Penalty method with Crouzeix–Raviart approximation for the Stokes equations under slip boundary condition

The Stokes equations subject to non-homogeneous slip boundary conditions are considered in a smooth domain Ω ⊂ ℝN (N = 2,3). We propose a finite element scheme based on the nonconforming P1/P0 approximation (Crouzeix–Raviart approximation) combined with a penalty formulation and with reduced-order n...

Full description

Saved in:
Bibliographic Details
Published inESAIM Mathematical Modelling and Numerical Analysis Vol. 53; no. 3; pp. 869 - 891
Main Authors Kashiwabara, Takahito, Oikawa, Issei, Zhou, Guanyu
Format Journal Article
LanguageEnglish
Published Les Ulis EDP Sciences 01.05.2019
Subjects
Online AccessGet full text
ISSN0764-583X
1290-3841
1290-3841
DOI10.1051/m2an/2019008

Cover

Abstract The Stokes equations subject to non-homogeneous slip boundary conditions are considered in a smooth domain Ω ⊂ ℝN (N = 2,3). We propose a finite element scheme based on the nonconforming P1/P0 approximation (Crouzeix–Raviart approximation) combined with a penalty formulation and with reduced-order numerical integration in order to address the essential boundary condition u · n∂Ω = g on ∂Ω. Because the original domain Ω must be approximated by a polygonal (or polyhedral) domain Ωh before applying the finite element method, we need to take into account the errors owing to the discrepancy Ω ≠ Ωh, that is, the issues of domain perturbation. In particular, the approximation of n∂Ω by n∂Ωh makes it non-trivial whether we have a discrete counterpart of a lifting theorem, i.e., continuous right inverse of the normal trace operator H1 (Ω)N → H1/2(∂Ω); u ↦ u⋅n∂Ω. In this paper we indeed prove such a discrete lifting theorem, taking advantage of the nonconforming approximation, and consequently we establish the error estimates O(hα + ε) and O(h2α + ε) for the velocity in the H1- and L2-norms respectively, where α = 1 if N = 2 and α = 1/2 if N = 3. This improves the previous result [T. Kashiwabara et al., Numer. Math. 134 (2016) 705–740] obtained for the conforming approximation in the sense that there appears no reciprocal of the penalty parameter ϵ in the estimates.
AbstractList The Stokes equations subject to non-homogeneous slip boundary conditions are considered in a smooth domain Ω ⊂ ℝN (N = 2,3). We propose a finite element scheme based on the nonconforming P1/P0 approximation (Crouzeix–Raviart approximation) combined with a penalty formulation and with reduced-order numerical integration in order to address the essential boundary condition u · n∂Ω = g on ∂Ω. Because the original domain Ω must be approximated by a polygonal (or polyhedral) domain Ωh before applying the finite element method, we need to take into account the errors owing to the discrepancy Ω ≠ Ωh, that is, the issues of domain perturbation. In particular, the approximation of n∂Ω by n∂Ωh makes it non-trivial whether we have a discrete counterpart of a lifting theorem, i.e., continuous right inverse of the normal trace operator H1 (Ω)N → H1/2(∂Ω); u ↦ u⋅n∂Ω. In this paper we indeed prove such a discrete lifting theorem, taking advantage of the nonconforming approximation, and consequently we establish the error estimates O(hα + ε) and O(h2α + ε) for the velocity in the H1- and L2-norms respectively, where α = 1 if N = 2 and α = 1/2 if N = 3. This improves the previous result [T. Kashiwabara et al., Numer. Math. 134 (2016) 705–740] obtained for the conforming approximation in the sense that there appears no reciprocal of the penalty parameter ϵ in the estimates.
The Stokes equations subject to non-homogeneous slip boundary conditions are considered in a smooth domain Ω ⊂ ℝ N ( N = 2,3). We propose a finite element scheme based on the nonconforming P1/P0 approximation (Crouzeix–Raviart approximation) combined with a penalty formulation and with reduced-order numerical integration in order to address the essential boundary condition u  ·  n ∂Ω  =  g on ∂Ω . Because the original domain Ω must be approximated by a polygonal (or polyhedral) domain Ω h before applying the finite element method, we need to take into account the errors owing to the discrepancy Ω  ≠  Ω h , that is, the issues of domain perturbation. In particular, the approximation of n ∂Ω by n ∂Ω h makes it non-trivial whether we have a discrete counterpart of a lifting theorem, i.e., continuous right inverse of the normal trace operator H 1 ( Ω) N → H 1/2 ( ∂Ω ); u ↦ u ⋅ n ∂Ω . In this paper we indeed prove such a discrete lifting theorem, taking advantage of the nonconforming approximation, and consequently we establish the error estimates O ( h α + ε ) and O ( h 2α + ε ) for the velocity in the H 1 - and L 2 -norms respectively, where α  = 1 if N  = 2 and α  = 1/2 if N  = 3. This improves the previous result [T. Kashiwabara et al. , Numer. Math. 134 (2016) 705–740] obtained for the conforming approximation in the sense that there appears no reciprocal of the penalty parameter ϵ in the estimates.
The Stokes equations subject to non-homogeneous slip boundary conditions are considered in a smooth domain Ω ⊂ ℝN (N = 2,3). We propose a finite element scheme based on the nonconforming P1/P0 approximation (Crouzeix–Raviart approximation) combined with a penalty formulation and with reduced-order numerical integration in order to address the essential boundary condition u · n∂Ω = g on ∂Ω. Because the original domain Ω must be approximated by a polygonal (or polyhedral) domain Ωh before applying the finite element method, we need to take into account the errors owing to the discrepancy Ω ≠ Ωh, that is, the issues of domain perturbation. In particular, the approximation of n∂Ω by n∂Ωh makes it non-trivial whether we have a discrete counterpart of a lifting theorem, i.e., continuous right inverse of the normal trace operator H1 (Ω)N → H1/2(∂Ω); u ↦ u⋅n∂Ω. In this paper we indeed prove such a discrete lifting theorem, taking advantage of the nonconforming approximation, and consequently we establish the error estimates O(hα + ε) and O(h2α + ε) for the velocity in the H1- and L2-norms respectively, where α = 1 if N = 2 and α = 1/2 if N = 3. This improves the previous result [T. Kashiwabara et al., Numer. Math. 134 (2016) 705–740] obtained for the conforming approximation in the sense that there appears no reciprocal of the penalty parameter ϵ in the estimates.
Author Oikawa, Issei
Kashiwabara, Takahito
Zhou, Guanyu
Author_xml – sequence: 1
  givenname: Takahito
  surname: Kashiwabara
  fullname: Kashiwabara, Takahito
  email: tkashiwa@ms.u-tokyo.ac.jp
  organization: The Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8914, Japan
– sequence: 2
  givenname: Issei
  surname: Oikawa
  fullname: Oikawa, Issei
  organization: Faculty of Science and Engineering, Waseda University,3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
– sequence: 3
  givenname: Guanyu
  surname: Zhou
  fullname: Zhou, Guanyu
  organization: Department of Applied Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
BookMark eNqFkN1O2zAUgC0E0trC3R7AErfLemzHSXzJqm1MQhqioHJnuY6jmqZxajuj5WrvwBvyJEtpxQXSxJV1fL7z9w3RceMag9BnAl8JcDJeUdWMKRABUByhAaECElak5BgNIM_ShBfs_hMahvAAAARSPkDLa9OoOm7xysSFK_GjjQs88a57Mnbz8vf5Rv2xykes2ta7jV2paF2DK-dxXBg8jW5pAjbr7vU_4K4pjcehti2euz5Qfou1a0q7S5-ik0rVwZwd3hG6-_H9dnKZXP3--WtycZVoxkRM6JwCmCwXIHRFtFAG9FxXnGbA56ZknJOiFKQAQwuqM53yrMwzyDUry6oSmo1Qsu_bNa3aPqq6lq3vV_dbSUDuTMmdKXkw1fPne74_cd2ZEOWD63yvJUhKU5FzSlLaU1_2lPYuBG-qj5rSd7i28dVS9MrW_ys6bG5DNJu3AcovZZaznMsCZvLbbDrh03wmgf0D_Xubtw
CitedBy_id crossref_primary_10_1016_j_camwa_2022_10_016
crossref_primary_10_1016_j_apnum_2021_02_006
crossref_primary_10_1137_21M145700X
crossref_primary_10_1016_j_cma_2024_117037
crossref_primary_10_1007_s10092_023_00563_z
crossref_primary_10_1051_m2an_2024070
crossref_primary_10_1016_j_cam_2020_113123
Cites_doi 10.1007/s00211-014-0646-9
10.1051/m2an:1999126
10.1007/978-3-642-36519-5
10.1007/BF01398380
10.21136/AM.2017.0328-16
10.1051/m2an:2005007
10.1090/S0025-5718-03-01579-5
10.1007/978-3-642-23099-8
10.1002/fld.1950
10.1115/1.3424474
10.1007/s10092-009-0017-6
10.1002/num.20076
10.1007/978-0-387-75934-0
10.1007/s10915-015-0142-0
10.1137/S0036142901392766
10.1007/s00211-016-0790-5
10.1007/978-3-319-01818-8_4
ContentType Journal Article
Copyright 2019. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2019/03/m2an180183/m2an180183.html .
Copyright_xml – notice: 2019. Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the associated terms available at https://www.esaim-m2an.org/articles/m2an/abs/2019/03/m2an180183/m2an180183.html .
DBID BSCLL
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1051/m2an/2019008
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1290-3841
EndPage 891
ExternalDocumentID 10.1051/m2an/2019008
10_1051_m2an_2019008
ark_67375_80W_BWSC5S7W_0
GroupedDBID -E.
.FH
0E1
3V.
4.4
5VS
6TJ
74X
74Y
7WY
7~V
8FE
8FG
8FL
AADXX
AAOTM
ABDBF
ABJCF
ABKKG
ABLJU
ABUBZ
ACACO
ACGFS
ACIMK
ACIWK
ACQPF
AEMTW
AFAYI
AFHSK
AFKRA
AFUTZ
AJPFC
ALMA_UNASSIGNED_HOLDINGS
ARABE
ARAPS
AZPVJ
BENPR
BEZIV
BPHCQ
BSCLL
C0O
DC4
EBS
EJD
ESX
FAM
FRP
GI~
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
HG-
HST
HZ~
I.6
IL9
I~P
J36
J38
J3A
K60
K6V
K6~
K7-
L6V
L98
LO0
M-V
M0C
M0N
M7S
O9-
OAV
OK1
P62
PQQKQ
PROAC
RCA
RED
RR0
S6-
WXU
WXY
AAOGA
AAYXX
ABGDZ
ABJNI
AGQPQ
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c339t-2b200e67909cf1c9ae0cbcf52605bed35518d9180e282c6c456d7607c3ddff9c3
IEDL.DBID UNPAY
ISSN 0764-583X
1290-3841
IngestDate Tue Aug 19 17:32:46 EDT 2025
Mon Jun 30 10:16:19 EDT 2025
Tue Jul 01 01:07:14 EDT 2025
Thu Apr 24 22:51:56 EDT 2025
Wed Oct 30 09:59:32 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://www.edpsciences.org/en/authors/copyright-and-licensing
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-2b200e67909cf1c9ae0cbcf52605bed35518d9180e282c6c456d7607c3ddff9c3
Notes This study was supported by JSPS Grant-in-Aid for Young Scientists B (17K14230, 17K14243) and by JSPS Grant-in-Aid for Early-Career Scientists (18K13460).
publisher-ID:m2an180183
istex:CA14DEE37C1428CAB65F906AB70703A7A799F9D8
ark:/67375/80W-BWSC5S7W-0
href:https://www.esaim-m2an.org/articles/m2an/abs/2019/03/m2an180183/m2an180183.html
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.esaim-m2an.org/articles/m2an/pdf/2019/03/m2an180183.pdf
PQID 2249752142
PQPubID 626356
PageCount 23
ParticipantIDs unpaywall_primary_10_1051_m2an_2019008
proquest_journals_2249752142
crossref_primary_10_1051_m2an_2019008
crossref_citationtrail_10_1051_m2an_2019008
istex_primary_ark_67375_80W_BWSC5S7W_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle ESAIM Mathematical Modelling and Numerical Analysis
PublicationYear 2019
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Knobloch (R17) 1999; 7
R4
Crouzeix (R11) 1973; 7
R6
Bänsch (R1) 1999; 33
Brenner (R5) 2003; 73
R7
Beirão da Veiga (R2) 2004; 9
Layton (R18) 2003; 40
Bernardi (R3) 2005; 39
Juntunen (R14) 2010; 47
Zhou (R22) 2017; 62
R10
Dione (R12) 2015; 129
Burman (R8) 2005; 21
Çağlar (R9) 2009; 61
R13
R15
Verfürth (R20) 1987; 50
Kashiwabara (R16) 2016; 134
R19
Zhou (R21) 2016; 68
References_xml – volume: 129
  start-page: 587
  year: 2015
  ident: R12
  publication-title: Numer. Math.
  doi: 10.1007/s00211-014-0646-9
– ident: R13
– volume: 33
  start-page: 923
  year: 1999
  ident: R1
  publication-title: ESAIM: M2AN
  doi: 10.1051/m2an:1999126
– ident: R4
  doi: 10.1007/978-3-642-36519-5
– volume: 50
  start-page: 697
  year: 1987
  ident: R20
  publication-title: Numer. Math.
  doi: 10.1007/BF01398380
– volume: 62
  start-page: 377
  year: 2017
  ident: R22
  publication-title: Appl. Math.
  doi: 10.21136/AM.2017.0328-16
– volume: 39
  start-page: 7
  year: 2005
  ident: R3
  publication-title: ESAIM: M2AN
  doi: 10.1051/m2an:2005007
– volume: 73
  start-page: 1067
  year: 2003
  ident: R5
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-03-01579-5
– ident: R19
  doi: 10.1007/978-3-642-23099-8
– volume: 61
  start-page: 411
  year: 2009
  ident: R9
  publication-title: Int. J. Numer. Methods. Fluids
  doi: 10.1002/fld.1950
– volume: 9
  start-page: 1079
  year: 2004
  ident: R2
  publication-title: Adv. Differ. Equ.
– ident: R10
  doi: 10.1115/1.3424474
– volume: 47
  start-page: 129
  year: 2010
  ident: R14
  publication-title: Calcolo
  doi: 10.1007/s10092-009-0017-6
– volume: 21
  start-page: 986
  year: 2005
  ident: R8
  publication-title: Numer. Methods. Partial Differ. Equ.
  doi: 10.1002/num.20076
– ident: R6
  doi: 10.1007/978-0-387-75934-0
– volume: 7
  start-page: 33
  year: 1973
  ident: R11
  publication-title: RAIRO: Numer. Anal.
– volume: 68
  start-page: 339
  year: 2016
  ident: R21
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-015-0142-0
– volume: 40
  start-page: 2195
  year: 2003
  ident: R18
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142901392766
– volume: 7
  start-page: 133
  year: 1999
  ident: R17
  publication-title: East-West J. Numer. Math.
– volume: 134
  start-page: 705
  year: 2016
  ident: R16
  publication-title: Numer. Math.
  doi: 10.1007/s00211-016-0790-5
– ident: R7
  doi: 10.1007/978-3-319-01818-8_4
– ident: R15
SSID ssj0001045
ssj0037293
Score 2.2805417
Snippet The Stokes equations subject to non-homogeneous slip boundary conditions are considered in a smooth domain Ω ⊂ ℝN (N = 2,3). We propose a finite element scheme...
The Stokes equations subject to non-homogeneous slip boundary conditions are considered in a smooth domain Ω ⊂ ℝ N ( N = 2,3). We propose a finite element...
SourceID unpaywall
proquest
crossref
istex
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 869
SubjectTerms 35Q30
65N30
Approximation
discrete H1/2-norm
domain perturbation
Navier-Stokes equations
Nonconforming FEM
slip boundary condition
Stokes equations
Title Penalty method with Crouzeix–Raviart approximation for the Stokes equations under slip boundary condition
URI https://api.istex.fr/ark:/67375/80W-BWSC5S7W-0/fulltext.pdf
https://www.proquest.com/docview/2249752142
https://www.esaim-m2an.org/articles/m2an/pdf/2019/03/m2an180183.pdf
UnpaywallVersion publishedVersion
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAHI
  databaseName: EDP Open
  customDbUrl:
  eissn: 1290-3841
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037293
  issn: 1290-3841
  databaseCode: GI~
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.edp-open.org/
  providerName: EDP
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1290-3841
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037293
  issn: 1290-3841
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB61yQE48K4ItNUegAty47e9xxI1VEitKkKUcFqt9yFFSZ1gO5D0xH_gH_aXdHbtRAEJhMTFslez63159xvvzDcArwWuhkEqQicMue-EMlZOSvHi61RrL5G-b_24Ly7j82H4cRyN96C38YWxZpUln1w71z7Pa6LgxkKsa1K6C6lRYfdo1w1sgodLbIr6oNT70I4jBOQtaA8vr06_WALOODR-RWOjdvnUMMmGXmP-jrOxLtGU5prwkjsbU9v08eoX1HlvmS_4-jufzXY2oP4jkJuq13Yn05NllZ2Im99YHf-zbY_hYQNQyWmd5QnsqfwpPNihLcSniy3Xa_kMplcKM1RrUgejJubPLukV8-WNmqxuf_z8xL9NsALEspevJrWrJEGsTLAQMqjmU1US9bWmHC-JcWorCKLfBclsyKdiTVBnl9a07DkM-2efe-dOE8LBEUFAK8fP8CtUcUJdKrQnKFeuyISOjBaVKRkYPjhJsZ0KVT8RC4RzMondRARSak1FcACtfJ6rF0CESzOO4E-gQMgTSZWOU3OuKdNQqYB34N1m_Jho-M1NmI0Zs-fskcdMl7JmtDvwZiu9qHk9_iD31k6FrRAvpsYWLolY6o7Y-9GgFw2SEXM7cLiZK6xZBkqG-IgmkWG1w3K28-evL3z5r4Kv4L65q40vD6FVFUt1hACpyo5hP-1_OG4-gzt0EA-g
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB4t7QE48EYUFuQDcEHZ5p34uFSsVki7WlGqlpPl-CFV7aYlSXfbPfEf-If8EsZ2WhUkEBKXKLHGjl-xv4lnvgF4LXA1jHIRe3HMQy-WqfJyipdQ51oHmQxD68d9dp6ejuKPk2RyAIOtL4w1q6z59NK7DHnpiIJbC7G-SekvpUaFPaB9P7IJAS6xOeqDUt-CbpogIO9Ad3R-cfzFEnCmsfErmhi1K6SGSTYOWvN3nI2uRFOab8JL7m1MXdPH619Q5-1VueSbaz6f721AJ_dBbqvu7E5mR6umOBI3v7E6_mfbHsC9FqCSY5flIRyo8hHc3aMtxKezHddr_RhmFwozNBviglET82eXDKrF6kZN1z--ff_Er6ZYAWLZy9dT5ypJECsTLIQMm8VM1UR9dZTjNTFObRVB9LskhQ35VG0I6uzSmpY9gdHJh8-DU68N4eCJKKKNFxb4Fao0oz4VOhCUK18UQidGiyqUjAwfnKTYToWqn0gFwjmZpX4mIim1piJ6Cp1yUapnQIRPC47gT6BAzDNJlU5zc64p81ipiPfg3Xb8mGj5zU2YjTmz5-xJwEyXsna0e_BmJ710vB5_kHtrp8JOiFczYwuXJSz3x-z9eDhIhtmY-T043M4V1i4DNUN8RLPEsNphObv589cXPv9XwRdwx9w548tD6DTVSr1EgNQUr9oP4CccaQ66
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Penalty+method+with+Crouzeix%E2%80%93Raviart+approximation+for+the+Stokes+equations+under+slip+boundary+condition&rft.jtitle=ESAIM.+Mathematical+modelling+and+numerical+analysis&rft.au=Kashiwabara%2C+Takahito&rft.au=Oikawa%2C+Issei&rft.au=Zhou%2C+Guanyu&rft.date=2019-05-01&rft.pub=EDP+Sciences&rft.eissn=1290-3841&rft.volume=53&rft.issue=3&rft.spage=869&rft_id=info:doi/10.1051%2Fm2an%2F2019008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0764-583X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0764-583X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0764-583X&client=summon