On improving the lifespan of wireless sensor networks with fuzzy based clustering and machine learning based data reduction

A useful approach to increase the lifetime of wireless sensor networks is clustering. Exchange of messages due to successive and recurrent reclustering burdens the sensor nodes and causes power loss. This paper presents a modified clustering methodology that diminishes the overhead in clustering and...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 83; p. 105610
Main Authors Radhika, S., Rangarajan, P.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2019
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2019.105610

Cover

Abstract A useful approach to increase the lifetime of wireless sensor networks is clustering. Exchange of messages due to successive and recurrent reclustering burdens the sensor nodes and causes power loss. This paper presents a modified clustering methodology that diminishes the overhead in clustering and message exchanges thereby effectively scheduling the clustering task. The network is clustered subject to the remaining energy of sensor nodes. Energy based parameters decide cluster head nodes and ancillary nodes and the member nodes are linked with them. The roles of the head nodes of the cluster are interchanged depending on the nodes’ states. Reclustering of nodes is accomplished to achieve minimum energy consumption by calculating the update cycle using a fuzzy inference system. The average sensed data rate of cluster members, the distance at which the member nodes are from the sink and the power of cluster head nodes are counted to achieve better energy saving. Cluster member nodes apply machine learning at regular intervals to classify data based on their similarity. The classified data are transmitted to the cluster head after a reduction in the number of message transfers. The proposed method improves the energy usage of clustering and data transmission. •Wireless sensor networks are constrained in battery power.•Energy efficiency is an important factor in network operations.•The paper proposes a clustering approach to improve energy efficiency using fuzzy logic and machine learning.•It aims to improve the network lifetime and reduce energy consumption.
AbstractList A useful approach to increase the lifetime of wireless sensor networks is clustering. Exchange of messages due to successive and recurrent reclustering burdens the sensor nodes and causes power loss. This paper presents a modified clustering methodology that diminishes the overhead in clustering and message exchanges thereby effectively scheduling the clustering task. The network is clustered subject to the remaining energy of sensor nodes. Energy based parameters decide cluster head nodes and ancillary nodes and the member nodes are linked with them. The roles of the head nodes of the cluster are interchanged depending on the nodes’ states. Reclustering of nodes is accomplished to achieve minimum energy consumption by calculating the update cycle using a fuzzy inference system. The average sensed data rate of cluster members, the distance at which the member nodes are from the sink and the power of cluster head nodes are counted to achieve better energy saving. Cluster member nodes apply machine learning at regular intervals to classify data based on their similarity. The classified data are transmitted to the cluster head after a reduction in the number of message transfers. The proposed method improves the energy usage of clustering and data transmission. •Wireless sensor networks are constrained in battery power.•Energy efficiency is an important factor in network operations.•The paper proposes a clustering approach to improve energy efficiency using fuzzy logic and machine learning.•It aims to improve the network lifetime and reduce energy consumption.
ArticleNumber 105610
Author Rangarajan, P.
Radhika, S.
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0002-9181-9374
  surname: Radhika
  fullname: Radhika, S.
  email: radmail18@gmail.com
  organization: Department of Computer Science and Engineering, RMK Engineering College, Kavaraipettai 601206, Tamilnadu, India
– sequence: 2
  givenname: P.
  surname: Rangarajan
  fullname: Rangarajan, P.
  email: rangarajan69@gmail.com
  organization: Department of Computer Science and Engineering, RMD Engineering College, Kavaraipettai 601206, Tamilnadu, India
BookMark eNp9kMtOAyEUhonRxHp5AVe8wFQu0xlI3JjGW2LSja4JA2csdQoN0DbVl5dJXblwBTnnfH_O-S7QqQ8eELqhZEoJbW5XU52CmTJCZSnMGkpO0ISKllWyEfS0_GeNqGpZN-foIqUVKZBkYoK-Fx679SaGnfMfOC8BD66HtNEehx7vXYQBUsIJfAoRe8j7ED9TaeQl7rdfXwfc6QQWm2GbMsQxRHuL19osnS9hoKMfi8cpq7PGEezWZBf8FTrr9ZDg-ve9RO-PD2_z5-p18fQyv3-tDOcyV0xDzVhrgVLBeSta2lopSQuMS8p1TWagqWA975qOkY7X1jZ9J8qx0oA0lF8iccw1MaQUoVfGZT1ukKN2g6JEjRLVSo0S1ShRHSUWlP1BN9GtdTz8D90dIShH7RxElYwDb8AWnSYrG9x_-A8Nr4_D
CitedBy_id crossref_primary_10_1007_s11277_023_10746_0
crossref_primary_10_1002_dac_5896
crossref_primary_10_1109_JIOT_2023_3302874
crossref_primary_10_3233_JIFS_223242
crossref_primary_10_1007_s11277_021_08167_y
crossref_primary_10_1016_j_eswa_2022_116767
crossref_primary_10_12688_f1000research_133874_2
crossref_primary_10_1016_j_imu_2021_100731
crossref_primary_10_12688_f1000research_133874_3
crossref_primary_10_1016_j_eswa_2024_125232
crossref_primary_10_1049_cmu2_12262
crossref_primary_10_24113_ijoscience_v7i8_409
crossref_primary_10_21923_jesd_824663
crossref_primary_10_1002_dac_4997
crossref_primary_10_1016_j_asoc_2020_106923
crossref_primary_10_1371_journal_pone_0265113
crossref_primary_10_1016_j_cosrev_2021_100376
crossref_primary_10_1007_s11277_021_08154_3
crossref_primary_10_1016_j_prime_2025_100971
crossref_primary_10_1007_s00607_020_00864_z
crossref_primary_10_3934_mbe_2024202
crossref_primary_10_1088_1742_6596_1717_1_012069
crossref_primary_10_3390_electronics12010123
crossref_primary_10_1007_s00170_023_12903_y
crossref_primary_10_3390_s24051353
crossref_primary_10_1007_s10586_024_04280_2
crossref_primary_10_1016_j_asoc_2022_108477
crossref_primary_10_1002_int_22438
crossref_primary_10_1016_j_eswa_2022_117728
crossref_primary_10_24113_ijoscience_v7i4_388
crossref_primary_10_1109_ACCESS_2023_3322370
crossref_primary_10_3390_su132313128
crossref_primary_10_1002_cpe_7921
crossref_primary_10_1016_j_jpdc_2020_03_014
crossref_primary_10_1109_ACCESS_2022_3233632
crossref_primary_10_1142_S1793962321500070
crossref_primary_10_1109_JSEN_2020_3035846
crossref_primary_10_1007_s11276_022_03068_9
crossref_primary_10_1080_01605682_2020_1857667
crossref_primary_10_48175_IJARSCT_11984X
crossref_primary_10_1007_s11276_019_02123_2
crossref_primary_10_1109_ACCESS_2021_3092509
crossref_primary_10_3390_electronics14010159
crossref_primary_10_1007_s11235_020_00659_9
crossref_primary_10_1016_j_eswa_2022_118477
crossref_primary_10_1016_j_eswa_2021_115550
crossref_primary_10_1016_j_pmcj_2021_101504
crossref_primary_10_2478_amns_2024_2494
crossref_primary_10_1016_j_iot_2024_101098
crossref_primary_10_1109_ACCESS_2022_3152804
Cites_doi 10.1145/3041956
10.1109/COMAPP.2018.8460440
10.1109/LCOMM.2016.2517017
10.1109/JSEN.2017.2756865
10.1109/JSEN.2018.2872065
10.1109/JSEN.2015.2472970
10.1109/JSEN.2012.2204737
10.1109/JSEN.2017.2749250
10.1109/JIOT.2015.2482363
10.1109/JSEN.2015.2456931
10.1016/j.jnca.2014.09.005
10.1109/ACCESS.2018.2888813
10.1016/j.adhoc.2012.04.004
10.1109/JIOT.2016.2530682
10.1109/JSEN.2016.2561283
10.1109/TWC.2002.804190
10.14257/ijgdc.2016.9.3.21
10.1109/JSEN.2014.2312549
10.1109/TCBB.2015.2446475
10.1109/JSEN.2015.2512322
10.1109/TMC.2004.41
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2019.105610
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
ExternalDocumentID 10_1016_j_asoc_2019_105610
S1568494619303904
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c339t-2ae4227de1183378717d9907e23913a405ea182f3b6b20b34dd6fb84949ce9c13
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Thu Apr 24 23:08:21 EDT 2025
Wed Oct 29 21:23:02 EDT 2025
Fri Feb 23 02:49:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Wireless sensor networks
Network lifetime
Energy efficiency
Fuzzy
Clustering
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-2ae4227de1183378717d9907e23913a405ea182f3b6b20b34dd6fb84949ce9c13
ORCID 0000-0002-9181-9374
ParticipantIDs crossref_citationtrail_10_1016_j_asoc_2019_105610
crossref_primary_10_1016_j_asoc_2019_105610
elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105610
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nikolov, Haas, IEEE (b4) 2018; 18
Atalik, Senturk (b19) 2018; 15
Ghate, Vaidehi Vijayakumar (b18) 2018; 118
Neamatollahi, Naghibzadeh, Abrishami (b13) 2017; 17
Ni, Pan, Du, Cao, Zhai (b6) 2017; 14
(b24) 2004
Thakkar, Kotecha (b11) 2014; 14
Taheri, Neamatollahi, Younis, Naghibzadeh, Yaghmaee (b16) 2012; 10
Pachlor, Shrimankar (b5) 2018; 18
Xu, Chen, Chen, Guan (b21) 2016; 3
Salayma, Al-Dubai, Romdhani, Nasser (b7) 2017; 50
Marwa Mamdouh, Mohamed A.I. Elrukhsi, Ahmed Khattab, Securing the internet of things and wireless sensor networks via machine learning: A survey, in: International Conference on Computer and Applications, 2018, pp. 215–218.
Afsar, Tayarani-N (b14) 2014; 46
Heinzelman, Chandrakasan, Balakrishnan (b15) 2002; 1
Nayak, IEEE, Devulapalli (b2) 2016; 16
Saeed, Kolberg (b20) 2019; 7
Jia, Zhu, Zou, Hu (b23) 2016; 16
Younis, Fahmy (b10) 2004; 3
Wang, Wu, Wang, Hu (b9) 2016; 16
Sohn, Lee, Lee (b22) 2016; 20
Ma, Liang, Zheng, Sharif (b1) 2016; 16
Lee, Cheng (b8) 2012; 12
Xiao, Sun, Gui, Chen (b12) 2016; 9
Lee, IEEE, Kao (b3) 2016; 3
Nikolov (10.1016/j.asoc.2019.105610_b4) 2018; 18
Ma (10.1016/j.asoc.2019.105610_b1) 2016; 16
Nayak (10.1016/j.asoc.2019.105610_b2) 2016; 16
Jia (10.1016/j.asoc.2019.105610_b23) 2016; 16
(10.1016/j.asoc.2019.105610_b24) 2004
Atalik (10.1016/j.asoc.2019.105610_b19) 2018; 15
Pachlor (10.1016/j.asoc.2019.105610_b5) 2018; 18
Heinzelman (10.1016/j.asoc.2019.105610_b15) 2002; 1
Lee (10.1016/j.asoc.2019.105610_b3) 2016; 3
Neamatollahi (10.1016/j.asoc.2019.105610_b13) 2017; 17
Taheri (10.1016/j.asoc.2019.105610_b16) 2012; 10
Afsar (10.1016/j.asoc.2019.105610_b14) 2014; 46
Thakkar (10.1016/j.asoc.2019.105610_b11) 2014; 14
Wang (10.1016/j.asoc.2019.105610_b9) 2016; 16
Xu (10.1016/j.asoc.2019.105610_b21) 2016; 3
Ni (10.1016/j.asoc.2019.105610_b6) 2017; 14
Saeed (10.1016/j.asoc.2019.105610_b20) 2019; 7
Lee (10.1016/j.asoc.2019.105610_b8) 2012; 12
10.1016/j.asoc.2019.105610_b17
Xiao (10.1016/j.asoc.2019.105610_b12) 2016; 9
Salayma (10.1016/j.asoc.2019.105610_b7) 2017; 50
Ghate (10.1016/j.asoc.2019.105610_b18) 2018; 118
Sohn (10.1016/j.asoc.2019.105610_b22) 2016; 20
Younis (10.1016/j.asoc.2019.105610_b10) 2004; 3
References_xml – volume: 14
  year: 2017
  ident: b6
  article-title: A novel cluster head selection algorithm based on fuzzy clustering and particle swarm optimization
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
– volume: 10
  start-page: 1469
  year: 2012
  end-page: 1481
  ident: b16
  article-title: An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic
  publication-title: Ad Hoc Netw.
– volume: 18
  start-page: 9
  year: 2018
  ident: b5
  article-title: LAR-CH: A cluster-head rotation approach for sensor networks
  publication-title: IEEE Sens. J.
– year: 2004
  ident: b24
  article-title: Intel Lab Data
– volume: 46
  start-page: 198
  year: 2014
  end-page: 226
  ident: b14
  article-title: Clustering in sensor networks: A literature survey
  publication-title: J. Netw. Comput. Appl.
– volume: 7
  start-page: 3122
  year: 2019
  end-page: 3135
  ident: b20
  article-title: Towards optimizing WLANs power saving: Novel context-aware network traffic classification based on a machine learning approach
  publication-title: IEEE Access
– volume: 12
  start-page: 2891
  year: 2012
  end-page: 2897
  ident: b8
  article-title: Fuzzy-Logic-based clustering approach for wireless sensor networks using energy predication
  publication-title: IEEE Sens. J.
– volume: 3
  year: 2016
  ident: b3
  article-title: An improved three-layer low-energy adaptive clustering hierarchy for wireless sensor networks
  publication-title: IEEE Internet Things J.
– volume: 16
  year: 2016
  ident: b9
  article-title: Energy-efficient clustering using correlation and random update based on data change rate for wireless sensor networks
  publication-title: IEEE Sens. J.
– volume: 9
  start-page: 199
  year: 2016
  end-page: 208
  ident: b12
  article-title: A novel energy entropy based on cluster head selection algorithm for wireless sensor networks
  publication-title: Int. J. Grid Distrib. Comput.
– volume: 16
  start-page: 513
  year: 2016
  end-page: 528
  ident: b1
  article-title: A connectivity-aware approximation algorithm for relay node placement in wireless sensor networks
  publication-title: IEEE Sens. J.
– volume: 20
  start-page: 558
  year: 2016
  end-page: 561
  ident: b22
  article-title: Low-energy adaptive clustering hierarchy using affinity propagation for wireless sensor networks
  publication-title: IEEE Commun. Lett.
– volume: 3
  start-page: 366
  year: 2004
  end-page: 379
  ident: b10
  article-title: HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks
  publication-title: IEEE Trans. Mob. Comput.
– volume: 16
  start-page: 2746
  year: 2016
  end-page: 2754
  ident: b23
  article-title: Dynamic cluster head selection method for wireless sensor network
  publication-title: IEEE Sens. J.
– volume: 50
  start-page: 1
  year: 2017
  end-page: 35
  ident: b7
  article-title: Wireless body area network (WBAN): A survey on reliability, fault tolerance, and technologies coexistence
  publication-title: ACM Comput. Surv.
– volume: 118
  year: 2018
  ident: b18
  article-title: Machine learning for data aggregation in WSN: A survey
  publication-title: Int. J. Pure Appl. Math.
– volume: 14
  start-page: 2658
  year: 2014
  end-page: 2664
  ident: b11
  article-title: Cluster head election for energy and delay constraint applications of wireless sensor network
  publication-title: IEEE Sens. J.
– volume: 15
  start-page: 91
  year: 2018
  end-page: 102
  ident: b19
  article-title: A new approach for parameter estimation in fuzzy logistic regression
  publication-title: Iran. J. Fuzzy Syst.
– reference: Marwa Mamdouh, Mohamed A.I. Elrukhsi, Ahmed Khattab, Securing the internet of things and wireless sensor networks via machine learning: A survey, in: International Conference on Computer and Applications, 2018, pp. 215–218.
– volume: 18
  year: 2018
  ident: b4
  article-title: Encoded sensing for energy efficient wireless sensor networks
  publication-title: IEEE Sens. J.
– volume: 1
  start-page: 660
  year: 2002
  end-page: 670
  ident: b15
  article-title: An application-specific protocol architecture for wireless microsensor networks
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 16
  year: 2016
  ident: b2
  article-title: A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime
  publication-title: IEEE Sens. J.
– volume: 3
  start-page: 520
  year: 2016
  end-page: 532
  ident: b21
  article-title: Joint clustering and routing design for reliable and efficient data collection in large-scale wireless sensor networks
  publication-title: IEEE Internet Things J.
– volume: 17
  year: 2017
  ident: b13
  article-title: Fuzzy-based clustering-task scheduling for lifetime enhancement in wireless sensor networks
  publication-title: IEEE Sens. J.
– volume: 50
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2019.105610_b7
  article-title: Wireless body area network (WBAN): A survey on reliability, fault tolerance, and technologies coexistence
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3041956
– ident: 10.1016/j.asoc.2019.105610_b17
  doi: 10.1109/COMAPP.2018.8460440
– volume: 20
  start-page: 558
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2019.105610_b22
  article-title: Low-energy adaptive clustering hierarchy using affinity propagation for wireless sensor networks
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2016.2517017
– volume: 18
  issue: 2
  year: 2018
  ident: 10.1016/j.asoc.2019.105610_b4
  article-title: Encoded sensing for energy efficient wireless sensor networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2756865
– volume: 18
  start-page: 9
  issue: 23
  year: 2018
  ident: 10.1016/j.asoc.2019.105610_b5
  article-title: LAR-CH: A cluster-head rotation approach for sensor networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2872065
– volume: 16
  issue: 1
  year: 2016
  ident: 10.1016/j.asoc.2019.105610_b2
  article-title: A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2472970
– volume: 12
  start-page: 2891
  issue: 9
  year: 2012
  ident: 10.1016/j.asoc.2019.105610_b8
  article-title: Fuzzy-Logic-based clustering approach for wireless sensor networks using energy predication
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2012.2204737
– volume: 17
  issue: 20
  year: 2017
  ident: 10.1016/j.asoc.2019.105610_b13
  article-title: Fuzzy-based clustering-task scheduling for lifetime enhancement in wireless sensor networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2017.2749250
– volume: 118
  issue: 24
  year: 2018
  ident: 10.1016/j.asoc.2019.105610_b18
  article-title: Machine learning for data aggregation in WSN: A survey
  publication-title: Int. J. Pure Appl. Math.
– volume: 3
  start-page: 520
  issue: 4
  year: 2016
  ident: 10.1016/j.asoc.2019.105610_b21
  article-title: Joint clustering and routing design for reliable and efficient data collection in large-scale wireless sensor networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2015.2482363
– volume: 16
  start-page: 513
  issue: 2
  year: 2016
  ident: 10.1016/j.asoc.2019.105610_b1
  article-title: A connectivity-aware approximation algorithm for relay node placement in wireless sensor networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2456931
– volume: 46
  start-page: 198
  year: 2014
  ident: 10.1016/j.asoc.2019.105610_b14
  article-title: Clustering in sensor networks: A literature survey
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2014.09.005
– volume: 7
  start-page: 3122
  year: 2019
  ident: 10.1016/j.asoc.2019.105610_b20
  article-title: Towards optimizing WLANs power saving: Novel context-aware network traffic classification based on a machine learning approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2888813
– volume: 10
  start-page: 1469
  issue: 7
  year: 2012
  ident: 10.1016/j.asoc.2019.105610_b16
  article-title: An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2012.04.004
– year: 2004
  ident: 10.1016/j.asoc.2019.105610_b24
– volume: 3
  issue: 6
  year: 2016
  ident: 10.1016/j.asoc.2019.105610_b3
  article-title: An improved three-layer low-energy adaptive clustering hierarchy for wireless sensor networks
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2016.2530682
– volume: 16
  issue: 13
  year: 2016
  ident: 10.1016/j.asoc.2019.105610_b9
  article-title: Energy-efficient clustering using correlation and random update based on data change rate for wireless sensor networks
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2016.2561283
– volume: 1
  start-page: 660
  issue: 4
  year: 2002
  ident: 10.1016/j.asoc.2019.105610_b15
  article-title: An application-specific protocol architecture for wireless microsensor networks
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2002.804190
– volume: 9
  start-page: 199
  issue: 3
  year: 2016
  ident: 10.1016/j.asoc.2019.105610_b12
  article-title: A novel energy entropy based on cluster head selection algorithm for wireless sensor networks
  publication-title: Int. J. Grid Distrib. Comput.
  doi: 10.14257/ijgdc.2016.9.3.21
– volume: 14
  start-page: 2658
  issue: 8
  year: 2014
  ident: 10.1016/j.asoc.2019.105610_b11
  article-title: Cluster head election for energy and delay constraint applications of wireless sensor network
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2014.2312549
– volume: 14
  issue: 1
  year: 2017
  ident: 10.1016/j.asoc.2019.105610_b6
  article-title: A novel cluster head selection algorithm based on fuzzy clustering and particle swarm optimization
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2015.2446475
– volume: 16
  start-page: 2746
  issue: 8
  year: 2016
  ident: 10.1016/j.asoc.2019.105610_b23
  article-title: Dynamic cluster head selection method for wireless sensor network
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2512322
– volume: 15
  start-page: 91
  issue: 1
  year: 2018
  ident: 10.1016/j.asoc.2019.105610_b19
  article-title: A new approach for parameter estimation in fuzzy logistic regression
  publication-title: Iran. J. Fuzzy Syst.
– volume: 3
  start-page: 366
  issue: 4
  year: 2004
  ident: 10.1016/j.asoc.2019.105610_b10
  article-title: HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2004.41
SSID ssj0016928
Score 2.462808
Snippet A useful approach to increase the lifetime of wireless sensor networks is clustering. Exchange of messages due to successive and recurrent reclustering burdens...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105610
SubjectTerms Clustering
Energy efficiency
Fuzzy
Machine learning
Network lifetime
Wireless sensor networks
Title On improving the lifespan of wireless sensor networks with fuzzy based clustering and machine learning based data reduction
URI https://dx.doi.org/10.1016/j.asoc.2019.105610
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3iTW7m6R7LMVSX1XUQm9hN9lAJKalj4MV_O3OJJuiID14CgmzS5jZnRffzBByHkSu0hAcO1J7gSMCuIpKcOFwCb6ua2QUMawdfhj4_aG4HXmjGulWtTAIq7S6v9Tphba2X1qWm61JmrZeIPJoCykgAgA1LIueoEIEOMXg8msF83B9WcxXRWIHqW3hTInxUsABhHfJYgA9VtH-ZZx-GJzeDtmyniLtlD-zS2om3yPb1RQGai_lPvl8zGlapQYo-HM0SxMDiiKn44RiK-IMtBmdQbw6ntK8hH3PKCZgabJYLj8oWrKYRtkCmybgJiqP6XuBsoTNbO7EUiGilE6x3ytK9IAMe9ev3b5jRyo4Eedy7jBlBGNBbCCu4BwuqxvEYI8Cw7h0uQLvzSiIOBKufc2uNBdx7Cca2SwjEJzLD0k9H-fmiFBfaNPG0l7s-OLGPrhqnq-Yx0HGiYxZg7gVL8PI9hvHsRdZWAHL3kLkf4j8D0v-N8jFas2k7LaxltqrRBT-OjMhmIM1647_ue6EbOJbCeU7JfX5dGHOwCWZ62Zx5ppko9N9vn_C581df_ANhU3hfg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGGDhjShPD2wolNhOUo-ooirQloFW6hbZiSMFhbTqY6BI_HbuEqcCCXVgTc5RdGffw_ruO0Kug8hVGopjR2ovcEQAR1EJLhwuIdd1jYwihr3Dvb7fGYqnkTeqkVbVC4OwSuv7S59eeGv7pGG12ZikaeMVKo-mkAIqAHDDEjlBN4XHAqzAbr9WOA_Xl8WAVZR2UNx2zpQgLwUqQHyXLCbQYxvtX9HpR8Rp75EdmyrS-_Jv9knN5AdktxrDQO2pPCSfLzlNq7sBCgkdzdLEgKfI6TihyEWcgTujMyhYx1Oal7jvGcUbWJoslssPiqEsplG2QNYE_IjKY_pewCzhY_byxEohpJROkfAVTXpEhu2HQavj2JkKTsS5nDtMGcFYEBsoLDiH0-oGMQSkwDAuXa4gfTMKSo6Ea1-zO81FHPuJRj3LCCzn8mOykY9zc0KoL7RpYm8vUr64sQ-5mucr5nEwciJjVidupcswsoTjOPciCytk2VuI-g9R_2Gp_zq5Wa2ZlHQba6W9ykThr00TQjxYs-70n-uuyFZn0OuG3cf-8xnZxjclru-cbMynC3MB-clcXxb77xvJC-F-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+improving+the+lifespan+of+wireless+sensor+networks+with+fuzzy+based+clustering+and+machine+learning+based+data+reduction&rft.jtitle=Applied+soft+computing&rft.au=Radhika%2C+S.&rft.au=Rangarajan%2C+P.&rft.date=2019-10-01&rft.issn=1568-4946&rft.volume=83&rft.spage=105610&rft_id=info:doi/10.1016%2Fj.asoc.2019.105610&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_105610
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon