Penalty method with Crouzeix–Raviart approximation for the Stokes equations under slip boundary condition
The Stokes equations subject to non-homogeneous slip boundary conditions are considered in a smooth domain Ω ⊂ ℝN (N = 2,3). We propose a finite element scheme based on the nonconforming P1/P0 approximation (Crouzeix–Raviart approximation) combined with a penalty formulation and with reduced-order n...
Saved in:
| Published in | ESAIM Mathematical Modelling and Numerical Analysis Vol. 53; no. 3; pp. 869 - 891 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Les Ulis
EDP Sciences
01.05.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0764-583X 1290-3841 1290-3841 |
| DOI | 10.1051/m2an/2019008 |
Cover
| Abstract | The Stokes equations subject to non-homogeneous slip boundary conditions are considered in a smooth domain Ω ⊂ ℝN (N = 2,3). We propose a finite element scheme based on the nonconforming P1/P0 approximation (Crouzeix–Raviart approximation) combined with a penalty formulation and with reduced-order numerical integration in order to address the essential boundary condition u · n∂Ω = g on ∂Ω. Because the original domain Ω must be approximated by a polygonal (or polyhedral) domain Ωh before applying the finite element method, we need to take into account the errors owing to the discrepancy Ω ≠ Ωh, that is, the issues of domain perturbation. In particular, the approximation of n∂Ω by n∂Ωh makes it non-trivial whether we have a discrete counterpart of a lifting theorem, i.e., continuous right inverse of the normal trace operator H1 (Ω)N → H1/2(∂Ω); u ↦ u⋅n∂Ω. In this paper we indeed prove such a discrete lifting theorem, taking advantage of the nonconforming approximation, and consequently we establish the error estimates O(hα + ε) and O(h2α + ε) for the velocity in the H1- and L2-norms respectively, where α = 1 if N = 2 and α = 1/2 if N = 3. This improves the previous result [T. Kashiwabara et al., Numer. Math. 134 (2016) 705–740] obtained for the conforming approximation in the sense that there appears no reciprocal of the penalty parameter ϵ in the estimates. |
|---|---|
| AbstractList | The Stokes equations subject to non-homogeneous slip boundary conditions are considered in a smooth domain Ω ⊂ ℝN (N = 2,3). We propose a finite element scheme based on the nonconforming P1/P0 approximation (Crouzeix–Raviart approximation) combined with a penalty formulation and with reduced-order numerical integration in order to address the essential boundary condition u · n∂Ω = g on ∂Ω. Because the original domain Ω must be approximated by a polygonal (or polyhedral) domain Ωh before applying the finite element method, we need to take into account the errors owing to the discrepancy Ω ≠ Ωh, that is, the issues of domain perturbation. In particular, the approximation of n∂Ω by n∂Ωh makes it non-trivial whether we have a discrete counterpart of a lifting theorem, i.e., continuous right inverse of the normal trace operator H1 (Ω)N → H1/2(∂Ω); u ↦ u⋅n∂Ω. In this paper we indeed prove such a discrete lifting theorem, taking advantage of the nonconforming approximation, and consequently we establish the error estimates O(hα + ε) and O(h2α + ε) for the velocity in the H1- and L2-norms respectively, where α = 1 if N = 2 and α = 1/2 if N = 3. This improves the previous result [T. Kashiwabara et al., Numer. Math. 134 (2016) 705–740] obtained for the conforming approximation in the sense that there appears no reciprocal of the penalty parameter ϵ in the estimates. The Stokes equations subject to non-homogeneous slip boundary conditions are considered in a smooth domain Ω ⊂ ℝ N ( N = 2,3). We propose a finite element scheme based on the nonconforming P1/P0 approximation (Crouzeix–Raviart approximation) combined with a penalty formulation and with reduced-order numerical integration in order to address the essential boundary condition u · n ∂Ω = g on ∂Ω . Because the original domain Ω must be approximated by a polygonal (or polyhedral) domain Ω h before applying the finite element method, we need to take into account the errors owing to the discrepancy Ω ≠ Ω h , that is, the issues of domain perturbation. In particular, the approximation of n ∂Ω by n ∂Ω h makes it non-trivial whether we have a discrete counterpart of a lifting theorem, i.e., continuous right inverse of the normal trace operator H 1 ( Ω) N → H 1/2 ( ∂Ω ); u ↦ u ⋅ n ∂Ω . In this paper we indeed prove such a discrete lifting theorem, taking advantage of the nonconforming approximation, and consequently we establish the error estimates O ( h α + ε ) and O ( h 2α + ε ) for the velocity in the H 1 - and L 2 -norms respectively, where α = 1 if N = 2 and α = 1/2 if N = 3. This improves the previous result [T. Kashiwabara et al. , Numer. Math. 134 (2016) 705–740] obtained for the conforming approximation in the sense that there appears no reciprocal of the penalty parameter ϵ in the estimates. The Stokes equations subject to non-homogeneous slip boundary conditions are considered in a smooth domain Ω ⊂ ℝN (N = 2,3). We propose a finite element scheme based on the nonconforming P1/P0 approximation (Crouzeix–Raviart approximation) combined with a penalty formulation and with reduced-order numerical integration in order to address the essential boundary condition u · n∂Ω = g on ∂Ω. Because the original domain Ω must be approximated by a polygonal (or polyhedral) domain Ωh before applying the finite element method, we need to take into account the errors owing to the discrepancy Ω ≠ Ωh, that is, the issues of domain perturbation. In particular, the approximation of n∂Ω by n∂Ωh makes it non-trivial whether we have a discrete counterpart of a lifting theorem, i.e., continuous right inverse of the normal trace operator H1 (Ω)N → H1/2(∂Ω); u ↦ u⋅n∂Ω. In this paper we indeed prove such a discrete lifting theorem, taking advantage of the nonconforming approximation, and consequently we establish the error estimates O(hα + ε) and O(h2α + ε) for the velocity in the H1- and L2-norms respectively, where α = 1 if N = 2 and α = 1/2 if N = 3. This improves the previous result [T. Kashiwabara et al., Numer. Math. 134 (2016) 705–740] obtained for the conforming approximation in the sense that there appears no reciprocal of the penalty parameter ϵ in the estimates. |
| Author | Oikawa, Issei Kashiwabara, Takahito Zhou, Guanyu |
| Author_xml | – sequence: 1 givenname: Takahito surname: Kashiwabara fullname: Kashiwabara, Takahito email: tkashiwa@ms.u-tokyo.ac.jp organization: The Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan – sequence: 2 givenname: Issei surname: Oikawa fullname: Oikawa, Issei organization: Faculty of Science and Engineering, Waseda University,3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan – sequence: 3 givenname: Guanyu surname: Zhou fullname: Zhou, Guanyu organization: Department of Applied Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan |
| BookMark | eNqFkN1O2zAUgC0E0trC3R7AErfLemzHSXzJqm1MQhqioHJnuY6jmqZxajuj5WrvwBvyJEtpxQXSxJV1fL7z9w3RceMag9BnAl8JcDJeUdWMKRABUByhAaECElak5BgNIM_ShBfs_hMahvAAAARSPkDLa9OoOm7xysSFK_GjjQs88a57Mnbz8vf5Rv2xykes2ta7jV2paF2DK-dxXBg8jW5pAjbr7vU_4K4pjcehti2euz5Qfou1a0q7S5-ik0rVwZwd3hG6-_H9dnKZXP3--WtycZVoxkRM6JwCmCwXIHRFtFAG9FxXnGbA56ZknJOiFKQAQwuqM53yrMwzyDUry6oSmo1Qsu_bNa3aPqq6lq3vV_dbSUDuTMmdKXkw1fPne74_cd2ZEOWD63yvJUhKU5FzSlLaU1_2lPYuBG-qj5rSd7i28dVS9MrW_ys6bG5DNJu3AcovZZaznMsCZvLbbDrh03wmgf0D_Xubtw |
| CitedBy_id | crossref_primary_10_1016_j_camwa_2022_10_016 crossref_primary_10_1016_j_apnum_2021_02_006 crossref_primary_10_1137_21M145700X crossref_primary_10_1016_j_cma_2024_117037 crossref_primary_10_1007_s10092_023_00563_z crossref_primary_10_1051_m2an_2024070 crossref_primary_10_1016_j_cam_2020_113123 |
| Cites_doi | 10.1007/s00211-014-0646-9 10.1051/m2an:1999126 10.1007/978-3-642-36519-5 10.1007/BF01398380 10.21136/AM.2017.0328-16 10.1051/m2an:2005007 10.1090/S0025-5718-03-01579-5 10.1007/978-3-642-23099-8 10.1002/fld.1950 10.1115/1.3424474 10.1007/s10092-009-0017-6 10.1002/num.20076 10.1007/978-0-387-75934-0 10.1007/s10915-015-0142-0 10.1137/S0036142901392766 10.1007/s00211-016-0790-5 10.1007/978-3-319-01818-8_4 |
| ContentType | Journal Article |
| Copyright | 2019. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2019/03/m2an180183/m2an180183.html . |
| Copyright_xml | – notice: 2019. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2019/03/m2an180183/m2an180183.html . |
| DBID | BSCLL AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1051/m2an/2019008 |
| DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1290-3841 |
| EndPage | 891 |
| ExternalDocumentID | 10.1051/m2an/2019008 10_1051_m2an_2019008 ark_67375_80W_BWSC5S7W_0 |
| GroupedDBID | -E. .FH 0E1 3V. 4.4 5VS 6TJ 74X 74Y 7WY 7~V 8FE 8FG 8FL AADXX AAOTM ABDBF ABJCF ABKKG ABLJU ABUBZ ACACO ACGFS ACIMK ACIWK ACQPF AEMTW AFAYI AFHSK AFKRA AFUTZ AJPFC ALMA_UNASSIGNED_HOLDINGS ARABE ARAPS AZPVJ BENPR BEZIV BPHCQ BSCLL C0O DC4 EBS EJD ESX FAM FRP GI~ GROUPED_ABI_INFORM_COMPLETE HCIFZ HG- HST HZ~ I.6 IL9 I~P J36 J38 J3A K60 K6V K6~ K7- L6V L98 LO0 M-V M0C M0N M7S O9- OAV OK1 P62 PQQKQ PROAC RCA RED RR0 S6- WXU WXY AAOGA AAYXX ABGDZ ABJNI AGQPQ CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c339t-2b200e67909cf1c9ae0cbcf52605bed35518d9180e282c6c456d7607c3ddff9c3 |
| IEDL.DBID | UNPAY |
| ISSN | 0764-583X 1290-3841 |
| IngestDate | Tue Aug 19 17:32:46 EDT 2025 Mon Jun 30 10:16:19 EDT 2025 Tue Jul 01 01:07:14 EDT 2025 Thu Apr 24 22:51:56 EDT 2025 Wed Oct 30 09:59:32 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://www.edpsciences.org/en/authors/copyright-and-licensing |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c339t-2b200e67909cf1c9ae0cbcf52605bed35518d9180e282c6c456d7607c3ddff9c3 |
| Notes | This study was supported by JSPS Grant-in-Aid for Young Scientists B (17K14230, 17K14243) and by JSPS Grant-in-Aid for Early-Career Scientists (18K13460). publisher-ID:m2an180183 istex:CA14DEE37C1428CAB65F906AB70703A7A799F9D8 ark:/67375/80W-BWSC5S7W-0 href:https://www.esaim-m2an.org/articles/m2an/abs/2019/03/m2an180183/m2an180183.html ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.esaim-m2an.org/articles/m2an/pdf/2019/03/m2an180183.pdf |
| PQID | 2249752142 |
| PQPubID | 626356 |
| PageCount | 23 |
| ParticipantIDs | unpaywall_primary_10_1051_m2an_2019008 proquest_journals_2249752142 crossref_primary_10_1051_m2an_2019008 crossref_citationtrail_10_1051_m2an_2019008 istex_primary_ark_67375_80W_BWSC5S7W_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-05-01 |
| PublicationDateYYYYMMDD | 2019-05-01 |
| PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Les Ulis |
| PublicationPlace_xml | – name: Les Ulis |
| PublicationTitle | ESAIM Mathematical Modelling and Numerical Analysis |
| PublicationYear | 2019 |
| Publisher | EDP Sciences |
| Publisher_xml | – name: EDP Sciences |
| References | Knobloch (R17) 1999; 7 R4 Crouzeix (R11) 1973; 7 R6 Bänsch (R1) 1999; 33 Brenner (R5) 2003; 73 R7 Beirão da Veiga (R2) 2004; 9 Layton (R18) 2003; 40 Bernardi (R3) 2005; 39 Juntunen (R14) 2010; 47 Zhou (R22) 2017; 62 R10 Dione (R12) 2015; 129 Burman (R8) 2005; 21 Çağlar (R9) 2009; 61 R13 R15 Verfürth (R20) 1987; 50 Kashiwabara (R16) 2016; 134 R19 Zhou (R21) 2016; 68 |
| References_xml | – volume: 129 start-page: 587 year: 2015 ident: R12 publication-title: Numer. Math. doi: 10.1007/s00211-014-0646-9 – ident: R13 – volume: 33 start-page: 923 year: 1999 ident: R1 publication-title: ESAIM: M2AN doi: 10.1051/m2an:1999126 – ident: R4 doi: 10.1007/978-3-642-36519-5 – volume: 50 start-page: 697 year: 1987 ident: R20 publication-title: Numer. Math. doi: 10.1007/BF01398380 – volume: 62 start-page: 377 year: 2017 ident: R22 publication-title: Appl. Math. doi: 10.21136/AM.2017.0328-16 – volume: 39 start-page: 7 year: 2005 ident: R3 publication-title: ESAIM: M2AN doi: 10.1051/m2an:2005007 – volume: 73 start-page: 1067 year: 2003 ident: R5 publication-title: Math. Comput. doi: 10.1090/S0025-5718-03-01579-5 – ident: R19 doi: 10.1007/978-3-642-23099-8 – volume: 61 start-page: 411 year: 2009 ident: R9 publication-title: Int. J. Numer. Methods. Fluids doi: 10.1002/fld.1950 – volume: 9 start-page: 1079 year: 2004 ident: R2 publication-title: Adv. Differ. Equ. – ident: R10 doi: 10.1115/1.3424474 – volume: 47 start-page: 129 year: 2010 ident: R14 publication-title: Calcolo doi: 10.1007/s10092-009-0017-6 – volume: 21 start-page: 986 year: 2005 ident: R8 publication-title: Numer. Methods. Partial Differ. Equ. doi: 10.1002/num.20076 – ident: R6 doi: 10.1007/978-0-387-75934-0 – volume: 7 start-page: 33 year: 1973 ident: R11 publication-title: RAIRO: Numer. Anal. – volume: 68 start-page: 339 year: 2016 ident: R21 publication-title: J. Sci. Comput. doi: 10.1007/s10915-015-0142-0 – volume: 40 start-page: 2195 year: 2003 ident: R18 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142901392766 – volume: 7 start-page: 133 year: 1999 ident: R17 publication-title: East-West J. Numer. Math. – volume: 134 start-page: 705 year: 2016 ident: R16 publication-title: Numer. Math. doi: 10.1007/s00211-016-0790-5 – ident: R7 doi: 10.1007/978-3-319-01818-8_4 – ident: R15 |
| SSID | ssj0001045 ssj0037293 |
| Score | 2.2805417 |
| Snippet | The Stokes equations subject to non-homogeneous slip boundary conditions are considered in a smooth domain Ω ⊂ ℝN (N = 2,3). We propose a finite element scheme... The Stokes equations subject to non-homogeneous slip boundary conditions are considered in a smooth domain Ω ⊂ ℝ N ( N = 2,3). We propose a finite element... |
| SourceID | unpaywall proquest crossref istex |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 869 |
| SubjectTerms | 35Q30 65N30 Approximation discrete H1/2-norm domain perturbation Navier-Stokes equations Nonconforming FEM slip boundary condition Stokes equations |
| Title | Penalty method with Crouzeix–Raviart approximation for the Stokes equations under slip boundary condition |
| URI | https://api.istex.fr/ark:/67375/80W-BWSC5S7W-0/fulltext.pdf https://www.proquest.com/docview/2249752142 https://www.esaim-m2an.org/articles/m2an/pdf/2019/03/m2an180183.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 53 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAHI databaseName: EDP Open customDbUrl: eissn: 1290-3841 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037293 issn: 1290-3841 databaseCode: GI~ dateStart: 19850101 isFulltext: true titleUrlDefault: https://www.edp-open.org/ providerName: EDP – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1290-3841 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037293 issn: 1290-3841 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB61yQE48K4ItNUegAty47e9xxI1VEitKkKUcFqt9yFFSZ1gO5D0xH_gH_aXdHbtRAEJhMTFslez63159xvvzDcArwWuhkEqQicMue-EMlZOSvHi61RrL5G-b_24Ly7j82H4cRyN96C38YWxZpUln1w71z7Pa6LgxkKsa1K6C6lRYfdo1w1sgodLbIr6oNT70I4jBOQtaA8vr06_WALOODR-RWOjdvnUMMmGXmP-jrOxLtGU5prwkjsbU9v08eoX1HlvmS_4-jufzXY2oP4jkJuq13Yn05NllZ2Im99YHf-zbY_hYQNQyWmd5QnsqfwpPNihLcSniy3Xa_kMplcKM1RrUgejJubPLukV8-WNmqxuf_z8xL9NsALEspevJrWrJEGsTLAQMqjmU1US9bWmHC-JcWorCKLfBclsyKdiTVBnl9a07DkM-2efe-dOE8LBEUFAK8fP8CtUcUJdKrQnKFeuyISOjBaVKRkYPjhJsZ0KVT8RC4RzMondRARSak1FcACtfJ6rF0CESzOO4E-gQMgTSZWOU3OuKdNQqYB34N1m_Jho-M1NmI0Zs-fskcdMl7JmtDvwZiu9qHk9_iD31k6FrRAvpsYWLolY6o7Y-9GgFw2SEXM7cLiZK6xZBkqG-IgmkWG1w3K28-evL3z5r4Kv4L65q40vD6FVFUt1hACpyo5hP-1_OG4-gzt0EA-g |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4t7QE48EYUFuQDcEHZ5p34uFSsVki7WlGqlpPl-CFV7aYlSXfbPfEf-If8EsZ2WhUkEBKXKLHGjl-xv4lnvgF4LXA1jHIRe3HMQy-WqfJyipdQ51oHmQxD68d9dp6ejuKPk2RyAIOtL4w1q6z59NK7DHnpiIJbC7G-SekvpUaFPaB9P7IJAS6xOeqDUt-CbpogIO9Ad3R-cfzFEnCmsfErmhi1K6SGSTYOWvN3nI2uRFOab8JL7m1MXdPH619Q5-1VueSbaz6f721AJ_dBbqvu7E5mR6umOBI3v7E6_mfbHsC9FqCSY5flIRyo8hHc3aMtxKezHddr_RhmFwozNBviglET82eXDKrF6kZN1z--ff_Er6ZYAWLZy9dT5ypJECsTLIQMm8VM1UR9dZTjNTFObRVB9LskhQ35VG0I6uzSmpY9gdHJh8-DU68N4eCJKKKNFxb4Fao0oz4VOhCUK18UQidGiyqUjAwfnKTYToWqn0gFwjmZpX4mIim1piJ6Cp1yUapnQIRPC47gT6BAzDNJlU5zc64p81ipiPfg3Xb8mGj5zU2YjTmz5-xJwEyXsna0e_BmJ710vB5_kHtrp8JOiFczYwuXJSz3x-z9eDhIhtmY-T043M4V1i4DNUN8RLPEsNphObv589cXPv9XwRdwx9w548tD6DTVSr1EgNQUr9oP4CccaQ66 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Penalty+method+with+Crouzeix%E2%80%93Raviart+approximation+for+the+Stokes+equations+under+slip+boundary+condition&rft.jtitle=ESAIM.+Mathematical+modelling+and+numerical+analysis&rft.au=Kashiwabara%2C+Takahito&rft.au=Oikawa%2C+Issei&rft.au=Zhou%2C+Guanyu&rft.date=2019-05-01&rft.pub=EDP+Sciences&rft.eissn=1290-3841&rft.volume=53&rft.issue=3&rft.spage=869&rft_id=info:doi/10.1051%2Fm2an%2F2019008&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0764-583X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0764-583X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0764-583X&client=summon |