Relations of land cover, topography, and climate to fire occurrence in natural regions of Iran: Applying new data mining techniques for modeling and mapping fire danger
•ML algorithm, showed a good efficiency for land cover mapping of central Koohdasht.•Distance from roads was the most important factor in fire susceptibility modeling.•FDA and GLM were the most accurate techniques for fire susceptibility mapping. In recent years, land uses have been changing and ari...
Saved in:
| Published in | Forest ecology and management Vol. 473; p. 118338 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.10.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0378-1127 1872-7042 |
| DOI | 10.1016/j.foreco.2020.118338 |
Cover
| Abstract | •ML algorithm, showed a good efficiency for land cover mapping of central Koohdasht.•Distance from roads was the most important factor in fire susceptibility modeling.•FDA and GLM were the most accurate techniques for fire susceptibility mapping.
In recent years, land uses have been changing and aridity has been increasing in the forests and rangelands of central Koohdasht which is a region in the forests of the Zagros Mountains in western Iran. Consequently, the number of fires has also increased. This study employs data-mining techniques to model fire danger using information regarding land cover, climate, topography, and other fire-danger influencing factors. A land cover map was prepared using Sentinel-2A satellite images and a maximum likelihood (ML) algorithm. Digital data describing other factors that influence fire danger (slope angle, aspect, elevation, climate, topographic wetness index, and distances from rivers and roads) were compiled from several sources and imported into a GIS. The locations of past fires in the study area were also determined from MODIS satellite images and data acquired from the region’s fire service. The quantitative and qualitative spatial relationships between effective factors and patterns of fires were investigated to model fire danger. A new machine-learning algorithm (the Boruta algorithm) was used to assess the relative importance of the fire-danger factors. Fire danger maps were created using several new data-mining algorithms including support vector machine (SVM), generalized linear model (GLM), functional data analysis (FDA), and random forest (RF). All were run in R 3.3.3 software. Finally, the fire danger maps were validated with several indices to determine the model that best predicts the fire danger in Koohdasht County. The results reveal that fire locations were determined mostly by elevation (low), aspect (south and southwest facing slopes), and aridity (semi-arid regions). Most fires occurred in non-natural landscapes: residential areas (46.74% of fires), agricultural lands (25.77%), and gardens (5.42%). In total, 77.93% of fires occurred in non-natural landscapes and within 500 m of roads. Only 22.07% of fires occurred on rangelands and forests. Three factors (distance from roads, climate, and aspect) were the strongest predictors of fire locations in the study area. Furthermore, area-under-the-curve (AUC) values indicate that the FDA (0.777) and GLM (0.772) algorithms generated the most accurate fire danger maps. These results have practical implications for fire danger management in the Zagros forests and provide baseline information for forest managers about the most important factors affecting fire danger in the similar regions. This methodology can be used by forest managers to predict the areas with greatest fire danger to prevent future fires through land use management, planning, and strategic decision-making. The results enable forest managers to find the best methods to monitor, manage, and control fire occurrence based on fire danger maps in the forests of western Iran, or in forests of other regions with similar conditions. |
|---|---|
| AbstractList | •ML algorithm, showed a good efficiency for land cover mapping of central Koohdasht.•Distance from roads was the most important factor in fire susceptibility modeling.•FDA and GLM were the most accurate techniques for fire susceptibility mapping.
In recent years, land uses have been changing and aridity has been increasing in the forests and rangelands of central Koohdasht which is a region in the forests of the Zagros Mountains in western Iran. Consequently, the number of fires has also increased. This study employs data-mining techniques to model fire danger using information regarding land cover, climate, topography, and other fire-danger influencing factors. A land cover map was prepared using Sentinel-2A satellite images and a maximum likelihood (ML) algorithm. Digital data describing other factors that influence fire danger (slope angle, aspect, elevation, climate, topographic wetness index, and distances from rivers and roads) were compiled from several sources and imported into a GIS. The locations of past fires in the study area were also determined from MODIS satellite images and data acquired from the region’s fire service. The quantitative and qualitative spatial relationships between effective factors and patterns of fires were investigated to model fire danger. A new machine-learning algorithm (the Boruta algorithm) was used to assess the relative importance of the fire-danger factors. Fire danger maps were created using several new data-mining algorithms including support vector machine (SVM), generalized linear model (GLM), functional data analysis (FDA), and random forest (RF). All were run in R 3.3.3 software. Finally, the fire danger maps were validated with several indices to determine the model that best predicts the fire danger in Koohdasht County. The results reveal that fire locations were determined mostly by elevation (low), aspect (south and southwest facing slopes), and aridity (semi-arid regions). Most fires occurred in non-natural landscapes: residential areas (46.74% of fires), agricultural lands (25.77%), and gardens (5.42%). In total, 77.93% of fires occurred in non-natural landscapes and within 500 m of roads. Only 22.07% of fires occurred on rangelands and forests. Three factors (distance from roads, climate, and aspect) were the strongest predictors of fire locations in the study area. Furthermore, area-under-the-curve (AUC) values indicate that the FDA (0.777) and GLM (0.772) algorithms generated the most accurate fire danger maps. These results have practical implications for fire danger management in the Zagros forests and provide baseline information for forest managers about the most important factors affecting fire danger in the similar regions. This methodology can be used by forest managers to predict the areas with greatest fire danger to prevent future fires through land use management, planning, and strategic decision-making. The results enable forest managers to find the best methods to monitor, manage, and control fire occurrence based on fire danger maps in the forests of western Iran, or in forests of other regions with similar conditions. In recent years, land uses have been changing and aridity has been increasing in the forests and rangelands of central Koohdasht which is a region in the forests of the Zagros Mountains in western Iran. Consequently, the number of fires has also increased. This study employs data-mining techniques to model fire danger using information regarding land cover, climate, topography, and other fire-danger influencing factors. A land cover map was prepared using Sentinel-2A satellite images and a maximum likelihood (ML) algorithm. Digital data describing other factors that influence fire danger (slope angle, aspect, elevation, climate, topographic wetness index, and distances from rivers and roads) were compiled from several sources and imported into a GIS. The locations of past fires in the study area were also determined from MODIS satellite images and data acquired from the region’s fire service. The quantitative and qualitative spatial relationships between effective factors and patterns of fires were investigated to model fire danger. A new machine-learning algorithm (the Boruta algorithm) was used to assess the relative importance of the fire-danger factors. Fire danger maps were created using several new data-mining algorithms including support vector machine (SVM), generalized linear model (GLM), functional data analysis (FDA), and random forest (RF). All were run in R 3.3.3 software. Finally, the fire danger maps were validated with several indices to determine the model that best predicts the fire danger in Koohdasht County. The results reveal that fire locations were determined mostly by elevation (low), aspect (south and southwest facing slopes), and aridity (semi-arid regions). Most fires occurred in non-natural landscapes: residential areas (46.74% of fires), agricultural lands (25.77%), and gardens (5.42%). In total, 77.93% of fires occurred in non-natural landscapes and within 500 m of roads. Only 22.07% of fires occurred on rangelands and forests. Three factors (distance from roads, climate, and aspect) were the strongest predictors of fire locations in the study area. Furthermore, area-under-the-curve (AUC) values indicate that the FDA (0.777) and GLM (0.772) algorithms generated the most accurate fire danger maps. These results have practical implications for fire danger management in the Zagros forests and provide baseline information for forest managers about the most important factors affecting fire danger in the similar regions. This methodology can be used by forest managers to predict the areas with greatest fire danger to prevent future fires through land use management, planning, and strategic decision-making. The results enable forest managers to find the best methods to monitor, manage, and control fire occurrence based on fire danger maps in the forests of western Iran, or in forests of other regions with similar conditions. |
| ArticleNumber | 118338 |
| Author | Pourghasemi, Hamid Reza Tiefenbacher, John P. Eskandari, Saeedeh |
| Author_xml | – sequence: 1 givenname: Saeedeh surname: Eskandari fullname: Eskandari, Saeedeh email: s.eskandari@rifr-ac.ir organization: Forest Research Division, Research Institute of Forests and Rangelands (RIFR), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran – sequence: 2 givenname: Hamid Reza surname: Pourghasemi fullname: Pourghasemi, Hamid Reza email: hr.pourghasemi@shirazu.ac.ir organization: Department of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University, Shiraz, Iran – sequence: 3 givenname: John P. surname: Tiefenbacher fullname: Tiefenbacher, John P. email: tief@txstate.edu organization: Department of Geography, Texas State University, San Marcos, TX, USA |
| BookMark | eNqFkc9q3DAQxkVJoZu0b9CDjjnEG_3zWs4hEELbBAKF0p6FLI83WmTJkbQp-0Z9zMrr5pJDc9LoY76Z4fudohMfPCD0mZI1JXRzuVsPIYIJa0ZYkajkXL5DKyobVjVEsBO0IryRFaWs-YBOU9oRQupayBX68wOczjb4hMOAnfY9NuEZ4gXOYQrbqKfHwwU-ys6OOkPR8WAj4GDMPkbwBrD12Ou8j9rhCNuXYfdR-yt8M03uYP0We_iNe501Hq2f_xnMo7dPe0i4XI_H0IOb9XnXqKdpro-Leu23ED-i94N2CT79e8_Qr69fft7eVQ_fv93f3jxUhvM2V9RAJ6ikWpOBt0A6I0EQPfSdbmXLN21HO8EbwoDJuobNpha0HXoGojGSC8HP0Pkyd4phPi6r0SYDrkQDYZ8Uq2tGaCMpL61iaTUxpBRhUFMsGcWDokTNYNROLWDUDEYtYIrt6pXN2HxkkKO27i3z9WKGksGzhaiSsTOEvkRlsuqD_f-Avzw4sL0 |
| CitedBy_id | crossref_primary_10_1186_s42408_023_00233_z crossref_primary_10_3390_f14071325 crossref_primary_10_1007_s10661_025_13843_8 crossref_primary_10_48130_emst_0024_0026 crossref_primary_10_1080_10106049_2023_2167005 crossref_primary_10_3390_land12122183 crossref_primary_10_2478_arls_2024_0003 crossref_primary_10_1007_s41207_024_00601_4 crossref_primary_10_1007_s41101_023_00231_x crossref_primary_10_1016_j_ecolind_2020_106720 crossref_primary_10_3389_ffgc_2024_1296100 crossref_primary_10_1016_j_ress_2023_109742 crossref_primary_10_3390_geomatics1010005 crossref_primary_10_3390_rs15204946 crossref_primary_10_1016_j_foreco_2023_121057 crossref_primary_10_1016_j_asr_2025_03_002 crossref_primary_10_3390_f14071393 crossref_primary_10_1007_s11356_021_13881_y crossref_primary_10_1016_j_tfp_2024_100496 crossref_primary_10_1016_j_scitotenv_2024_176823 crossref_primary_10_3390_rs14174362 crossref_primary_10_1007_s12518_022_00476_6 crossref_primary_10_1016_j_ecoinf_2022_101727 crossref_primary_10_1016_j_ecolind_2022_108621 crossref_primary_10_3390_su14148864 crossref_primary_10_1016_j_jenvman_2025_124777 crossref_primary_10_3390_su14073881 crossref_primary_10_1007_s11069_020_04169_4 crossref_primary_10_1016_j_ijdrr_2022_103115 crossref_primary_10_3389_feart_2021_622307 crossref_primary_10_1016_j_foreco_2024_121927 crossref_primary_10_1080_09640568_2022_2027747 crossref_primary_10_1007_s11356_022_21478_2 crossref_primary_10_3390_fire7020061 crossref_primary_10_3390_inventions7010015 crossref_primary_10_24057_2071_9388_2021_139 crossref_primary_10_1007_s11869_023_01426_w crossref_primary_10_1016_j_rsase_2025_101521 crossref_primary_10_3390_f14040807 |
| Cites_doi | 10.1175/1520-0442(1994)007<1484:TIOACC>2.0.CO;2 10.1016/j.foreco.2010.10.009 10.1080/02827581.2015.1052750 10.1016/j.scitotenv.2015.09.039 10.1111/j.1365-2486.2008.01585.x 10.2737/INT-GTR-143 10.1890/13-2101.1 10.1016/j.rse.2012.12.004 10.1016/j.geomorph.2019.01.006 10.5194/gmd-9-3533-2016 10.1016/j.ecolind.2015.12.030 10.3390/rs12121912 10.1579/0044-7447-37.7.522 10.1071/WF06084 10.1016/j.apgeog.2010.02.004 10.1016/j.foreco.2008.05.006 10.1371/journal.pone.0179294 10.1007/s10584-005-5935-y 10.1080/19475705.2017.1289249 10.1016/j.scitotenv.2019.02.436 10.3390/f7110262 10.1016/S0378-1127(97)82929-5 10.1111/j.1365-2699.2011.02595.x 10.1016/j.geoderma.2018.12.042 10.1080/02626667909491834 10.1111/j.1365-2699.2006.01456.x 10.1016/j.scitotenv.2018.02.278 10.1088/1748-9326/aa8c82 10.1016/j.foreco.2012.03.003 10.1080/22797254.2017.1417745 10.1016/j.ecolind.2020.106720 10.1016/S0378-1127(02)00547-9 10.3390/land4010140 10.1016/S0048-9697(00)00524-6 10.1080/22797254.2018.1442179 10.1071/WF12052 10.1126/science.1163886 10.1016/S0034-4257(97)00002-3 10.1016/S0169-7439(96)00050-0 10.1080/0143116031000150077 10.1023/A:1010933404324 10.1002/ecs2.2171 10.3923/jas.2010.2847.2854 10.5194/bg-12-887-2015 10.3390/f10050408 10.1016/j.jseaes.2012.12.014 10.1088/1748-9326/aa7e6e 10.1071/WF17026 10.1071/WF15083 10.1071/WF12137 10.1016/j.jenvman.2008.07.005 10.1139/x88-125 10.2747/1548-1603.47.2.221 10.1071/WF13019 10.1007/s10661-009-0997-3 10.18637/jss.v036.i11 10.1016/j.apgeog.2014.01.011 10.1029/2004GL020876 10.1007/s11069-016-2533-4 10.3390/su11123452 10.1007/s12517-017-2905-4 10.1007/s10113-012-0307-4 10.1016/S0034-4257(01)00204-8 10.1007/s00704-016-2022-4 10.1016/j.csda.2005.11.018 10.1016/j.isprsjprs.2010.11.001 10.1071/WF10032 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.foreco.2020.118338 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology Forestry |
| EISSN | 1872-7042 |
| ExternalDocumentID | 10_1016_j_foreco_2020_118338 S0378112720311075 |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFNM ABFRF ABFYP ABGRD ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A N~3 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SDF SDG SDP SES SPCBC SSA SSJ SSZ T5K WH7 Y6R ~02 ~G- ~KM 29H AAEDT AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AI. AIDBO AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ R2- SEN SEW VH1 WUQ ZKB ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c339t-1ceb4181aa0f39e0bc8e40afdba989369b1b43702e2855e665419fd2e47c83443 |
| IEDL.DBID | .~1 |
| ISSN | 0378-1127 |
| IngestDate | Sat Sep 27 23:50:48 EDT 2025 Thu Apr 24 23:10:36 EDT 2025 Thu Oct 09 00:38:51 EDT 2025 Fri Feb 23 02:47:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Sentinel-2A satellite images BRP RS FDA Boruta algorithm LR LDA GLM SVM Land cover AUC ESA LNRA SE Effective factors ML FRWOI TWI Fire danger mapping DEM ROI Data mining techniques MODIS GIS RF ASTER |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c339t-1ceb4181aa0f39e0bc8e40afdba989369b1b43702e2855e665419fd2e47c83443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2552017813 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2552017813 crossref_primary_10_1016_j_foreco_2020_118338 crossref_citationtrail_10_1016_j_foreco_2020_118338 elsevier_sciencedirect_doi_10_1016_j_foreco_2020_118338 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-10-01 2020-10-00 20201001 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Forest ecology and management |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Mallet, Coomans, deVel (b0280) 1996; 35 Chuvieco, Giglio, Justice (b0075) 2008; 14 Cochrane, Laurance (b0080) 2016; 37 Price, Rind (b0370) 1994; 7 Butsic, Kelly, Moritz (b0060) 2015; 4 Reyn, Sabatier, Molinari (b0375) 2006; 51 Abatzoglou, Kolden (b0005) 2013; 22 Urrutia-Jalabert, Gonzalez, Gonzalez-Reyes, Lara, Garreaud (b0435) 2018; 9 Bowman, Balch, Artaxo, Bond, Carlson, Cochrane, D’Antonio, DeFries, Doyle, Harrison, Johnston, Keeley, Krawchuk, Kull, Marston, Moritz, Prentice, Roos, Scott, Swetnam, Van der Werf, Pyne (b0030) 2009; 324 Marchal, Cumming, McIntire (b0285) 2017; 12 Lorestan Natural Resources Administration (LNRA) (b0260) 2014 Breiman (b0045) 2001; 45 Kodandapani, Cochrane, Sukumar (b0225) 2008; 256 Bowman, Balch, Artaxo, Bond, Cochrane, D'Antonio, DeFries, Johnston, Keeley, Krawchuk, Kull, Mack, Moritz, Pyne, Roos, Scott, Sodhi, Swetnam (b0035) 2011; 38 Li, Zhao, Guo, Zhang, Tan, Yang (b0250) 2017; 17 Mustapha, Lim, Mat Jafri (b0315) 2010; 10 Gillett, Weaver, Zwiers, Flannigan (b0175) 2004; 31 Yesilnacar, E.K., 2005. The application of computational intelligence to landslide susceptibility mapping in Turkey. Ph.D. Thesis, Department of Geomatics, University of Melbourne, Melbourne, 423p. Eskandari (b0105) 2015; 13 Chuvieco, Aguado, Jurdao, Pettinari, Yebra, Salas, Hantson, de la Riva, Ibarra, Rodrigues, Echeverría, Azqueta, Román, Bastarrika, Martínez, Recondo, Zapico, Martínez-Vega (b0070) 2014; 23 Mountrakis, Im, Ogole (b0300) 2011; 66 ESA (European Space Agency) (b0100) 2015 Rothermel, R.C., 1983. How to predict the spread and intensity of forest and range fires. General Technical Report, INT-143, U.S. Department of Agriculture (USDA) Forest Service, Intermountain Forest and Range Experiment Station, Ogden, 161p. Hawryło, Bednarz, Wężyk, Szostak (b0190) 2018; 51 Stefanov, Ramsey, Christensen (b0415) 2001; 77 Oliveira, Moreira, Boca, San-Miguel-Ayanz, Pereira (b0330) 2013; 23 Hosseinalizadeh, Kariminejad, Chen, Pourghasemi, Alinejad, Mohammadian Behbahani, Tiefenbacher (b0210) 2019 Ricotta, Bajocco, Guglietta, Conedera (b0380) 2018; 1 Vadrevu, Eaturu, Badarinath (b0440) 2010; 166 Xie (b0465) 2006 Costafreda-Aumedes, Comas, Vega-Garcia (b0085) 2017; 26 Hong, Tsangaratos, Ilia, Liu, Zhu, Xu (b0205) 2018; 630 Vapnik, Vapnik (b0450) 1998 Sibold, Veblen (b0405) 2006; 33 Gutierrez-Velez, Uriarte, DeFries, Pinedo-Vasquez, Fernandes, Ceccato, Baethgen, Padoch (b0180) 2014; 24 Lorestan Natural Resources Administration (LNRA) (b0265) 2018 Zobeiri (b0485) 2008 Yousefi, Jalilvand (b0475) 2010 Bui, Le, Nguyen, Le, Revhaug (b0050) 2016; 8 Chen, Niu, Tong, Zhao, Sun, He (b0065) 2014 Ljubomir, Pourghasemi, Drobnjak, Bai (b0255) 2019; 10 Jolly, Cochrane, Freeborn, Holden, Brown, Williamson, Bowman (b0215) 2015; 6 Gayen, Pourghasemi, Saha, Keesstra, Bai (b0165) 2019 Amiri, Pourghasemi, Ghanbariana, Afzali (b0010) 2019; 340 Maeda, Arcoverde, Pellikka, Shimabukuro (b0270) 2011; 31 Beven, Kirkby (b0025) 1979; 24 Eskandari, S., Jaafari, M.R., Oliva, P., Ghorbanzadeh, O., Blaschke, Th., 2020a. Mapping land cover and tree canopy cover in Zagros forests of Iran: Application of Sentinel-2, Google Earth, and field data. Remote Sensing, 12, 1912, 1-31. Stolle, Chomitz, Lambin, Tomich (b0420) 2003; 179 Eskandari, S., Pourghasemi, H.R., Miesel, J.R., 2020b. The temporal and spatial relationships between climatic parameters and fire occurrence in northeastern Iran. Ecological Indicators, in press. Pettinari, Ottmar, Prichard, Andreu, Chuvieco (b0355) 2014; 23 Martinez, Vega-Garcia, Chuvieco (b0290) 2009; 90 Forest, Rangeland and Watershed Organization of Iran (FRWOI), 2019. Statistics and Data of Fire in Natural Resources of Iran. Protection Unit of FRWO Press, Tehran, Iran. Ehrlich, Lambin, Malingreau (b0090) 1997; 61 Page, Morton, Bond-Lamberty, Pereira, Hurtt (b0345) 2015; 12 Zumbrunnen, Menendez, Bugmann, Conedera, Gimmi, Bürgi (b0490) 2012; 12 Forkel, Dorigo, Lasslop, Teubner, Chuvieco, Thonicke (b0160) 2016 Hantson, Padilla, Corti, Chuvieco (b0185) 2013; 131 Vollmar (b0455) 2014 Wotton, Flannigan, Marshall (b0460) 2017; 12 Moreno, Chuvieco (b0295) 2016; 7 Zumbrunnen, Pezzatti, Menéndez, Bugmann, Bürgi, Conedera (b0495) 2011; 261 Butler, B.W. Eskandari, Oladi, Jalilvand, Saradjian (b0135) 2015; 24 Ozdemir, Altural (b0340) 2013; 64 Kursa, Rudnicki (b0235) 2010; 36 Mahdavi, Fallah Shamsi (b0275) 2012; 19 Mustafa, Rienow, Saadi, Cools, Teller (b0310) 2018; 51 Naghibi, Pourghasemi, Abbaspour (b0320) 2018; 131 Gigovic, Pourghasemi, Drobnjak, Bai (b0170) 2019; 10 Mousazadeh, Ghanbarian, Pourghasemi, Safaeian, Cerda (b0305) 2019; 11 Oliveira, Oehler, San-Miguel-Ayanz, Camia, Pereira (b0335) 2012; 275 Paschalidou, Kassomenos (b0350) 2016; 539 Koutsias, Martínez-Fernández, Allgöwer (b0230) 2010; 47 Pourghasemi (b0360) 2016; 31 Anderson, W.R., Catchpole, E.A., 2007. Influence of slope on fire spread rate. In: Destin, F.L. (Eds.), The fire environment-innovations, management, and policy (Conference Proceedings), U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 26-30 March 2007, USA, pp. 75-82. Rodrigues, de la Riva, Fotheringham (b0385) 2014; 48 Narayanaraj, Wimberly (b0325) 2011; 20 Song, Kwan, Song, Zhu (b0410) 2017; 9 Tymstra, Flannigan, Armitage, Logan (b0430) 2007; 16 Heydarian, Rangzan, Maleki, Taghizadeh (b0195) 2014; 4 Eskandari, Jalilvand (b0120) 2017; 15 Lasslop, Kloster (b0245) 2017; 12 Bowman, Moreira-Munoz, Kolden, Chavez, Munoz, Salinas, Gonzalez-Reyes, Rocco, de la Barrera, Williamson, Borchers, Cifuentes, Abatzoglou, Johnston (b0040) 2018 Eskandari, Miesel (b0125) 2017; 8 Kushla, Ripple (b0240) 1997; 95 Armenteras, Gibbes, Vivacqua, Espinosa, Duleba, Goncalves, Castro (b0015) 2016; 7 Barbero, Abatzoglou, Larkin, Kolden, Stocks (b0020) 2015; 24 Erbek, Ozkan, Taberner (b0095) 2004; 25 Kariminejad, Hosseinalizadeh, Pourghasemi, Bernatek-Jakiel, Alinejad (b0220) 2019 Zabihi, Pourghasemi, Pourtaghi, Behzadfar (b0480) 2016; 75 Flannigan, Logan, Amiro, Skinner, Stocks (b0145) 2005; 72 Pourtaghi, Pourghasemi, Aretano, Semeraro (b0365) 2016; 64 Eskandari, Oladi, Jalilvand, Saradjian (b0130) 2015; 24 Rodrigues, Jimenez, de la Riva (b0390) 2016; 84 Rossi, Reichenbach (b0395) 2016; 9 Flannigan, Stock, Wotton (b0150) 2000; 262 Hong, Naghibi, Moradi Dashtpagerdi, Pourghasemi, Chen (b0200) 2017; 10 Eskandari, Chuvieco (b0110) 2015; 42 Van Wagner (b0445) 2011; 18 10.1016/j.foreco.2020.118338_b0155 Kodandapani (10.1016/j.foreco.2020.118338_b0225) 2008; 256 Stolle (10.1016/j.foreco.2020.118338_b0420) 2003; 179 Koutsias (10.1016/j.foreco.2020.118338_b0230) 2010; 47 Lorestan Natural Resources Administration (LNRA) (10.1016/j.foreco.2020.118338_b0260) 2014 Jolly (10.1016/j.foreco.2020.118338_b0215) 2015; 6 Chen (10.1016/j.foreco.2020.118338_b0065) 2014 Song (10.1016/j.foreco.2020.118338_b0410) 2017; 9 Reyn (10.1016/j.foreco.2020.118338_b0375) 2006; 51 Ehrlich (10.1016/j.foreco.2020.118338_b0090) 1997; 61 Hantson (10.1016/j.foreco.2020.118338_b0185) 2013; 131 Mousazadeh (10.1016/j.foreco.2020.118338_b0305) 2019; 11 Yousefi (10.1016/j.foreco.2020.118338_b0475) 2010 Tymstra (10.1016/j.foreco.2020.118338_b0430) 2007; 16 Hosseinalizadeh (10.1016/j.foreco.2020.118338_b0210) 2019 Barbero (10.1016/j.foreco.2020.118338_b0020) 2015; 24 Rossi (10.1016/j.foreco.2020.118338_b0395) 2016; 9 Paschalidou (10.1016/j.foreco.2020.118338_b0350) 2016; 539 Flannigan (10.1016/j.foreco.2020.118338_b0145) 2005; 72 Martinez (10.1016/j.foreco.2020.118338_b0290) 2009; 90 Gutierrez-Velez (10.1016/j.foreco.2020.118338_b0180) 2014; 24 Costafreda-Aumedes (10.1016/j.foreco.2020.118338_b0085) 2017; 26 Mahdavi (10.1016/j.foreco.2020.118338_b0275) 2012; 19 Xie (10.1016/j.foreco.2020.118338_b0465) 2006 Page (10.1016/j.foreco.2020.118338_b0345) 2015; 12 Moreno (10.1016/j.foreco.2020.118338_b0295) 2016; 7 Mustapha (10.1016/j.foreco.2020.118338_b0315) 2010; 10 Bowman (10.1016/j.foreco.2020.118338_b0030) 2009; 324 Vapnik (10.1016/j.foreco.2020.118338_b0450) 1998 Breiman (10.1016/j.foreco.2020.118338_b0045) 2001; 45 Kursa (10.1016/j.foreco.2020.118338_b0235) 2010; 36 Amiri (10.1016/j.foreco.2020.118338_b0010) 2019; 340 Rodrigues (10.1016/j.foreco.2020.118338_b0385) 2014; 48 Bui (10.1016/j.foreco.2020.118338_b0050) 2016; 8 Lorestan Natural Resources Administration (LNRA) (10.1016/j.foreco.2020.118338_b0265) 2018 10.1016/j.foreco.2020.118338_b0055 Cochrane (10.1016/j.foreco.2020.118338_b0080) 2016; 37 Eskandari (10.1016/j.foreco.2020.118338_b0105) 2015; 13 Hong (10.1016/j.foreco.2020.118338_b0205) 2018; 630 Flannigan (10.1016/j.foreco.2020.118338_b0150) 2000; 262 Lasslop (10.1016/j.foreco.2020.118338_b0245) 2017; 12 Heydarian (10.1016/j.foreco.2020.118338_b0195) 2014; 4 Zumbrunnen (10.1016/j.foreco.2020.118338_b0490) 2012; 12 Eskandari (10.1016/j.foreco.2020.118338_b0125) 2017; 8 Li (10.1016/j.foreco.2020.118338_b0250) 2017; 17 Sibold (10.1016/j.foreco.2020.118338_b0405) 2006; 33 Zabihi (10.1016/j.foreco.2020.118338_b0480) 2016; 75 ESA (European Space Agency) (10.1016/j.foreco.2020.118338_b0100) Stefanov (10.1016/j.foreco.2020.118338_b0415) 2001; 77 Ozdemir (10.1016/j.foreco.2020.118338_b0340) 2013; 64 Urrutia-Jalabert (10.1016/j.foreco.2020.118338_b0435) 2018; 9 10.1016/j.foreco.2020.118338_b0115 Kushla (10.1016/j.foreco.2020.118338_b0240) 1997; 95 Maeda (10.1016/j.foreco.2020.118338_b0270) 2011; 31 Gillett (10.1016/j.foreco.2020.118338_b0175) 2004; 31 Eskandari (10.1016/j.foreco.2020.118338_b0130) 2015; 24 Butsic (10.1016/j.foreco.2020.118338_b0060) 2015; 4 Marchal (10.1016/j.foreco.2020.118338_b0285) 2017; 12 Narayanaraj (10.1016/j.foreco.2020.118338_b0325) 2011; 20 Naghibi (10.1016/j.foreco.2020.118338_b0320) 2018; 131 Price (10.1016/j.foreco.2020.118338_b0370) 1994; 7 10.1016/j.foreco.2020.118338_b0470 Eskandari (10.1016/j.foreco.2020.118338_b0120) 2017; 15 Bowman (10.1016/j.foreco.2020.118338_b0040) 2018 Abatzoglou (10.1016/j.foreco.2020.118338_b0005) 2013; 22 10.1016/j.foreco.2020.118338_b0400 Pourtaghi (10.1016/j.foreco.2020.118338_b0365) 2016; 64 Eskandari (10.1016/j.foreco.2020.118338_b0110) 2015; 42 Mustafa (10.1016/j.foreco.2020.118338_b0310) 2018; 51 Bowman (10.1016/j.foreco.2020.118338_b0035) 2011; 38 Pettinari (10.1016/j.foreco.2020.118338_b0355) 2014; 23 Ljubomir (10.1016/j.foreco.2020.118338_b0255) 2019; 10 Hong (10.1016/j.foreco.2020.118338_b0200) 2017; 10 Kariminejad (10.1016/j.foreco.2020.118338_b0220) 2019 Hawryło (10.1016/j.foreco.2020.118338_b0190) 2018; 51 Armenteras (10.1016/j.foreco.2020.118338_b0015) 2016; 7 Gayen (10.1016/j.foreco.2020.118338_b0165) 2019 Oliveira (10.1016/j.foreco.2020.118338_b0330) 2013; 23 Chuvieco (10.1016/j.foreco.2020.118338_b0075) 2008; 14 Forkel (10.1016/j.foreco.2020.118338_b0160) 2016 Beven (10.1016/j.foreco.2020.118338_b0025) 1979; 24 Mallet (10.1016/j.foreco.2020.118338_b0280) 1996; 35 Chuvieco (10.1016/j.foreco.2020.118338_b0070) 2014; 23 Vollmar (10.1016/j.foreco.2020.118338_b0455) 2014 Eskandari (10.1016/j.foreco.2020.118338_b0135) 2015; 24 Gigovic (10.1016/j.foreco.2020.118338_b0170) 2019; 10 Wotton (10.1016/j.foreco.2020.118338_b0460) 2017; 12 Van Wagner (10.1016/j.foreco.2020.118338_b0445) 2011; 18 Mountrakis (10.1016/j.foreco.2020.118338_b0300) 2011; 66 Zumbrunnen (10.1016/j.foreco.2020.118338_b0495) 2011; 261 Ricotta (10.1016/j.foreco.2020.118338_b0380) 2018; 1 Oliveira (10.1016/j.foreco.2020.118338_b0335) 2012; 275 Vadrevu (10.1016/j.foreco.2020.118338_b0440) 2010; 166 Erbek (10.1016/j.foreco.2020.118338_b0095) 2004; 25 Rodrigues (10.1016/j.foreco.2020.118338_b0390) 2016; 84 10.1016/j.foreco.2020.118338_b0140 Pourghasemi (10.1016/j.foreco.2020.118338_b0360) 2016; 31 Zobeiri (10.1016/j.foreco.2020.118338_b0485) 2008 |
| References_xml | – volume: 12 start-page: 1 year: 2017 end-page: 13 ident: b0460 article-title: Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada publication-title: Environ. Res. Lett. – volume: 95 start-page: 97 year: 1997 end-page: 107 ident: b0240 article-title: The role of terrain in a fire mosaic of a temperate coniferous forest publication-title: For. Ecol. Manage. – volume: 61 start-page: 201 year: 1997 end-page: 209 ident: b0090 article-title: Biomass burning and broad-scale land-cover changes in western Africa publication-title: Remote Sens. Environ. – volume: 24 start-page: 43 year: 1979 end-page: 69 ident: b0025 article-title: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant publication-title: Hydrol. Sci. J. – volume: 14 start-page: 1488 year: 2008 end-page: 1502 ident: b0075 article-title: Global characterization of fire activity: towards defining fire regimes from earth observation data publication-title: Glob. Change Biol. – volume: 31 start-page: 76 year: 2011 end-page: 84 ident: b0270 article-title: Fire risk assessment in the Brazilian Amazon using MODIS imagery and change vector analysis publication-title: Appl. Geogr. – volume: 8 start-page: 1 year: 2017 end-page: 17 ident: b0125 article-title: Comparison of the fuzzy AHP method, the spatial correlation method, and the Dong model to predict the fire high-risk areas in Hyrcanian forests of Iran publication-title: Geomatics, Nat. Hazards Risk – start-page: 405p year: 2008 ident: b0485 article-title: Forest Biometry – reference: Forest, Rangeland and Watershed Organization of Iran (FRWOI), 2019. Statistics and Data of Fire in Natural Resources of Iran. Protection Unit of FRWO Press, Tehran, Iran. – volume: 24 start-page: 2305 year: 2015 end-page: 2308 ident: b0135 article-title: Evaluation of the MODIS fire-detection product in Neka-Zalemroud fire-prone forests in Northern Iran publication-title: Polish J. Environ. Stud. – volume: 9 start-page: 1 year: 2018 end-page: 18 ident: b0435 article-title: Climate variability and forest fires in central and south-central Chile publication-title: Ecosphere – start-page: 71p year: 2014 ident: b0455 article-title: The influence of climate and land cover on wildfire patterns in the conterminous United States. M.Sc. thesis, Department of Physical Geography and Ecosystems – reference: Rothermel, R.C., 1983. How to predict the spread and intensity of forest and range fires. General Technical Report, INT-143, U.S. Department of Agriculture (USDA) Forest Service, Intermountain Forest and Range Experiment Station, Ogden, 161p. – volume: 7 start-page: 1 year: 2016 end-page: 14 ident: b0015 article-title: Interactions between climate, land use and vegetation fire occurrences in El Salvador publication-title: Atmosphere – volume: 11 start-page: 3452 year: 2019 ident: b0305 article-title: Maxent data mining technique and its comparison with a bivariate statistical model for predicting the habitat potential of publication-title: Sustainability – volume: 26 start-page: 983 year: 2017 end-page: 998 ident: b0085 article-title: Human-caused fire occurrence modelling in perspective: a review publication-title: Int. J. Wildland Fire – volume: 10 start-page: 408 year: 2019 ident: b0170 article-title: Testing a new ensemble model based on SVM and random forest in forest fire susceptibility assessment and its mapping in Serbia’s Tara publication-title: Forests – year: 2006 ident: b0465 article-title: Support Vector Machines for Land Use Change Modeling – volume: 10 start-page: 2847 year: 2010 end-page: 2854 ident: b0315 article-title: Comparison of neural network and maximum likelihood approaches in image classification publication-title: J. Appl. Sci. – volume: 4 start-page: 1 year: 2014 end-page: 10 ident: b0195 article-title: Land use change detection using post classification comparison LandSat satellite images (Case study: land of Tehran) publication-title: RS & GIS for Natural Resources – volume: 64 start-page: 180 year: 2013 end-page: 197 ident: b0340 article-title: A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey publication-title: J. Asian Earth Sci. – year: 2018 ident: b0040 article-title: Human-environmental drivers and impacts of the globally extreme 2017 Chilean fires publication-title: Ambio – volume: 23 start-page: 620 year: 2013 end-page: 630 ident: b0330 article-title: Assessment of fire selectivity in relation to land cover and topography: a comparison between Southern European countries publication-title: Int. J. Wildland Fire (Special issue) – volume: 38 start-page: 2223 year: 2011 end-page: 2236 ident: b0035 article-title: The human dimension of fire regimes on earth publication-title: J. Biogeogr. – volume: 12 start-page: 887 year: 2015 end-page: 903 ident: b0345 article-title: HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers publication-title: Biogeosciences – volume: 340 start-page: 55 year: 2019 end-page: 69 ident: b0010 article-title: Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms publication-title: Geoderma – year: 2019 ident: b0220 article-title: Two-hazard susceptibility assessment of gully headcuts and pipe collapses in semi-arid environment: Golestan Province – volume: 66 start-page: 247 year: 2011 end-page: 259 ident: b0300 article-title: Support vector machines in remote sensing: A review publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 90 start-page: 1241 year: 2009 end-page: 1252 ident: b0290 article-title: Human-caused wildfire risk rating for prevention planning in Spain publication-title: J. Environ. Manage. – volume: 24 start-page: 892 year: 2015 end-page: 899 ident: b0020 article-title: Climate change presents increased potential for very large fires in the contiguous United States publication-title: Int. J. Wildland Fire – volume: 18 start-page: 820 year: 2011 end-page: 822 ident: b0445 article-title: Effect of slope on fires spreading downhill publication-title: Can. J. For. Res. – volume: 275 start-page: 117 year: 2012 end-page: 129 ident: b0335 article-title: Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest publication-title: For. Ecol. Manage. – volume: 31 start-page: 80 year: 2016 end-page: 98 ident: b0360 article-title: GIS-based forest fire susceptibility mapping in Iran: A comparison between evidential belief function and binary logistic regression models publication-title: Scand. J. For. Res. – year: 2018 ident: b0265 article-title: Statistics and Data of Fire in Natural Resources of Lorestan Province – volume: 25 start-page: 1733 year: 2004 end-page: 1748 ident: b0095 article-title: Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities publication-title: Int. J. Remote Sens. – volume: 19 start-page: 77 year: 2012 end-page: 91 ident: b0275 article-title: Mapping forest cover change, using aerial photography and IRS-LISSIII imagery (Case study: Ilam Township) publication-title: J. Wood Forest Sci. Technol. – volume: 179 start-page: 277 year: 2003 end-page: 292 ident: b0420 article-title: Land use and vegetation fires in Jambi Province, Sumatra, Indonesia publication-title: For. Ecol. Manage. – year: 2014 ident: b0065 article-title: The impact of precipitation regimes on forest fires in Yunnan Province – volume: 131 start-page: 967 year: 2018 end-page: 984 ident: b0320 article-title: A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS publication-title: Theatr. Appl. Climatol. – start-page: 1 year: 2010 end-page: 15 ident: b0475 article-title: Investigation of fire situation in forest and pasture areas of Mazandaran Province (Basin of Sari Natural Resources Administration) publication-title: from 2004 to 2007. In: Proceedings of the Second International Conference on Climate Change and Tree Chronology, Sari – volume: 4 start-page: 140 year: 2015 end-page: 156 ident: b0060 article-title: Land use and wildfire: a review of local interactions and teleconnections publication-title: Land – volume: 6 start-page: 1 year: 2015 end-page: 11 ident: b0215 article-title: Climate-induced variations in global wildfire danger from 1979 to 2013 publication-title: Nat. Commun. – volume: 72 start-page: 1 year: 2005 end-page: 16 ident: b0145 article-title: Future area burned in Canada publication-title: Clim. Change – volume: 23 start-page: 606 year: 2014 end-page: 619 ident: b0070 article-title: Integrating geospatial information into fire risk assessment publication-title: Int. J. Wildland Fire – volume: 37 start-page: 522 year: 2016 end-page: 527 ident: b0080 article-title: Synergisms among fire, land use, and climate change in the Amazon publication-title: Ambio – volume: 8 start-page: 1 year: 2016 end-page: 15 ident: b0050 article-title: Tropical forest fire susceptibility mapping at the Cat Ba National Park area, Hai Phong City, Vietnam, using GIS-based Kernel logistic regression publication-title: Remote Sens. – volume: 261 start-page: 2188 year: 2011 end-page: 2199 ident: b0495 article-title: Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland publication-title: For. Ecol. Manage. – reference: Eskandari, S., Pourghasemi, H.R., Miesel, J.R., 2020b. The temporal and spatial relationships between climatic parameters and fire occurrence in northeastern Iran. Ecological Indicators, in press. – volume: 7 start-page: 1484 year: 1994 end-page: 1494 ident: b0370 article-title: The impact of a 2-X-CO2 climate on lightning-caused fires publication-title: J. Clim. – reference: Eskandari, S., Jaafari, M.R., Oliva, P., Ghorbanzadeh, O., Blaschke, Th., 2020a. Mapping land cover and tree canopy cover in Zagros forests of Iran: Application of Sentinel-2, Google Earth, and field data. Remote Sensing, 12, 1912, 1-31. – volume: 20 start-page: 792 year: 2011 end-page: 803 ident: b0325 article-title: Influences of forest roads on the spatial pattern of wildfire boundaries publication-title: Int. J. Wildland Fire – volume: 10 start-page: 408 year: 2019 ident: b0255 article-title: Testing a new ensemble model based on SVM and Random forest in forest fire susceptibility assessment and its mapping in Serbian National Park Tara publication-title: Forests – year: 2015 ident: b0100 article-title: User Guide of Sentinel-2 Level-1C – volume: 24 start-page: 1323 year: 2014 end-page: 1340 ident: b0180 article-title: Land cover change interacts with drought severity to change fire regimes in Western Amazonia publication-title: Ecol. Appl. – volume: 324 start-page: 481 year: 2009 end-page: 484 ident: b0030 article-title: Fire in the earth system publication-title: Science – volume: 33 start-page: 833 year: 2006 end-page: 842 ident: b0405 article-title: Relationships of subalpine forest fires in the Colorado Front Range with interannual and multidecadal-scale climatic variation publication-title: J. Biogeogr. – volume: 75 year: 2016 ident: b0480 article-title: GISbased multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran publication-title: Environ. Earth Sci. – volume: 131 start-page: 152 year: 2013 end-page: 159 ident: b0185 article-title: Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence publication-title: Remote Sens. Environ. – volume: 15 start-page: 30 year: 2017 end-page: 39 ident: b0120 article-title: Effect of weather changes on fire regime of Neka and Behshahr forests publication-title: Iran. J. Forest Range Protect. Res. – volume: 9 start-page: 3533 year: 2016 end-page: 3543 ident: b0395 article-title: LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0 publication-title: Geosci. Model Dev. – year: 2016 ident: b0160 article-title: Identifying required model structures to predict global fire activity from satellite and climate data publication-title: Geosci. Model Dev. Discuss. – volume: 166 start-page: 223 year: 2010 end-page: 239 ident: b0440 article-title: Fire risk evaluation using multicriteria analysis, a case study publication-title: J. Environ. Monitor. Assess. – volume: 48 start-page: 52 year: 2014 end-page: 63 ident: b0385 article-title: Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression publication-title: Appl. Geogr. – reference: Anderson, W.R., Catchpole, E.A., 2007. Influence of slope on fire spread rate. In: Destin, F.L. (Eds.), The fire environment-innovations, management, and policy (Conference Proceedings), U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 26-30 March 2007, USA, pp. 75-82. – volume: 31 start-page: 1 year: 2004 end-page: 4 ident: b0175 article-title: Detecting the effect of climate change on Canadian forest fires publication-title: Geophys. Res. Lett. – volume: 12 year: 2017 ident: b0245 article-title: Human impact on wildfires varies between regions and with vegetation productivity publication-title: Environ. Res. Lett. – volume: 13 start-page: 1 year: 2015 end-page: 10 ident: b0105 article-title: Investigation on the relationship between climate change and fire in the forests of Golestan Province, Iran publication-title: Iran. J. Forest Range Protect. Res. – volume: 51 start-page: 1765 year: 2006 end-page: 1778 ident: b0375 article-title: Choice of B-splines with free parameters in the flexible discriminant analysis context publication-title: Comput. Stat. Data Anal. – volume: 7 start-page: 262 year: 2016 end-page: 275 ident: b0295 article-title: Fire regime characteristics along environmental gradients in Spain publication-title: Forests – volume: 36 start-page: 1 year: 2010 end-page: 13 ident: b0235 article-title: Feature selection with the Boruta package publication-title: J. Stat. Softw. – volume: 12 start-page: 1 year: 2017 end-page: 17 ident: b0285 article-title: Land cover, more than monthly fire weather, drives fire-size distribution in Southern QueÂbec forests: Implications for fire risk management publication-title: PLoS ONE – volume: 12 start-page: 935 year: 2012 end-page: 949 ident: b0490 article-title: Human impacts on fire occurrence: a case study of hundred years of forest fires in a dry alpine valley in Switzerland publication-title: Reg. Environ. Change – volume: 539 start-page: 536 year: 2016 end-page: 545 ident: b0350 article-title: What are the most fire-dangerous atmospheric circulations in the Eastern-Mediterranean? Analysis of the synoptic wildfire climatology publication-title: Sci. Total Environ. – volume: 47 start-page: 221 year: 2010 end-page: 240 ident: b0230 article-title: Do factors causing wildfires vary in space? Evidence from geographically weighted regression publication-title: GIScience & Remote Sens. – volume: 51 start-page: 391 year: 2018 end-page: 401 ident: b0310 article-title: Comparing support vector machines with logistic regression for calibrating cellular automata land use change models publication-title: Eur. J. Remote Sens. – volume: 16 start-page: 153 year: 2007 end-page: 160 ident: b0430 article-title: Impact of climate change on area burned in Alberta’s boreal forest publication-title: Int. J. Wildland Fire – volume: 51 start-page: 194 year: 2018 end-page: 204 ident: b0190 article-title: Estimating defoliation of Scots pine stands using machine learning methods and vegetation indices of Sentinel-2 publication-title: Eur. J. Remote Sens. – volume: 24 start-page: 2309 year: 2015 end-page: 2314 ident: b0130 article-title: Prediction of future forest fires using the MCDM method publication-title: Polish J. Environ. Stud. – volume: 64 start-page: 72 year: 2016 end-page: 84 ident: b0365 article-title: Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques publication-title: Ecol. Ind. – volume: 262 start-page: 221 year: 2000 end-page: 229 ident: b0150 article-title: Climate change and forest fires publication-title: Sci. Total Environ. – volume: 35 start-page: 157 year: 1996 end-page: 173 ident: b0280 article-title: Recent developments in discriminant analysis on high dimensional spectral data publication-title: Chemometr. Intell. Lab. Syst. – reference: Butler, B.W., – volume: 10 start-page: 167 year: 2017 ident: b0200 article-title: A comparative assessment between linear and quadratic discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility mapping in China publication-title: Arabian J. Geosci. – volume: 9 start-page: 1 year: 2017 end-page: 21 ident: b0410 article-title: A Comparison between spatial econometric models and random forest for modeling fire occurrence publication-title: Susceptibility – year: 1998 ident: b0450 article-title: Statistical Learning Theory – volume: 630 start-page: 1044 year: 2018 end-page: 1056 ident: b0205 article-title: Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models, the case of Dayu County, China publication-title: Sci. Total Environ. – year: 2019 ident: b0210 article-title: Spatial modelling of gully headcuts using UAV data and four best-first decision classifier ensembles (BFTree, Bag-BFTree, RS-BFTree, and RF-BFTree) publication-title: Geomorphology – volume: 42 start-page: 57 year: 2015 end-page: 64 ident: b0110 article-title: Fire danger assessment in Iran based on geospatial information publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 22 start-page: 1003 year: 2013 end-page: 1020 ident: b0005 article-title: Relationships between climate and macro scale area burned in the western United States publication-title: Int. J. Wildland Fire – year: 2019 ident: b0165 article-title: Gully erosion susceptibility assessment and management of hazard prone areas using different machine learning algorithms in India publication-title: Sci. Total Environ. – volume: 256 start-page: 607 year: 2008 end-page: 617 ident: b0225 article-title: A comparative analysis of spatial, temporal, and ecological characteristics of forest fires in seasonally dry tropical ecosystems in the Western Ghats, India publication-title: For. Ecol. Manage. – volume: 17 start-page: 1 year: 2017 end-page: 19 ident: b0250 article-title: The Influence of Land Use on the Grassland Fire Occurrence in the Northeastern Inner Mongolia Autonomous Region publication-title: China. Sensors – start-page: 420p year: 2014 ident: b0260 article-title: Comprehensive Plan of Koohdasht Region – reference: Yesilnacar, E.K., 2005. The application of computational intelligence to landslide susceptibility mapping in Turkey. Ph.D. Thesis, Department of Geomatics, University of Melbourne, Melbourne, 423p. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0045 article-title: Random forest publication-title: Mach. Learn. – volume: 23 start-page: 643 year: 2014 end-page: 654 ident: b0355 article-title: Development and mapping of fuel characteristics and associated fire potentials for South America publication-title: Int. J. Wildland Fire – volume: 1 year: 2018 ident: b0380 article-title: Assessing the influence of roads on fire ignition: does land cover matter? publication-title: Fire – volume: 84 start-page: 2049 year: 2016 end-page: 2070 ident: b0390 article-title: Analysis of recent spatial-temporal evolution of human driving factors of wildfires in Spain publication-title: Nat. Hazards – volume: 77 start-page: 173 year: 2001 end-page: 185 ident: b0415 article-title: Monitoring urban land cover change; an expert system approach to land cover classification of semiarid to arid urban centers publication-title: Remote Sens. Environ. – volume: 7 start-page: 1484 issue: 10 year: 1994 ident: 10.1016/j.foreco.2020.118338_b0370 article-title: The impact of a 2-X-CO2 climate on lightning-caused fires publication-title: J. Clim. doi: 10.1175/1520-0442(1994)007<1484:TIOACC>2.0.CO;2 – volume: 17 start-page: 1 issue: 437 year: 2017 ident: 10.1016/j.foreco.2020.118338_b0250 article-title: The Influence of Land Use on the Grassland Fire Occurrence in the Northeastern Inner Mongolia Autonomous Region publication-title: China. Sensors – volume: 261 start-page: 2188 year: 2011 ident: 10.1016/j.foreco.2020.118338_b0495 article-title: Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2010.10.009 – year: 2016 ident: 10.1016/j.foreco.2020.118338_b0160 article-title: Identifying required model structures to predict global fire activity from satellite and climate data publication-title: Geosci. Model Dev. Discuss. – year: 2019 ident: 10.1016/j.foreco.2020.118338_b0220 – volume: 31 start-page: 80 issue: 1 year: 2016 ident: 10.1016/j.foreco.2020.118338_b0360 article-title: GIS-based forest fire susceptibility mapping in Iran: A comparison between evidential belief function and binary logistic regression models publication-title: Scand. J. For. Res. doi: 10.1080/02827581.2015.1052750 – start-page: 71p year: 2014 ident: 10.1016/j.foreco.2020.118338_b0455 – volume: 539 start-page: 536 year: 2016 ident: 10.1016/j.foreco.2020.118338_b0350 article-title: What are the most fire-dangerous atmospheric circulations in the Eastern-Mediterranean? Analysis of the synoptic wildfire climatology publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.09.039 – volume: 14 start-page: 1488 year: 2008 ident: 10.1016/j.foreco.2020.118338_b0075 article-title: Global characterization of fire activity: towards defining fire regimes from earth observation data publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2008.01585.x – ident: 10.1016/j.foreco.2020.118338_b0400 doi: 10.2737/INT-GTR-143 – volume: 24 start-page: 1323 issue: 6 year: 2014 ident: 10.1016/j.foreco.2020.118338_b0180 article-title: Land cover change interacts with drought severity to change fire regimes in Western Amazonia publication-title: Ecol. Appl. doi: 10.1890/13-2101.1 – volume: 131 start-page: 152 year: 2013 ident: 10.1016/j.foreco.2020.118338_b0185 article-title: Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.004 – volume: 8 start-page: 1 issue: 4 year: 2016 ident: 10.1016/j.foreco.2020.118338_b0050 article-title: Tropical forest fire susceptibility mapping at the Cat Ba National Park area, Hai Phong City, Vietnam, using GIS-based Kernel logistic regression publication-title: Remote Sens. – year: 2019 ident: 10.1016/j.foreco.2020.118338_b0210 article-title: Spatial modelling of gully headcuts using UAV data and four best-first decision classifier ensembles (BFTree, Bag-BFTree, RS-BFTree, and RF-BFTree) publication-title: Geomorphology doi: 10.1016/j.geomorph.2019.01.006 – volume: 9 start-page: 3533 year: 2016 ident: 10.1016/j.foreco.2020.118338_b0395 article-title: LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0 publication-title: Geosci. Model Dev. doi: 10.5194/gmd-9-3533-2016 – year: 2014 ident: 10.1016/j.foreco.2020.118338_b0065 – volume: 64 start-page: 72 year: 2016 ident: 10.1016/j.foreco.2020.118338_b0365 article-title: Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques publication-title: Ecol. Ind. doi: 10.1016/j.ecolind.2015.12.030 – ident: 10.1016/j.foreco.2020.118338_b0115 doi: 10.3390/rs12121912 – volume: 37 start-page: 522 year: 2016 ident: 10.1016/j.foreco.2020.118338_b0080 article-title: Synergisms among fire, land use, and climate change in the Amazon publication-title: Ambio doi: 10.1579/0044-7447-37.7.522 – volume: 16 start-page: 153 year: 2007 ident: 10.1016/j.foreco.2020.118338_b0430 article-title: Impact of climate change on area burned in Alberta’s boreal forest publication-title: Int. J. Wildland Fire doi: 10.1071/WF06084 – volume: 31 start-page: 76 year: 2011 ident: 10.1016/j.foreco.2020.118338_b0270 article-title: Fire risk assessment in the Brazilian Amazon using MODIS imagery and change vector analysis publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2010.02.004 – volume: 256 start-page: 607 year: 2008 ident: 10.1016/j.foreco.2020.118338_b0225 article-title: A comparative analysis of spatial, temporal, and ecological characteristics of forest fires in seasonally dry tropical ecosystems in the Western Ghats, India publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2008.05.006 – volume: 12 start-page: 1 issue: 6 year: 2017 ident: 10.1016/j.foreco.2020.118338_b0285 article-title: Land cover, more than monthly fire weather, drives fire-size distribution in Southern QueÂbec forests: Implications for fire risk management publication-title: PLoS ONE doi: 10.1371/journal.pone.0179294 – volume: 72 start-page: 1 year: 2005 ident: 10.1016/j.foreco.2020.118338_b0145 article-title: Future area burned in Canada publication-title: Clim. Change doi: 10.1007/s10584-005-5935-y – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.foreco.2020.118338_b0125 article-title: Comparison of the fuzzy AHP method, the spatial correlation method, and the Dong model to predict the fire high-risk areas in Hyrcanian forests of Iran publication-title: Geomatics, Nat. Hazards Risk doi: 10.1080/19475705.2017.1289249 – volume: 23 start-page: 620 issue: 5 year: 2013 ident: 10.1016/j.foreco.2020.118338_b0330 article-title: Assessment of fire selectivity in relation to land cover and topography: a comparison between Southern European countries publication-title: Int. J. Wildland Fire (Special issue) – year: 2019 ident: 10.1016/j.foreco.2020.118338_b0165 article-title: Gully erosion susceptibility assessment and management of hazard prone areas using different machine learning algorithms in India publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.02.436 – volume: 7 start-page: 262 year: 2016 ident: 10.1016/j.foreco.2020.118338_b0295 article-title: Fire regime characteristics along environmental gradients in Spain publication-title: Forests doi: 10.3390/f7110262 – year: 1998 ident: 10.1016/j.foreco.2020.118338_b0450 – ident: 10.1016/j.foreco.2020.118338_b0155 – volume: 95 start-page: 97 year: 1997 ident: 10.1016/j.foreco.2020.118338_b0240 article-title: The role of terrain in a fire mosaic of a temperate coniferous forest publication-title: For. Ecol. Manage. doi: 10.1016/S0378-1127(97)82929-5 – volume: 38 start-page: 2223 year: 2011 ident: 10.1016/j.foreco.2020.118338_b0035 article-title: The human dimension of fire regimes on earth publication-title: J. Biogeogr. doi: 10.1111/j.1365-2699.2011.02595.x – volume: 340 start-page: 55 year: 2019 ident: 10.1016/j.foreco.2020.118338_b0010 article-title: Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms publication-title: Geoderma doi: 10.1016/j.geoderma.2018.12.042 – volume: 42 start-page: 57 year: 2015 ident: 10.1016/j.foreco.2020.118338_b0110 article-title: Fire danger assessment in Iran based on geospatial information publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 24 start-page: 43 issue: 1 year: 1979 ident: 10.1016/j.foreco.2020.118338_b0025 article-title: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant publication-title: Hydrol. Sci. J. doi: 10.1080/02626667909491834 – volume: 33 start-page: 833 year: 2006 ident: 10.1016/j.foreco.2020.118338_b0405 article-title: Relationships of subalpine forest fires in the Colorado Front Range with interannual and multidecadal-scale climatic variation publication-title: J. Biogeogr. doi: 10.1111/j.1365-2699.2006.01456.x – volume: 630 start-page: 1044 year: 2018 ident: 10.1016/j.foreco.2020.118338_b0205 article-title: Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models, the case of Dayu County, China publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.02.278 – volume: 12 year: 2017 ident: 10.1016/j.foreco.2020.118338_b0245 article-title: Human impact on wildfires varies between regions and with vegetation productivity publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aa8c82 – volume: 275 start-page: 117 year: 2012 ident: 10.1016/j.foreco.2020.118338_b0335 article-title: Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest publication-title: For. Ecol. Manage. doi: 10.1016/j.foreco.2012.03.003 – volume: 51 start-page: 194 issue: 1 year: 2018 ident: 10.1016/j.foreco.2020.118338_b0190 article-title: Estimating defoliation of Scots pine stands using machine learning methods and vegetation indices of Sentinel-2 publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2017.1417745 – start-page: 405p year: 2008 ident: 10.1016/j.foreco.2020.118338_b0485 – volume: 7 start-page: 1 issue: 26 year: 2016 ident: 10.1016/j.foreco.2020.118338_b0015 article-title: Interactions between climate, land use and vegetation fire occurrences in El Salvador publication-title: Atmosphere – ident: 10.1016/j.foreco.2020.118338_b0140 doi: 10.1016/j.ecolind.2020.106720 – volume: 179 start-page: 277 year: 2003 ident: 10.1016/j.foreco.2020.118338_b0420 article-title: Land use and vegetation fires in Jambi Province, Sumatra, Indonesia publication-title: For. Ecol. Manage. doi: 10.1016/S0378-1127(02)00547-9 – volume: 4 start-page: 140 year: 2015 ident: 10.1016/j.foreco.2020.118338_b0060 article-title: Land use and wildfire: a review of local interactions and teleconnections publication-title: Land doi: 10.3390/land4010140 – volume: 262 start-page: 221 year: 2000 ident: 10.1016/j.foreco.2020.118338_b0150 article-title: Climate change and forest fires publication-title: Sci. Total Environ. doi: 10.1016/S0048-9697(00)00524-6 – volume: 51 start-page: 391 issue: 1 year: 2018 ident: 10.1016/j.foreco.2020.118338_b0310 article-title: Comparing support vector machines with logistic regression for calibrating cellular automata land use change models publication-title: Eur. J. Remote Sens. doi: 10.1080/22797254.2018.1442179 – volume: 15 start-page: 30 issue: 1 year: 2017 ident: 10.1016/j.foreco.2020.118338_b0120 article-title: Effect of weather changes on fire regime of Neka and Behshahr forests publication-title: Iran. J. Forest Range Protect. Res. – volume: 23 start-page: 606 year: 2014 ident: 10.1016/j.foreco.2020.118338_b0070 article-title: Integrating geospatial information into fire risk assessment publication-title: Int. J. Wildland Fire doi: 10.1071/WF12052 – volume: 324 start-page: 481 issue: 5926 year: 2009 ident: 10.1016/j.foreco.2020.118338_b0030 article-title: Fire in the earth system publication-title: Science doi: 10.1126/science.1163886 – volume: 61 start-page: 201 issue: 2 year: 1997 ident: 10.1016/j.foreco.2020.118338_b0090 article-title: Biomass burning and broad-scale land-cover changes in western Africa publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00002-3 – ident: 10.1016/j.foreco.2020.118338_b0100 – volume: 6 start-page: 1 issue: 7537 year: 2015 ident: 10.1016/j.foreco.2020.118338_b0215 article-title: Climate-induced variations in global wildfire danger from 1979 to 2013 publication-title: Nat. Commun. – volume: 35 start-page: 157 issue: 2 year: 1996 ident: 10.1016/j.foreco.2020.118338_b0280 article-title: Recent developments in discriminant analysis on high dimensional spectral data publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/S0169-7439(96)00050-0 – volume: 4 start-page: 1 issue: 4 year: 2014 ident: 10.1016/j.foreco.2020.118338_b0195 article-title: Land use change detection using post classification comparison LandSat satellite images (Case study: land of Tehran) publication-title: RS & GIS for Natural Resources – volume: 25 start-page: 1733 issue: 9 year: 2004 ident: 10.1016/j.foreco.2020.118338_b0095 article-title: Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities publication-title: Int. J. Remote Sens. doi: 10.1080/0143116031000150077 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.foreco.2020.118338_b0045 article-title: Random forest publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 9 start-page: 1 issue: 4 year: 2018 ident: 10.1016/j.foreco.2020.118338_b0435 article-title: Climate variability and forest fires in central and south-central Chile publication-title: Ecosphere doi: 10.1002/ecs2.2171 – volume: 10 start-page: 2847 issue: 22 year: 2010 ident: 10.1016/j.foreco.2020.118338_b0315 article-title: Comparison of neural network and maximum likelihood approaches in image classification publication-title: J. Appl. Sci. doi: 10.3923/jas.2010.2847.2854 – volume: 1 issue: 24 year: 2018 ident: 10.1016/j.foreco.2020.118338_b0380 article-title: Assessing the influence of roads on fire ignition: does land cover matter? publication-title: Fire – volume: 12 start-page: 887 year: 2015 ident: 10.1016/j.foreco.2020.118338_b0345 article-title: HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers publication-title: Biogeosciences doi: 10.5194/bg-12-887-2015 – volume: 9 start-page: 1 issue: 819 year: 2017 ident: 10.1016/j.foreco.2020.118338_b0410 article-title: A Comparison between spatial econometric models and random forest for modeling fire occurrence publication-title: Susceptibility – volume: 10 start-page: 408 issue: 5 year: 2019 ident: 10.1016/j.foreco.2020.118338_b0255 article-title: Testing a new ensemble model based on SVM and Random forest in forest fire susceptibility assessment and its mapping in Serbian National Park Tara publication-title: Forests doi: 10.3390/f10050408 – volume: 64 start-page: 180 year: 2013 ident: 10.1016/j.foreco.2020.118338_b0340 article-title: A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey publication-title: J. Asian Earth Sci. doi: 10.1016/j.jseaes.2012.12.014 – start-page: 1 year: 2010 ident: 10.1016/j.foreco.2020.118338_b0475 article-title: Investigation of fire situation in forest and pasture areas of Mazandaran Province (Basin of Sari Natural Resources Administration) – volume: 12 start-page: 1 issue: 9 year: 2017 ident: 10.1016/j.foreco.2020.118338_b0460 article-title: Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aa7e6e – volume: 26 start-page: 983 year: 2017 ident: 10.1016/j.foreco.2020.118338_b0085 article-title: Human-caused fire occurrence modelling in perspective: a review publication-title: Int. J. Wildland Fire doi: 10.1071/WF17026 – volume: 24 start-page: 892 issue: 7 year: 2015 ident: 10.1016/j.foreco.2020.118338_b0020 article-title: Climate change presents increased potential for very large fires in the contiguous United States publication-title: Int. J. Wildland Fire doi: 10.1071/WF15083 – volume: 23 start-page: 643 year: 2014 ident: 10.1016/j.foreco.2020.118338_b0355 article-title: Development and mapping of fuel characteristics and associated fire potentials for South America publication-title: Int. J. Wildland Fire doi: 10.1071/WF12137 – start-page: 420p year: 2014 ident: 10.1016/j.foreco.2020.118338_b0260 – volume: 90 start-page: 1241 year: 2009 ident: 10.1016/j.foreco.2020.118338_b0290 article-title: Human-caused wildfire risk rating for prevention planning in Spain publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2008.07.005 – volume: 18 start-page: 820 issue: 6 year: 2011 ident: 10.1016/j.foreco.2020.118338_b0445 article-title: Effect of slope on fires spreading downhill publication-title: Can. J. For. Res. doi: 10.1139/x88-125 – volume: 47 start-page: 221 year: 2010 ident: 10.1016/j.foreco.2020.118338_b0230 article-title: Do factors causing wildfires vary in space? Evidence from geographically weighted regression publication-title: GIScience & Remote Sens. doi: 10.2747/1548-1603.47.2.221 – volume: 22 start-page: 1003 year: 2013 ident: 10.1016/j.foreco.2020.118338_b0005 article-title: Relationships between climate and macro scale area burned in the western United States publication-title: Int. J. Wildland Fire doi: 10.1071/WF13019 – volume: 166 start-page: 223 year: 2010 ident: 10.1016/j.foreco.2020.118338_b0440 article-title: Fire risk evaluation using multicriteria analysis, a case study publication-title: J. Environ. Monitor. Assess. doi: 10.1007/s10661-009-0997-3 – ident: 10.1016/j.foreco.2020.118338_b0470 – volume: 36 start-page: 1 issue: 11 year: 2010 ident: 10.1016/j.foreco.2020.118338_b0235 article-title: Feature selection with the Boruta package publication-title: J. Stat. Softw. doi: 10.18637/jss.v036.i11 – volume: 48 start-page: 52 year: 2014 ident: 10.1016/j.foreco.2020.118338_b0385 article-title: Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression publication-title: Appl. Geogr. doi: 10.1016/j.apgeog.2014.01.011 – volume: 10 start-page: 408 year: 2019 ident: 10.1016/j.foreco.2020.118338_b0170 article-title: Testing a new ensemble model based on SVM and random forest in forest fire susceptibility assessment and its mapping in Serbia’s Tara publication-title: Forests doi: 10.3390/f10050408 – year: 2018 ident: 10.1016/j.foreco.2020.118338_b0040 article-title: Human-environmental drivers and impacts of the globally extreme 2017 Chilean fires publication-title: Ambio – year: 2006 ident: 10.1016/j.foreco.2020.118338_b0465 – volume: 31 start-page: 1 issue: 18 year: 2004 ident: 10.1016/j.foreco.2020.118338_b0175 article-title: Detecting the effect of climate change on Canadian forest fires publication-title: Geophys. Res. Lett. doi: 10.1029/2004GL020876 – volume: 84 start-page: 2049 issue: 3 year: 2016 ident: 10.1016/j.foreco.2020.118338_b0390 article-title: Analysis of recent spatial-temporal evolution of human driving factors of wildfires in Spain publication-title: Nat. Hazards doi: 10.1007/s11069-016-2533-4 – volume: 24 start-page: 2309 issue: 5 year: 2015 ident: 10.1016/j.foreco.2020.118338_b0130 article-title: Prediction of future forest fires using the MCDM method publication-title: Polish J. Environ. Stud. – year: 2018 ident: 10.1016/j.foreco.2020.118338_b0265 – volume: 11 start-page: 3452 year: 2019 ident: 10.1016/j.foreco.2020.118338_b0305 article-title: Maxent data mining technique and its comparison with a bivariate statistical model for predicting the habitat potential of Astragalus fasciculifolius Boiss: a proposed indicator plant for marl soil conservation in Zagros Mountain publication-title: Sustainability doi: 10.3390/su11123452 – ident: 10.1016/j.foreco.2020.118338_b0055 – volume: 10 start-page: 167 issue: 7 year: 2017 ident: 10.1016/j.foreco.2020.118338_b0200 article-title: A comparative assessment between linear and quadratic discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility mapping in China publication-title: Arabian J. Geosci. doi: 10.1007/s12517-017-2905-4 – volume: 24 start-page: 2305 issue: 5 year: 2015 ident: 10.1016/j.foreco.2020.118338_b0135 article-title: Evaluation of the MODIS fire-detection product in Neka-Zalemroud fire-prone forests in Northern Iran publication-title: Polish J. Environ. Stud. – volume: 12 start-page: 935 year: 2012 ident: 10.1016/j.foreco.2020.118338_b0490 article-title: Human impacts on fire occurrence: a case study of hundred years of forest fires in a dry alpine valley in Switzerland publication-title: Reg. Environ. Change doi: 10.1007/s10113-012-0307-4 – volume: 77 start-page: 173 issue: 2 year: 2001 ident: 10.1016/j.foreco.2020.118338_b0415 article-title: Monitoring urban land cover change; an expert system approach to land cover classification of semiarid to arid urban centers publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(01)00204-8 – volume: 131 start-page: 967 year: 2018 ident: 10.1016/j.foreco.2020.118338_b0320 article-title: A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS publication-title: Theatr. Appl. Climatol. doi: 10.1007/s00704-016-2022-4 – volume: 13 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.foreco.2020.118338_b0105 article-title: Investigation on the relationship between climate change and fire in the forests of Golestan Province, Iran publication-title: Iran. J. Forest Range Protect. Res. – volume: 19 start-page: 77 issue: 1 year: 2012 ident: 10.1016/j.foreco.2020.118338_b0275 article-title: Mapping forest cover change, using aerial photography and IRS-LISSIII imagery (Case study: Ilam Township) publication-title: J. Wood Forest Sci. Technol. – volume: 51 start-page: 1765 issue: 3 year: 2006 ident: 10.1016/j.foreco.2020.118338_b0375 article-title: Choice of B-splines with free parameters in the flexible discriminant analysis context publication-title: Comput. Stat. Data Anal. doi: 10.1016/j.csda.2005.11.018 – volume: 66 start-page: 247 issue: 3 year: 2011 ident: 10.1016/j.foreco.2020.118338_b0300 article-title: Support vector machines in remote sensing: A review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.11.001 – volume: 20 start-page: 792 issue: 6 year: 2011 ident: 10.1016/j.foreco.2020.118338_b0325 article-title: Influences of forest roads on the spatial pattern of wildfire boundaries publication-title: Int. J. Wildland Fire doi: 10.1071/WF10032 – volume: 75 issue: 665 year: 2016 ident: 10.1016/j.foreco.2020.118338_b0480 article-title: GISbased multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran publication-title: Environ. Earth Sci. |
| SSID | ssj0005548 |
| Score | 2.5004725 |
| Snippet | •ML algorithm, showed a good efficiency for land cover mapping of central Koohdasht.•Distance from roads was the most important factor in fire susceptibility... In recent years, land uses have been changing and aridity has been increasing in the forests and rangelands of central Koohdasht which is a region in the... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 118338 |
| SubjectTerms | Boruta algorithm computer software Data mining techniques decision making digital database dry environmental conditions Effective factors Fire danger mapping fire hazard forest ecology forests Iran Land cover land use planning linear models rangelands satellites Sentinel-2A satellite images statistical analysis support vector machines topography |
| Title | Relations of land cover, topography, and climate to fire occurrence in natural regions of Iran: Applying new data mining techniques for modeling and mapping fire danger |
| URI | https://dx.doi.org/10.1016/j.foreco.2020.118338 https://www.proquest.com/docview/2552017813 |
| Volume | 473 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005548 issn: 0378-1127 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Freedom Collection customDbUrl: eissn: 1872-7042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005548 issn: 0378-1127 databaseCode: ACRLP dateStart: 20151001 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005548 issn: 0378-1127 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-7042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005548 issn: 0378-1127 databaseCode: AIKHN dateStart: 20151001 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7042 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005548 issn: 0378-1127 databaseCode: AKRWK dateStart: 19760101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA2iKF7ET_xmBI_GbZt023pbFmVV9KKCt5Ckqays7aLrwYu_x5_pTNouKoLgcUPa7Haykzf0zXuMHQYmllhlOJ7ZbsClzANOEiA8TkRo8kibwrdHX113B3fy4j6-n2H9theGaJVN7q9zus_WzUineZqd8XDYuQkEdUn694hUxFCjuZQJuRgcv3-hecTeQYsmc5rdts95jhfiQizysEqMKHekgrpUfj-efiRqf_qcLbOlBjZCr_5mK2zGlatsvjaSfFtlC-SwSbZta-xjSm-DqgDiLYIlmuYRTKpxo099BH54NES46nAcCnwIUFnrxZqsg2EJXvETlyTnhuZm53iunQDhVuqNAgTkQARTePImEzCVg30B_MXgPXZonNZ60qQD8VAvlPte43V2d3Z62x_wxo6BWyGyCQ-tMxIBgdZBITIXGJs6GegiNzpLyRfQhEaKJIhclMaxI1vjMCvyyMnEkpuH2GCzZVW6TQYuJJV3m-aI7WVYpLqrtYwx5DLJulmWbzHRRkHZRqucLDNGqiWlPao6dopip-rYbTE-vWpca3X8MT9pA6y-7TmFx8kfVx60-0Hh35HesejSVa8vCis0hFS4McX2v---wxbpU00Z3GWzk-dXt4fQZ2L2_d7eZ3O988vB9ScPBgSd |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RUD8uFYVWpR8wSBxxN4ntTdJbhYoWClwAiZtlO061FSSrshy48Hv6MzvjJCtaISFx9TrxbsY7fqO8eQ9gJ3FaUZURROnHiVCqSgRLgAidy9RVmXV1bI8-PhlPztXhhb5Ygr2hF4ZplX3u73J6zNb9yKh_mqPZdDo6TSR3Scb3iFzE6GewonSWcwX25e4ez0NHCy2eLXj60D8XSV4EDKnKozIx4-RRSG5Tefh8-i9Tx-NnfxVe97gRv3Vf7Q0shWYNnndOkrdr8IItNtm3bR3-LPht2NbIxEX0zNPcxXk76wWqdzEOX04JrwYax5qeArbeR7UmH3DaYJT8pCXZuqG_2QEdbF-RgSs3RyEhcmSGKV5Flwlc6MFeI_1ijCY7PM5rXVkWgvjZLVTFZuO3cL7__WxvIno_BuGlLOci9cEpQgTWJrUsQ-J8EVRi68rZsmBjQJc6JfMkC1mhdWBf47Ssqyyo3LOdh3wHy03bhPeAIWWZd19UBO5VWhd2bK3SFHOVl-OyrDZADlEwvhcrZ8-MSzOw0n6ZLnaGY2e62G2AWFw168Q6HpmfDwE2_2w6Q-fJI1duD_vB0P-RX7LYJrQ314ZKNMJUtDPlhyfffQteTs6Oj8zRwcmPj_CKP-n4g59gef77JnwmHDR3m3Gf_wUB8gYy |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relations+of+land+cover%2C+topography%2C+and+climate+to+fire+occurrence+in+natural+regions+of+Iran%3A+Applying+new+data+mining+techniques+for+modeling+and+mapping+fire+danger&rft.jtitle=Forest+ecology+and+management&rft.au=Eskandari%2C+Saeedeh&rft.au=Pourghasemi%2C+Hamid+Reza&rft.au=Tiefenbacher%2C+John+P.&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=0378-1127&rft.eissn=1872-7042&rft.volume=473&rft_id=info:doi/10.1016%2Fj.foreco.2020.118338&rft.externalDocID=S0378112720311075 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1127&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1127&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1127&client=summon |