A stacking ensemble learning for Iberian pigs activity prediction: a time series forecasting approach

Automatic determination of abnormal animal activities can be helpful for the timely detection of signs of health and welfare problems. Usually, this problem is addressed as a classification problem, which typically requires manual annotation of behaviors. This manual annotation can introduce noise i...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 9; no. 5; pp. 13358 - 13384
Main Authors Divina, Federico, García-Torres, Miguel, Gómez-Vela, Francisco, Rodriguez-Baena, Domingo S.
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2024
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2024652

Cover

Abstract Automatic determination of abnormal animal activities can be helpful for the timely detection of signs of health and welfare problems. Usually, this problem is addressed as a classification problem, which typically requires manual annotation of behaviors. This manual annotation can introduce noise into the data and may not always be possible. This motivated us to address the problem as a time-series forecasting problem in which the activity of an animal can be predicted. In this work, different machine learning techniques were tested to obtain activity patterns for Iberian pigs. In particular, we propose a novel stacking ensemble learning approach that combines base learners with meta-learners to obtain the final predictive model. Results confirm the superior performance of the proposed method relative to the other tested strategies. We also explored the possibility of using predictive models trained on an animal to predict the activity of different animals on the same farm. As expected, the predictive performance degrades in this case, but it remains acceptable. The proposed method could be integrated into a monitoring system that may have the potential to transform the way farm animals are monitored, improving their health and welfare conditions, for example, by allowing the early detection of a possible health problem.
AbstractList Automatic determination of abnormal animal activities can be helpful for the timely detection of signs of health and welfare problems. Usually, this problem is addressed as a classification problem, which typically requires manual annotation of behaviors. This manual annotation can introduce noise into the data and may not always be possible. This motivated us to address the problem as a time-series forecasting problem in which the activity of an animal can be predicted. In this work, different machine learning techniques were tested to obtain activity patterns for Iberian pigs. In particular, we propose a novel stacking ensemble learning approach that combines base learners with meta-learners to obtain the final predictive model. Results confirm the superior performance of the proposed method relative to the other tested strategies. We also explored the possibility of using predictive models trained on an animal to predict the activity of different animals on the same farm. As expected, the predictive performance degrades in this case, but it remains acceptable. The proposed method could be integrated into a monitoring system that may have the potential to transform the way farm animals are monitored, improving their health and welfare conditions, for example, by allowing the early detection of a possible health problem.
Author Gómez-Vela, Francisco
Divina, Federico
García-Torres, Miguel
Rodriguez-Baena, Domingo S.
Author_xml – sequence: 1
  givenname: Federico
  surname: Divina
  fullname: Divina, Federico
– sequence: 2
  givenname: Miguel
  surname: García-Torres
  fullname: García-Torres, Miguel
– sequence: 3
  givenname: Francisco
  surname: Gómez-Vela
  fullname: Gómez-Vela, Francisco
– sequence: 4
  givenname: Domingo S.
  surname: Rodriguez-Baena
  fullname: Rodriguez-Baena, Domingo S.
BookMark eNptkNtKw0AQhhdRUGvvfIB9AKvZUzbxTsRDoeCNXi-TyaTdmiZhdxF8exNbQcSrOfB_PzP_OTvu-o4YuxTZtSqVvtlB2lzLTOrcyCN2JrVVi7wsiuNf_Smbx7jNskwKqaXVZ4zueEyA775bc-oi7aqWeEsQumnT9IEvKwoeOj74deSAyX_49MmHQLUfh7675cCT3xGPo47ixBBCTBMPwxB6wM0FO2mgjTQ_1Bl7e3x4vX9erF6elvd3qwUqVaaFtGgoL4QALavaGmXAVI0W1taQl0BKIjZaGp3ZnHK0iNJk5Sg3pihEZdSMLfe-dQ9bNwS_g_DpevDue9GHtYOQPLbktCItTAVYFUobJFBQqboWulG20GhHL7n3wtDHGKhx6BNMH6cAvnUic1PubsrdHXIfoas_0M8R_8q_AFgeh9I
CitedBy_id crossref_primary_10_3934_math_20241174
Cites_doi 10.3390/s21010088
10.1007/978-3-030-33709-4_18
10.1214/aos/1013203451
10.1016/j.atech.2022.100091
10.3390/en11040949
10.3168/jds.2009-2758
10.1038/s41598-020-70688-6
10.1016/S0168-1699(02)00096-0
10.1016/j.biosystemseng.2022.02.013
10.5555/1953048.2078195
10.1016/S1573-4412(05)80007-8
10.1016/j.tvjl.2017.11.013
10.2527/jas.2008-1297
10.1016/j.livsci.2013.10.014
10.1080/07350015.1995.10524601
10.1016/j.compag.2020.105285
10.1126/science.1183899
10.1017/S1751731112002406
10.1016/j.atech.2023.100256
10.1016/j.livsci.2020.104205
10.3390/ani8010012
10.5555/3367471.3367518
10.1016/j.compag.2020.105826
10.1007/s42853-021-00115-9
10.3390/s19143201
10.1109/SBRN.2000.889734
10.1016/j.jocs.2020.101076
10.1145/361002.361007
10.1111/asj.13833
10.1016/j.ins.2019.07.053
10.15835/BUASVMCN-VM:69:1-2:8847
10.1016/j.agsy.2017.01.023
10.1016/j.applanim.2009.03.005
10.1109/TSMCA.2009.2029559
10.1016/j.compag.2019.105175
10.1007/978-3-319-94120-2_12
10.1071/AN14409
10.1162/neco.1997.9.8.1735
10.1111/1365-2656.13904
10.1038/s41598-017-17451-6
10.1016/j.jveb.2017.04.003
10.1016/j.biosystemseng.2018.11.011
10.1080/01621459.2018.1448825
10.3390/ani11092660
10.1016/j.compag.2023.107707
10.3390/w9100796
10.1016/S0168-1699(00)00153-8
10.3168/jds.2016-11526
10.1016/j.rser.2021.111984
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2024652
DatabaseName CrossRef
DOAJ
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 13384
ExternalDocumentID oai_doaj_org_article_43e415bacb8345cea3ab3dd14f3784c7
10_3934_math_2024652
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c339t-27c5e6811a42bd7535a5bf4177da69ae32ccf4254076e6c7cc250911a55881b53
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:22:19 EDT 2025
Tue Jul 01 03:57:13 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-27c5e6811a42bd7535a5bf4177da69ae32ccf4254076e6c7cc250911a55881b53
OpenAccessLink https://doaj.org/article/43e415bacb8345cea3ab3dd14f3784c7
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_43e415bacb8345cea3ab3dd14f3784c7
crossref_citationtrail_10_3934_math_2024652
crossref_primary_10_3934_math_2024652
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2024652-33
key-10.3934/math.2024652-32
key-10.3934/math.2024652-35
key-10.3934/math.2024652-34
key-10.3934/math.2024652-37
key-10.3934/math.2024652-36
key-10.3934/math.2024652-39
key-10.3934/math.2024652-38
key-10.3934/math.2024652-31
key-10.3934/math.2024652-30
key-10.3934/math.2024652-4
key-10.3934/math.2024652-3
key-10.3934/math.2024652-2
key-10.3934/math.2024652-1
key-10.3934/math.2024652-8
key-10.3934/math.2024652-7
key-10.3934/math.2024652-6
key-10.3934/math.2024652-5
key-10.3934/math.2024652-29
key-10.3934/math.2024652-22
key-10.3934/math.2024652-21
key-10.3934/math.2024652-24
key-10.3934/math.2024652-23
key-10.3934/math.2024652-26
key-10.3934/math.2024652-25
key-10.3934/math.2024652-28
key-10.3934/math.2024652-27
key-10.3934/math.2024652-20
key-10.3934/math.2024652-19
key-10.3934/math.2024652-18
key-10.3934/math.2024652-11
key-10.3934/math.2024652-55
key-10.3934/math.2024652-10
key-10.3934/math.2024652-54
key-10.3934/math.2024652-13
key-10.3934/math.2024652-57
key-10.3934/math.2024652-12
key-10.3934/math.2024652-56
key-10.3934/math.2024652-15
key-10.3934/math.2024652-14
key-10.3934/math.2024652-17
key-10.3934/math.2024652-16
key-10.3934/math.2024652-51
key-10.3934/math.2024652-50
key-10.3934/math.2024652-53
key-10.3934/math.2024652-52
key-10.3934/math.2024652-44
key-10.3934/math.2024652-43
key-10.3934/math.2024652-46
key-10.3934/math.2024652-45
key-10.3934/math.2024652-48
key-10.3934/math.2024652-47
key-10.3934/math.2024652-49
key-10.3934/math.2024652-9
key-10.3934/math.2024652-40
key-10.3934/math.2024652-42
key-10.3934/math.2024652-41
References_xml – ident: key-10.3934/math.2024652-27
  doi: 10.3390/s21010088
– ident: key-10.3934/math.2024652-33
  doi: 10.1007/978-3-030-33709-4_18
– ident: key-10.3934/math.2024652-53
  doi: 10.1214/aos/1013203451
– ident: key-10.3934/math.2024652-32
  doi: 10.1016/j.atech.2022.100091
– ident: key-10.3934/math.2024652-48
– ident: key-10.3934/math.2024652-42
  doi: 10.3390/en11040949
– ident: key-10.3934/math.2024652-12
  doi: 10.3168/jds.2009-2758
– ident: key-10.3934/math.2024652-19
  doi: 10.1038/s41598-020-70688-6
– ident: key-10.3934/math.2024652-1
  doi: 10.1016/S0168-1699(02)00096-0
– ident: key-10.3934/math.2024652-31
  doi: 10.1016/j.biosystemseng.2022.02.013
– ident: key-10.3934/math.2024652-44
  doi: 10.5555/1953048.2078195
– ident: key-10.3934/math.2024652-45
  doi: 10.1016/S1573-4412(05)80007-8
– ident: key-10.3934/math.2024652-8
  doi: 10.1016/j.tvjl.2017.11.013
– ident: key-10.3934/math.2024652-9
  doi: 10.2527/jas.2008-1297
– ident: key-10.3934/math.2024652-16
  doi: 10.1016/j.livsci.2013.10.014
– ident: key-10.3934/math.2024652-40
  doi: 10.1080/07350015.1995.10524601
– ident: key-10.3934/math.2024652-49
– ident: key-10.3934/math.2024652-25
  doi: 10.1016/j.compag.2020.105285
– ident: key-10.3934/math.2024652-2
  doi: 10.1126/science.1183899
– ident: key-10.3934/math.2024652-6
  doi: 10.1017/S1751731112002406
– ident: key-10.3934/math.2024652-29
  doi: 10.1016/j.atech.2023.100256
– ident: key-10.3934/math.2024652-30
  doi: 10.1016/j.livsci.2020.104205
– ident: key-10.3934/math.2024652-17
  doi: 10.3390/ani8010012
– ident: key-10.3934/math.2024652-54
  doi: 10.5555/3367471.3367518
– ident: key-10.3934/math.2024652-15
  doi: 10.1016/j.compag.2020.105826
– ident: key-10.3934/math.2024652-5
  doi: 10.1007/s42853-021-00115-9
– ident: key-10.3934/math.2024652-24
  doi: 10.3390/s19143201
– ident: key-10.3934/math.2024652-52
– ident: key-10.3934/math.2024652-51
  doi: 10.1109/SBRN.2000.889734
– ident: key-10.3934/math.2024652-56
– ident: key-10.3934/math.2024652-34
  doi: 10.1016/j.jocs.2020.101076
– ident: key-10.3934/math.2024652-46
  doi: 10.1145/361002.361007
– ident: key-10.3934/math.2024652-18
  doi: 10.1111/asj.13833
– ident: key-10.3934/math.2024652-38
  doi: 10.1016/j.ins.2019.07.053
– ident: key-10.3934/math.2024652-7
  doi: 10.15835/BUASVMCN-VM:69:1-2:8847
– ident: key-10.3934/math.2024652-4
  doi: 10.1016/j.agsy.2017.01.023
– ident: key-10.3934/math.2024652-11
  doi: 10.1016/j.applanim.2009.03.005
– ident: key-10.3934/math.2024652-26
  doi: 10.1109/TSMCA.2009.2029559
– ident: key-10.3934/math.2024652-20
  doi: 10.1016/j.compag.2019.105175
– ident: key-10.3934/math.2024652-41
  doi: 10.1007/978-3-319-94120-2_12
– ident: key-10.3934/math.2024652-13
  doi: 10.1071/AN14409
– ident: key-10.3934/math.2024652-47
  doi: 10.1162/neco.1997.9.8.1735
– ident: key-10.3934/math.2024652-14
  doi: 10.1111/1365-2656.13904
– ident: key-10.3934/math.2024652-10
  doi: 10.1038/s41598-017-17451-6
– ident: key-10.3934/math.2024652-35
  doi: 10.1016/j.jveb.2017.04.003
– ident: key-10.3934/math.2024652-28
  doi: 10.1016/j.biosystemseng.2018.11.011
– ident: key-10.3934/math.2024652-39
  doi: 10.1080/01621459.2018.1448825
– ident: key-10.3934/math.2024652-57
– ident: key-10.3934/math.2024652-23
  doi: 10.3390/ani11092660
– ident: key-10.3934/math.2024652-21
  doi: 10.1016/j.compag.2023.107707
– ident: key-10.3934/math.2024652-36
  doi: 10.3390/w9100796
– ident: key-10.3934/math.2024652-3
  doi: 10.1016/S0168-1699(00)00153-8
– ident: key-10.3934/math.2024652-43
– ident: key-10.3934/math.2024652-22
  doi: 10.3168/jds.2016-11526
– ident: key-10.3934/math.2024652-55
  doi: 10.5555/3367471.3367518
– ident: key-10.3934/math.2024652-37
  doi: 10.1016/j.rser.2021.111984
– ident: key-10.3934/math.2024652-50
SSID ssj0002124274
Score 2.2545462
Snippet Automatic determination of abnormal animal activities can be helpful for the timely detection of signs of health and welfare problems. Usually, this problem is...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 13358
SubjectTerms animal behavior prediction
ensemble learning
forecasting methods
machine learning
Title A stacking ensemble learning for Iberian pigs activity prediction: a time series forecasting approach
URI https://doaj.org/article/43e415bacb8345cea3ab3dd14f3784c7
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLHPQkS9089uGtiqUK9WShtyWZnRSh1tKt_9-Z3W2pB_HidZmEMMlmvi-ZfCPENQUpzL3lnCpnIxM0RhmAjwzEpQ5ZjqauWjJ8TQYj8zK2441SX5wT1sgDN47rGo0UY7wDn2ljAZ12XpdlTN2mmYH6HTmFsQ0yxXswbciG-FaT6a5zbbqE__juQZnEqh8xaEOqv44p_X2x14JB2WsGcSC2cHYododrJdXqSGBPEn4DPtCWxDjxw09RtqUeJpIQp3z2vIhmcv4-qSQ_U-BqEHK-4BsY9vq9dJIryEtebFhxGwRXcbqzXCmKH4tR_-ntcRC1pREi0DpfRioFi0kWx84oXxLlsM76YOI0LV2SO9QKINDvSHQtwQRSAMXIIHbWZgRUrT4R27PPGZ4KadIQMFBjpoY53DnlFJO-TDsLAaEjblfOKqDVDefyFdOC-AO7tmDXFq1rO-JmbT1v9DJ-sXtgv69tWOW6_kBzX7RzX_w192f_0cm52OExNccqF2J7ufjCSwIaS39Vr6lvshHThw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+stacking+ensemble+learning+for+Iberian+pigs+activity+prediction%3A+a+time+series+forecasting+approach&rft.jtitle=AIMS+mathematics&rft.au=Federico+Divina&rft.au=Miguel+Garc%C3%ADa-Torres&rft.au=Francisco+G%C3%B3mez-Vela&rft.au=Domingo+S.+Rodriguez-Baena&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=5&rft.spage=13358&rft.epage=13384&rft_id=info:doi/10.3934%2Fmath.2024652&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_43e415bacb8345cea3ab3dd14f3784c7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon