Proximal Multitask Learning Over Networks With Sparsity-Inducing Coregularization

In this work, we consider multitask learning problems where clusters of nodes are interested in estimating their own parameter vector. Cooperation among clusters is beneficial when the optimal models of adjacent clusters have a good number of similar entries. We propose a fully distributed algorithm...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 64; no. 23; pp. 6329 - 6344
Main Authors Nassif, Roula, Richard, Cedric, Ferrari, Andre, Sayed, Ali H.
Format Journal Article
LanguageEnglish
Published IEEE 01.12.2016
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
1941-0476
DOI10.1109/TSP.2016.2601282

Cover

Abstract In this work, we consider multitask learning problems where clusters of nodes are interested in estimating their own parameter vector. Cooperation among clusters is beneficial when the optimal models of adjacent clusters have a good number of similar entries. We propose a fully distributed algorithm for solving this problem. The approach relies on minimizing a global mean-square error criterion regularized by nondifferentiable terms to promote cooperation among neighboring clusters. A general diffusion forward-backward splitting strategy is introduced. Then, it is specialized to the case of sparsity promoting regularizers. A closed-form expression for the proximal operator of a weighted sum of ℓ 1 -norms is derived to achieve higher efficiency. We also provide conditions on the step-sizes that ensure convergence of the algorithm in the mean and mean-square error sense. Simulations are conducted to illustrate the effectiveness of the strategy.
AbstractList In this work, we consider multitask learning problems where clusters of nodes are interested in estimating their own parameter vector. Cooperation among clusters is beneficial when the optimal models of adjacent clusters have a good number of similar entries. We propose a fully distributed algorithm for solving this problem. The approach relies on minimizing a global mean-square error criterion regularized by nondifferentiable terms to promote cooperation among neighboring clusters. A general diffusion forward-backward splitting strategy is introduced. Then, it is specialized to the case of sparsity promoting regularizers. A closed-form expression for the proximal operator of a weighted sum of ℓ 1 -norms is derived to achieve higher efficiency. We also provide conditions on the step-sizes that ensure convergence of the algorithm in the mean and mean-square error sense. Simulations are conducted to illustrate the effectiveness of the strategy.
In this work, we consider multitask learning problems where clusters of nodes are interested in estimating their own parameter vector. Cooperation among clusters is beneficial when the optimal models of adjacent clusters have a good number of similar entries. We propose a fully distributed algorithm for solving this problem. The approach relies on minimizing a global mean-square error criterion regularized by non-differentiable terms to promote cooperation among neighboring clusters. A general diffusion forward-backward splitting strategy is introduced. Then, it is specialized to the case of sparsity promoting regularizers. A closed-form expression for the proximal operator of a weighted sum of ℓ1-norms is derived to achieve higher efficiency. We also provide conditions on the step-sizes that ensure convergence of the algorithm in the mean and mean-square error sense. Simulations are conducted to illustrate the effectiveness of the strategy.
Author Richard, Cedric
Ferrari, Andre
Nassif, Roula
Sayed, Ali H.
Author_xml – sequence: 1
  givenname: Roula
  surname: Nassif
  fullname: Nassif, Roula
  email: roula.nassif@oca.eu
  organization: OCA, Univ. Cote d'Azur, Nice, France
– sequence: 2
  givenname: Cedric
  surname: Richard
  fullname: Richard, Cedric
  email: cedric.richard@unice.fr
  organization: OCA, Univ. Cote d'Azur, Nice, France
– sequence: 3
  givenname: Andre
  surname: Ferrari
  fullname: Ferrari, Andre
  email: andre.ferrari@unice.fr
  organization: OCA, Univ. Cote d'Azur, Nice, France
– sequence: 4
  givenname: Ali H.
  surname: Sayed
  fullname: Sayed, Ali H.
  email: sayed@ee.ucla.edu
  organization: Dept. of Electr. Eng., Univ. of California, Los Angeles, Los Angeles, CA, USA
BackLink https://hal.science/hal-03434452$$DView record in HAL
BookMark eNptkE1PAjEQhhuDiYDeTbzs1cNiP7fbIyEqJCgYMHpr6tJCZd0lbQHx17sbCCbE0zST95npPC3QKMpCA3CNYAchKO6mk3EHQ5R0cAIRTvEZaCJBUQwpTxrVGzISs5S_X4CW958QIkpF0gQvY1d-2y-VR0_rPNig_DIaauUKW8yj0Ua76FmHbemWPnqzYRFNVsp5G3bxoJitszrUK52er3Pl7I8KtiwuwblRuddXh9oGrw_3014_Ho4eB73uMM4IESHGNDWK0RnhJssE1lgYbjhnjMIUm_SDKU4UE0YRJkiiGSaQM4Q5NSwhxCDSBmg_d12s1G6r8lyuXHWJ20kEZe1EBr-StRN5cFIxt3tmof7SpbKy3x3KugcJJZQyvKnnJ_ts5krvnTYyq_TUFwanbH5cUok_XQJPwNN__YPc7BGrtT7GOaOcCEZ-AYfLjjM
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TCSII_2022_3225364
crossref_primary_10_1109_LSP_2020_2999883
crossref_primary_10_1109_TSP_2021_3126929
crossref_primary_10_1016_j_dsp_2024_104702
crossref_primary_10_1109_TSP_2020_2987468
crossref_primary_10_1109_JSTSP_2017_2676468
crossref_primary_10_1109_TAC_2021_3081073
crossref_primary_10_1109_JIOT_2024_3419160
crossref_primary_10_1109_TSIPN_2021_3124362
crossref_primary_10_1109_TSP_2020_3021247
crossref_primary_10_1016_j_dsp_2021_103199
crossref_primary_10_1109_LSP_2018_2889267
crossref_primary_10_1109_TSP_2017_2721930
crossref_primary_10_1016_j_sigpro_2024_109570
crossref_primary_10_1109_TSP_2020_2975346
crossref_primary_10_1109_TCSI_2020_2997677
crossref_primary_10_1109_TSP_2017_2750110
crossref_primary_10_1016_j_dsp_2018_02_008
crossref_primary_10_1109_TSP_2021_3050840
crossref_primary_10_1109_TSP_2017_2771731
crossref_primary_10_1109_TSIPN_2020_3038017
crossref_primary_10_1007_s10044_019_00781_8
crossref_primary_10_1109_TCI_2021_3111572
crossref_primary_10_1109_TSIPN_2020_2964214
crossref_primary_10_1109_OJSP_2020_2989031
crossref_primary_10_1016_j_dsp_2024_104970
crossref_primary_10_1109_JSTSP_2017_2671789
crossref_primary_10_1109_OJSP_2020_2989038
crossref_primary_10_1109_TSP_2021_3050858
crossref_primary_10_1007_s00034_022_02140_1
crossref_primary_10_1109_MSP_2020_2966273
crossref_primary_10_1109_TSIPN_2018_2863218
crossref_primary_10_1109_OJSP_2021_3140000
crossref_primary_10_1109_TSP_2021_3078625
crossref_primary_10_1109_TSIPN_2019_2957731
crossref_primary_10_1109_TSP_2020_2983905
crossref_primary_10_3390_s19102339
Cites_doi 10.1109/TSP.2014.2350965
10.1109/TSP.2015.2412918
10.1109/JSTSP.2013.2266318
10.1109/TSP.2013.2289888
10.1109/TSP.2008.917383
10.1109/ICASSP.2013.6638763
10.1109/TSP.2013.2258342
10.1111/j.2517-6161.1996.tb02080.x
10.1109/JSTSP.2013.2247023
10.1109/TSP.2007.896034
10.1109/JSTSP.2011.2127446
10.1109/JPROC.2010.2052531
10.1007/978-1-4419-9569-8_10
10.1561/2200000051
10.1109/ICASSP.2015.7178592
10.1109/TSP.2012.2217338
10.1109/TSP.2010.2090874
10.1109/JPROC.2014.2306253
10.1016/j.jmaa.2011.02.079
10.1109/CIP.2012.6232902
10.1109/ICASSP.2015.7178625
10.1109/ICASSP.2012.6288616
10.1109/TSP.2009.2033729
10.1109/EUSIPCO.2015.7362874
10.1109/TSP.2014.2356433
10.1109/TSP.2011.2108290
10.1007/s10957-010-9737-7
10.1109/TSP.2012.2232663
10.1109/TSP.2014.2333560
10.1109/LSP.2009.2024736
10.1109/TSP.2016.2518991
10.1002/9780470374122
10.1007/s00041-008-9045-x
10.1109/JSTSP.2013.2246763
10.1137/S1052623499362111
10.1198/016214506000000735
10.1109/ICASSP.2010.5495870
10.1109/ICASSP.2013.6638699
10.1137/S1052623495287022
10.1109/TSP.2015.2423256
10.1109/TSP.2010.2052612
10.1109/MLSP.2014.6958929
10.1109/TSP.2012.2198470
10.1109/TSP.2010.2044841
10.1109/TSP.2015.2415755
10.1016/B978-0-12-411597-2.00009-6
10.1109/TAC.2008.2009515
10.1109/ICASSP.2013.6638698
10.1109/ICASSP.2016.7472614
10.1109/ICASSP.2016.7472460
10.1109/TSP.2012.2198468
10.1109/MSP.2012.2231991
10.1109/ICASSP.2014.6854652
ContentType Journal Article
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
1XC
VOOES
ADTOC
UNPAY
DOI 10.1109/TSP.2016.2601282
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0476
EndPage 6344
ExternalDocumentID oai:infoscience.epfl.ch:233505
oai:HAL:hal-03434452v1
10_1109_TSP_2016_2601282
7547395
Genre orig-research
GrantInformation_xml – fundername: ANR and DGA
  grantid: ANR-13-ASTR-0030
– fundername: NSF
  grantid: CIF-1524250; ECCS-1407712
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
AAYXX
CITATION
1XC
3EH
53G
5VS
ABFSI
ACKIV
AETIX
AI.
AIBXA
AKJIK
ALLEH
E.L
H~9
ICLAB
IFJZH
VH1
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c339t-248fa54d37fcc92e29f7f77554082f8b5a73a59fa35936e5230751274f5633f13
IEDL.DBID UNPAY
ISSN 1053-587X
1941-0476
IngestDate Sun Oct 26 03:01:55 EDT 2025
Tue Oct 14 21:01:54 EDT 2025
Wed Oct 01 06:03:59 EDT 2025
Thu Apr 24 22:52:04 EDT 2025
Tue Aug 26 16:43:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-248fa54d37fcc92e29f7f77554082f8b5a73a59fa35936e5230751274f5633f13
ORCID 0000-0003-2890-141X
0000-0002-7297-7625
0000-0002-5125-5519
0000-0001-9663-8559
OpenAccessLink https://proxy.k.utb.cz/login?url=http://infoscience.epfl.ch/record/233505
PageCount 16
ParticipantIDs crossref_primary_10_1109_TSP_2016_2601282
crossref_citationtrail_10_1109_TSP_2016_2601282
hal_primary_oai_HAL_hal_03434452v1
unpaywall_primary_10_1109_tsp_2016_2601282
ieee_primary_7547395
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2016
Publisher IEEE
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
References ref57
ref13
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref11
ref10
ref16
ref19
ref18
chen (ref37) 2009
chouvardas (ref47) 2012
ref51
ref50
ref46
ref45
ref48
ref42
ref41
parikh (ref34) 2013; 1
ref44
ref43
ref49
baraniuk (ref36) 2007; 25
ref8
ref7
ref9
ref4
ref3
ref6
ref5
gu (ref38) 2009; 16
ref40
ram (ref17) 2010; 147
ref31
ref30
ref33
ref32
ref2
ref1
ref39
polyak (ref54) 1987
tibshirani (ref35) 1996; 58
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
hoyer (ref56) 2004; 5
References_xml – start-page: 3125
  year: 2009
  ident: ref37
  article-title: Sparse LMS for system identification
  publication-title: Proc Int Conf Acoust Speech Signal Process
– year: 1987
  ident: ref54
  publication-title: Introduction to Optimization
– ident: ref25
  doi: 10.1109/TSP.2014.2350965
– ident: ref20
  doi: 10.1109/TSP.2015.2412918
– ident: ref16
  doi: 10.1109/JSTSP.2013.2266318
– volume: 5
  start-page: 1457
  year: 2004
  ident: ref56
  article-title: Non-negative matrix factorization with sparseness constraints
  publication-title: J Mach Learn Res
– ident: ref23
  doi: 10.1109/TSP.2013.2289888
– ident: ref8
  doi: 10.1109/TSP.2008.917383
– volume: 1
  start-page: 123
  year: 2013
  ident: ref34
  article-title: Proximal algorithms
  publication-title: Found Trends Optim
– ident: ref51
  doi: 10.1109/ICASSP.2013.6638763
– ident: ref59
  doi: 10.1109/TSP.2013.2258342
– volume: 58
  start-page: 267
  year: 1996
  ident: ref35
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J Roy Statist Soc
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref15
  doi: 10.1109/JSTSP.2013.2247023
– ident: ref3
  doi: 10.1109/TSP.2007.896034
– start-page: 1084
  year: 2012
  ident: ref47
  article-title: Sparsity-promoting adaptive algorithm for distributed learning in diffusion networks
  publication-title: Proc 20th Eur Signal Process Conf
– ident: ref14
  doi: 10.1109/JSTSP.2011.2127446
– ident: ref12
  doi: 10.1109/JPROC.2010.2052531
– ident: ref32
  doi: 10.1007/978-1-4419-9569-8_10
– ident: ref5
  doi: 10.1561/2200000051
– ident: ref46
  doi: 10.1109/ICASSP.2015.7178592
– ident: ref18
  doi: 10.1109/TSP.2012.2217338
– ident: ref39
  doi: 10.1109/TSP.2010.2090874
– ident: ref4
  doi: 10.1109/JPROC.2014.2306253
– ident: ref33
  doi: 10.1016/j.jmaa.2011.02.079
– ident: ref19
  doi: 10.1109/CIP.2012.6232902
– ident: ref31
  doi: 10.1109/ICASSP.2015.7178625
– ident: ref41
  doi: 10.1109/ICASSP.2012.6288616
– ident: ref9
  doi: 10.1109/TSP.2009.2033729
– ident: ref22
  doi: 10.1109/EUSIPCO.2015.7362874
– ident: ref45
  doi: 10.1109/TSP.2014.2356433
– ident: ref27
  doi: 10.1109/TSP.2011.2108290
– volume: 147
  start-page: 516
  year: 2010
  ident: ref17
  article-title: Distributed stochastic subgradient projection algorithms for convex optimization
  publication-title: J Optim Theory Appl
  doi: 10.1007/s10957-010-9737-7
– ident: ref42
  doi: 10.1109/TSP.2012.2232663
– ident: ref29
  doi: 10.1109/TSP.2014.2333560
– volume: 16
  start-page: 774
  year: 2009
  ident: ref38
  article-title: $\ell _0$-norm constraint LMS algorithm for sparse system identification
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2009.2024736
– ident: ref30
  doi: 10.1109/TSP.2016.2518991
– ident: ref55
  doi: 10.1002/9780470374122
– ident: ref50
  doi: 10.1007/s00041-008-9045-x
– volume: 25
  start-page: 21
  year: 2007
  ident: ref36
  article-title: Compressive sensing
  publication-title: IEEE Signal Process Mag
– ident: ref11
  doi: 10.1109/JSTSP.2013.2246763
– ident: ref2
  doi: 10.1137/S1052623499362111
– ident: ref52
  doi: 10.1198/016214506000000735
– ident: ref40
  doi: 10.1109/ICASSP.2010.5495870
– ident: ref44
  doi: 10.1109/ICASSP.2013.6638699
– ident: ref1
  doi: 10.1137/S1052623495287022
– ident: ref24
  doi: 10.1109/TSP.2015.2423256
– ident: ref26
  doi: 10.1109/TSP.2010.2052612
– ident: ref28
  doi: 10.1109/MLSP.2014.6958929
– ident: ref10
  doi: 10.1109/TSP.2012.2198470
– ident: ref49
  doi: 10.1109/TSP.2010.2044841
– ident: ref21
  doi: 10.1109/TSP.2015.2415755
– ident: ref7
  doi: 10.1016/B978-0-12-411597-2.00009-6
– ident: ref13
  doi: 10.1109/TAC.2008.2009515
– ident: ref48
  doi: 10.1109/ICASSP.2013.6638698
– ident: ref57
  doi: 10.1109/ICASSP.2016.7472614
– ident: ref58
  doi: 10.1109/ICASSP.2016.7472460
– ident: ref43
  doi: 10.1109/TSP.2012.2198468
– ident: ref6
  doi: 10.1109/MSP.2012.2231991
– ident: ref53
  doi: 10.1109/ICASSP.2014.6854652
SSID ssj0014496
Score 2.488181
Snippet In this work, we consider multitask learning problems where clusters of nodes are interested in estimating their own parameter vector. Cooperation among...
SourceID unpaywall
hal
crossref
ieee
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 6329
SubjectTerms adaptive regularization factors
Adaptive systems
Closed-form solutions
Computer Science
Convergence
diffusion LMS
Distributed algorithms
Distributed processing
Estimation
forward-backward splitting approach
Machine Learning
Mean square error methods
Multiagent Systems
multitask networks
Signal processing algorithms
sparsity-inducing coregularizers
Systems and Control
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFD44X9QH7-K8UcQXxW5tkzbJ4xjKEK-ouLeSZokbzjlcp-ivN6ftijfEt1JOm9AvkJOe73wfwJ7oeEESGe1So6g9oBDPlT5WCmnkJ1xyTpJM7fM8at3Sk3bYnoLDshdGa52Rz3QNL7NafudJjfFXWZ2hUa4IK1BhPMp7tcqKAaWZF5dNF4gbctaelCQ9Ub-5vkQOV1RD-ayAB1-2oEoXCZCZs8oczIwHQ_n2Kvv9T5vM8QKcTaaXc0seauM0qan3b8qN_53_IswX2abTyJfHEkzpwTLMfdIgXIGrSztY79FG5b24cvTgFKKr986FXejOec4UHzl3vbTrXA9lxuNw0fRDYVDTTgMN7Z-Lls5VuD0-umm23MJnwVWEiNQNKDcypB3CjFIi0IEwzDBmEw2bHxiehJIRGQojCdr_afyPzGyewKgJI0KMT9ZgevA00OvgeB2mokAZQQWe3KjQ2jcsYgknkhpjqlCffPpYFSLk6IXRj7PDiCdiC1aMYMUFWFXYL58Y5gIcf8TuWjTLMFTObjVOY7znEUooDYMXvworiEwZVYBShYMS_B8DpaPhl4E2fn_HJsxiVM522YLp9Hmst23OkiY72WL9AFBt5aU
  priority: 102
  providerName: IEEE
Title Proximal Multitask Learning Over Networks With Sparsity-Inducing Coregularization
URI https://ieeexplore.ieee.org/document/7547395
https://hal.science/hal-03434452
http://infoscience.epfl.ch/record/233505
UnpaywallVersion submittedVersion
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED6x9mHjAQYdosBQhPbCpJTEP-L4sUJD1YRKJ1qte4ocN6aIUqo2BcFfj89JMxDSJh4TXXSR72Tf-e6-D-CbHAUkjUzmM6OZTVBo4KsQK4UsCtNYxTFNHdpnN-oM2M8hH_6978BVLbd-ux2bSUuPV9xohFKOYKX1iNuouwb1QbfX_uOKmZz6PBZDV0BmNjtmoqpIBvIkXyAuZRi1ED2LxOTVCfRhjP2PjlhlHT4upzP1-KAmkxdnzNlmAXi0cNCE2Fpy01rmaUs_vQVu_O_vf4aNMtD02oVnbMFaNt2G9Rfwgw341bOKrm-tVDGGqxY3Xom3euVdWB_3ukWT-ML7fZ2PvcuZci0cPvJ9aBQ6vZs7Lvt5Oc35BQZnP_qnHb-kWPA1pTL3CYuN4mxEhdFakoxII4wQNsawoYGJU64EVVwaRZH5L8MrZGFDBMEMjyg1Id2B2vRumu2CF4yEjog2kklM2pjMstCISKQxVcwY04ST1bInusQfRxqMSeLykEAm_ctegoZKSkM14bj6YlZgb_xD9shashJD0OxO-zzBdwFllDFO7sMmNNDQlZRA4mXJm_C9MvwbRdZ7Xinae4_wPnzCx6L95QBq-XyZfbVBTJ4euknDw9KLnwHl4-uC
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB7xOAAHHssiyjNCXHa1aZPYjuMjQqACpbCiiN4ix7UBUdqqTUHw6_EkacRjteIWReM4yTeSx56Z7wPYFx0vSEKjXWoUtRsU4rnSx0whDf0kklFEkoztsxnWr-lpm7Wn4E_ZC6O1zorPdBUvs1x-p6_GeFRW4yiUK9g0zDJKKcu7tcqcAaWZGpcNGIjLIt6eJCU9UWtdXWIVV1hFAq0gCj4sQtN3WAKZaasswNy4N5Avz7LbfbfMHC_B-eQF8-qSh-o4Tarq9RN343e_YBkWi3jTOcgdZAWmdO8HLLxjIVyFv5d2svtHa5V348rRg1PQrt46F9bVnWZeKz5ybu7TO-dqILNKDhdlPxQaHdrXQEn7YdHU-ROuj49ah3W3UFpwFSEidQMaGcloh3CjlAh0IAw3nNtQw0YIJkqY5EQyYSRBAUCNJ8ncRgqcGhYSYnyyBjO9fk-vg-N1uAoDZQQVuHejQmvf8JAnEZHUGFOB2uTXx6qgIUc1jG6cbUc8EVuwYgQrLsCqwK9yxCCn4PiP7Z5FszRD7uz6QSPGex6hxDpN8ORXYBWRKa0KUCrwuwT_y0TpaPBhoo1_P2MX5uqt80bcOGmebcI8jshrX7ZgJh2O9baNYNJkJ3PcN37J6PI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HtSDb7G-COJFITXZRzZ7LKIUkVrRYj2FzTZrxVpLmyr6691JYlQExWPChA07w-43O7PfB7Avux6JA5O4zGhmExTqucrHSiEL_DhUYUjjjO2zGTTa7KzDO5_nHTirxdJvl2PTr-nehzYaoZQjWelMwC3qrsBMu9mq32bFTE5dHopOVkBmNjtmoqxIevIoHSMvpR_UkD2LhOTbDjTdw_7HTFhlHmYng6F6fVH9_pc95nQxJzwaZ9SE2FryUJukcU2__SRu_PP3l2ChAJpOPY-MZZhKBisw_4V-cBUuW3ag-0drlV_DVeMHp-BbvXMubIw7zbxJfOzc3Kc952qoshYOF_U-NBodP40yLftRcZtzDdqnJ9fHDbeQWHA1pTJ1CQuN4qxLhdFakoRII4wQFmNYaGDCmCtBFZdGUVT-S_AIWViIIJjhAaXGp-tQGTwNkg1wvK7QAdFGMolJG5NJ4hsRiDikihljqnD0Me2RLvjHUQajH2V5iCej66tWhI6KCkdV4aD8Yphzb_xiu2c9WZohaXajfh7hO48yyhgnz34VVtHRpZVA4WXJq3BYOv7HQDZ6vg20-R_jLZjDx7z9ZRsq6WiS7FgQk8a7Rfy-A2Yd6oE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximal+Multitask+Learning+Over+Networks+With+Sparsity-Inducing+Coregularization&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Nassif%2C+Roula&rft.au=Richard%2C+Cedric&rft.au=Ferrari%2C+Andre&rft.au=Sayed%2C+Ali+H.&rft.date=2016-12-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=64&rft.issue=23&rft.spage=6329&rft.epage=6344&rft_id=info:doi/10.1109%2FTSP.2016.2601282&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2016_2601282
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon