An O( n2) algorithm for maximum cycle mean of Monge matrices in max-algebra
An O( n 2) algorithm is described for computing the maximum cycle mean (eigenvalue) for n× n matrices, A=( a ij ) fulfilling Monge property, a ij + a kl ⩽ a il + a kj for any i< k, j< l. The algorithm computes the value λ( A)=max( a i 1 i 2 + a i 2 i 3 +⋯+ a i k i 1 )/ k over all cyclic permut...
Saved in:
| Published in | Discrete Applied Mathematics Vol. 127; no. 3; pp. 651 - 656 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Lausanne
Elsevier B.V
01.05.2003
Amsterdam Elsevier New York, NY |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0166-218X 1872-6771 |
| DOI | 10.1016/S0166-218X(02)00395-5 |
Cover
| Summary: | An O(
n
2) algorithm is described for computing the maximum cycle mean (eigenvalue) for
n×
n matrices,
A=(
a
ij
) fulfilling Monge property,
a
ij
+
a
kl
⩽
a
il
+
a
kj
for any
i<
k,
j<
l. The algorithm computes the value
λ(
A)=max(
a
i
1
i
2
+
a
i
2
i
3
+⋯+
a
i
k
i
1
)/
k over all cyclic permutations (
i
1,
i
2,…,
i
k
) of subsets of the set {1,2,…,
n}. A similar result is presented for matrices with inverse Monge property. The standard algorithm for the general case works in O(
n
3) time. |
|---|---|
| ISSN: | 0166-218X 1872-6771 |
| DOI: | 10.1016/S0166-218X(02)00395-5 |