A Novel Approach for High-Resolution Coastal Areas and Land Use Recognition From Remote Sensing Images Based on Multimodal Network-Level Fusion of SRAN3 and Lightweight Four Encoders ViT
Land use land cover classification from satellite images (remote sensing) has shown many efforts from the last decade due to ecological surveillance, rapid urbanization, law enforcement, climate change, agriculture drought, and disaster recovery. The low-resolution remote sensing images impact on th...
Saved in:
Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 18; pp. 6844 - 6858 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1939-1404 2151-1535 |
DOI | 10.1109/JSTARS.2025.3542194 |
Cover
Abstract | Land use land cover classification from satellite images (remote sensing) has shown many efforts from the last decade due to ecological surveillance, rapid urbanization, law enforcement, climate change, agriculture drought, and disaster recovery. The low-resolution remote sensing images impact on the accurate prediction; therefore, the high-resolution deep learning architecture is widely required. This article proposes a new deep network-level fusion approach that merges a stacked residual self-attention CNN (SRAN3) with a lightweight ViT based on 4-encoders to enhance the model performance while reducing computational costs. The SRAN3 model is proposed for extracting sophisticated prominent features, while the 4-encoder-based ViT facilitates effective learning with reduced computation time. These networks are fused using a depth concatenation approach that effectively integrates the strengths of both architectures. The fused model hyperparameters are selected through Bayesian optimization, significantly improving the learning process. The trained model is later utilized in the testing phase, extracting features from the depth-concatenation layer. The extracted features are fed to neural network classifiers and obtain the final prediction. Two publicly available datasets, EuroSAT and NWPU_RESIS45, are employed to obtain improved testing and validation accuracy. The proposed SRAN3 + WNN (Wide Neural Network) and 4-encoder ViT + WNN obtained 96.9% and 92.6% of accuracy; however, the proposed fused network + WNN achieved the highest accuracy of 98.4% on EuroSAT and 94.7% accuracy on the NWPU_RESIS45 dataset, respectively. Also, the proposed fused model interpretation is performed using the explainable artificial technique (XAI), which has shown improved land use and land cover classification. |
---|---|
AbstractList | Land use land cover classification from satellite images (remote sensing) has shown many efforts from the last decade due to ecological surveillance, rapid urbanization, law enforcement, climate change, agriculture drought, and disaster recovery. The low-resolution remote sensing images impact on the accurate prediction; therefore, the high-resolution deep learning architecture is widely required. This article proposes a new deep network-level fusion approach that merges a stacked residual self-attention CNN (SRAN3) with a lightweight ViT based on 4-encoders to enhance the model performance while reducing computational costs. The SRAN3 model is proposed for extracting sophisticated prominent features, while the 4-encoder-based ViT facilitates effective learning with reduced computation time. These networks are fused using a depth concatenation approach that effectively integrates the strengths of both architectures. The fused model hyperparameters are selected through Bayesian optimization, significantly improving the learning process. The trained model is later utilized in the testing phase, extracting features from the depth-concatenation layer. The extracted features are fed to neural network classifiers and obtain the final prediction. Two publicly available datasets, EuroSAT and NWPU_RESIS45, are employed to obtain improved testing and validation accuracy. The proposed SRAN3 + WNN (Wide Neural Network) and 4-encoder ViT + WNN obtained 96.9% and 92.6% of accuracy; however, the proposed fused network + WNN achieved the highest accuracy of 98.4% on EuroSAT and 94.7% accuracy on the NWPU_RESIS45 dataset, respectively. Also, the proposed fused model interpretation is performed using the explainable artificial technique (XAI), which has shown improved land use and land cover classification. |
Author | Arishi, Ali Hamza, Ameer AlHammadi, Dina Abdulaziz Khan, Muhammad Attique Nam, Yunyoung Shaheen, Saima Bhatti, Muhammad Kashif Algamdi, Shabbab Ali |
Author_xml | – sequence: 1 givenname: Muhammad Kashif surname: Bhatti fullname: Bhatti, Muhammad Kashif email: miankashiffiaz111@gmail.com organization: Department of Computer Science, HITEC University, Taxila, Pakistan – sequence: 2 givenname: Muhammad Attique orcidid: 0000-0001-5723-3858 surname: Khan fullname: Khan, Muhammad Attique email: attique.khan@ieee.org organization: Department of AI, Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia – sequence: 3 givenname: Saima orcidid: 0000-0003-2625-6824 surname: Shaheen fullname: Shaheen, Saima email: saima.shaheen@hitecuni.edu.pk organization: Department of Computer Science, HITEC University, Taxila, Pakistan – sequence: 4 givenname: Ameer surname: Hamza fullname: Hamza, Ameer email: ameer.hamza@ktu.edu organization: Centre of Real Time Computer Systems, Kaunas University of Technology, Kaunas, Lithuania – sequence: 5 givenname: Ali orcidid: 0009-0009-0586-3378 surname: Arishi fullname: Arishi, Ali email: awaje@kku.edu.sa organization: Department of Industrial Engineering, King Khalid University, Abha, Saudi Arabia – sequence: 6 givenname: Dina Abdulaziz surname: AlHammadi fullname: AlHammadi, Dina Abdulaziz email: daalhammadi@pnu.edu.sa organization: Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia – sequence: 7 givenname: Shabbab Ali orcidid: 0000-0003-3435-6681 surname: Algamdi fullname: Algamdi, Shabbab Ali email: s.algamdi@psau.edu.sa organization: Department of Software Engineering, College of Computer Science and Engineering, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia – sequence: 8 givenname: Yunyoung orcidid: 0000-0002-3318-9394 surname: Nam fullname: Nam, Yunyoung email: ynam@sch.ac.kr organization: Department of ICT Convergence, Soonchunhyang University, Asan, South Korea |
BookMark | eNqFUctuEzEUHaEikRa-ABaWWE_wazzxMkRNmyoEKUnZWo59J3WYjIPtUPFrfF09nQohNmyupavz8j2XxUXnOyiK9wSPCcHy091mO11vxhTTaswqTonkr4oRJRUpScWqi2JEJJMl4Zi_KS5jPGAsaC3ZqPg9RSv_E1o0PZ2C1-YBNT6gW7d_KNcQfXtOzndo5nVMOoMC6Ih0Z9GyH_cR0BqM33fuGTYP_pgXR58AbaCLrtujxVHvIaLPOoJFGfPl3CZ39DarrSA9-vC9XEIfYH6OvYZv0GY9XbHBJedIj9BPNPfngK474y2EiL657dvidaPbCO9e3qvifn69nd2Wy683i9l0WRrGZCpFzRid1ByE0YKSyQ6YZDU1wpqaCmMtsSAazqTljQRCJABmzDBOaLMTFLOrYjHoWq8P6hTcUYdfymunnhc-7JUOyZkWVGZpXFeN5WLHAVOdb1wJVoGmABWDrPVx0MrH_nGGmNQhf6vL8RUjteCYElFlFBtQJvgYAzR_XAlWfeFqKFz1hauXwjNL_sMyLum-mBS0a__D_TBwHQD85TaZ1IwL9gRtirw3 |
CODEN | IJSTHZ |
CitedBy_id | crossref_primary_10_3390_su17051902 |
Cites_doi | 10.1109/JSTARS.2024.3478333 10.1109/JSTARS.2023.3348874 10.1177/0885412214557817 10.1109/AIPR.2017.8457969 10.3390/rs14071566 10.1016/j.comcom.2023.07.012 10.1007/978-3-662-55876-8 10.1016/j.isprsjprs.2024.04.007 10.1109/JSTARS.2024.3501216 10.1007/978-1-4614-3103-9 10.1109/CVPR.2016.90 10.1145/335603.335786 10.1016/S0031-3203(02)00262-5 10.1109/JSTARS.2019.2918242 10.1109/JSTARS.2024.3494838 10.1016/j.cageo.2024.105704 10.1016/j.ijdrr.2020.101642 10.1139/x90-063 10.1109/LGRS.2023.3251652 10.1007/s12517-022-10246-8 10.1007/s11042-017-5276-7 10.1016/j.cscee.2024.101079 10.1109/CVPR.2017.243 10.1109/JSTARS.2024.3426950 10.1109/ACCESS.2019.2927169 10.1016/j.gecco.2016.07.002 10.3390/rs5020949 10.4324/9781410605337-29 10.1016/j.isprsjprs.2024.12.008 10.1016/j.isprsjprs.2015.10.004 10.1109/LGRS.2017.2731997 10.1016/j.patcog.2009.04.013 10.1109/JSTARS.2024.3427392 10.1007/s12601-024-00189-4 10.1016/j.neucom.2023.03.025 10.3390/rs14236017 10.3390/rs10010144 10.3390/rs13132566 10.26782/jmcms.2019.10.00015 10.3390/rs10020290 10.1016/j.inffus.2024.102555 10.1080/01431160801914945 10.1007/978-3-319-54181-5_12 10.1109/CVPR.2018.00907 10.1016/j.measurement.2024.115224 10.1109/JSTARS.2024.3378298 10.1016/j.bspc.2022.104561 10.1007/978-3-030-24302-9_31 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M DOA |
DOI | 10.1109/JSTARS.2025.3542194 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Open Access Full Text |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 2151-1535 |
EndPage | 6858 |
ExternalDocumentID | oai_doaj_org_article_c34a075fd46b4e02a7935635ea2ee53e 10_1109_JSTARS_2025_3542194 10887346 |
Genre | orig-research |
GrantInformation_xml | – fundername: Princess Nourah Bint Abdulrahman University Researchers grantid: PNURSP2025R508 – fundername: National Research Foundation of Korea grantid: RS-2023-00218176 funderid: 10.13039/501100003725 – fundername: Deanship of Scientific Research through King Khalid University, Saudi Arabia grantid: GRP/88/45 – fundername: Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia – fundername: Soonchunhyang University Research Fund |
GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
ID | FETCH-LOGICAL-c339t-67332874e6ca6218be39372c6dc726cdd1de6f439d4f9e119ee033c3412fb6203 |
IEDL.DBID | DOA |
ISSN | 1939-1404 |
IngestDate | Wed Aug 27 01:18:01 EDT 2025 Fri Jul 25 12:28:16 EDT 2025 Wed Sep 10 06:09:39 EDT 2025 Thu Apr 24 23:08:49 EDT 2025 Wed Aug 27 01:47:38 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-67332874e6ca6218be39372c6dc726cdd1de6f439d4f9e119ee033c3412fb6203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5723-3858 0000-0002-3318-9394 0000-0003-2625-6824 0009-0009-0586-3378 0000-0003-3435-6681 |
OpenAccessLink | https://doaj.org/article/c34a075fd46b4e02a7935635ea2ee53e |
PQID | 3176402165 |
PQPubID | 75722 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_JSTARS_2025_3542194 doaj_primary_oai_doaj_org_article_c34a075fd46b4e02a7935635ea2ee53e crossref_citationtrail_10_1109_JSTARS_2025_3542194 ieee_primary_10887346 proquest_journals_3176402165 |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 20250101 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
PublicationTitleAbbrev | JSTARS |
PublicationYear | 2025 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref55 Abbas (ref29) 2016; 48 ref54 ref17 ref16 ref19 ref18 Campbell (ref7) 2011 ref51 ref50 Gao (ref38) 2022; 75 ref46 ref45 Swain (ref10) 1973 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref9 ref4 ref3 ref5 Santos (ref48) 2022; 2 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 Vani (ref40) ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 Schowengerdt (ref6) 2006 |
References_xml | – ident: ref21 doi: 10.1109/JSTARS.2024.3478333 – volume-title: Remote Sensing: Models and Methods for Image Processing year: 2006 ident: ref6 – ident: ref14 doi: 10.1109/JSTARS.2023.3348874 – volume: 48 start-page: 1 year: 2016 ident: ref29 article-title: K-Means and ISODATA clustering algorithms for landcover classification using remote sensing publication-title: Sindh Univ. Res. J. – ident: ref16 doi: 10.1177/0885412214557817 – ident: ref37 doi: 10.1109/AIPR.2017.8457969 – ident: ref41 doi: 10.3390/rs14071566 – ident: ref42 doi: 10.1016/j.comcom.2023.07.012 – ident: ref15 doi: 10.1007/978-3-662-55876-8 – ident: ref2 doi: 10.1016/j.isprsjprs.2024.04.007 – volume: 75 start-page: 148 year: 2022 ident: ref38 article-title: A region-based deep learning approach to instance segmentation of aerial orthoimagery for building rooftop extraction publication-title: Geomatica – ident: ref33 doi: 10.1109/JSTARS.2024.3501216 – ident: ref8 doi: 10.1007/978-1-4614-3103-9 – ident: ref50 doi: 10.1109/CVPR.2016.90 – ident: ref28 doi: 10.1145/335603.335786 – ident: ref32 doi: 10.1016/S0031-3203(02)00262-5 – ident: ref46 doi: 10.1109/JSTARS.2019.2918242 – start-page: 61 volume-title: Proc. 11th Int. Conf. Adv. Comput. ident: ref40 article-title: Deep learning based forest fire classification and detection in satellite images – ident: ref19 doi: 10.1109/JSTARS.2024.3494838 – volume-title: Introduction to Remote Sensing year: 2011 ident: ref7 – ident: ref17 doi: 10.1016/j.cageo.2024.105704 – ident: ref1 doi: 10.1016/j.ijdrr.2020.101642 – ident: ref11 doi: 10.1139/x90-063 – ident: ref55 doi: 10.1109/LGRS.2023.3251652 – ident: ref24 doi: 10.1007/s12517-022-10246-8 – ident: ref22 doi: 10.1007/s11042-017-5276-7 – ident: ref44 doi: 10.1016/j.cscee.2024.101079 – ident: ref49 doi: 10.1109/CVPR.2017.243 – ident: ref54 doi: 10.1109/JSTARS.2024.3426950 – ident: ref34 doi: 10.1109/ACCESS.2019.2927169 – year: 1973 ident: ref10 article-title: Pattern recognition: A basis for remote sensing data analysis – ident: ref3 doi: 10.1016/j.gecco.2016.07.002 – ident: ref23 doi: 10.3390/rs5020949 – ident: ref52 doi: 10.4324/9781410605337-29 – ident: ref5 doi: 10.1016/j.isprsjprs.2024.12.008 – ident: ref12 doi: 10.1016/j.isprsjprs.2015.10.004 – ident: ref30 doi: 10.1109/LGRS.2017.2731997 – ident: ref27 doi: 10.1016/j.patcog.2009.04.013 – ident: ref45 doi: 10.1109/JSTARS.2024.3427392 – ident: ref9 doi: 10.1007/s12601-024-00189-4 – ident: ref20 doi: 10.1016/j.neucom.2023.03.025 – ident: ref31 doi: 10.3390/rs14236017 – ident: ref35 doi: 10.3390/rs10010144 – ident: ref53 doi: 10.3390/rs13132566 – ident: ref36 doi: 10.26782/jmcms.2019.10.00015 – ident: ref43 doi: 10.3390/rs10020290 – ident: ref26 doi: 10.1016/j.inffus.2024.102555 – ident: ref4 doi: 10.1080/01431160801914945 – ident: ref39 doi: 10.1007/978-3-319-54181-5_12 – volume: 2 start-page: 1 year: 2022 ident: ref48 article-title: Bayesian optimization for hyperparameter tuning publication-title: J. Bioinf. Artif. Intell. – ident: ref51 doi: 10.1109/CVPR.2018.00907 – ident: ref13 doi: 10.1016/j.measurement.2024.115224 – ident: ref18 doi: 10.1109/JSTARS.2024.3378298 – ident: ref47 doi: 10.1016/j.bspc.2022.104561 – ident: ref25 doi: 10.1007/978-3-030-24302-9_31 |
SSID | ssj0062793 |
Score | 2.413638 |
Snippet | Land use land cover classification from satellite images (remote sensing) has shown many efforts from the last decade due to ecological surveillance, rapid... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6844 |
SubjectTerms | Accuracy Agricultural drought Bayesian analysis Biological system modeling Classification Climate change Coastal zone Coders Convolutional neural networks Customize vision transformer Datasets Deep learning Disaster recovery Drought Enforcement Environmental monitoring Feature extraction High resolution Image resolution Land cover Land surface Land use Land use planning Machine learning network level fusion Neural networks Predictive models Probability theory Remote sensing remote sensing (RS) residual self-attention CNN Satellite imagery Satellite images SRAN3 super resolution Superresolution Surveillance Urban areas Urbanization Vision transformers |
SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoJSQufBaxUJAPHMmS2Im3OW6rhoJKDrtd1Jvl2BNUwSZoswuCn8avY8Z2Kj4E4rJaRePEkd_YL-OZZ8aeH0lIhcsVbTe2Sd4qlTQGKG5Fu0ZgcdGiQuG3tTpb5W8ui8tYrO5rYQDAJ5_BlP76vXzX2x2FytDD0SVkrvbYHuIsFGuN064SM6-wi4SkTEgzJkoMZWn5EjE-XyzxY1AUU1nk6KT5L8uQV-uPx6v8MSf7haa6w-qxiyG_5MN0t22m9ttv6o3__Q532e1IOfk8YOQeuwHdfXbzlT_S9-sD9n3O6_4zoEGUF-fIYznlfyQU2w_I5Ce9QR5JdwEzcNM5fk4_qwH4YsxBQrNq06_xAo4_8CXlxnfv-es1zlkDP8b10nG08TW_697h3eqQhJ6cU-oSr3YUuuN9y5eLeS3DUyh48MXHb3mFb8JPO6rC3wz83dXFAVtVpxcnZ0k80SGxUpZbqjOQJLAPyhqF5KIB0uMTVjk7E8o6lzlQLXIkl7clZFkJkEppcaUVbaNEKh-y_a7v4BHjMyixmSmgREKUHhnjZhkU1qrGlGkr5ISJcYC1jXLndOrGR-0_e9JSB1RoQoWOqJiwF9eNPgW1j3-bHxNyrk1JqttfwBHX0fM19t4gL2vRIZocHcMgTgukeWAEQCFhwg4IJT89LwBkwg5HIOo4rwwa2R76kMhU8fgvzZ6wW9TFECU6ZPvbzQ6eIm_aNs-8v_wAbVYTHg priority: 102 providerName: IEEE |
Title | A Novel Approach for High-Resolution Coastal Areas and Land Use Recognition From Remote Sensing Images Based on Multimodal Network-Level Fusion of SRAN3 and Lightweight Four Encoders ViT |
URI | https://ieeexplore.ieee.org/document/10887346 https://www.proquest.com/docview/3176402165 https://doaj.org/article/c34a075fd46b4e02a7935635ea2ee53e |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9QwDI_QJCReEH-GOBiTH3ikrE3S3PJ4m1YGGvdwt0N7q9LERUhcO11vIL4anw476U1DSPDCSx8qN2lq13Yc-2chXh8rzGXQho8b20y3xmSNQ45b8akRejJaXCj8cW7OV_rDVXl1p9UX54QleOD04Y680o7MWkvjNZrGdSRQJVlJdBKxVMjaN7f5bjOVdLCR0wi3S96JzRhAZsQbKnJ7RAI_WyxpZyjLt6rU9Mfq32xShO4fe638oaCj1akeiYejuwiz9JqPxT3snoj772I73h9Pxc8ZzPtvSAQjNDiQDwqcu5FxXD5JFZz2jnxAHgXdAK4LcMGX1YCw2OUPEVm16dd0g3iHsOS89u4zvF-TvhnghGxdAKKJ9brrPtBo85RAnl1w2hFUNxx2g76F5WI2V2kW3vh_j7FXqGglcNZxBf1mgE9fLvfFqjq7PD3Pxm4MmVfKbrlGQDE4PhrvDDkGDTKWnvQm-Kk0PoQioGnJvwm6tVgUFjFXithXyLYxMlfPxF7Xd_hcwBQtPeZKtOTM5MfOhWmBpfemcTZvpZoIueNH7Ueocu6Y8bWOW5bc1omJNTOxHpk4EW9uH7pOSB1_Jz9hRt-SMsx2vEHCV4_CV_9L-CZin8Xkznyks5U2E3Gwk5t61AlDTZ4ayb8sTPnif8z9Ujzg9aRw0IHY225u8BU5SNvmMP4Lh7GW8RfmSgoO |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgEYILz0UUFvCBIymJnbjNsbva0IVuDn2gvUWOPUEImqA-QPDT-HXM2M6Kh0BcqioaJ47yjf15PPOZsedjCbGwqaLtxiZKG6WiWgPFrWjXCAxOWlQofF6q6Sp9fZFdhGJ1VwsDAC75DIb01-3l287sKVSGHo4uIVN1lV3LcFkx9uVa_cCrxMhp7CIlySNSjQkiQ0mcv0SUT-YLXA6KbCizFN00_WUicnr94YCVP0ZlN9UUt1nZd9JnmHwY7nf10Hz7Tb_xv9_iDrsVSCefeJTcZVegvceuv3KH-n69z75PeNl9BjQIAuMcmSynDJCIovsem_yk08gk6S6gt1y3ls_oZ7UFPu-zkNCs2HRrvIAIAL6g7Pj2HT9b46i15cc4Y1qONq7qd91ZvFvp09CjGSUv8WJPwTveNXwxn5TSP4XCB19cBJcX-Cb8tKU6_M2Wv32_PGSr4nR5Mo3CmQ6RkTLfUaWBJIl9UEYrpBc1kCKfMMqakVDG2sSCapAl2bTJIUlygFhKg3OtaGolYvmAHbRdCw8ZH0GOzXQGOVKieKy1HSWQGaNqnceNkAMm-g9cmSB4TudufKzcwifOK4-KilBRBVQM2IvLRp-83se_zY8JOZemJNbtLuAXr4LvV9h7jcysQZeoU3QNjTjNkOiBFgCZhAE7JJT89DwPkAE76oFYhZFlWyHfQy8Sicoe_aXZM3ZjujyfVbOz8s1jdpO662NGR-xgt9nDE2RRu_qp850fA5oWcQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Approach+for+High-Resolution+Coastal+Areas+and+Land+Use+Recognition+From+Remote+Sensing+Images+Based+on+Multimodal+Network-Level+Fusion+of+SRAN3+and+Lightweight+Four+Encoders+ViT&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Bhatti%2C+Muhammad+Kashif&rft.au=Khan%2C+Muhammad+Attique&rft.au=Shaheen%2C+Saima&rft.au=Hamza%2C+Ameer&rft.date=2025&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=18&rft.spage=6844&rft.epage=6858&rft_id=info:doi/10.1109%2FJSTARS.2025.3542194&rft.externalDocID=10887346 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |