A stacking ensemble learning for Iberian pigs activity prediction: a time series forecasting approach
Automatic determination of abnormal animal activities can be helpful for the timely detection of signs of health and welfare problems. Usually, this problem is addressed as a classification problem, which typically requires manual annotation of behaviors. This manual annotation can introduce noise i...
Saved in:
Published in | AIMS mathematics Vol. 9; no. 5; pp. 13358 - 13384 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2024652 |
Cover
Abstract | Automatic determination of abnormal animal activities can be helpful for the timely detection of signs of health and welfare problems. Usually, this problem is addressed as a classification problem, which typically requires manual annotation of behaviors. This manual annotation can introduce noise into the data and may not always be possible. This motivated us to address the problem as a time-series forecasting problem in which the activity of an animal can be predicted. In this work, different machine learning techniques were tested to obtain activity patterns for Iberian pigs. In particular, we propose a novel stacking ensemble learning approach that combines base learners with meta-learners to obtain the final predictive model. Results confirm the superior performance of the proposed method relative to the other tested strategies. We also explored the possibility of using predictive models trained on an animal to predict the activity of different animals on the same farm. As expected, the predictive performance degrades in this case, but it remains acceptable. The proposed method could be integrated into a monitoring system that may have the potential to transform the way farm animals are monitored, improving their health and welfare conditions, for example, by allowing the early detection of a possible health problem. |
---|---|
AbstractList | Automatic determination of abnormal animal activities can be helpful for the timely detection of signs of health and welfare problems. Usually, this problem is addressed as a classification problem, which typically requires manual annotation of behaviors. This manual annotation can introduce noise into the data and may not always be possible. This motivated us to address the problem as a time-series forecasting problem in which the activity of an animal can be predicted. In this work, different machine learning techniques were tested to obtain activity patterns for Iberian pigs. In particular, we propose a novel stacking ensemble learning approach that combines base learners with meta-learners to obtain the final predictive model. Results confirm the superior performance of the proposed method relative to the other tested strategies. We also explored the possibility of using predictive models trained on an animal to predict the activity of different animals on the same farm. As expected, the predictive performance degrades in this case, but it remains acceptable. The proposed method could be integrated into a monitoring system that may have the potential to transform the way farm animals are monitored, improving their health and welfare conditions, for example, by allowing the early detection of a possible health problem. |
Author | Gómez-Vela, Francisco Divina, Federico García-Torres, Miguel Rodriguez-Baena, Domingo S. |
Author_xml | – sequence: 1 givenname: Federico surname: Divina fullname: Divina, Federico – sequence: 2 givenname: Miguel surname: García-Torres fullname: García-Torres, Miguel – sequence: 3 givenname: Francisco surname: Gómez-Vela fullname: Gómez-Vela, Francisco – sequence: 4 givenname: Domingo S. surname: Rodriguez-Baena fullname: Rodriguez-Baena, Domingo S. |
BookMark | eNptkNtKw0AQhhdRUGvvfIB9AKvZUzbxTsRDoeCNXi-TyaTdmiZhdxF8exNbQcSrOfB_PzP_OTvu-o4YuxTZtSqVvtlB2lzLTOrcyCN2JrVVi7wsiuNf_Smbx7jNskwKqaXVZ4zueEyA775bc-oi7aqWeEsQumnT9IEvKwoeOj74deSAyX_49MmHQLUfh7675cCT3xGPo47ixBBCTBMPwxB6wM0FO2mgjTQ_1Bl7e3x4vX9erF6elvd3qwUqVaaFtGgoL4QALavaGmXAVI0W1taQl0BKIjZaGp3ZnHK0iNJk5Sg3pihEZdSMLfe-dQ9bNwS_g_DpevDue9GHtYOQPLbktCItTAVYFUobJFBQqboWulG20GhHL7n3wtDHGKhx6BNMH6cAvnUic1PubsrdHXIfoas_0M8R_8q_AFgeh9I |
CitedBy_id | crossref_primary_10_3934_math_20241174 |
Cites_doi | 10.3390/s21010088 10.1007/978-3-030-33709-4_18 10.1214/aos/1013203451 10.1016/j.atech.2022.100091 10.3390/en11040949 10.3168/jds.2009-2758 10.1038/s41598-020-70688-6 10.1016/S0168-1699(02)00096-0 10.1016/j.biosystemseng.2022.02.013 10.5555/1953048.2078195 10.1016/S1573-4412(05)80007-8 10.1016/j.tvjl.2017.11.013 10.2527/jas.2008-1297 10.1016/j.livsci.2013.10.014 10.1080/07350015.1995.10524601 10.1016/j.compag.2020.105285 10.1126/science.1183899 10.1017/S1751731112002406 10.1016/j.atech.2023.100256 10.1016/j.livsci.2020.104205 10.3390/ani8010012 10.5555/3367471.3367518 10.1016/j.compag.2020.105826 10.1007/s42853-021-00115-9 10.3390/s19143201 10.1109/SBRN.2000.889734 10.1016/j.jocs.2020.101076 10.1145/361002.361007 10.1111/asj.13833 10.1016/j.ins.2019.07.053 10.15835/BUASVMCN-VM:69:1-2:8847 10.1016/j.agsy.2017.01.023 10.1016/j.applanim.2009.03.005 10.1109/TSMCA.2009.2029559 10.1016/j.compag.2019.105175 10.1007/978-3-319-94120-2_12 10.1071/AN14409 10.1162/neco.1997.9.8.1735 10.1111/1365-2656.13904 10.1038/s41598-017-17451-6 10.1016/j.jveb.2017.04.003 10.1016/j.biosystemseng.2018.11.011 10.1080/01621459.2018.1448825 10.3390/ani11092660 10.1016/j.compag.2023.107707 10.3390/w9100796 10.1016/S0168-1699(00)00153-8 10.3168/jds.2016-11526 10.1016/j.rser.2021.111984 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2024652 |
DatabaseName | CrossRef DOAJ |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 13384 |
ExternalDocumentID | oai_doaj_org_article_43e415bacb8345cea3ab3dd14f3784c7 10_3934_math_2024652 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c339t-27c5e6811a42bd7535a5bf4177da69ae32ccf4254076e6c7cc250911a55881b53 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:22:19 EDT 2025 Tue Jul 01 03:57:13 EDT 2025 Thu Apr 24 22:57:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c339t-27c5e6811a42bd7535a5bf4177da69ae32ccf4254076e6c7cc250911a55881b53 |
OpenAccessLink | https://doaj.org/article/43e415bacb8345cea3ab3dd14f3784c7 |
PageCount | 27 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_43e415bacb8345cea3ab3dd14f3784c7 crossref_citationtrail_10_3934_math_2024652 crossref_primary_10_3934_math_2024652 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2024 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2024652-33 key-10.3934/math.2024652-32 key-10.3934/math.2024652-35 key-10.3934/math.2024652-34 key-10.3934/math.2024652-37 key-10.3934/math.2024652-36 key-10.3934/math.2024652-39 key-10.3934/math.2024652-38 key-10.3934/math.2024652-31 key-10.3934/math.2024652-30 key-10.3934/math.2024652-4 key-10.3934/math.2024652-3 key-10.3934/math.2024652-2 key-10.3934/math.2024652-1 key-10.3934/math.2024652-8 key-10.3934/math.2024652-7 key-10.3934/math.2024652-6 key-10.3934/math.2024652-5 key-10.3934/math.2024652-29 key-10.3934/math.2024652-22 key-10.3934/math.2024652-21 key-10.3934/math.2024652-24 key-10.3934/math.2024652-23 key-10.3934/math.2024652-26 key-10.3934/math.2024652-25 key-10.3934/math.2024652-28 key-10.3934/math.2024652-27 key-10.3934/math.2024652-20 key-10.3934/math.2024652-19 key-10.3934/math.2024652-18 key-10.3934/math.2024652-11 key-10.3934/math.2024652-55 key-10.3934/math.2024652-10 key-10.3934/math.2024652-54 key-10.3934/math.2024652-13 key-10.3934/math.2024652-57 key-10.3934/math.2024652-12 key-10.3934/math.2024652-56 key-10.3934/math.2024652-15 key-10.3934/math.2024652-14 key-10.3934/math.2024652-17 key-10.3934/math.2024652-16 key-10.3934/math.2024652-51 key-10.3934/math.2024652-50 key-10.3934/math.2024652-53 key-10.3934/math.2024652-52 key-10.3934/math.2024652-44 key-10.3934/math.2024652-43 key-10.3934/math.2024652-46 key-10.3934/math.2024652-45 key-10.3934/math.2024652-48 key-10.3934/math.2024652-47 key-10.3934/math.2024652-49 key-10.3934/math.2024652-9 key-10.3934/math.2024652-40 key-10.3934/math.2024652-42 key-10.3934/math.2024652-41 |
References_xml | – ident: key-10.3934/math.2024652-27 doi: 10.3390/s21010088 – ident: key-10.3934/math.2024652-33 doi: 10.1007/978-3-030-33709-4_18 – ident: key-10.3934/math.2024652-53 doi: 10.1214/aos/1013203451 – ident: key-10.3934/math.2024652-32 doi: 10.1016/j.atech.2022.100091 – ident: key-10.3934/math.2024652-48 – ident: key-10.3934/math.2024652-42 doi: 10.3390/en11040949 – ident: key-10.3934/math.2024652-12 doi: 10.3168/jds.2009-2758 – ident: key-10.3934/math.2024652-19 doi: 10.1038/s41598-020-70688-6 – ident: key-10.3934/math.2024652-1 doi: 10.1016/S0168-1699(02)00096-0 – ident: key-10.3934/math.2024652-31 doi: 10.1016/j.biosystemseng.2022.02.013 – ident: key-10.3934/math.2024652-44 doi: 10.5555/1953048.2078195 – ident: key-10.3934/math.2024652-45 doi: 10.1016/S1573-4412(05)80007-8 – ident: key-10.3934/math.2024652-8 doi: 10.1016/j.tvjl.2017.11.013 – ident: key-10.3934/math.2024652-9 doi: 10.2527/jas.2008-1297 – ident: key-10.3934/math.2024652-16 doi: 10.1016/j.livsci.2013.10.014 – ident: key-10.3934/math.2024652-40 doi: 10.1080/07350015.1995.10524601 – ident: key-10.3934/math.2024652-49 – ident: key-10.3934/math.2024652-25 doi: 10.1016/j.compag.2020.105285 – ident: key-10.3934/math.2024652-2 doi: 10.1126/science.1183899 – ident: key-10.3934/math.2024652-6 doi: 10.1017/S1751731112002406 – ident: key-10.3934/math.2024652-29 doi: 10.1016/j.atech.2023.100256 – ident: key-10.3934/math.2024652-30 doi: 10.1016/j.livsci.2020.104205 – ident: key-10.3934/math.2024652-17 doi: 10.3390/ani8010012 – ident: key-10.3934/math.2024652-54 doi: 10.5555/3367471.3367518 – ident: key-10.3934/math.2024652-15 doi: 10.1016/j.compag.2020.105826 – ident: key-10.3934/math.2024652-5 doi: 10.1007/s42853-021-00115-9 – ident: key-10.3934/math.2024652-24 doi: 10.3390/s19143201 – ident: key-10.3934/math.2024652-52 – ident: key-10.3934/math.2024652-51 doi: 10.1109/SBRN.2000.889734 – ident: key-10.3934/math.2024652-56 – ident: key-10.3934/math.2024652-34 doi: 10.1016/j.jocs.2020.101076 – ident: key-10.3934/math.2024652-46 doi: 10.1145/361002.361007 – ident: key-10.3934/math.2024652-18 doi: 10.1111/asj.13833 – ident: key-10.3934/math.2024652-38 doi: 10.1016/j.ins.2019.07.053 – ident: key-10.3934/math.2024652-7 doi: 10.15835/BUASVMCN-VM:69:1-2:8847 – ident: key-10.3934/math.2024652-4 doi: 10.1016/j.agsy.2017.01.023 – ident: key-10.3934/math.2024652-11 doi: 10.1016/j.applanim.2009.03.005 – ident: key-10.3934/math.2024652-26 doi: 10.1109/TSMCA.2009.2029559 – ident: key-10.3934/math.2024652-20 doi: 10.1016/j.compag.2019.105175 – ident: key-10.3934/math.2024652-41 doi: 10.1007/978-3-319-94120-2_12 – ident: key-10.3934/math.2024652-13 doi: 10.1071/AN14409 – ident: key-10.3934/math.2024652-47 doi: 10.1162/neco.1997.9.8.1735 – ident: key-10.3934/math.2024652-14 doi: 10.1111/1365-2656.13904 – ident: key-10.3934/math.2024652-10 doi: 10.1038/s41598-017-17451-6 – ident: key-10.3934/math.2024652-35 doi: 10.1016/j.jveb.2017.04.003 – ident: key-10.3934/math.2024652-28 doi: 10.1016/j.biosystemseng.2018.11.011 – ident: key-10.3934/math.2024652-39 doi: 10.1080/01621459.2018.1448825 – ident: key-10.3934/math.2024652-57 – ident: key-10.3934/math.2024652-23 doi: 10.3390/ani11092660 – ident: key-10.3934/math.2024652-21 doi: 10.1016/j.compag.2023.107707 – ident: key-10.3934/math.2024652-36 doi: 10.3390/w9100796 – ident: key-10.3934/math.2024652-3 doi: 10.1016/S0168-1699(00)00153-8 – ident: key-10.3934/math.2024652-43 – ident: key-10.3934/math.2024652-22 doi: 10.3168/jds.2016-11526 – ident: key-10.3934/math.2024652-55 doi: 10.5555/3367471.3367518 – ident: key-10.3934/math.2024652-37 doi: 10.1016/j.rser.2021.111984 – ident: key-10.3934/math.2024652-50 |
SSID | ssj0002124274 |
Score | 2.2545462 |
Snippet | Automatic determination of abnormal animal activities can be helpful for the timely detection of signs of health and welfare problems. Usually, this problem is... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 13358 |
SubjectTerms | animal behavior prediction ensemble learning forecasting methods machine learning |
Title | A stacking ensemble learning for Iberian pigs activity prediction: a time series forecasting approach |
URI | https://doaj.org/article/43e415bacb8345cea3ab3dd14f3784c7 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLHPQkS9089uGtiqUK9WShtyWZnRSh1tKt_9-Z3W2pB_HidZmEMMlmvi-ZfCPENQUpzL3lnCpnIxM0RhmAjwzEpQ5ZjqauWjJ8TQYj8zK2441SX5wT1sgDN47rGo0UY7wDn2ljAZ12XpdlTN2mmYH6HTmFsQ0yxXswbciG-FaT6a5zbbqE__juQZnEqh8xaEOqv44p_X2x14JB2WsGcSC2cHYododrJdXqSGBPEn4DPtCWxDjxw09RtqUeJpIQp3z2vIhmcv4-qSQ_U-BqEHK-4BsY9vq9dJIryEtebFhxGwRXcbqzXCmKH4tR_-ntcRC1pREi0DpfRioFi0kWx84oXxLlsM76YOI0LV2SO9QKINDvSHQtwQRSAMXIIHbWZgRUrT4R27PPGZ4KadIQMFBjpoY53DnlFJO-TDsLAaEjblfOKqDVDefyFdOC-AO7tmDXFq1rO-JmbT1v9DJ-sXtgv69tWOW6_kBzX7RzX_w192f_0cm52OExNccqF2J7ufjCSwIaS39Vr6lvshHThw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stacking+ensemble+learning+for+Iberian+pigs+activity+prediction%3A+a+time+series+forecasting+approach&rft.jtitle=AIMS+mathematics&rft.au=Federico+Divina&rft.au=Miguel+Garc%C3%ADa-Torres&rft.au=Francisco+G%C3%B3mez-Vela&rft.au=Domingo+S.+Rodriguez-Baena&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=5&rft.spage=13358&rft.epage=13384&rft_id=info:doi/10.3934%2Fmath.2024652&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_43e415bacb8345cea3ab3dd14f3784c7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |