008; 328
Jang (10.1016/j.memsci.2020.118635_bib37) 2016; 50
Gao (10.1016/j.memsci.2020.118635_bib43) 2015; 3
Goh (10.1016/j.memsci.2020.118635_bib42) 2015; 25
Hung (10.1016/j.memsci.2020.118635_bib14) 2014; 26
Kim (10.1016/j.memsci.2020.118635_bib21) 2019; 372
Wu (10.1016/j.memsci.2020.118635_bib30) 2013; 29
Celebi (10.1016/j.memsci.2020.118635_bib17) 2014; 344
Zhang (10.1016/j.memsci.2020.118635_bib41) 2019; 574
References_xml – volume: 3
  start-page: 563
  year: 2008
  end-page: 568
  ident: bib23
  article-title: High-yield production of graphene by liquid-phase exfoliation of graphite
  publication-title: Nat. Nanotechnol.
– volume: 2
  year: 2017
  ident: bib8
  article-title: Precision synthesis versus bulk-scale fabrication of graphenes
  publication-title: Nat. Rev. Chem.
– volume: 352
  start-page: 10
  year: 2018
  end-page: 19
  ident: bib12
  article-title: Graphene oxide hybrid poly(p-phenylene sulfide) nanofiltration membrane intercalated by bis(triethoxysilyl)ethane
  publication-title: Chem. Eng. J.
– volume: 574
  start-page: 55
  year: 2019
  end-page: 64
  ident: bib44
  article-title: A metal-nano GO frameworks/PPS membrane with super water flux and high dyes interception
  publication-title: J. Membr. Sci.
– volume: 122
  start-page: 17507
  year: 2018
  end-page: 17517
  ident: bib26
  article-title: Revealing the role of oxygen debris and functional groups on the water flux and molecular separation of graphene oxide membrane: a combined experimental and theoretical study
  publication-title: J. Phys. Chem. C
– volume: 384
  start-page: 123347
  year: 2020
  ident: bib46
  article-title: Interfacial polymerized and pore-variable covalent organic framework composite membrane for dye separation
  publication-title: Chem. Eng. J.
– volume: 585
  start-page: 29
  year: 2019
  end-page: 37
  ident: bib13
  article-title: High flux nanofiltration membranes prepared with a graphene oxide homo-structure
  publication-title: J. Membr. Sci.
– volume: 33
  start-page: 913
  year: 2017
  end-page: 919
  ident: bib27
  article-title: Insights into the oxidation mechanism of sp
  publication-title: Langmuir
– volume: 4
  start-page: 17773
  year: 2016
  end-page: 17781
  ident: bib29
  article-title: Enhanced water permeation based on nanoporous multilayer graphene membranes: the role of pore size and density
  publication-title: J. Mater. Chem. A.
– volume: 574
  start-page: 112
  year: 2019
  end-page: 123
  ident: bib41
  article-title: Novel “loose” GO/MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure
  publication-title: J. Membr. Sci.
– volume: 9
  start-page: 44687
  year: 2017
  end-page: 44694
  ident: bib4
  article-title: Selective molecular separation on Ti3C2Tx–graphene oxide membranes during pressure-driven filtration: Comparison with graphene oxide and MXenes
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: eaaz9184
  year: 2020
  ident: bib16
  article-title: Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration
  publication-title: Sci. Adv.
– volume: 10
  start-page: 459
  year: 2015
  end-page: 464
  ident: bib18
  article-title: Water desalination using nanoporous single-layer graphene
  publication-title: Nat. Nanotechnol.
– volume: 50
  start-page: 10024
  year: 2016
  end-page: 10030
  ident: bib37
  article-title: Ambivalent effect of thermal reduction in mass rejection through graphene oxide membrane
  publication-title: Environ. Sci. Technol.
– volume: 50
  start-page: 1699
  year: 2012
  end-page: 1703
  ident: bib20
  article-title: Easy synthesis of porous graphene nanosheets and their use in supercapacitors
  publication-title: Carbon
– volume: 29
  start-page: 15174
  year: 2013
  end-page: 15181
  ident: bib30
  article-title: Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling
  publication-title: Langmuir
– volume: 347
  start-page: 12
  year: 2018
  end-page: 18
  ident: bib5
  article-title: Graphene oxide based membrane intercalated by nanoparticles for high performance nanofiltration application
  publication-title: Chem. Eng. J.
– volume: 106
  start-page: 93
  year: 2016
  end-page: 105
  ident: bib28
  article-title: Amorphous, turbostratic and crystalline carbon membranes with hydrogen selectivity
  publication-title: Carbon
– volume: 542
  start-page: 41
  year: 2017
  end-page: 51
  ident: bib40
  article-title: 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance
  publication-title: J. Membr. Sci.
– volume: 23
  start-page: 3693
  year: 2013
  end-page: 3700
  ident: bib38
  article-title: Ultrathin graphene nanofiltration membrane for water purification
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 24301
  year: 2019
  end-page: 24310
  ident: bib45
  article-title: Efficient dye nanofiltration of a graphene oxide membrane via combination with a covalent organic framework by hot pressing
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 21425
  year: 2014
  end-page: 21428
  ident: bib35
  article-title: In-plane mesoporous graphene oxide nanosheet assembled membranes for molecular separation
  publication-title: RSC Adv.
– volume: 26
  start-page: 2983
  year: 2014
  end-page: 2990
  ident: bib14
  article-title: Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing
  publication-title: Chem. Mater.
– volume: 372
  start-page: 509
  year: 2019
  end-page: 515
  ident: bib21
  article-title: Continuous ZIF-8/reduced graphene oxide nanocoating for ultrafast oil/water separation
  publication-title: Chem. Eng. J.
– volume: 328
  start-page: 464
  year: 2008
  end-page: 469
  ident: bib31
  article-title: Pore blocking mechanisms during early stages of membrane fouling by colloids
  publication-title: J. Colloid Interface Sci.
– volume: 321
  start-page: 385
  year: 2008
  end-page: 388
  ident: bib7
  article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene
  publication-title: Science
– volume: 49
  start-page: 10718
  year: 2013
  end-page: 10720
  ident: bib2
  article-title: Laminar MoS
  publication-title: Chem. Commun.
– volume: 11
  start-page: 27004
  year: 2019
  end-page: 27010
  ident: bib15
  article-title: Ultrafast-selective nanofiltration of an hybrid membrane comprising laminated reduced graphene oxide/graphene oxide nanoribbons
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 1102
  year: 2012
  end-page: 1108
  ident: bib6
  article-title: Graphene: corrosion-inhibiting coating
  publication-title: ACS Nano
– volume: 7
  start-page: 10891
  year: 2016
  ident: bib1
  article-title: Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide
  publication-title: Nat. Commun.
– volume: 9
  start-page: 1902
  year: 2018
  ident: bib3
  article-title: Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation
  publication-title: Nat. Commun.
– volume: 5
  start-page: 9799
  year: 2011
  end-page: 9806
  ident: bib19
  article-title: UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering
  publication-title: ACS Nano
– volume: 389
  start-page: 124375
  year: 2020
  ident: bib32
  article-title: The roles of oxygen-containing functional groups in modulating water purification performance of graphene oxide-based membrane
  publication-title: Chem. Eng. J.
– volume: 25
  start-page: 7348
  year: 2015
  end-page: 7359
  ident: bib42
  article-title: All-carbon nanoarchitectures as high-performance separation membranes with superior stability
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 6929
  year: 2014
  end-page: 6932
  ident: bib36
  article-title: A graphene oxide membrane with highly selective molecular separation of aqueous organic solution
  publication-title: Angew. Chem. Int. Ed.
– volume: 344
  start-page: 289
  year: 2014
  end-page: 292
  ident: bib17
  article-title: Ultimate permeation across atomically thin porous graphene
  publication-title: Science
– volume: 75
  start-page: 222
  year: 2010
  end-page: 228
  ident: bib33
  article-title: A fouling model for steady state crossflow membrane filtration considering sequential intermediate pore blocking and cake formation
  publication-title: Separ. Purif. Technol.
– volume: 8
  start-page: 27376
  year: 2016
  end-page: 27382
  ident: bib34
  article-title: Enhanced stability of laminated graphene oxide membranes for nanofiltration via interstitial amide bonding
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 8335
  year: 2015
  ident: bib22
  article-title: Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations
  publication-title: Nat. Commun.
– volume: 77
  start-page: 166
  year: 2013
  end-page: 171
  ident: bib24
  article-title: Study on the association between residential exposure to N, N-dimethylformamide and hospitalization for respiratory disease
  publication-title: Atmos. Environ.
– volume: 8
  start-page: 8292
  year: 2020
  end-page: 8299
  ident: bib25
  article-title: Turbostratic nanoporous carbon sheet membrane for ultrafast and selective nanofiltration in viscous green solvents
  publication-title: J. Mater. Chem.
– volume: 47
  start-page: 3715
  year: 2013
  end-page: 3723
  ident: bib39
  article-title: Enabling graphene oxide nanosheets as water separation membranes
  publication-title: Environ. Sci. Technol.
– volume: 148
  start-page: 28
  year: 2019
  end-page: 35
  ident: bib9
  article-title: Impermeable gas barrier coating by facilitated diffusion of ethylenediamine through graphene oxide liquid crystals
  publication-title: Carbon
– volume: 3
  start-page: 6649
  year: 2015
  end-page: 6654
  ident: bib43
  article-title: SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules
  publication-title: J. Mater. Chem.
– volume: 4
  start-page: 2979
  year: 2013
  ident: bib10
  article-title: Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes
  publication-title: Nat. Commun.
– volume: 54
  start-page: 1079
  year: 2019
  end-page: 1085
  ident: bib11
  article-title: Reduced graphene oxide–gold nanoparticle membrane for water purification
  publication-title: Separ. Sci. Technol.
– volume: 6
  start-page: eaaz9184
  year: 2020
  ident: 10.1016/j.memsci.2020.118635_bib16
  article-title: Realizing small-flake graphene oxide membranes for ultrafast size-dependent organic solvent nanofiltration
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz9184
– volume: 47
  start-page: 3715
  year: 2013
  ident: 10.1016/j.memsci.2020.118635_bib39
  article-title: Enabling graphene oxide nanosheets as water separation membranes
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es400571g
– volume: 344
  start-page: 289
  year: 2014
  ident: 10.1016/j.memsci.2020.118635_bib17
  article-title: Ultimate permeation across atomically thin porous graphene
  publication-title: Science
  doi: 10.1126/science.1249097
– volume: 50
  start-page: 1699
  year: 2012
  ident: 10.1016/j.memsci.2020.118635_bib20
  article-title: Easy synthesis of porous graphene nanosheets and their use in supercapacitors
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.12.016
– volume: 50
  start-page: 10024
  year: 2016
  ident: 10.1016/j.memsci.2020.118635_bib37
  article-title: Ambivalent effect of thermal reduction in mass rejection through graphene oxide membrane
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b02834
– volume: 389
  start-page: 124375
  year: 2020
  ident: 10.1016/j.memsci.2020.118635_bib32
  article-title: The roles of oxygen-containing functional groups in modulating water purification performance of graphene oxide-based membrane
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124375
– volume: 574
  start-page: 112
  year: 2019
  ident: 10.1016/j.memsci.2020.118635_bib41
  article-title: Novel “loose” GO/MoS2 composites membranes with enhanced permeability for effective salts and dyes rejection at low pressure
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.12.046
– volume: 384
  start-page: 123347
  year: 2020
  ident: 10.1016/j.memsci.2020.118635_bib46
  article-title: Interfacial polymerized and pore-variable covalent organic framework composite membrane for dye separation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123347
– volume: 347
  start-page: 12
  year: 2018
  ident: 10.1016/j.memsci.2020.118635_bib5
  article-title: Graphene oxide based membrane intercalated by nanoparticles for high performance nanofiltration application
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.04.069
– volume: 7
  start-page: 24301
  year: 2019
  ident: 10.1016/j.memsci.2020.118635_bib45
  article-title: Efficient dye nanofiltration of a graphene oxide membrane via combination with a covalent organic framework by hot pressing
  publication-title: J. Mater. Chem.
  doi: 10.1039/C9TA07684K
– volume: 542
  start-page: 41
  year: 2017
  ident: 10.1016/j.memsci.2020.118635_bib40
  article-title: 3D nanoporous crystals enabled 2D channels in graphene membrane with enhanced water purification performance
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2017.07.055
– volume: 54
  start-page: 1079
  year: 2019
  ident: 10.1016/j.memsci.2020.118635_bib11
  article-title: Reduced graphene oxide–gold nanoparticle membrane for water purification
  publication-title: Separ. Sci. Technol.
  doi: 10.1080/01496395.2018.1525400
– volume: 321
  start-page: 385
  year: 2008
  ident: 10.1016/j.memsci.2020.118635_bib7
  article-title: Measurement of the elastic properties and intrinsic strength of monolayer graphene
  publication-title: Science
  doi: 10.1126/science.1157996
– volume: 574
  start-page: 55
  year: 2019
  ident: 10.1016/j.memsci.2020.118635_bib44
  article-title: A metal-nano GO frameworks/PPS membrane with super water flux and high dyes interception
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2018.12.052
– volume: 33
  start-page: 913
  year: 2017
  ident: 10.1016/j.memsci.2020.118635_bib27
  article-title: Insights into the oxidation mechanism of sp2–sp3 Hybrid carbon materials: preparation of a water-soluble 2D porous conductive network and detectable molecule separation
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b03937
– volume: 8
  start-page: 27376
  year: 2016
  ident: 10.1016/j.memsci.2020.118635_bib34
  article-title: Enhanced stability of laminated graphene oxide membranes for nanofiltration via interstitial amide bonding
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b09912
– volume: 77
  start-page: 166
  year: 2013
  ident: 10.1016/j.memsci.2020.118635_bib24
  article-title: Study on the association between residential exposure to N, N-dimethylformamide and hospitalization for respiratory disease
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2013.04.072
– volume: 2
  year: 2017
  ident: 10.1016/j.memsci.2020.118635_bib8
  article-title: Precision synthesis versus bulk-scale fabrication of graphenes
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-017-0100
– volume: 106
  start-page: 93
  year: 2016
  ident: 10.1016/j.memsci.2020.118635_bib28
  article-title: Amorphous, turbostratic and crystalline carbon membranes with hydrogen selectivity
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.04.062
– volume: 49
  start-page: 10718
  year: 2013
  ident: 10.1016/j.memsci.2020.118635_bib2
  article-title: Laminar MoS2 membranes for molecule separation
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc46136j
– volume: 4
  start-page: 21425
  year: 2014
  ident: 10.1016/j.memsci.2020.118635_bib35
  article-title: In-plane mesoporous graphene oxide nanosheet assembled membranes for molecular separation
  publication-title: RSC Adv.
  doi: 10.1039/c4ra01495b
– volume: 6
  start-page: 1102
  year: 2012
  ident: 10.1016/j.memsci.2020.118635_bib6
  article-title: Graphene: corrosion-inhibiting coating
  publication-title: ACS Nano
  doi: 10.1021/nn203507y
– volume: 23
  start-page: 3693
  year: 2013
  ident: 10.1016/j.memsci.2020.118635_bib38
  article-title: Ultrathin graphene nanofiltration membrane for water purification
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202601
– volume: 53
  start-page: 6929
  year: 2014
  ident: 10.1016/j.memsci.2020.118635_bib36
  article-title: A graphene oxide membrane with highly selective molecular separation of aqueous organic solution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201401061
– volume: 4
  start-page: 17773
  year: 2016
  ident: 10.1016/j.memsci.2020.118635_bib29
  article-title: Enhanced water permeation based on nanoporous multilayer graphene membranes: the role of pore size and density
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C6TA06381K
– volume: 148
  start-page: 28
  year: 2019
  ident: 10.1016/j.memsci.2020.118635_bib9
  article-title: Impermeable gas barrier coating by facilitated diffusion of ethylenediamine through graphene oxide liquid crystals
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.03.039
– volume: 328
  start-page: 464
  year: 2008
  ident: 10.1016/j.memsci.2020.118635_bib31
  article-title: Pore blocking mechanisms during early stages of membrane fouling by colloids
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2008.09.028
– volume: 4
  start-page: 2979
  year: 2013
  ident: 10.1016/j.memsci.2020.118635_bib10
  article-title: Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3979
– volume: 352
  start-page: 10
  year: 2018
  ident: 10.1016/j.memsci.2020.118635_bib12
  article-title: Graphene oxide hybrid poly(p-phenylene sulfide) nanofiltration membrane intercalated by bis(triethoxysilyl)ethane
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.06.180
– volume: 3
  start-page: 563
  year: 2008
  ident: 10.1016/j.memsci.2020.118635_bib23
  article-title: High-yield production of graphene by liquid-phase exfoliation of graphite
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2008.215
– volume: 25
  start-page: 7348
  year: 2015
  ident: 10.1016/j.memsci.2020.118635_bib42
  article-title: All-carbon nanoarchitectures as high-performance separation membranes with superior stability
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502955
– volume: 8
  start-page: 8292
  year: 2020
  ident: 10.1016/j.memsci.2020.118635_bib25
  article-title: Turbostratic nanoporous carbon sheet membrane for ultrafast and selective nanofiltration in viscous green solvents
  publication-title: J. Mater. Chem.
  doi: 10.1039/D0TA00804D
– volume: 6
  start-page: 8335
  year: 2015
  ident: 10.1016/j.memsci.2020.118635_bib22
  article-title: Atomistic understandings of reduced graphene oxide as an ultrathin-film nanoporous membrane for separations
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9335
– volume: 26
  start-page: 2983
  year: 2014
  ident: 10.1016/j.memsci.2020.118635_bib14
  article-title: Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing
  publication-title: Chem. Mater.
  doi: 10.1021/cm5007873
– volume: 5
  start-page: 9799
  year: 2011
  ident: 10.1016/j.memsci.2020.118635_bib19
  article-title: UV/ozone-oxidized large-scale graphene platform with large chemical enhancement in surface-enhanced Raman scattering
  publication-title: ACS Nano
  doi: 10.1021/nn204156n
– volume: 9
  start-page: 44687
  year: 2017
  ident: 10.1016/j.memsci.2020.118635_bib4
  article-title: Selective molecular separation on Ti3C2Tx–graphene oxide membranes during pressure-driven filtration: Comparison with graphene oxide and MXenes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b10932
– volume: 10
  start-page: 459
  year: 2015
  ident: 10.1016/j.memsci.2020.118635_bib18
  article-title: Water desalination using nanoporous single-layer graphene
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.37
– volume: 372
  start-page: 509
  year: 2019
  ident: 10.1016/j.memsci.2020.118635_bib21
  article-title: Continuous ZIF-8/reduced graphene oxide nanocoating for ultrafast oil/water separation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.04.179
– volume: 122
  start-page: 17507
  year: 2018
  ident: 10.1016/j.memsci.2020.118635_bib26
  article-title: Revealing the role of oxygen debris and functional groups on the water flux and molecular separation of graphene oxide membrane: a combined experimental and theoretical study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b03318
– volume: 75
  start-page: 222
  year: 2010
  ident: 10.1016/j.memsci.2020.118635_bib33
  article-title: A fouling model for steady state crossflow membrane filtration considering sequential intermediate pore blocking and cake formation
  publication-title: Separ. Purif. Technol.
  doi: 10.1016/j.seppur.2010.07.016
– volume: 3
  start-page: 6649
  year: 2015
  ident: 10.1016/j.memsci.2020.118635_bib43
  article-title: SWCNT-intercalated GO ultrathin films for ultrafast separation of molecules
  publication-title: J. Mater. Chem.
  doi: 10.1039/C5TA00366K
– volume: 9
  start-page: 1902
  year: 2018
  ident: 10.1016/j.memsci.2020.118635_bib3
  article-title: Functionalized boron nitride membranes with ultrafast solvent transport performance for molecular separation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04294-6
– volume: 29
  start-page: 15174
  year: 2013
  ident: 10.1016/j.memsci.2020.118635_bib30
  article-title: Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling
  publication-title: Langmuir
  doi: 10.1021/la404134x
– volume: 7
  start-page: 10891
  year: 2016
  ident: 10.1016/j.memsci.2020.118635_bib1
  article-title: Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10891
– volume: 585
  start-page: 29
  year: 2019
  ident: 10.1016/j.memsci.2020.118635_bib13
  article-title: High flux nanofiltration membranes prepared with a graphene oxide homo-structure
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2019.05.028
– volume: 11
  start-page: 27004
  year: 2019
  ident: 10.1016/j.memsci.2020.118635_bib15
  article-title: Ultrafast-selective nanofiltration of an hybrid membrane comprising laminated reduced graphene oxide/graphene oxide nanoribbons
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b09037
SSID ssj0017089
Score 2.5362637
Snippet Herein, a functionalized nanoporous graphene (FNG) membrane was developed to mitigate the contemporary issues affecting graphene oxide (GO) membranes, such as...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118635
SubjectTerms Cross-flow
Flux decline
Functionalization
Graphene
graphene oxide
molecular weight
Nanofiltration
Nanopore
nanopores
polymers
porosity
synergism
Title Functionalized nanoporous graphene membrane with ultrafast and stable nanofiltration
URI https://dx.doi.org/10.1016/j.memsci.2020.118635
https://www.proquest.com/docview/2552035497
Volume 618
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7c9aIH8YnPJYLXuG2TbZvjsrisil50YW8hr0JlrYvWiwd_u5M-FhVhwVtpMyFMpt_Ml0wmABeBSlPHAkOTQGjKY2eo4i6m2joV2FBpXu2e393Hkym_mQ1mazBqz8L4tMoG-2tMr9C6edNvtNlf5Hn_IfCFSBhGiGiXSGN4B9Yj9PZpF9aH17eT--VmQhJUN-H59tQLtCfoqjSvZ_eMvSNRjDx8pHF179ufHuoXVlcOaLwNW03kSIb14HZgzRW7sPmtnuAePI7RS9WLe_mHs6RQxQvG10juSVWYGnGN4EiQIOODX4El7_PyVWXqrSSqsAQjRT13lViWz5uCuvswHV89jia0uTaBGsZESZNUcKN1aBkLVZSxDN04emHHGAZnIgqML_nFlU0M14mITepdFn4VWWojYTU7gG7xUrhDIKFNEP4EhrbccWY8ORJGxFmUWWRqNjwC1qpKmqamuL_aYi7b5LEnWStYegXLWsFHQJdSi7qmxor2STsL8odtSIT9FZLn7aRJ_G38XggqGLUukUmh3SA5To7_3fsJbEQ-wyUIaTg4hW75-u7OMEQpdQ86l59hrzHEL7Ex5sY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qe1AP4hPfRvC6NMmuSfZYxNLa2ost9LbsKxBpo2h68dc7m0dREQRvIdldltnJN_Ptzs4A3PgySSz1NYl9rgiLrCaS2YgoY6VvAqlYeXr-OIkGM_Ywv5234K65C-PCKmvsrzC9ROv6TbeWZvc1y7pPvktEQtFDRL1EGsM2oMNcUes2dHrD0WCyPkyI_bISnmtPXIfmBl0Z5rW0SxwdiWLo4COJyrpvv1qoH1hdGqD-LuzUnqPXqya3By2b78P2l3yCBzDto5WqNveyD2u8XOYv6F8juffKxNSIax7OBAkyPrgdWG-1KN5kKt8LT-bGQ09RLWzZLc0WdULdQ5j176d3A1KXTSCaUl6QOOFMKxUYSgMZpjRFM45W2FKKzhkPfe1SfjFpYs1UzCOdOJOFX3mamJAbRY-gnb_k9hi8wMQIfxxdW2YZ1Y4ccc2jNEwNMjUTnABtRCV0nVPclbZYiCZ47FlUAhZOwKIS8AmQda_XKqfGH-3jZhXEN90QCPt_9LxuFk3gb-POQlDAKHWBTAr1BslxfPrv0a9gczB9HIvxcDI6g63QRbv4AQluz6FdvK3sBborhbqs1fETI6XorA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functionalized+nanoporous+graphene+membrane+with+ultrafast+and+stable+nanofiltration&rft.jtitle=Journal+of+membrane+science&rft.au=Kang%2C+Junhyeok&rft.au=Choi%2C+Yunkyu&rft.au=Kim%2C+Ji+Hoon&rft.au=Choi%2C+Eunji&rft.date=2021-01-15&rft.pub=Elsevier+B.V&rft.issn=0376-7388&rft.eissn=1873-3123&rft.volume=618&rft_id=info:doi/10.1016%2Fj.memsci.2020.118635&rft.externalDocID=S0376738820312114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0376-7388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0376-7388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0376-7388&client=summon