On improving the lifespan of wireless sensor networks with fuzzy based clustering and machine learning based data reduction
A useful approach to increase the lifetime of wireless sensor networks is clustering. Exchange of messages due to successive and recurrent reclustering burdens the sensor nodes and causes power loss. This paper presents a modified clustering methodology that diminishes the overhead in clustering and...
Saved in:
| Published in | Applied soft computing Vol. 83; p. 105610 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.10.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1568-4946 1872-9681 |
| DOI | 10.1016/j.asoc.2019.105610 |
Cover
| Abstract | A useful approach to increase the lifetime of wireless sensor networks is clustering. Exchange of messages due to successive and recurrent reclustering burdens the sensor nodes and causes power loss. This paper presents a modified clustering methodology that diminishes the overhead in clustering and message exchanges thereby effectively scheduling the clustering task. The network is clustered subject to the remaining energy of sensor nodes. Energy based parameters decide cluster head nodes and ancillary nodes and the member nodes are linked with them. The roles of the head nodes of the cluster are interchanged depending on the nodes’ states. Reclustering of nodes is accomplished to achieve minimum energy consumption by calculating the update cycle using a fuzzy inference system. The average sensed data rate of cluster members, the distance at which the member nodes are from the sink and the power of cluster head nodes are counted to achieve better energy saving. Cluster member nodes apply machine learning at regular intervals to classify data based on their similarity. The classified data are transmitted to the cluster head after a reduction in the number of message transfers. The proposed method improves the energy usage of clustering and data transmission.
•Wireless sensor networks are constrained in battery power.•Energy efficiency is an important factor in network operations.•The paper proposes a clustering approach to improve energy efficiency using fuzzy logic and machine learning.•It aims to improve the network lifetime and reduce energy consumption. |
|---|---|
| AbstractList | A useful approach to increase the lifetime of wireless sensor networks is clustering. Exchange of messages due to successive and recurrent reclustering burdens the sensor nodes and causes power loss. This paper presents a modified clustering methodology that diminishes the overhead in clustering and message exchanges thereby effectively scheduling the clustering task. The network is clustered subject to the remaining energy of sensor nodes. Energy based parameters decide cluster head nodes and ancillary nodes and the member nodes are linked with them. The roles of the head nodes of the cluster are interchanged depending on the nodes’ states. Reclustering of nodes is accomplished to achieve minimum energy consumption by calculating the update cycle using a fuzzy inference system. The average sensed data rate of cluster members, the distance at which the member nodes are from the sink and the power of cluster head nodes are counted to achieve better energy saving. Cluster member nodes apply machine learning at regular intervals to classify data based on their similarity. The classified data are transmitted to the cluster head after a reduction in the number of message transfers. The proposed method improves the energy usage of clustering and data transmission.
•Wireless sensor networks are constrained in battery power.•Energy efficiency is an important factor in network operations.•The paper proposes a clustering approach to improve energy efficiency using fuzzy logic and machine learning.•It aims to improve the network lifetime and reduce energy consumption. |
| ArticleNumber | 105610 |
| Author | Rangarajan, P. Radhika, S. |
| Author_xml | – sequence: 1 givenname: S. orcidid: 0000-0002-9181-9374 surname: Radhika fullname: Radhika, S. email: radmail18@gmail.com organization: Department of Computer Science and Engineering, RMK Engineering College, Kavaraipettai 601206, Tamilnadu, India – sequence: 2 givenname: P. surname: Rangarajan fullname: Rangarajan, P. email: rangarajan69@gmail.com organization: Department of Computer Science and Engineering, RMD Engineering College, Kavaraipettai 601206, Tamilnadu, India |
| BookMark | eNp9kMtOAyEUhonRxHp5AVe8wFQu0xlI3JjGW2LSja4JA2csdQoN0DbVl5dJXblwBTnnfH_O-S7QqQ8eELqhZEoJbW5XU52CmTJCZSnMGkpO0ISKllWyEfS0_GeNqGpZN-foIqUVKZBkYoK-Fx679SaGnfMfOC8BD66HtNEehx7vXYQBUsIJfAoRe8j7ED9TaeQl7rdfXwfc6QQWm2GbMsQxRHuL19osnS9hoKMfi8cpq7PGEezWZBf8FTrr9ZDg-ve9RO-PD2_z5-p18fQyv3-tDOcyV0xDzVhrgVLBeSta2lopSQuMS8p1TWagqWA975qOkY7X1jZ9J8qx0oA0lF8iccw1MaQUoVfGZT1ukKN2g6JEjRLVSo0S1ShRHSUWlP1BN9GtdTz8D90dIShH7RxElYwDb8AWnSYrG9x_-A8Nr4_D |
| CitedBy_id | crossref_primary_10_1007_s11277_023_10746_0 crossref_primary_10_1002_dac_5896 crossref_primary_10_1109_JIOT_2023_3302874 crossref_primary_10_3233_JIFS_223242 crossref_primary_10_1007_s11277_021_08167_y crossref_primary_10_1016_j_eswa_2022_116767 crossref_primary_10_12688_f1000research_133874_2 crossref_primary_10_1016_j_imu_2021_100731 crossref_primary_10_12688_f1000research_133874_3 crossref_primary_10_1016_j_eswa_2024_125232 crossref_primary_10_1049_cmu2_12262 crossref_primary_10_24113_ijoscience_v7i8_409 crossref_primary_10_21923_jesd_824663 crossref_primary_10_1002_dac_4997 crossref_primary_10_1016_j_asoc_2020_106923 crossref_primary_10_1371_journal_pone_0265113 crossref_primary_10_1016_j_cosrev_2021_100376 crossref_primary_10_1007_s11277_021_08154_3 crossref_primary_10_1016_j_prime_2025_100971 crossref_primary_10_1007_s00607_020_00864_z crossref_primary_10_3934_mbe_2024202 crossref_primary_10_1088_1742_6596_1717_1_012069 crossref_primary_10_3390_electronics12010123 crossref_primary_10_1007_s00170_023_12903_y crossref_primary_10_3390_s24051353 crossref_primary_10_1007_s10586_024_04280_2 crossref_primary_10_1016_j_asoc_2022_108477 crossref_primary_10_1002_int_22438 crossref_primary_10_1016_j_eswa_2022_117728 crossref_primary_10_24113_ijoscience_v7i4_388 crossref_primary_10_1109_ACCESS_2023_3322370 crossref_primary_10_3390_su132313128 crossref_primary_10_1002_cpe_7921 crossref_primary_10_1016_j_jpdc_2020_03_014 crossref_primary_10_1109_ACCESS_2022_3233632 crossref_primary_10_1142_S1793962321500070 crossref_primary_10_1109_JSEN_2020_3035846 crossref_primary_10_1007_s11276_022_03068_9 crossref_primary_10_1080_01605682_2020_1857667 crossref_primary_10_48175_IJARSCT_11984X crossref_primary_10_1007_s11276_019_02123_2 crossref_primary_10_1109_ACCESS_2021_3092509 crossref_primary_10_3390_electronics14010159 crossref_primary_10_1007_s11235_020_00659_9 crossref_primary_10_1016_j_eswa_2022_118477 crossref_primary_10_1016_j_eswa_2021_115550 crossref_primary_10_1016_j_pmcj_2021_101504 crossref_primary_10_2478_amns_2024_2494 crossref_primary_10_1016_j_iot_2024_101098 crossref_primary_10_1109_ACCESS_2022_3152804 |
| Cites_doi | 10.1145/3041956 10.1109/COMAPP.2018.8460440 10.1109/LCOMM.2016.2517017 10.1109/JSEN.2017.2756865 10.1109/JSEN.2018.2872065 10.1109/JSEN.2015.2472970 10.1109/JSEN.2012.2204737 10.1109/JSEN.2017.2749250 10.1109/JIOT.2015.2482363 10.1109/JSEN.2015.2456931 10.1016/j.jnca.2014.09.005 10.1109/ACCESS.2018.2888813 10.1016/j.adhoc.2012.04.004 10.1109/JIOT.2016.2530682 10.1109/JSEN.2016.2561283 10.1109/TWC.2002.804190 10.14257/ijgdc.2016.9.3.21 10.1109/JSEN.2014.2312549 10.1109/TCBB.2015.2446475 10.1109/JSEN.2015.2512322 10.1109/TMC.2004.41 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2019.105610 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-9681 |
| ExternalDocumentID | 10_1016_j_asoc_2019_105610 S1568494619303904 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c339t-2ae4227de1183378717d9907e23913a405ea182f3b6b20b34dd6fb84949ce9c13 |
| IEDL.DBID | .~1 |
| ISSN | 1568-4946 |
| IngestDate | Thu Apr 24 23:08:21 EDT 2025 Wed Oct 29 21:23:02 EDT 2025 Fri Feb 23 02:49:31 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Wireless sensor networks Network lifetime Energy efficiency Fuzzy Clustering Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c339t-2ae4227de1183378717d9907e23913a405ea182f3b6b20b34dd6fb84949ce9c13 |
| ORCID | 0000-0002-9181-9374 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_asoc_2019_105610 crossref_primary_10_1016_j_asoc_2019_105610 elsevier_sciencedirect_doi_10_1016_j_asoc_2019_105610 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-01 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Nikolov, Haas, IEEE (b4) 2018; 18 Atalik, Senturk (b19) 2018; 15 Ghate, Vaidehi Vijayakumar (b18) 2018; 118 Neamatollahi, Naghibzadeh, Abrishami (b13) 2017; 17 Ni, Pan, Du, Cao, Zhai (b6) 2017; 14 (b24) 2004 Thakkar, Kotecha (b11) 2014; 14 Taheri, Neamatollahi, Younis, Naghibzadeh, Yaghmaee (b16) 2012; 10 Pachlor, Shrimankar (b5) 2018; 18 Xu, Chen, Chen, Guan (b21) 2016; 3 Salayma, Al-Dubai, Romdhani, Nasser (b7) 2017; 50 Marwa Mamdouh, Mohamed A.I. Elrukhsi, Ahmed Khattab, Securing the internet of things and wireless sensor networks via machine learning: A survey, in: International Conference on Computer and Applications, 2018, pp. 215–218. Afsar, Tayarani-N (b14) 2014; 46 Heinzelman, Chandrakasan, Balakrishnan (b15) 2002; 1 Nayak, IEEE, Devulapalli (b2) 2016; 16 Saeed, Kolberg (b20) 2019; 7 Jia, Zhu, Zou, Hu (b23) 2016; 16 Younis, Fahmy (b10) 2004; 3 Wang, Wu, Wang, Hu (b9) 2016; 16 Sohn, Lee, Lee (b22) 2016; 20 Ma, Liang, Zheng, Sharif (b1) 2016; 16 Lee, Cheng (b8) 2012; 12 Xiao, Sun, Gui, Chen (b12) 2016; 9 Lee, IEEE, Kao (b3) 2016; 3 Nikolov (10.1016/j.asoc.2019.105610_b4) 2018; 18 Ma (10.1016/j.asoc.2019.105610_b1) 2016; 16 Nayak (10.1016/j.asoc.2019.105610_b2) 2016; 16 Jia (10.1016/j.asoc.2019.105610_b23) 2016; 16 (10.1016/j.asoc.2019.105610_b24) 2004 Atalik (10.1016/j.asoc.2019.105610_b19) 2018; 15 Pachlor (10.1016/j.asoc.2019.105610_b5) 2018; 18 Heinzelman (10.1016/j.asoc.2019.105610_b15) 2002; 1 Lee (10.1016/j.asoc.2019.105610_b3) 2016; 3 Neamatollahi (10.1016/j.asoc.2019.105610_b13) 2017; 17 Taheri (10.1016/j.asoc.2019.105610_b16) 2012; 10 Afsar (10.1016/j.asoc.2019.105610_b14) 2014; 46 Thakkar (10.1016/j.asoc.2019.105610_b11) 2014; 14 Wang (10.1016/j.asoc.2019.105610_b9) 2016; 16 Xu (10.1016/j.asoc.2019.105610_b21) 2016; 3 Ni (10.1016/j.asoc.2019.105610_b6) 2017; 14 Saeed (10.1016/j.asoc.2019.105610_b20) 2019; 7 Lee (10.1016/j.asoc.2019.105610_b8) 2012; 12 10.1016/j.asoc.2019.105610_b17 Xiao (10.1016/j.asoc.2019.105610_b12) 2016; 9 Salayma (10.1016/j.asoc.2019.105610_b7) 2017; 50 Ghate (10.1016/j.asoc.2019.105610_b18) 2018; 118 Sohn (10.1016/j.asoc.2019.105610_b22) 2016; 20 Younis (10.1016/j.asoc.2019.105610_b10) 2004; 3 |
| References_xml | – volume: 14 year: 2017 ident: b6 article-title: A novel cluster head selection algorithm based on fuzzy clustering and particle swarm optimization publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. – volume: 10 start-page: 1469 year: 2012 end-page: 1481 ident: b16 article-title: An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic publication-title: Ad Hoc Netw. – volume: 18 start-page: 9 year: 2018 ident: b5 article-title: LAR-CH: A cluster-head rotation approach for sensor networks publication-title: IEEE Sens. J. – year: 2004 ident: b24 article-title: Intel Lab Data – volume: 46 start-page: 198 year: 2014 end-page: 226 ident: b14 article-title: Clustering in sensor networks: A literature survey publication-title: J. Netw. Comput. Appl. – volume: 7 start-page: 3122 year: 2019 end-page: 3135 ident: b20 article-title: Towards optimizing WLANs power saving: Novel context-aware network traffic classification based on a machine learning approach publication-title: IEEE Access – volume: 12 start-page: 2891 year: 2012 end-page: 2897 ident: b8 article-title: Fuzzy-Logic-based clustering approach for wireless sensor networks using energy predication publication-title: IEEE Sens. J. – volume: 3 year: 2016 ident: b3 article-title: An improved three-layer low-energy adaptive clustering hierarchy for wireless sensor networks publication-title: IEEE Internet Things J. – volume: 16 year: 2016 ident: b9 article-title: Energy-efficient clustering using correlation and random update based on data change rate for wireless sensor networks publication-title: IEEE Sens. J. – volume: 9 start-page: 199 year: 2016 end-page: 208 ident: b12 article-title: A novel energy entropy based on cluster head selection algorithm for wireless sensor networks publication-title: Int. J. Grid Distrib. Comput. – volume: 16 start-page: 513 year: 2016 end-page: 528 ident: b1 article-title: A connectivity-aware approximation algorithm for relay node placement in wireless sensor networks publication-title: IEEE Sens. J. – volume: 20 start-page: 558 year: 2016 end-page: 561 ident: b22 article-title: Low-energy adaptive clustering hierarchy using affinity propagation for wireless sensor networks publication-title: IEEE Commun. Lett. – volume: 3 start-page: 366 year: 2004 end-page: 379 ident: b10 article-title: HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks publication-title: IEEE Trans. Mob. Comput. – volume: 16 start-page: 2746 year: 2016 end-page: 2754 ident: b23 article-title: Dynamic cluster head selection method for wireless sensor network publication-title: IEEE Sens. J. – volume: 50 start-page: 1 year: 2017 end-page: 35 ident: b7 article-title: Wireless body area network (WBAN): A survey on reliability, fault tolerance, and technologies coexistence publication-title: ACM Comput. Surv. – volume: 118 year: 2018 ident: b18 article-title: Machine learning for data aggregation in WSN: A survey publication-title: Int. J. Pure Appl. Math. – volume: 14 start-page: 2658 year: 2014 end-page: 2664 ident: b11 article-title: Cluster head election for energy and delay constraint applications of wireless sensor network publication-title: IEEE Sens. J. – volume: 15 start-page: 91 year: 2018 end-page: 102 ident: b19 article-title: A new approach for parameter estimation in fuzzy logistic regression publication-title: Iran. J. Fuzzy Syst. – reference: Marwa Mamdouh, Mohamed A.I. Elrukhsi, Ahmed Khattab, Securing the internet of things and wireless sensor networks via machine learning: A survey, in: International Conference on Computer and Applications, 2018, pp. 215–218. – volume: 18 year: 2018 ident: b4 article-title: Encoded sensing for energy efficient wireless sensor networks publication-title: IEEE Sens. J. – volume: 1 start-page: 660 year: 2002 end-page: 670 ident: b15 article-title: An application-specific protocol architecture for wireless microsensor networks publication-title: IEEE Trans. Wirel. Commun. – volume: 16 year: 2016 ident: b2 article-title: A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime publication-title: IEEE Sens. J. – volume: 3 start-page: 520 year: 2016 end-page: 532 ident: b21 article-title: Joint clustering and routing design for reliable and efficient data collection in large-scale wireless sensor networks publication-title: IEEE Internet Things J. – volume: 17 year: 2017 ident: b13 article-title: Fuzzy-based clustering-task scheduling for lifetime enhancement in wireless sensor networks publication-title: IEEE Sens. J. – volume: 50 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.asoc.2019.105610_b7 article-title: Wireless body area network (WBAN): A survey on reliability, fault tolerance, and technologies coexistence publication-title: ACM Comput. Surv. doi: 10.1145/3041956 – ident: 10.1016/j.asoc.2019.105610_b17 doi: 10.1109/COMAPP.2018.8460440 – volume: 20 start-page: 558 issue: 3 year: 2016 ident: 10.1016/j.asoc.2019.105610_b22 article-title: Low-energy adaptive clustering hierarchy using affinity propagation for wireless sensor networks publication-title: IEEE Commun. Lett. doi: 10.1109/LCOMM.2016.2517017 – volume: 18 issue: 2 year: 2018 ident: 10.1016/j.asoc.2019.105610_b4 article-title: Encoded sensing for energy efficient wireless sensor networks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2756865 – volume: 18 start-page: 9 issue: 23 year: 2018 ident: 10.1016/j.asoc.2019.105610_b5 article-title: LAR-CH: A cluster-head rotation approach for sensor networks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2872065 – volume: 16 issue: 1 year: 2016 ident: 10.1016/j.asoc.2019.105610_b2 article-title: A fuzzy logic-based clustering algorithm for WSN to extend the network lifetime publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2472970 – volume: 12 start-page: 2891 issue: 9 year: 2012 ident: 10.1016/j.asoc.2019.105610_b8 article-title: Fuzzy-Logic-based clustering approach for wireless sensor networks using energy predication publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2012.2204737 – volume: 17 issue: 20 year: 2017 ident: 10.1016/j.asoc.2019.105610_b13 article-title: Fuzzy-based clustering-task scheduling for lifetime enhancement in wireless sensor networks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2017.2749250 – volume: 118 issue: 24 year: 2018 ident: 10.1016/j.asoc.2019.105610_b18 article-title: Machine learning for data aggregation in WSN: A survey publication-title: Int. J. Pure Appl. Math. – volume: 3 start-page: 520 issue: 4 year: 2016 ident: 10.1016/j.asoc.2019.105610_b21 article-title: Joint clustering and routing design for reliable and efficient data collection in large-scale wireless sensor networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2015.2482363 – volume: 16 start-page: 513 issue: 2 year: 2016 ident: 10.1016/j.asoc.2019.105610_b1 article-title: A connectivity-aware approximation algorithm for relay node placement in wireless sensor networks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2456931 – volume: 46 start-page: 198 year: 2014 ident: 10.1016/j.asoc.2019.105610_b14 article-title: Clustering in sensor networks: A literature survey publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2014.09.005 – volume: 7 start-page: 3122 year: 2019 ident: 10.1016/j.asoc.2019.105610_b20 article-title: Towards optimizing WLANs power saving: Novel context-aware network traffic classification based on a machine learning approach publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2888813 – volume: 10 start-page: 1469 issue: 7 year: 2012 ident: 10.1016/j.asoc.2019.105610_b16 article-title: An energy-aware distributed clustering protocol in wireless sensor networks using fuzzy logic publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2012.04.004 – year: 2004 ident: 10.1016/j.asoc.2019.105610_b24 – volume: 3 issue: 6 year: 2016 ident: 10.1016/j.asoc.2019.105610_b3 article-title: An improved three-layer low-energy adaptive clustering hierarchy for wireless sensor networks publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2016.2530682 – volume: 16 issue: 13 year: 2016 ident: 10.1016/j.asoc.2019.105610_b9 article-title: Energy-efficient clustering using correlation and random update based on data change rate for wireless sensor networks publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2016.2561283 – volume: 1 start-page: 660 issue: 4 year: 2002 ident: 10.1016/j.asoc.2019.105610_b15 article-title: An application-specific protocol architecture for wireless microsensor networks publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2002.804190 – volume: 9 start-page: 199 issue: 3 year: 2016 ident: 10.1016/j.asoc.2019.105610_b12 article-title: A novel energy entropy based on cluster head selection algorithm for wireless sensor networks publication-title: Int. J. Grid Distrib. Comput. doi: 10.14257/ijgdc.2016.9.3.21 – volume: 14 start-page: 2658 issue: 8 year: 2014 ident: 10.1016/j.asoc.2019.105610_b11 article-title: Cluster head election for energy and delay constraint applications of wireless sensor network publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2014.2312549 – volume: 14 issue: 1 year: 2017 ident: 10.1016/j.asoc.2019.105610_b6 article-title: A novel cluster head selection algorithm based on fuzzy clustering and particle swarm optimization publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2015.2446475 – volume: 16 start-page: 2746 issue: 8 year: 2016 ident: 10.1016/j.asoc.2019.105610_b23 article-title: Dynamic cluster head selection method for wireless sensor network publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2015.2512322 – volume: 15 start-page: 91 issue: 1 year: 2018 ident: 10.1016/j.asoc.2019.105610_b19 article-title: A new approach for parameter estimation in fuzzy logistic regression publication-title: Iran. J. Fuzzy Syst. – volume: 3 start-page: 366 issue: 4 year: 2004 ident: 10.1016/j.asoc.2019.105610_b10 article-title: HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks publication-title: IEEE Trans. Mob. Comput. doi: 10.1109/TMC.2004.41 |
| SSID | ssj0016928 |
| Score | 2.462808 |
| Snippet | A useful approach to increase the lifetime of wireless sensor networks is clustering. Exchange of messages due to successive and recurrent reclustering burdens... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105610 |
| SubjectTerms | Clustering Energy efficiency Fuzzy Machine learning Network lifetime Wireless sensor networks |
| Title | On improving the lifespan of wireless sensor networks with fuzzy based clustering and machine learning based data reduction |
| URI | https://dx.doi.org/10.1016/j.asoc.2019.105610 |
| Volume | 83 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXjxLdZH2YM3iTW7m6R7LMVSX1XUQm9hN9lAJKalj4MV_O3OJJuiID14CgmzS5jZnRffzBByHkSu0hAcO1J7gSMCuIpKcOFwCb6ua2QUMawdfhj4_aG4HXmjGulWtTAIq7S6v9Tphba2X1qWm61JmrZeIPJoCykgAgA1LIueoEIEOMXg8msF83B9WcxXRWIHqW3hTInxUsABhHfJYgA9VtH-ZZx-GJzeDtmyniLtlD-zS2om3yPb1RQGai_lPvl8zGlapQYo-HM0SxMDiiKn44RiK-IMtBmdQbw6ntK8hH3PKCZgabJYLj8oWrKYRtkCmybgJiqP6XuBsoTNbO7EUiGilE6x3ytK9IAMe9ev3b5jRyo4Eedy7jBlBGNBbCCu4BwuqxvEYI8Cw7h0uQLvzSiIOBKufc2uNBdx7Cca2SwjEJzLD0k9H-fmiFBfaNPG0l7s-OLGPrhqnq-Yx0HGiYxZg7gVL8PI9hvHsRdZWAHL3kLkf4j8D0v-N8jFas2k7LaxltqrRBT-OjMhmIM1647_ue6EbOJbCeU7JfX5dGHOwCWZ62Zx5ppko9N9vn_C581df_ANhU3hfg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqGGDhjShPD2wolNhOUo-ooirQloFW6hbZiSMFhbTqY6BI_HbuEqcCCXVgTc5RdGffw_ruO0Kug8hVGopjR2ovcEQAR1EJLhwuIdd1jYwihr3Dvb7fGYqnkTeqkVbVC4OwSuv7S59eeGv7pGG12ZikaeMVKo-mkAIqAHDDEjlBN4XHAqzAbr9WOA_Xl8WAVZR2UNx2zpQgLwUqQHyXLCbQYxvtX9HpR8Rp75EdmyrS-_Jv9knN5AdktxrDQO2pPCSfLzlNq7sBCgkdzdLEgKfI6TihyEWcgTujMyhYx1Oal7jvGcUbWJoslssPiqEsplG2QNYE_IjKY_pewCzhY_byxEohpJROkfAVTXpEhu2HQavj2JkKTsS5nDtMGcFYEBsoLDiH0-oGMQSkwDAuXa4gfTMKSo6Ea1-zO81FHPuJRj3LCCzn8mOykY9zc0KoL7RpYm8vUr64sQ-5mucr5nEwciJjVidupcswsoTjOPciCytk2VuI-g9R_2Gp_zq5Wa2ZlHQba6W9ykThr00TQjxYs-70n-uuyFZn0OuG3cf-8xnZxjclru-cbMynC3MB-clcXxb77xvJC-F- |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+improving+the+lifespan+of+wireless+sensor+networks+with+fuzzy+based+clustering+and+machine+learning+based+data+reduction&rft.jtitle=Applied+soft+computing&rft.au=Radhika%2C+S.&rft.au=Rangarajan%2C+P.&rft.date=2019-10-01&rft.issn=1568-4946&rft.volume=83&rft.spage=105610&rft_id=info:doi/10.1016%2Fj.asoc.2019.105610&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2019_105610 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |