Design principle, 4E analyses and optimization for onboard CCS system under EEDI framework: A case study of an LNG-fueled bulk carrier
With the accelerated implementation of Energy Efficiency Design Index (EEDI) phase 3 by the International Maritime Organization, shipping carbon reduction is urgently required. This paper explores the possibility to develop the onboard carbon capture and storage (OCCS) system unstraints between EEDI...
        Saved in:
      
    
          | Published in | Energy (Oxford) Vol. 295; p. 130985 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        15.05.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0360-5442 | 
| DOI | 10.1016/j.energy.2024.130985 | 
Cover
| Abstract | With the accelerated implementation of Energy Efficiency Design Index (EEDI) phase 3 by the International Maritime Organization, shipping carbon reduction is urgently required. This paper explores the possibility to develop the onboard carbon capture and storage (OCCS) system unstraints between EEDI phases 3 and 4. The OCCS is particularly established with the utilization of exhaust gas waste heat and LNG cold energy. The proposed OCCS system is modelled in Aspen HYSYS, laying the foundation for energy, exder the EEDI framework. The OCCS system design principle for an LNG-fueled bulk carrier is determined with the conergy, economic and environment analyses. Furthermore, the multi-objective optimization is based on the energy and exergy efficiency of OCCS system (ηen,OCCS × ηen,OCCS), payback period (PBP) and metric of carbon capture efficiency degree (MCCED) by non-dominated sorting genetic algorithm-Ⅲ. The Pareto frontier indicates that the system is in optimal operation with the exhaust gas mass flow rate of 29,990 kg/h and the liquid-to-gas ratio of 1.04. The carbon capture is 1048.0 kg/h, which is 70.74% over EEDI phase 3 requirements. The optimized ηen,OCCS × ηen,OCCS is 2.92%, the PBP is 13.03 years and the MCCED is 23.00%. This study provides an important basis for the maritime post-combustion carbon reduction compliance.
•Design principle of the onboard CCS system is established under the EEDI framework.•Balance between waste heat and LNG cold energy is achieved with the OCCS system.•The CO2 gap for the reference ship to satisfy EEDI phase 3–4 is 613.8–1114.3 kg/h.•The optimized overall system energy and exergy efficiencies are 29.20% and 10.01%.•The PBP for the OCCS system is 13.03 years under the optimal working conditions. | 
    
|---|---|
| AbstractList | With the accelerated implementation of Energy Efficiency Design Index (EEDI) phase 3 by the International Maritime Organization, shipping carbon reduction is urgently required. This paper explores the possibility to develop the onboard carbon capture and storage (OCCS) system unstraints between EEDI phases 3 and 4. The OCCS is particularly established with the utilization of exhaust gas waste heat and LNG cold energy. The proposed OCCS system is modelled in Aspen HYSYS, laying the foundation for energy, exder the EEDI framework. The OCCS system design principle for an LNG-fueled bulk carrier is determined with the conergy, economic and environment analyses. Furthermore, the multi-objective optimization is based on the energy and exergy efficiency of OCCS system (ηₑₙ,OCCS × ηₑₙ,OCCS), payback period (PBP) and metric of carbon capture efficiency degree (MCCED) by non-dominated sorting genetic algorithm-Ⅲ. The Pareto frontier indicates that the system is in optimal operation with the exhaust gas mass flow rate of 29,990 kg/h and the liquid-to-gas ratio of 1.04. The carbon capture is 1048.0 kg/h, which is 70.74% over EEDI phase 3 requirements. The optimized ηₑₙ,OCCS × ηₑₙ,OCCS is 2.92%, the PBP is 13.03 years and the MCCED is 23.00%. This study provides an important basis for the maritime post-combustion carbon reduction compliance. With the accelerated implementation of Energy Efficiency Design Index (EEDI) phase 3 by the International Maritime Organization, shipping carbon reduction is urgently required. This paper explores the possibility to develop the onboard carbon capture and storage (OCCS) system unstraints between EEDI phases 3 and 4. The OCCS is particularly established with the utilization of exhaust gas waste heat and LNG cold energy. The proposed OCCS system is modelled in Aspen HYSYS, laying the foundation for energy, exder the EEDI framework. The OCCS system design principle for an LNG-fueled bulk carrier is determined with the conergy, economic and environment analyses. Furthermore, the multi-objective optimization is based on the energy and exergy efficiency of OCCS system (ηen,OCCS × ηen,OCCS), payback period (PBP) and metric of carbon capture efficiency degree (MCCED) by non-dominated sorting genetic algorithm-Ⅲ. The Pareto frontier indicates that the system is in optimal operation with the exhaust gas mass flow rate of 29,990 kg/h and the liquid-to-gas ratio of 1.04. The carbon capture is 1048.0 kg/h, which is 70.74% over EEDI phase 3 requirements. The optimized ηen,OCCS × ηen,OCCS is 2.92%, the PBP is 13.03 years and the MCCED is 23.00%. This study provides an important basis for the maritime post-combustion carbon reduction compliance. •Design principle of the onboard CCS system is established under the EEDI framework.•Balance between waste heat and LNG cold energy is achieved with the OCCS system.•The CO2 gap for the reference ship to satisfy EEDI phase 3–4 is 613.8–1114.3 kg/h.•The optimized overall system energy and exergy efficiencies are 29.20% and 10.01%.•The PBP for the OCCS system is 13.03 years under the optimal working conditions.  | 
    
| ArticleNumber | 130985 | 
    
| Author | Tian, Zhen Zhang, Yuan Zhou, Yihang Gao, Wenzhong  | 
    
| Author_xml | – sequence: 1 givenname: Zhen surname: Tian fullname: Tian, Zhen email: ztian@shmtu.edu.cn – sequence: 2 givenname: Yihang surname: Zhou fullname: Zhou, Yihang – sequence: 3 givenname: Yuan surname: Zhang fullname: Zhang, Yuan – sequence: 4 givenname: Wenzhong surname: Gao fullname: Gao, Wenzhong  | 
    
| BookMark | eNqF0LtOHDEYBWAXROIS3iCFyxTM4vFlLhRIaFkI0goKktry2P8gLzP2xvYQTR4gzx3DUFEklf_inCP5O0YHzjtA6EtJViUpq_PdChyEp3lFCeWrkpG2EQfoiLCKFIJzeoiOY9wRQkTTtkfozzVE--TwPlin7X6AM8w3WDk1zBFiPgz2-2RH-1sl6x3ufcDedV4Fg9frRxznmGDEkzMQ8GZzfYf7oEb45cPzBb7CWkXAMU1mxr7Pa3h7f1v0EwxgcDcNzzkQgoXwGX3q1RDh9P09QT9uNt_X34rtw-3d-mpbaMbaVNCy6bSgtC2F4lCxutWKEc0r2jWKEwECKOtpZURda2LyH3UnOkWbqq-5hpadoK_L7j74nxPEJEcbNQyDcuCnKFkpWN3UtCU5ypeoDj7GAL3MRqMKsyyJfKWWO7lQy1dquVDn2sWHmrbpzS4FZYf_lS-XMmSDl-wio7bgNBgbQCdpvP33wF8E7aDF | 
    
| CitedBy_id | crossref_primary_10_1016_j_jclepro_2024_143996 crossref_primary_10_1016_j_marpolbul_2025_117688 crossref_primary_10_1016_j_jclepro_2024_144003 crossref_primary_10_1016_j_jclepro_2024_144512 crossref_primary_10_1016_j_energy_2024_134271  | 
    
| Cites_doi | 10.1016/j.enconman.2020.112752 10.1016/j.ijhydene.2018.01.041 10.1016/j.compchemeng.2023.108545 10.1016/j.cej.2022.140980 10.1016/j.energy.2015.11.001 10.1016/j.applthermaleng.2017.07.144 10.1016/j.oceaneng.2017.11.014 10.1109/TTE.2022.3208880 10.1016/j.energy.2023.127391 10.1016/j.energy.2023.128001 10.1016/j.enpol.2015.04.031 10.1016/j.seppur.2022.123037 10.1016/j.energy.2019.115963 10.1016/j.enconman.2022.115410 10.1016/j.energy.2022.124528 10.1016/j.tre.2023.103157 10.1016/j.enconman.2018.07.002 10.1016/j.enconman.2023.117890 10.3390/en16186748 10.1016/j.egyr.2022.10.143 10.1016/j.enconman.2021.115188 10.1016/j.apenergy.2020.114933 10.1016/j.enconman.2019.03.015 10.1016/j.ijggc.2019.03.008 10.1016/j.ijggc.2021.103438 10.1016/j.ijggc.2020.103241 10.1016/j.aej.2023.04.066 10.1016/j.enconman.2022.116064 10.1016/j.marpolbul.2023.114730 10.1016/j.ijggc.2021.103333 10.1016/j.apenergy.2022.120032 10.1016/j.autcon.2022.104587 10.1016/j.apenergy.2023.121200 10.1016/j.egyr.2022.06.004 10.1016/j.energy.2015.09.011 10.1016/j.fuel.2023.127969 10.1016/j.oceaneng.2023.114295 10.1016/j.rser.2020.110222 10.1016/j.apenergy.2017.03.027 10.1016/j.seppur.2021.120052 10.1016/j.swevo.2020.100714 10.1016/j.jclepro.2021.126651 10.1016/j.applthermaleng.2023.120976  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier Ltd | 
    
| Copyright_xml | – notice: 2024 Elsevier Ltd | 
    
| DBID | AAYXX CITATION 7S9 L.6  | 
    
| DOI | 10.1016/j.energy.2024.130985 | 
    
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Economics Environmental Sciences  | 
    
| ExternalDocumentID | 10_1016_j_energy_2024_130985 S0360544224007576  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHIDL AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGQPQ AHHHB AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ LY6 R2- SAC WUQ ~HD 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c339t-218bc522915a4e6379ca30c462b8a405e5e23f26d577c0d058cb5ba286f74ce93 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0360-5442 | 
    
| IngestDate | Thu Oct 02 22:55:00 EDT 2025 Wed Oct 01 04:58:01 EDT 2025 Thu Apr 24 23:08:07 EDT 2025 Sat May 04 15:43:29 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Multi-objective optimization Metric of carbon capture efficiency degree Onboard carbon capture and storage LNG cold energy recovery Energy efficiency design index  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c339t-218bc522915a4e6379ca30c462b8a405e5e23f26d577c0d058cb5ba286f74ce93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 3153787290 | 
    
| PQPubID | 24069 | 
    
| ParticipantIDs | proquest_miscellaneous_3153787290 crossref_primary_10_1016_j_energy_2024_130985 crossref_citationtrail_10_1016_j_energy_2024_130985 elsevier_sciencedirect_doi_10_1016_j_energy_2024_130985  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-05-15 | 
    
| PublicationDateYYYYMMDD | 2024-05-15 | 
    
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Energy (Oxford) | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Liang, Yu, Bai, Li, Wang (bib29) 2022; 253 Coppitters, Costa, Chauvy, Dubois, De Paepe, Thomas (bib44) 2023; 344 Thaler, Kanchiralla, Posch, Pirker, Wimmer, Brynolf (bib17) 2022; 269 Bao, Lin, Zhang, Zhang, He (bib38) 2017; 126 Xing, Spence, Chen (bib11) 2020; 134 Feng, Zhu, Dong (bib22) 2023; 9 Wang, Wang, Leng (bib43) 2023; 74 Sayadzadeh, Samani, Toghraie, Emami, Eftekhari (bib30) 2023; 278 Oh, Anantharaman, Zahid, Lee, Lim (bib19) 2022; 282 Adu, Li, Zhang, Xin, Tontiwachwuthikul (bib40) 2022; 8 Khani, Mahmoudi, Chitsaz, Rosen (bib35) 2016; 94 Xu, Yang, Chen, Zou (bib3) 2023; 189 Xing, Stuart, Spence, Chen (bib10) 2021; 297 Wang, Zhu (bib2) 2023; 175 Tian, Qi, Gan, Tian, Gao (bib42) 2022; 257 Wang, Zhao, Zhang, Zhang, Dong (bib15) 2019; 187 Zhao, Wang, Wang, Han, Ji, Cai (bib12) 2022; 8 Kim, Lee, Cho, Kim (bib16) 2023; 456 (bib41) 2023 Ančić, Theotokatos, Vladimir (bib6) 2018; 148 Arshad, Alhajaj (bib39) 2023; 274 Bi, Lin, Qin, Wang, Sun (bib47) 2022; 59 Zhang, Liu, Sun, Jiang, Li, Song (bib33) 2018; 172 Xu, Zhao, Gou, Liu, Wu, Wang (bib36) 2022; 326 Sridhar, Kumar, Manivannan, Farooq, Karimi (bib5) 2024; 181 (bib24) 2018 Lee, Yoo, Park, Ahn, Chang (bib21) 2021; 105 Güler, Ergin (bib23) 2021; 110 Stec, Tatarczuk, Iluk, Szul (bib7) 2021; 108 Salomone, Marocco, Ferrario, Lanzini, Fino, Bensaid (bib28) 2023; 343 Romero Gómez, Romero Gómez, López-González, López-Ochoa (bib14) 2016; 105 Hou, Wu, Li, Zhang, Qu, Zhu (bib45) 2020; 57 (bib9) 2020 Jeong, Seo, You, Chang (bib8) 2018; 43 Fei, Alshuraiaan, Abed, Wae-hayee (bib4) 2023; 309 Yao, Li, Wei (bib34) 2023; 231 Luo, Wang (bib1) 2017; 195 Risso, Cardona, Archetti, Lossani, Bosio, Bove (bib18) 2023; 16 Feenstra, Monteiro, van den Akker, Abu-Zahra, Gilling, Goetheer (bib20) 2019; 85 Liu, You, Jiang, Wu, Liu, Peng (bib46) 2022; 143 Liu, Karimi, He (bib13) 2019; 187 Aliyon, Mehrpooya, Hajinezhad (bib32) 2020; 211 Naveiro, Romero Gómez, Arias-Fernández, Baaliña Insua (bib31) 2022; 257 Yun, Oh, Kim (bib37) 2020; 268 Ančić, Šestan (bib25) 2015; 84 Bayraktar, Yuksel (bib26) 2023; 278 Tian, Zhou, Zhang, Gao (bib27) 2024; 301 Sridhar (10.1016/j.energy.2024.130985_bib5) 2024; 181 Adu (10.1016/j.energy.2024.130985_bib40) 2022; 8 Romero Gómez (10.1016/j.energy.2024.130985_bib14) 2016; 105 Coppitters (10.1016/j.energy.2024.130985_bib44) 2023; 344 Xing (10.1016/j.energy.2024.130985_bib10) 2021; 297 Zhang (10.1016/j.energy.2024.130985_bib33) 2018; 172 Yao (10.1016/j.energy.2024.130985_bib34) 2023; 231 Yun (10.1016/j.energy.2024.130985_bib37) 2020; 268 Bi (10.1016/j.energy.2024.130985_bib47) 2022; 59 Xing (10.1016/j.energy.2024.130985_bib11) 2020; 134 Arshad (10.1016/j.energy.2024.130985_bib39) 2023; 274 Tian (10.1016/j.energy.2024.130985_bib27) 2024; 301 Khani (10.1016/j.energy.2024.130985_bib35) 2016; 94 Tian (10.1016/j.energy.2024.130985_bib42) 2022; 257 Aliyon (10.1016/j.energy.2024.130985_bib32) 2020; 211 Xu (10.1016/j.energy.2024.130985_bib3) 2023; 189 Liang (10.1016/j.energy.2024.130985_bib29) 2022; 253 Bayraktar (10.1016/j.energy.2024.130985_bib26) 2023; 278 Sayadzadeh (10.1016/j.energy.2024.130985_bib30) 2023; 278 Liu (10.1016/j.energy.2024.130985_bib13) 2019; 187 Oh (10.1016/j.energy.2024.130985_bib19) 2022; 282 Ančić (10.1016/j.energy.2024.130985_bib6) 2018; 148 Wang (10.1016/j.energy.2024.130985_bib15) 2019; 187 Fei (10.1016/j.energy.2024.130985_bib4) 2023; 309 Jeong (10.1016/j.energy.2024.130985_bib8) 2018; 43 Bao (10.1016/j.energy.2024.130985_bib38) 2017; 126 Ančić (10.1016/j.energy.2024.130985_bib25) 2015; 84 Xu (10.1016/j.energy.2024.130985_bib36) 2022; 326 Stec (10.1016/j.energy.2024.130985_bib7) 2021; 108 Güler (10.1016/j.energy.2024.130985_bib23) 2021; 110 Hou (10.1016/j.energy.2024.130985_bib45) 2020; 57 Kim (10.1016/j.energy.2024.130985_bib16) 2023; 456 Zhao (10.1016/j.energy.2024.130985_bib12) 2022; 8 Luo (10.1016/j.energy.2024.130985_bib1) 2017; 195 Lee (10.1016/j.energy.2024.130985_bib21) 2021; 105 Feng (10.1016/j.energy.2024.130985_bib22) 2023; 9 Thaler (10.1016/j.energy.2024.130985_bib17) 2022; 269 (10.1016/j.energy.2024.130985_bib24) 2018 Feenstra (10.1016/j.energy.2024.130985_bib20) 2019; 85 Wang (10.1016/j.energy.2024.130985_bib2) 2023; 175 Naveiro (10.1016/j.energy.2024.130985_bib31) 2022; 257 Liu (10.1016/j.energy.2024.130985_bib46) 2022; 143 Risso (10.1016/j.energy.2024.130985_bib18) 2023; 16 Salomone (10.1016/j.energy.2024.130985_bib28) 2023; 343 Wang (10.1016/j.energy.2024.130985_bib43) 2023; 74  | 
    
| References_xml | – volume: 105 start-page: 32 year: 2016 end-page: 44 ident: bib14 article-title: Thermodynamic analysis of a novel power plant with LNG (liquefied natural gas) cold exergy exploitation and CO publication-title: Energy – volume: 187 year: 2019 ident: bib15 article-title: A novel combined system for LNG cold energy utilization to capture carbon dioxide in the flue gas from the magnesite processing industry publication-title: Energy – volume: 274 year: 2023 ident: bib39 article-title: Process synthesis for amine-based CO publication-title: Energy – volume: 257 year: 2022 ident: bib42 article-title: A novel negative carbon-emission, cooling, and power generation system based on combined LNG regasification and waste heat recovery: energy, exergy, economic, environmental (4E) evaluations publication-title: Energy – volume: 74 start-page: 121 year: 2023 end-page: 138 ident: bib43 article-title: Simulation and comprehensive study of an optimum process for CO publication-title: Alex Eng J – volume: 175 year: 2023 ident: bib2 article-title: Analyzing the development of competition and cooperation among ocean carriers considering the impact of carbon tax policy publication-title: Transport Res Part E Logist Transp Rev – volume: 301 year: 2024 ident: bib27 article-title: Targeting zero energy increment for an onboard CO2 capture system: 4E analyses and multi-objective optimization publication-title: Energy Convers Manag – volume: 343 year: 2023 ident: bib28 article-title: Process simulation and energy analysis of synthetic natural gas production from water electrolysis and CO publication-title: Appl Energy – volume: 211 year: 2020 ident: bib32 article-title: Comparison of different CO publication-title: Energy Convers Manag – volume: 257 year: 2022 ident: bib31 article-title: Thermodynamic and environmental analyses of a novel closed loop regasification system integrating ORC and CO publication-title: Energy Convers Manag – volume: 187 start-page: 41 year: 2019 end-page: 52 ident: bib13 article-title: A novel inlet air cooling system based on liquefied natural gas cold energy utilization for improving power plant performance publication-title: Energy Convers Manag – volume: 282 year: 2022 ident: bib19 article-title: Process design of onboard membrane carbon capture and liquefaction systems for LNG-fueled ships publication-title: Sep Purif Technol – volume: 108 year: 2021 ident: bib7 article-title: Reducing the energy efficiency design index for ships through a post-combustion carbon capture process publication-title: Int J Greenh Gas Control – volume: 9 start-page: 2282 year: 2023 end-page: 2295 ident: bib22 article-title: Simultaneous and global optimizations of LNG-fueled hybrid electric ship for substantial fuel cost, CO publication-title: IEEE Trans Transp Electrif – volume: 57 year: 2020 ident: bib45 article-title: Many-objective optimization for scheduling of crude oil operations based on NSGA-Ⅲ with consideration of energy efficiency publication-title: Swarm Evol Comput – volume: 16 year: 2023 ident: bib18 article-title: A review of on-board carbon capture and storage techniques: solutions to the 2030 IMO regulations publication-title: Energies – start-page: 3 year: 2018 end-page: 11 ident: bib24 article-title: Technical data. Wärtsilä 50DF PRODUCT GUIDE – volume: 84 start-page: 107 year: 2015 end-page: 116 ident: bib25 article-title: Influence of the required EEDI reduction factor on the CO publication-title: Energy Pol – volume: 326 year: 2022 ident: bib36 article-title: Thermo-economic analysis of a combined cooling, heating and power system based on self-evaporating liquid carbon dioxide energy storage publication-title: Appl Energy – volume: 309 year: 2023 ident: bib4 article-title: CO publication-title: Sep Purif Technol – volume: 85 start-page: 1 year: 2019 end-page: 10 ident: bib20 article-title: Ship-based carbon capture onboard of diesel or LNG-fuelled ships publication-title: Int J Greenh Gas Control – volume: 231 year: 2023 ident: bib34 article-title: Design and optimization of a zero carbon emission system integrated with the utilization of marine engine waste heat and LNG cold energy for LNG-powered ships publication-title: Appl Therm Eng – volume: 195 start-page: 402 year: 2017 end-page: 413 ident: bib1 article-title: Study of solvent-based carbon capture for cargo ships through process modelling and simulation publication-title: Appl Energy – volume: 59 year: 2022 ident: bib47 article-title: Performance optimization of a solar air-conditioning with a three-phase accumulator based on the energy-economic analysis publication-title: J Build Eng – volume: 148 start-page: 193 year: 2018 end-page: 201 ident: bib6 article-title: Towards improving energy efficiency regulations of bulk carriers publication-title: Ocean Eng – volume: 110 year: 2021 ident: bib23 article-title: An investigation on the solvent based carbon capture and storage system by process modeling and comparisons with another carbon control methods for different ships publication-title: Int J Greenh Gas Control – volume: 8 start-page: 7612 year: 2022 end-page: 7627 ident: bib40 article-title: Optimization and energy assessment of technological process for CO publication-title: Energy Rep – volume: 134 year: 2020 ident: bib11 article-title: A comprehensive review on countermeasures for CO2 emissions from ships publication-title: Renew Sustain Energy Rev – volume: 278 year: 2023 ident: bib26 article-title: A scenario-based assessment of the energy efficiency existing ship index (EEXI) and carbon intensity indicator (CII) regulations publication-title: Ocean Eng – year: 2023 ident: bib41 – year: 2020 ident: bib9 article-title: Procedures for sampling and verification of the sulphur content of fuel oil and the Energy Efficiency Design Index (EEDI) – volume: 269 year: 2022 ident: bib17 article-title: Optimal design and operation of maritime energy systems based on renewable methanol and closed carbon cycles publication-title: Energy Convers Manag – volume: 172 start-page: 105 year: 2018 end-page: 118 ident: bib33 article-title: Thermodynamic and economic assessment of a novel CCHP integrated system taking biomass, natural gas and geothermal energy as co-feeds publication-title: Energy Convers Manag – volume: 8 start-page: 336 year: 2022 end-page: 344 ident: bib12 article-title: Top level design and evaluation of advanced low/zero carbon fuel ships power technology publication-title: Energy Rep – volume: 43 start-page: 3809 year: 2018 end-page: 3821 ident: bib8 article-title: Comparative analysis of a hybrid propulsion using LNG-LH publication-title: Int J Hydrogen Energy – volume: 189 year: 2023 ident: bib3 article-title: Impacts of the COVID-19 epidemic on carbon emissions from international shipping publication-title: Mar Pollut Bull – volume: 268 year: 2020 ident: bib37 article-title: Techno-economic assessment of absorption-based CO publication-title: Appl Energy – volume: 143 year: 2022 ident: bib46 article-title: Multi-objective optimal scheduling of automated construction equipment using non-dominated sorting genetic algorithm (NSGA-III) publication-title: Autom ConStruct – volume: 456 year: 2023 ident: bib16 article-title: Novel cryogenic carbon dioxide capture and storage process using LNG cold energy in a natural gas combined cycle power plant publication-title: Chem Eng J – volume: 253 year: 2022 ident: bib29 article-title: Study on a near-zero emission SOFC-based multi-generation system combined with organic Rankine cycle and transcritical CO publication-title: Energy Convers Manag – volume: 105 year: 2021 ident: bib21 article-title: Novel methodology for EEDI calculation considering onboard carbon capture and storage system publication-title: Int J Greenh Gas Control – volume: 94 start-page: 64 year: 2016 end-page: 77 ident: bib35 article-title: Energy and exergoeconomic evaluation of a new power/cooling cogeneration system based on a solid oxide fuel cell publication-title: Energy – volume: 181 year: 2024 ident: bib5 article-title: Technoeconomic evaluation of post-combustion carbon capture technologies on-board a medium range tanker publication-title: Comput Chem Eng – volume: 297 year: 2021 ident: bib10 article-title: Alternative fuel options for low carbon maritime transportation: pathways to 2050 publication-title: J Clean Prod – volume: 278 year: 2023 ident: bib30 article-title: Numerical study on pollutant emissions characteristics and chemical and physical exergy analysis in Mild combustion publication-title: Energy – volume: 126 start-page: 566 year: 2017 end-page: 582 ident: bib38 article-title: Effects of stage number of condensing process on the power generation systems for LNG cold energy recovery publication-title: Appl Therm Eng – volume: 344 year: 2023 ident: bib44 article-title: Energy, Exergy, Economic and Environmental (4E) analysis of integrated direct air capture and CO publication-title: Fuel – volume: 211 year: 2020 ident: 10.1016/j.energy.2024.130985_bib32 article-title: Comparison of different CO2 liquefaction processes and exergoeconomic evaluation of integrated CO2 liquefaction and absorption refrigeration system publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2020.112752 – volume: 43 start-page: 3809 issue: 7 year: 2018 ident: 10.1016/j.energy.2024.130985_bib8 article-title: Comparative analysis of a hybrid propulsion using LNG-LH2 complying with regulations on emissions publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.01.041 – volume: 181 year: 2024 ident: 10.1016/j.energy.2024.130985_bib5 article-title: Technoeconomic evaluation of post-combustion carbon capture technologies on-board a medium range tanker publication-title: Comput Chem Eng doi: 10.1016/j.compchemeng.2023.108545 – volume: 456 year: 2023 ident: 10.1016/j.energy.2024.130985_bib16 article-title: Novel cryogenic carbon dioxide capture and storage process using LNG cold energy in a natural gas combined cycle power plant publication-title: Chem Eng J doi: 10.1016/j.cej.2022.140980 – volume: 94 start-page: 64 year: 2016 ident: 10.1016/j.energy.2024.130985_bib35 article-title: Energy and exergoeconomic evaluation of a new power/cooling cogeneration system based on a solid oxide fuel cell publication-title: Energy doi: 10.1016/j.energy.2015.11.001 – volume: 59 year: 2022 ident: 10.1016/j.energy.2024.130985_bib47 article-title: Performance optimization of a solar air-conditioning with a three-phase accumulator based on the energy-economic analysis publication-title: J Build Eng – volume: 126 start-page: 566 year: 2017 ident: 10.1016/j.energy.2024.130985_bib38 article-title: Effects of stage number of condensing process on the power generation systems for LNG cold energy recovery publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.07.144 – volume: 148 start-page: 193 year: 2018 ident: 10.1016/j.energy.2024.130985_bib6 article-title: Towards improving energy efficiency regulations of bulk carriers publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2017.11.014 – volume: 9 start-page: 2282 issue: 2 year: 2023 ident: 10.1016/j.energy.2024.130985_bib22 article-title: Simultaneous and global optimizations of LNG-fueled hybrid electric ship for substantial fuel cost, CO2, and methane emission reduction publication-title: IEEE Trans Transp Electrif doi: 10.1109/TTE.2022.3208880 – volume: 274 year: 2023 ident: 10.1016/j.energy.2024.130985_bib39 article-title: Process synthesis for amine-based CO2 capture from combined cycle gas turbine power plant publication-title: Energy doi: 10.1016/j.energy.2023.127391 – volume: 278 year: 2023 ident: 10.1016/j.energy.2024.130985_bib30 article-title: Numerical study on pollutant emissions characteristics and chemical and physical exergy analysis in Mild combustion publication-title: Energy doi: 10.1016/j.energy.2023.128001 – volume: 84 start-page: 107 year: 2015 ident: 10.1016/j.energy.2024.130985_bib25 article-title: Influence of the required EEDI reduction factor on the CO2 emission from bulk carriers publication-title: Energy Pol doi: 10.1016/j.enpol.2015.04.031 – volume: 309 year: 2023 ident: 10.1016/j.energy.2024.130985_bib4 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2022.123037 – volume: 187 year: 2019 ident: 10.1016/j.energy.2024.130985_bib15 article-title: A novel combined system for LNG cold energy utilization to capture carbon dioxide in the flue gas from the magnesite processing industry publication-title: Energy doi: 10.1016/j.energy.2019.115963 – volume: 257 year: 2022 ident: 10.1016/j.energy.2024.130985_bib31 article-title: Thermodynamic and environmental analyses of a novel closed loop regasification system integrating ORC and CO2 capture in floating storage regasification units publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2022.115410 – volume: 257 year: 2022 ident: 10.1016/j.energy.2024.130985_bib42 article-title: A novel negative carbon-emission, cooling, and power generation system based on combined LNG regasification and waste heat recovery: energy, exergy, economic, environmental (4E) evaluations publication-title: Energy doi: 10.1016/j.energy.2022.124528 – volume: 175 year: 2023 ident: 10.1016/j.energy.2024.130985_bib2 article-title: Analyzing the development of competition and cooperation among ocean carriers considering the impact of carbon tax policy publication-title: Transport Res Part E Logist Transp Rev doi: 10.1016/j.tre.2023.103157 – volume: 172 start-page: 105 year: 2018 ident: 10.1016/j.energy.2024.130985_bib33 article-title: Thermodynamic and economic assessment of a novel CCHP integrated system taking biomass, natural gas and geothermal energy as co-feeds publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2018.07.002 – volume: 301 year: 2024 ident: 10.1016/j.energy.2024.130985_bib27 article-title: Targeting zero energy increment for an onboard CO2 capture system: 4E analyses and multi-objective optimization publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2023.117890 – volume: 16 issue: 18 year: 2023 ident: 10.1016/j.energy.2024.130985_bib18 article-title: A review of on-board carbon capture and storage techniques: solutions to the 2030 IMO regulations publication-title: Energies doi: 10.3390/en16186748 – volume: 8 start-page: 336 year: 2022 ident: 10.1016/j.energy.2024.130985_bib12 article-title: Top level design and evaluation of advanced low/zero carbon fuel ships power technology publication-title: Energy Rep doi: 10.1016/j.egyr.2022.10.143 – volume: 253 year: 2022 ident: 10.1016/j.energy.2024.130985_bib29 article-title: Study on a near-zero emission SOFC-based multi-generation system combined with organic Rankine cycle and transcritical CO2 cycle for LNG cold energy recovery publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.115188 – volume: 268 year: 2020 ident: 10.1016/j.energy.2024.130985_bib37 article-title: Techno-economic assessment of absorption-based CO2 capture process based on novel solvent for coal-fired power plant publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.114933 – start-page: 3 year: 2018 ident: 10.1016/j.energy.2024.130985_bib24 – volume: 187 start-page: 41 year: 2019 ident: 10.1016/j.energy.2024.130985_bib13 article-title: A novel inlet air cooling system based on liquefied natural gas cold energy utilization for improving power plant performance publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.03.015 – volume: 85 start-page: 1 year: 2019 ident: 10.1016/j.energy.2024.130985_bib20 article-title: Ship-based carbon capture onboard of diesel or LNG-fuelled ships publication-title: Int J Greenh Gas Control doi: 10.1016/j.ijggc.2019.03.008 – volume: 110 year: 2021 ident: 10.1016/j.energy.2024.130985_bib23 article-title: An investigation on the solvent based carbon capture and storage system by process modeling and comparisons with another carbon control methods for different ships publication-title: Int J Greenh Gas Control doi: 10.1016/j.ijggc.2021.103438 – volume: 105 year: 2021 ident: 10.1016/j.energy.2024.130985_bib21 article-title: Novel methodology for EEDI calculation considering onboard carbon capture and storage system publication-title: Int J Greenh Gas Control doi: 10.1016/j.ijggc.2020.103241 – volume: 74 start-page: 121 year: 2023 ident: 10.1016/j.energy.2024.130985_bib43 article-title: Simulation and comprehensive study of an optimum process for CO2 capture from flue gas; technical, economic, and environmental analyses publication-title: Alex Eng J doi: 10.1016/j.aej.2023.04.066 – volume: 269 year: 2022 ident: 10.1016/j.energy.2024.130985_bib17 article-title: Optimal design and operation of maritime energy systems based on renewable methanol and closed carbon cycles publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2022.116064 – volume: 189 year: 2023 ident: 10.1016/j.energy.2024.130985_bib3 article-title: Impacts of the COVID-19 epidemic on carbon emissions from international shipping publication-title: Mar Pollut Bull doi: 10.1016/j.marpolbul.2023.114730 – volume: 108 year: 2021 ident: 10.1016/j.energy.2024.130985_bib7 article-title: Reducing the energy efficiency design index for ships through a post-combustion carbon capture process publication-title: Int J Greenh Gas Control doi: 10.1016/j.ijggc.2021.103333 – volume: 326 year: 2022 ident: 10.1016/j.energy.2024.130985_bib36 article-title: Thermo-economic analysis of a combined cooling, heating and power system based on self-evaporating liquid carbon dioxide energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.120032 – volume: 143 year: 2022 ident: 10.1016/j.energy.2024.130985_bib46 article-title: Multi-objective optimal scheduling of automated construction equipment using non-dominated sorting genetic algorithm (NSGA-III) publication-title: Autom ConStruct doi: 10.1016/j.autcon.2022.104587 – volume: 343 year: 2023 ident: 10.1016/j.energy.2024.130985_bib28 article-title: Process simulation and energy analysis of synthetic natural gas production from water electrolysis and CO2 capture in a waste incinerator publication-title: Appl Energy doi: 10.1016/j.apenergy.2023.121200 – volume: 8 start-page: 7612 year: 2022 ident: 10.1016/j.energy.2024.130985_bib40 article-title: Optimization and energy assessment of technological process for CO2 capture system of natural gas and coal combustion publication-title: Energy Rep doi: 10.1016/j.egyr.2022.06.004 – volume: 105 start-page: 32 year: 2016 ident: 10.1016/j.energy.2024.130985_bib14 article-title: Thermodynamic analysis of a novel power plant with LNG (liquefied natural gas) cold exergy exploitation and CO2 capture publication-title: Energy doi: 10.1016/j.energy.2015.09.011 – volume: 344 year: 2023 ident: 10.1016/j.energy.2024.130985_bib44 article-title: Energy, Exergy, Economic and Environmental (4E) analysis of integrated direct air capture and CO2 methanation under uncertainty publication-title: Fuel doi: 10.1016/j.fuel.2023.127969 – volume: 278 year: 2023 ident: 10.1016/j.energy.2024.130985_bib26 article-title: A scenario-based assessment of the energy efficiency existing ship index (EEXI) and carbon intensity indicator (CII) regulations publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2023.114295 – volume: 134 year: 2020 ident: 10.1016/j.energy.2024.130985_bib11 article-title: A comprehensive review on countermeasures for CO2 emissions from ships publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.110222 – volume: 195 start-page: 402 year: 2017 ident: 10.1016/j.energy.2024.130985_bib1 article-title: Study of solvent-based carbon capture for cargo ships through process modelling and simulation publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.03.027 – volume: 282 year: 2022 ident: 10.1016/j.energy.2024.130985_bib19 article-title: Process design of onboard membrane carbon capture and liquefaction systems for LNG-fueled ships publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2021.120052 – volume: 57 year: 2020 ident: 10.1016/j.energy.2024.130985_bib45 article-title: Many-objective optimization for scheduling of crude oil operations based on NSGA-Ⅲ with consideration of energy efficiency publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2020.100714 – volume: 297 year: 2021 ident: 10.1016/j.energy.2024.130985_bib10 article-title: Alternative fuel options for low carbon maritime transportation: pathways to 2050 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2021.126651 – volume: 231 year: 2023 ident: 10.1016/j.energy.2024.130985_bib34 article-title: Design and optimization of a zero carbon emission system integrated with the utilization of marine engine waste heat and LNG cold energy for LNG-powered ships publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2023.120976  | 
    
| SSID | ssj0005899 | 
    
| Score | 2.4883864 | 
    
| Snippet | With the accelerated implementation of Energy Efficiency Design Index (EEDI) phase 3 by the International Maritime Organization, shipping carbon reduction is... | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 130985 | 
    
| SubjectTerms | carbon carbon sequestration case studies cold compliance energy efficiency Energy efficiency design index exergy heat LNG cold energy recovery mass flow Metric of carbon capture efficiency degree Multi-objective optimization Onboard carbon capture and storage systems engineering  | 
    
| Title | Design principle, 4E analyses and optimization for onboard CCS system under EEDI framework: A case study of an LNG-fueled bulk carrier | 
    
| URI | https://dx.doi.org/10.1016/j.energy.2024.130985 https://www.proquest.com/docview/3153787290  | 
    
| Volume | 295 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0360-5442 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0360-5442 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0360-5442 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0360-5442 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0005899 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0360-5442 databaseCode: AKRWK dateStart: 19760301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005899 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZWcIBLRXmotBRNJY41m8ROnPS22g3sFroXisTNih1Hgm6T1T6uHPndHTsxL1VC4pZYEyvyOPN9SeabIeQEQSnRSCtowsOKcpNVVGmhaZyix7kJyjC1auRf02R8zX_exDc9MvRaGJtW2cX-Nqa7aN2N9LvV7M9vb_tXGHuRb3CXBSmQNlsFOxe2i8Hp_bM0j9T1kLTG1Fp7-ZzL8TJOX4dviRG3bZEz21H5__D0KlA79DnbIR862giD9s4-kp6pd8mWVxUvd8lB_qRYQ8PukV3ukYeRy9GAuf-q_h14DoWrRWKWeFBCg2Hjb6fHBCSx0NSqwZ0Dw-EVtKWewWrNFpDnowlUPp_rBwxAIwqCq1ELTYWzweX0nFZrBLMS1Hr2Bw0WtinePrk-y38Px7RrvkA1Y9mKIvQrjeQsC-OCm4SJTBcs0DyJVFogyzOxiVgVJWUshA5KXGetYlVEaVIJrk3GDshG3dTmE4GAqQSHLfRVnKkoDYOgCAuB1CjNdJQeEubXXOquMrltkDGTPgXtTraektZTsvXUIaGPV83byhxv2AvvTvlih0kEjzeu_Oa9L_Hhs39Uito066VkiBcY8aIs-Pzu2b-QbXtmMxLC-IhsrBZr8xWJzkodu518TDYHk4vx9B8iOPwu | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcigXBIWK8hwkjphNbCdOuFXblC1s99JW6s2KHUcqlGS1jytHfjdjJ-YlpErcomRsRR5nvi_JfDMAbwiUcku0guUybZl0ZcuMVZZlBXlcuqRJC69GPlvks0v58Sq72oFp1ML4tMox9g8xPUTr8cxkXM3J8vp6ck6xl_iGDFmQimjzHbgrM678G9i7b7_leRShiaS3Zt486udCkpcLAjt6TeTS90UufUvlf-PTX5E6wM_JA7g_8kY8Gm7tIey4bh_2oqx4vQ8H1S_JGhmOz-z6EXw_DkkauIyf1d-irLAOxUjcmg4a7ClufB0FmUgsFvvO9LR1cDo9x6HWM3qx2Qqr6vgU25jQ9R6P0BIMYihSi31Ls-F88YG1W0KzBs325gsZrHxXvMdweVJdTGds7L7ArBDlhhH2G0vsrEyzWrpcqNLWIrEy56aoiea5zHHR8rzJlLJJQ-tsTWZqXuStktaV4gB2u75zTwATYXI67bGvlcLwIk2SOq0VcaOitLw4BBHXXNuxNLnvkHGjYw7aZz14SntP6cFTh8B-jloOpTlusVfRnfqPLaYJPW4Z-Tp6X9PT53-p1J3rt2stCDAo5PEyefrfs7-CvdnF2VzPTxefnsE9f8WnJ6TZc9jdrLbuBbGejXkZdvUP7z79ww | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+principle%2C+4E+analyses+and+optimization+for+onboard+CCS+system+under+EEDI+framework%3A+A+case+study+of+an+LNG-fueled+bulk+carrier&rft.jtitle=Energy+%28Oxford%29&rft.au=Tian%2C+Zhen&rft.au=Zhou%2C+Yihang&rft.au=Zhang%2C+Yuan&rft.au=Gao%2C+Wenzhong&rft.date=2024-05-15&rft.pub=Elsevier+Ltd&rft.issn=0360-5442&rft.volume=295&rft_id=info:doi/10.1016%2Fj.energy.2024.130985&rft.externalDocID=S0360544224007576 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon |