An O( n2) algorithm for maximum cycle mean of Monge matrices in max-algebra

An O( n 2) algorithm is described for computing the maximum cycle mean (eigenvalue) for n× n matrices, A=( a ij ) fulfilling Monge property, a ij + a kl ⩽ a il + a kj for any i< k, j< l. The algorithm computes the value λ( A)=max( a i 1 i 2 + a i 2 i 3 +⋯+ a i k i 1 )/ k over all cyclic permut...

Full description

Saved in:
Bibliographic Details
Published inDiscrete Applied Mathematics Vol. 127; no. 3; pp. 651 - 656
Main Authors Gavalec, Martin, Plávka, Ján
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 01.05.2003
Amsterdam Elsevier
New York, NY
Subjects
Online AccessGet full text
ISSN0166-218X
1872-6771
DOI10.1016/S0166-218X(02)00395-5

Cover

More Information
Summary:An O( n 2) algorithm is described for computing the maximum cycle mean (eigenvalue) for n× n matrices, A=( a ij ) fulfilling Monge property, a ij + a kl ⩽ a il + a kj for any i< k, j< l. The algorithm computes the value λ( A)=max( a i 1 i 2 + a i 2 i 3 +⋯+ a i k i 1 )/ k over all cyclic permutations ( i 1, i 2,…, i k ) of subsets of the set {1,2,…, n}. A similar result is presented for matrices with inverse Monge property. The standard algorithm for the general case works in O( n 3) time.
ISSN:0166-218X
1872-6771
DOI:10.1016/S0166-218X(02)00395-5