A Novel Approach for High-Resolution Coastal Areas and Land Use Recognition From Remote Sensing Images Based on Multimodal Network-Level Fusion of SRAN3 and Lightweight Four Encoders ViT

Land use land cover classification from satellite images (remote sensing) has shown many efforts from the last decade due to ecological surveillance, rapid urbanization, law enforcement, climate change, agriculture drought, and disaster recovery. The low-resolution remote sensing images impact on th...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 18; pp. 6844 - 6858
Main Authors Bhatti, Muhammad Kashif, Khan, Muhammad Attique, Shaheen, Saima, Hamza, Ameer, Arishi, Ali, AlHammadi, Dina Abdulaziz, Algamdi, Shabbab Ali, Nam, Yunyoung
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1939-1404
2151-1535
DOI10.1109/JSTARS.2025.3542194

Cover

Abstract Land use land cover classification from satellite images (remote sensing) has shown many efforts from the last decade due to ecological surveillance, rapid urbanization, law enforcement, climate change, agriculture drought, and disaster recovery. The low-resolution remote sensing images impact on the accurate prediction; therefore, the high-resolution deep learning architecture is widely required. This article proposes a new deep network-level fusion approach that merges a stacked residual self-attention CNN (SRAN3) with a lightweight ViT based on 4-encoders to enhance the model performance while reducing computational costs. The SRAN3 model is proposed for extracting sophisticated prominent features, while the 4-encoder-based ViT facilitates effective learning with reduced computation time. These networks are fused using a depth concatenation approach that effectively integrates the strengths of both architectures. The fused model hyperparameters are selected through Bayesian optimization, significantly improving the learning process. The trained model is later utilized in the testing phase, extracting features from the depth-concatenation layer. The extracted features are fed to neural network classifiers and obtain the final prediction. Two publicly available datasets, EuroSAT and NWPU_RESIS45, are employed to obtain improved testing and validation accuracy. The proposed SRAN3 + WNN (Wide Neural Network) and 4-encoder ViT + WNN obtained 96.9% and 92.6% of accuracy; however, the proposed fused network + WNN achieved the highest accuracy of 98.4% on EuroSAT and 94.7% accuracy on the NWPU_RESIS45 dataset, respectively. Also, the proposed fused model interpretation is performed using the explainable artificial technique (XAI), which has shown improved land use and land cover classification.
AbstractList Land use land cover classification from satellite images (remote sensing) has shown many efforts from the last decade due to ecological surveillance, rapid urbanization, law enforcement, climate change, agriculture drought, and disaster recovery. The low-resolution remote sensing images impact on the accurate prediction; therefore, the high-resolution deep learning architecture is widely required. This article proposes a new deep network-level fusion approach that merges a stacked residual self-attention CNN (SRAN3) with a lightweight ViT based on 4-encoders to enhance the model performance while reducing computational costs. The SRAN3 model is proposed for extracting sophisticated prominent features, while the 4-encoder-based ViT facilitates effective learning with reduced computation time. These networks are fused using a depth concatenation approach that effectively integrates the strengths of both architectures. The fused model hyperparameters are selected through Bayesian optimization, significantly improving the learning process. The trained model is later utilized in the testing phase, extracting features from the depth-concatenation layer. The extracted features are fed to neural network classifiers and obtain the final prediction. Two publicly available datasets, EuroSAT and NWPU_RESIS45, are employed to obtain improved testing and validation accuracy. The proposed SRAN3 + WNN (Wide Neural Network) and 4-encoder ViT + WNN obtained 96.9% and 92.6% of accuracy; however, the proposed fused network + WNN achieved the highest accuracy of 98.4% on EuroSAT and 94.7% accuracy on the NWPU_RESIS45 dataset, respectively. Also, the proposed fused model interpretation is performed using the explainable artificial technique (XAI), which has shown improved land use and land cover classification.
Author Arishi, Ali
Hamza, Ameer
AlHammadi, Dina Abdulaziz
Khan, Muhammad Attique
Nam, Yunyoung
Shaheen, Saima
Bhatti, Muhammad Kashif
Algamdi, Shabbab Ali
Author_xml – sequence: 1
  givenname: Muhammad Kashif
  surname: Bhatti
  fullname: Bhatti, Muhammad Kashif
  email: miankashiffiaz111@gmail.com
  organization: Department of Computer Science, HITEC University, Taxila, Pakistan
– sequence: 2
  givenname: Muhammad Attique
  orcidid: 0000-0001-5723-3858
  surname: Khan
  fullname: Khan, Muhammad Attique
  email: attique.khan@ieee.org
  organization: Department of AI, Prince Mohammad Bin Fahd University, Al-Khobar, Saudi Arabia
– sequence: 3
  givenname: Saima
  orcidid: 0000-0003-2625-6824
  surname: Shaheen
  fullname: Shaheen, Saima
  email: saima.shaheen@hitecuni.edu.pk
  organization: Department of Computer Science, HITEC University, Taxila, Pakistan
– sequence: 4
  givenname: Ameer
  surname: Hamza
  fullname: Hamza, Ameer
  email: ameer.hamza@ktu.edu
  organization: Centre of Real Time Computer Systems, Kaunas University of Technology, Kaunas, Lithuania
– sequence: 5
  givenname: Ali
  orcidid: 0009-0009-0586-3378
  surname: Arishi
  fullname: Arishi, Ali
  email: awaje@kku.edu.sa
  organization: Department of Industrial Engineering, King Khalid University, Abha, Saudi Arabia
– sequence: 6
  givenname: Dina Abdulaziz
  surname: AlHammadi
  fullname: AlHammadi, Dina Abdulaziz
  email: daalhammadi@pnu.edu.sa
  organization: Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
– sequence: 7
  givenname: Shabbab Ali
  orcidid: 0000-0003-3435-6681
  surname: Algamdi
  fullname: Algamdi, Shabbab Ali
  email: s.algamdi@psau.edu.sa
  organization: Department of Software Engineering, College of Computer Science and Engineering, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
– sequence: 8
  givenname: Yunyoung
  orcidid: 0000-0002-3318-9394
  surname: Nam
  fullname: Nam, Yunyoung
  email: ynam@sch.ac.kr
  organization: Department of ICT Convergence, Soonchunhyang University, Asan, South Korea
BookMark eNqFUctuEzEUHaEikRa-ABaWWE_wazzxMkRNmyoEKUnZWo59J3WYjIPtUPFrfF09nQohNmyupavz8j2XxUXnOyiK9wSPCcHy091mO11vxhTTaswqTonkr4oRJRUpScWqi2JEJJMl4Zi_KS5jPGAsaC3ZqPg9RSv_E1o0PZ2C1-YBNT6gW7d_KNcQfXtOzndo5nVMOoMC6Ih0Z9GyH_cR0BqM33fuGTYP_pgXR58AbaCLrtujxVHvIaLPOoJFGfPl3CZ39DarrSA9-vC9XEIfYH6OvYZv0GY9XbHBJedIj9BPNPfngK474y2EiL657dvidaPbCO9e3qvifn69nd2Wy683i9l0WRrGZCpFzRid1ByE0YKSyQ6YZDU1wpqaCmMtsSAazqTljQRCJABmzDBOaLMTFLOrYjHoWq8P6hTcUYdfymunnhc-7JUOyZkWVGZpXFeN5WLHAVOdb1wJVoGmABWDrPVx0MrH_nGGmNQhf6vL8RUjteCYElFlFBtQJvgYAzR_XAlWfeFqKFz1hauXwjNL_sMyLum-mBS0a__D_TBwHQD85TaZ1IwL9gRtirw3
CODEN IJSTHZ
CitedBy_id crossref_primary_10_3390_su17051902
Cites_doi 10.1109/JSTARS.2024.3478333
10.1109/JSTARS.2023.3348874
10.1177/0885412214557817
10.1109/AIPR.2017.8457969
10.3390/rs14071566
10.1016/j.comcom.2023.07.012
10.1007/978-3-662-55876-8
10.1016/j.isprsjprs.2024.04.007
10.1109/JSTARS.2024.3501216
10.1007/978-1-4614-3103-9
10.1109/CVPR.2016.90
10.1145/335603.335786
10.1016/S0031-3203(02)00262-5
10.1109/JSTARS.2019.2918242
10.1109/JSTARS.2024.3494838
10.1016/j.cageo.2024.105704
10.1016/j.ijdrr.2020.101642
10.1139/x90-063
10.1109/LGRS.2023.3251652
10.1007/s12517-022-10246-8
10.1007/s11042-017-5276-7
10.1016/j.cscee.2024.101079
10.1109/CVPR.2017.243
10.1109/JSTARS.2024.3426950
10.1109/ACCESS.2019.2927169
10.1016/j.gecco.2016.07.002
10.3390/rs5020949
10.4324/9781410605337-29
10.1016/j.isprsjprs.2024.12.008
10.1016/j.isprsjprs.2015.10.004
10.1109/LGRS.2017.2731997
10.1016/j.patcog.2009.04.013
10.1109/JSTARS.2024.3427392
10.1007/s12601-024-00189-4
10.1016/j.neucom.2023.03.025
10.3390/rs14236017
10.3390/rs10010144
10.3390/rs13132566
10.26782/jmcms.2019.10.00015
10.3390/rs10020290
10.1016/j.inffus.2024.102555
10.1080/01431160801914945
10.1007/978-3-319-54181-5_12
10.1109/CVPR.2018.00907
10.1016/j.measurement.2024.115224
10.1109/JSTARS.2024.3378298
10.1016/j.bspc.2022.104561
10.1007/978-3-030-24302-9_31
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOA
DOI 10.1109/JSTARS.2025.3542194
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 6858
ExternalDocumentID oai_doaj_org_article_c34a075fd46b4e02a7935635ea2ee53e
10_1109_JSTARS_2025_3542194
10887346
Genre orig-research
GrantInformation_xml – fundername: Princess Nourah Bint Abdulrahman University Researchers
  grantid: PNURSP2025R508
– fundername: National Research Foundation of Korea
  grantid: RS-2023-00218176
  funderid: 10.13039/501100003725
– fundername: Deanship of Scientific Research through King Khalid University, Saudi Arabia
  grantid: GRP/88/45
– fundername: Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
– fundername: Soonchunhyang University Research Fund
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c339t-67332874e6ca6218be39372c6dc726cdd1de6f439d4f9e119ee033c3412fb6203
IEDL.DBID DOA
ISSN 1939-1404
IngestDate Wed Aug 27 01:18:01 EDT 2025
Fri Jul 25 12:28:16 EDT 2025
Wed Sep 10 06:09:39 EDT 2025
Thu Apr 24 23:08:49 EDT 2025
Wed Aug 27 01:47:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-67332874e6ca6218be39372c6dc726cdd1de6f439d4f9e119ee033c3412fb6203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5723-3858
0000-0002-3318-9394
0000-0003-2625-6824
0009-0009-0586-3378
0000-0003-3435-6681
OpenAccessLink https://doaj.org/article/c34a075fd46b4e02a7935635ea2ee53e
PQID 3176402165
PQPubID 75722
PageCount 15
ParticipantIDs crossref_primary_10_1109_JSTARS_2025_3542194
doaj_primary_oai_doaj_org_article_c34a075fd46b4e02a7935635ea2ee53e
crossref_citationtrail_10_1109_JSTARS_2025_3542194
ieee_primary_10887346
proquest_journals_3176402165
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref55
Abbas (ref29) 2016; 48
ref54
ref17
ref16
ref19
ref18
Campbell (ref7) 2011
ref51
ref50
Gao (ref38) 2022; 75
ref46
ref45
Swain (ref10) 1973
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref9
ref4
ref3
ref5
Santos (ref48) 2022; 2
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
Vani (ref40)
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
Schowengerdt (ref6) 2006
References_xml – ident: ref21
  doi: 10.1109/JSTARS.2024.3478333
– volume-title: Remote Sensing: Models and Methods for Image Processing
  year: 2006
  ident: ref6
– ident: ref14
  doi: 10.1109/JSTARS.2023.3348874
– volume: 48
  start-page: 1
  year: 2016
  ident: ref29
  article-title: K-Means and ISODATA clustering algorithms for landcover classification using remote sensing
  publication-title: Sindh Univ. Res. J.
– ident: ref16
  doi: 10.1177/0885412214557817
– ident: ref37
  doi: 10.1109/AIPR.2017.8457969
– ident: ref41
  doi: 10.3390/rs14071566
– ident: ref42
  doi: 10.1016/j.comcom.2023.07.012
– ident: ref15
  doi: 10.1007/978-3-662-55876-8
– ident: ref2
  doi: 10.1016/j.isprsjprs.2024.04.007
– volume: 75
  start-page: 148
  year: 2022
  ident: ref38
  article-title: A region-based deep learning approach to instance segmentation of aerial orthoimagery for building rooftop extraction
  publication-title: Geomatica
– ident: ref33
  doi: 10.1109/JSTARS.2024.3501216
– ident: ref8
  doi: 10.1007/978-1-4614-3103-9
– ident: ref50
  doi: 10.1109/CVPR.2016.90
– ident: ref28
  doi: 10.1145/335603.335786
– ident: ref32
  doi: 10.1016/S0031-3203(02)00262-5
– ident: ref46
  doi: 10.1109/JSTARS.2019.2918242
– start-page: 61
  volume-title: Proc. 11th Int. Conf. Adv. Comput.
  ident: ref40
  article-title: Deep learning based forest fire classification and detection in satellite images
– ident: ref19
  doi: 10.1109/JSTARS.2024.3494838
– volume-title: Introduction to Remote Sensing
  year: 2011
  ident: ref7
– ident: ref17
  doi: 10.1016/j.cageo.2024.105704
– ident: ref1
  doi: 10.1016/j.ijdrr.2020.101642
– ident: ref11
  doi: 10.1139/x90-063
– ident: ref55
  doi: 10.1109/LGRS.2023.3251652
– ident: ref24
  doi: 10.1007/s12517-022-10246-8
– ident: ref22
  doi: 10.1007/s11042-017-5276-7
– ident: ref44
  doi: 10.1016/j.cscee.2024.101079
– ident: ref49
  doi: 10.1109/CVPR.2017.243
– ident: ref54
  doi: 10.1109/JSTARS.2024.3426950
– ident: ref34
  doi: 10.1109/ACCESS.2019.2927169
– year: 1973
  ident: ref10
  article-title: Pattern recognition: A basis for remote sensing data analysis
– ident: ref3
  doi: 10.1016/j.gecco.2016.07.002
– ident: ref23
  doi: 10.3390/rs5020949
– ident: ref52
  doi: 10.4324/9781410605337-29
– ident: ref5
  doi: 10.1016/j.isprsjprs.2024.12.008
– ident: ref12
  doi: 10.1016/j.isprsjprs.2015.10.004
– ident: ref30
  doi: 10.1109/LGRS.2017.2731997
– ident: ref27
  doi: 10.1016/j.patcog.2009.04.013
– ident: ref45
  doi: 10.1109/JSTARS.2024.3427392
– ident: ref9
  doi: 10.1007/s12601-024-00189-4
– ident: ref20
  doi: 10.1016/j.neucom.2023.03.025
– ident: ref31
  doi: 10.3390/rs14236017
– ident: ref35
  doi: 10.3390/rs10010144
– ident: ref53
  doi: 10.3390/rs13132566
– ident: ref36
  doi: 10.26782/jmcms.2019.10.00015
– ident: ref43
  doi: 10.3390/rs10020290
– ident: ref26
  doi: 10.1016/j.inffus.2024.102555
– ident: ref4
  doi: 10.1080/01431160801914945
– ident: ref39
  doi: 10.1007/978-3-319-54181-5_12
– volume: 2
  start-page: 1
  year: 2022
  ident: ref48
  article-title: Bayesian optimization for hyperparameter tuning
  publication-title: J. Bioinf. Artif. Intell.
– ident: ref51
  doi: 10.1109/CVPR.2018.00907
– ident: ref13
  doi: 10.1016/j.measurement.2024.115224
– ident: ref18
  doi: 10.1109/JSTARS.2024.3378298
– ident: ref47
  doi: 10.1016/j.bspc.2022.104561
– ident: ref25
  doi: 10.1007/978-3-030-24302-9_31
SSID ssj0062793
Score 2.413638
Snippet Land use land cover classification from satellite images (remote sensing) has shown many efforts from the last decade due to ecological surveillance, rapid...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6844
SubjectTerms Accuracy
Agricultural drought
Bayesian analysis
Biological system modeling
Classification
Climate change
Coastal zone
Coders
Convolutional neural networks
Customize vision transformer
Datasets
Deep learning
Disaster recovery
Drought
Enforcement
Environmental monitoring
Feature extraction
High resolution
Image resolution
Land cover
Land surface
Land use
Land use planning
Machine learning
network level fusion
Neural networks
Predictive models
Probability theory
Remote sensing
remote sensing (RS)
residual self-attention CNN
Satellite imagery
Satellite images
SRAN3
super resolution
Superresolution
Surveillance
Urban areas
Urbanization
Vision transformers
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVoJSQufBaxUJAPHMmS2Im3OW6rhoJKDrtd1Jvl2BNUwSZoswuCn8avY8Z2Kj4E4rJaRePEkd_YL-OZZ8aeH0lIhcsVbTe2Sd4qlTQGKG5Fu0ZgcdGiQuG3tTpb5W8ui8tYrO5rYQDAJ5_BlP76vXzX2x2FytDD0SVkrvbYHuIsFGuN064SM6-wi4SkTEgzJkoMZWn5EjE-XyzxY1AUU1nk6KT5L8uQV-uPx6v8MSf7haa6w-qxiyG_5MN0t22m9ttv6o3__Q532e1IOfk8YOQeuwHdfXbzlT_S9-sD9n3O6_4zoEGUF-fIYznlfyQU2w_I5Ce9QR5JdwEzcNM5fk4_qwH4YsxBQrNq06_xAo4_8CXlxnfv-es1zlkDP8b10nG08TW_697h3eqQhJ6cU-oSr3YUuuN9y5eLeS3DUyh48MXHb3mFb8JPO6rC3wz83dXFAVtVpxcnZ0k80SGxUpZbqjOQJLAPyhqF5KIB0uMTVjk7E8o6lzlQLXIkl7clZFkJkEppcaUVbaNEKh-y_a7v4BHjMyixmSmgREKUHhnjZhkU1qrGlGkr5ISJcYC1jXLndOrGR-0_e9JSB1RoQoWOqJiwF9eNPgW1j3-bHxNyrk1JqttfwBHX0fM19t4gL2vRIZocHcMgTgukeWAEQCFhwg4IJT89LwBkwg5HIOo4rwwa2R76kMhU8fgvzZ6wW9TFECU6ZPvbzQ6eIm_aNs-8v_wAbVYTHg
  priority: 102
  providerName: IEEE
Title A Novel Approach for High-Resolution Coastal Areas and Land Use Recognition From Remote Sensing Images Based on Multimodal Network-Level Fusion of SRAN3 and Lightweight Four Encoders ViT
URI https://ieeexplore.ieee.org/document/10887346
https://www.proquest.com/docview/3176402165
https://doaj.org/article/c34a075fd46b4e02a7935635ea2ee53e
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9QwDI_QJCReEH-GOBiTH3ikrE3S3PJ4m1YGGvdwt0N7q9LERUhcO11vIL4anw476U1DSPDCSx8qN2lq13Yc-2chXh8rzGXQho8b20y3xmSNQ45b8akRejJaXCj8cW7OV_rDVXl1p9UX54QleOD04Y680o7MWkvjNZrGdSRQJVlJdBKxVMjaN7f5bjOVdLCR0wi3S96JzRhAZsQbKnJ7RAI_WyxpZyjLt6rU9Mfq32xShO4fe638oaCj1akeiYejuwiz9JqPxT3snoj772I73h9Pxc8ZzPtvSAQjNDiQDwqcu5FxXD5JFZz2jnxAHgXdAK4LcMGX1YCw2OUPEVm16dd0g3iHsOS89u4zvF-TvhnghGxdAKKJ9brrPtBo85RAnl1w2hFUNxx2g76F5WI2V2kW3vh_j7FXqGglcNZxBf1mgE9fLvfFqjq7PD3Pxm4MmVfKbrlGQDE4PhrvDDkGDTKWnvQm-Kk0PoQioGnJvwm6tVgUFjFXithXyLYxMlfPxF7Xd_hcwBQtPeZKtOTM5MfOhWmBpfemcTZvpZoIueNH7Ueocu6Y8bWOW5bc1omJNTOxHpk4EW9uH7pOSB1_Jz9hRt-SMsx2vEHCV4_CV_9L-CZin8Xkznyks5U2E3Gwk5t61AlDTZ4ayb8sTPnif8z9Ujzg9aRw0IHY225u8BU5SNvmMP4Lh7GW8RfmSgoO
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELZgEYILz0UUFvCBIymJnbjNsbva0IVuDn2gvUWOPUEImqA-QPDT-HXM2M6Kh0BcqioaJ47yjf15PPOZsedjCbGwqaLtxiZKG6WiWgPFrWjXCAxOWlQofF6q6Sp9fZFdhGJ1VwsDAC75DIb01-3l287sKVSGHo4uIVN1lV3LcFkx9uVa_cCrxMhp7CIlySNSjQkiQ0mcv0SUT-YLXA6KbCizFN00_WUicnr94YCVP0ZlN9UUt1nZd9JnmHwY7nf10Hz7Tb_xv9_iDrsVSCefeJTcZVegvceuv3KH-n69z75PeNl9BjQIAuMcmSynDJCIovsem_yk08gk6S6gt1y3ls_oZ7UFPu-zkNCs2HRrvIAIAL6g7Pj2HT9b46i15cc4Y1qONq7qd91ZvFvp09CjGSUv8WJPwTveNXwxn5TSP4XCB19cBJcX-Cb8tKU6_M2Wv32_PGSr4nR5Mo3CmQ6RkTLfUaWBJIl9UEYrpBc1kCKfMMqakVDG2sSCapAl2bTJIUlygFhKg3OtaGolYvmAHbRdCw8ZH0GOzXQGOVKieKy1HSWQGaNqnceNkAMm-g9cmSB4TudufKzcwifOK4-KilBRBVQM2IvLRp-83se_zY8JOZemJNbtLuAXr4LvV9h7jcysQZeoU3QNjTjNkOiBFgCZhAE7JJT89DwPkAE76oFYhZFlWyHfQy8Sicoe_aXZM3ZjujyfVbOz8s1jdpO662NGR-xgt9nDE2RRu_qp850fA5oWcQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Approach+for+High-Resolution+Coastal+Areas+and+Land+Use+Recognition+From+Remote+Sensing+Images+Based+on+Multimodal+Network-Level+Fusion+of+SRAN3+and+Lightweight+Four+Encoders+ViT&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Bhatti%2C+Muhammad+Kashif&rft.au=Khan%2C+Muhammad+Attique&rft.au=Shaheen%2C+Saima&rft.au=Hamza%2C+Ameer&rft.date=2025&rft.pub=IEEE&rft.issn=1939-1404&rft.volume=18&rft.spage=6844&rft.epage=6858&rft_id=info:doi/10.1109%2FJSTARS.2025.3542194&rft.externalDocID=10887346
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon