Relations of land cover, topography, and climate to fire occurrence in natural regions of Iran: Applying new data mining techniques for modeling and mapping fire danger

•ML algorithm, showed a good efficiency for land cover mapping of central Koohdasht.•Distance from roads was the most important factor in fire susceptibility modeling.•FDA and GLM were the most accurate techniques for fire susceptibility mapping. In recent years, land uses have been changing and ari...

Full description

Saved in:
Bibliographic Details
Published inForest ecology and management Vol. 473; p. 118338
Main Authors Eskandari, Saeedeh, Pourghasemi, Hamid Reza, Tiefenbacher, John P.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2020
Subjects
Online AccessGet full text
ISSN0378-1127
1872-7042
DOI10.1016/j.foreco.2020.118338

Cover

Abstract •ML algorithm, showed a good efficiency for land cover mapping of central Koohdasht.•Distance from roads was the most important factor in fire susceptibility modeling.•FDA and GLM were the most accurate techniques for fire susceptibility mapping. In recent years, land uses have been changing and aridity has been increasing in the forests and rangelands of central Koohdasht which is a region in the forests of the Zagros Mountains in western Iran. Consequently, the number of fires has also increased. This study employs data-mining techniques to model fire danger using information regarding land cover, climate, topography, and other fire-danger influencing factors. A land cover map was prepared using Sentinel-2A satellite images and a maximum likelihood (ML) algorithm. Digital data describing other factors that influence fire danger (slope angle, aspect, elevation, climate, topographic wetness index, and distances from rivers and roads) were compiled from several sources and imported into a GIS. The locations of past fires in the study area were also determined from MODIS satellite images and data acquired from the region’s fire service. The quantitative and qualitative spatial relationships between effective factors and patterns of fires were investigated to model fire danger. A new machine-learning algorithm (the Boruta algorithm) was used to assess the relative importance of the fire-danger factors. Fire danger maps were created using several new data-mining algorithms including support vector machine (SVM), generalized linear model (GLM), functional data analysis (FDA), and random forest (RF). All were run in R 3.3.3 software. Finally, the fire danger maps were validated with several indices to determine the model that best predicts the fire danger in Koohdasht County. The results reveal that fire locations were determined mostly by elevation (low), aspect (south and southwest facing slopes), and aridity (semi-arid regions). Most fires occurred in non-natural landscapes: residential areas (46.74% of fires), agricultural lands (25.77%), and gardens (5.42%). In total, 77.93% of fires occurred in non-natural landscapes and within 500 m of roads. Only 22.07% of fires occurred on rangelands and forests. Three factors (distance from roads, climate, and aspect) were the strongest predictors of fire locations in the study area. Furthermore, area-under-the-curve (AUC) values indicate that the FDA (0.777) and GLM (0.772) algorithms generated the most accurate fire danger maps. These results have practical implications for fire danger management in the Zagros forests and provide baseline information for forest managers about the most important factors affecting fire danger in the similar regions. This methodology can be used by forest managers to predict the areas with greatest fire danger to prevent future fires through land use management, planning, and strategic decision-making. The results enable forest managers to find the best methods to monitor, manage, and control fire occurrence based on fire danger maps in the forests of western Iran, or in forests of other regions with similar conditions.
AbstractList •ML algorithm, showed a good efficiency for land cover mapping of central Koohdasht.•Distance from roads was the most important factor in fire susceptibility modeling.•FDA and GLM were the most accurate techniques for fire susceptibility mapping. In recent years, land uses have been changing and aridity has been increasing in the forests and rangelands of central Koohdasht which is a region in the forests of the Zagros Mountains in western Iran. Consequently, the number of fires has also increased. This study employs data-mining techniques to model fire danger using information regarding land cover, climate, topography, and other fire-danger influencing factors. A land cover map was prepared using Sentinel-2A satellite images and a maximum likelihood (ML) algorithm. Digital data describing other factors that influence fire danger (slope angle, aspect, elevation, climate, topographic wetness index, and distances from rivers and roads) were compiled from several sources and imported into a GIS. The locations of past fires in the study area were also determined from MODIS satellite images and data acquired from the region’s fire service. The quantitative and qualitative spatial relationships between effective factors and patterns of fires were investigated to model fire danger. A new machine-learning algorithm (the Boruta algorithm) was used to assess the relative importance of the fire-danger factors. Fire danger maps were created using several new data-mining algorithms including support vector machine (SVM), generalized linear model (GLM), functional data analysis (FDA), and random forest (RF). All were run in R 3.3.3 software. Finally, the fire danger maps were validated with several indices to determine the model that best predicts the fire danger in Koohdasht County. The results reveal that fire locations were determined mostly by elevation (low), aspect (south and southwest facing slopes), and aridity (semi-arid regions). Most fires occurred in non-natural landscapes: residential areas (46.74% of fires), agricultural lands (25.77%), and gardens (5.42%). In total, 77.93% of fires occurred in non-natural landscapes and within 500 m of roads. Only 22.07% of fires occurred on rangelands and forests. Three factors (distance from roads, climate, and aspect) were the strongest predictors of fire locations in the study area. Furthermore, area-under-the-curve (AUC) values indicate that the FDA (0.777) and GLM (0.772) algorithms generated the most accurate fire danger maps. These results have practical implications for fire danger management in the Zagros forests and provide baseline information for forest managers about the most important factors affecting fire danger in the similar regions. This methodology can be used by forest managers to predict the areas with greatest fire danger to prevent future fires through land use management, planning, and strategic decision-making. The results enable forest managers to find the best methods to monitor, manage, and control fire occurrence based on fire danger maps in the forests of western Iran, or in forests of other regions with similar conditions.
In recent years, land uses have been changing and aridity has been increasing in the forests and rangelands of central Koohdasht which is a region in the forests of the Zagros Mountains in western Iran. Consequently, the number of fires has also increased. This study employs data-mining techniques to model fire danger using information regarding land cover, climate, topography, and other fire-danger influencing factors. A land cover map was prepared using Sentinel-2A satellite images and a maximum likelihood (ML) algorithm. Digital data describing other factors that influence fire danger (slope angle, aspect, elevation, climate, topographic wetness index, and distances from rivers and roads) were compiled from several sources and imported into a GIS. The locations of past fires in the study area were also determined from MODIS satellite images and data acquired from the region’s fire service. The quantitative and qualitative spatial relationships between effective factors and patterns of fires were investigated to model fire danger. A new machine-learning algorithm (the Boruta algorithm) was used to assess the relative importance of the fire-danger factors. Fire danger maps were created using several new data-mining algorithms including support vector machine (SVM), generalized linear model (GLM), functional data analysis (FDA), and random forest (RF). All were run in R 3.3.3 software. Finally, the fire danger maps were validated with several indices to determine the model that best predicts the fire danger in Koohdasht County. The results reveal that fire locations were determined mostly by elevation (low), aspect (south and southwest facing slopes), and aridity (semi-arid regions). Most fires occurred in non-natural landscapes: residential areas (46.74% of fires), agricultural lands (25.77%), and gardens (5.42%). In total, 77.93% of fires occurred in non-natural landscapes and within 500 m of roads. Only 22.07% of fires occurred on rangelands and forests. Three factors (distance from roads, climate, and aspect) were the strongest predictors of fire locations in the study area. Furthermore, area-under-the-curve (AUC) values indicate that the FDA (0.777) and GLM (0.772) algorithms generated the most accurate fire danger maps. These results have practical implications for fire danger management in the Zagros forests and provide baseline information for forest managers about the most important factors affecting fire danger in the similar regions. This methodology can be used by forest managers to predict the areas with greatest fire danger to prevent future fires through land use management, planning, and strategic decision-making. The results enable forest managers to find the best methods to monitor, manage, and control fire occurrence based on fire danger maps in the forests of western Iran, or in forests of other regions with similar conditions.
ArticleNumber 118338
Author Pourghasemi, Hamid Reza
Tiefenbacher, John P.
Eskandari, Saeedeh
Author_xml – sequence: 1
  givenname: Saeedeh
  surname: Eskandari
  fullname: Eskandari, Saeedeh
  email: s.eskandari@rifr-ac.ir
  organization: Forest Research Division, Research Institute of Forests and Rangelands (RIFR), Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
– sequence: 2
  givenname: Hamid Reza
  surname: Pourghasemi
  fullname: Pourghasemi, Hamid Reza
  email: hr.pourghasemi@shirazu.ac.ir
  organization: Department of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University, Shiraz, Iran
– sequence: 3
  givenname: John P.
  surname: Tiefenbacher
  fullname: Tiefenbacher, John P.
  email: tief@txstate.edu
  organization: Department of Geography, Texas State University, San Marcos, TX, USA
BookMark eNqFkc9q3DAQxkVJoZu0b9CDjjnEG_3zWs4hEELbBAKF0p6FLI83WmTJkbQp-0Z9zMrr5pJDc9LoY76Z4fudohMfPCD0mZI1JXRzuVsPIYIJa0ZYkajkXL5DKyobVjVEsBO0IryRFaWs-YBOU9oRQupayBX68wOczjb4hMOAnfY9NuEZ4gXOYQrbqKfHwwU-ys6OOkPR8WAj4GDMPkbwBrD12Ou8j9rhCNuXYfdR-yt8M03uYP0We_iNe501Hq2f_xnMo7dPe0i4XI_H0IOb9XnXqKdpro-Leu23ED-i94N2CT79e8_Qr69fft7eVQ_fv93f3jxUhvM2V9RAJ6ikWpOBt0A6I0EQPfSdbmXLN21HO8EbwoDJuobNpha0HXoGojGSC8HP0Pkyd4phPi6r0SYDrkQDYZ8Uq2tGaCMpL61iaTUxpBRhUFMsGcWDokTNYNROLWDUDEYtYIrt6pXN2HxkkKO27i3z9WKGksGzhaiSsTOEvkRlsuqD_f-Avzw4sL0
CitedBy_id crossref_primary_10_1186_s42408_023_00233_z
crossref_primary_10_3390_f14071325
crossref_primary_10_1007_s10661_025_13843_8
crossref_primary_10_48130_emst_0024_0026
crossref_primary_10_1080_10106049_2023_2167005
crossref_primary_10_3390_land12122183
crossref_primary_10_2478_arls_2024_0003
crossref_primary_10_1007_s41207_024_00601_4
crossref_primary_10_1007_s41101_023_00231_x
crossref_primary_10_1016_j_ecolind_2020_106720
crossref_primary_10_3389_ffgc_2024_1296100
crossref_primary_10_1016_j_ress_2023_109742
crossref_primary_10_3390_geomatics1010005
crossref_primary_10_3390_rs15204946
crossref_primary_10_1016_j_foreco_2023_121057
crossref_primary_10_1016_j_asr_2025_03_002
crossref_primary_10_3390_f14071393
crossref_primary_10_1007_s11356_021_13881_y
crossref_primary_10_1016_j_tfp_2024_100496
crossref_primary_10_1016_j_scitotenv_2024_176823
crossref_primary_10_3390_rs14174362
crossref_primary_10_1007_s12518_022_00476_6
crossref_primary_10_1016_j_ecoinf_2022_101727
crossref_primary_10_1016_j_ecolind_2022_108621
crossref_primary_10_3390_su14148864
crossref_primary_10_1016_j_jenvman_2025_124777
crossref_primary_10_3390_su14073881
crossref_primary_10_1007_s11069_020_04169_4
crossref_primary_10_1016_j_ijdrr_2022_103115
crossref_primary_10_3389_feart_2021_622307
crossref_primary_10_1016_j_foreco_2024_121927
crossref_primary_10_1080_09640568_2022_2027747
crossref_primary_10_1007_s11356_022_21478_2
crossref_primary_10_3390_fire7020061
crossref_primary_10_3390_inventions7010015
crossref_primary_10_24057_2071_9388_2021_139
crossref_primary_10_1007_s11869_023_01426_w
crossref_primary_10_1016_j_rsase_2025_101521
crossref_primary_10_3390_f14040807
Cites_doi 10.1175/1520-0442(1994)007<1484:TIOACC>2.0.CO;2
10.1016/j.foreco.2010.10.009
10.1080/02827581.2015.1052750
10.1016/j.scitotenv.2015.09.039
10.1111/j.1365-2486.2008.01585.x
10.2737/INT-GTR-143
10.1890/13-2101.1
10.1016/j.rse.2012.12.004
10.1016/j.geomorph.2019.01.006
10.5194/gmd-9-3533-2016
10.1016/j.ecolind.2015.12.030
10.3390/rs12121912
10.1579/0044-7447-37.7.522
10.1071/WF06084
10.1016/j.apgeog.2010.02.004
10.1016/j.foreco.2008.05.006
10.1371/journal.pone.0179294
10.1007/s10584-005-5935-y
10.1080/19475705.2017.1289249
10.1016/j.scitotenv.2019.02.436
10.3390/f7110262
10.1016/S0378-1127(97)82929-5
10.1111/j.1365-2699.2011.02595.x
10.1016/j.geoderma.2018.12.042
10.1080/02626667909491834
10.1111/j.1365-2699.2006.01456.x
10.1016/j.scitotenv.2018.02.278
10.1088/1748-9326/aa8c82
10.1016/j.foreco.2012.03.003
10.1080/22797254.2017.1417745
10.1016/j.ecolind.2020.106720
10.1016/S0378-1127(02)00547-9
10.3390/land4010140
10.1016/S0048-9697(00)00524-6
10.1080/22797254.2018.1442179
10.1071/WF12052
10.1126/science.1163886
10.1016/S0034-4257(97)00002-3
10.1016/S0169-7439(96)00050-0
10.1080/0143116031000150077
10.1023/A:1010933404324
10.1002/ecs2.2171
10.3923/jas.2010.2847.2854
10.5194/bg-12-887-2015
10.3390/f10050408
10.1016/j.jseaes.2012.12.014
10.1088/1748-9326/aa7e6e
10.1071/WF17026
10.1071/WF15083
10.1071/WF12137
10.1016/j.jenvman.2008.07.005
10.1139/x88-125
10.2747/1548-1603.47.2.221
10.1071/WF13019
10.1007/s10661-009-0997-3
10.18637/jss.v036.i11
10.1016/j.apgeog.2014.01.011
10.1029/2004GL020876
10.1007/s11069-016-2533-4
10.3390/su11123452
10.1007/s12517-017-2905-4
10.1007/s10113-012-0307-4
10.1016/S0034-4257(01)00204-8
10.1007/s00704-016-2022-4
10.1016/j.csda.2005.11.018
10.1016/j.isprsjprs.2010.11.001
10.1071/WF10032
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.foreco.2020.118338
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Forestry
EISSN 1872-7042
ExternalDocumentID 10_1016_j_foreco_2020_118338
S0378112720311075
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFNM
ABFRF
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
N~3
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPCBC
SSA
SSJ
SSZ
T5K
WH7
Y6R
~02
~G-
~KM
29H
AAEDT
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AI.
AIDBO
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
R2-
SEN
SEW
VH1
WUQ
ZKB
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c339t-1ceb4181aa0f39e0bc8e40afdba989369b1b43702e2855e665419fd2e47c83443
IEDL.DBID .~1
ISSN 0378-1127
IngestDate Sat Sep 27 23:50:48 EDT 2025
Thu Apr 24 23:10:36 EDT 2025
Thu Oct 09 00:38:51 EDT 2025
Fri Feb 23 02:47:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sentinel-2A satellite images
BRP
RS
FDA
Boruta algorithm
LR
LDA
GLM
SVM
Land cover
AUC
ESA
LNRA
SE
Effective factors
ML
FRWOI
TWI
Fire danger mapping
DEM
ROI
Data mining techniques
MODIS
GIS
RF
ASTER
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c339t-1ceb4181aa0f39e0bc8e40afdba989369b1b43702e2855e665419fd2e47c83443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2552017813
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2552017813
crossref_primary_10_1016_j_foreco_2020_118338
crossref_citationtrail_10_1016_j_foreco_2020_118338
elsevier_sciencedirect_doi_10_1016_j_foreco_2020_118338
PublicationCentury 2000
PublicationDate 2020-10-01
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Forest ecology and management
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mallet, Coomans, deVel (b0280) 1996; 35
Chuvieco, Giglio, Justice (b0075) 2008; 14
Cochrane, Laurance (b0080) 2016; 37
Price, Rind (b0370) 1994; 7
Butsic, Kelly, Moritz (b0060) 2015; 4
Reyn, Sabatier, Molinari (b0375) 2006; 51
Abatzoglou, Kolden (b0005) 2013; 22
Urrutia-Jalabert, Gonzalez, Gonzalez-Reyes, Lara, Garreaud (b0435) 2018; 9
Bowman, Balch, Artaxo, Bond, Carlson, Cochrane, D’Antonio, DeFries, Doyle, Harrison, Johnston, Keeley, Krawchuk, Kull, Marston, Moritz, Prentice, Roos, Scott, Swetnam, Van der Werf, Pyne (b0030) 2009; 324
Marchal, Cumming, McIntire (b0285) 2017; 12
Lorestan Natural Resources Administration (LNRA) (b0260) 2014
Breiman (b0045) 2001; 45
Kodandapani, Cochrane, Sukumar (b0225) 2008; 256
Bowman, Balch, Artaxo, Bond, Cochrane, D'Antonio, DeFries, Johnston, Keeley, Krawchuk, Kull, Mack, Moritz, Pyne, Roos, Scott, Sodhi, Swetnam (b0035) 2011; 38
Li, Zhao, Guo, Zhang, Tan, Yang (b0250) 2017; 17
Mustapha, Lim, Mat Jafri (b0315) 2010; 10
Gillett, Weaver, Zwiers, Flannigan (b0175) 2004; 31
Yesilnacar, E.K., 2005. The application of computational intelligence to landslide susceptibility mapping in Turkey. Ph.D. Thesis, Department of Geomatics, University of Melbourne, Melbourne, 423p.
Eskandari (b0105) 2015; 13
Chuvieco, Aguado, Jurdao, Pettinari, Yebra, Salas, Hantson, de la Riva, Ibarra, Rodrigues, Echeverría, Azqueta, Román, Bastarrika, Martínez, Recondo, Zapico, Martínez-Vega (b0070) 2014; 23
Mountrakis, Im, Ogole (b0300) 2011; 66
ESA (European Space Agency) (b0100) 2015
Rothermel, R.C., 1983. How to predict the spread and intensity of forest and range fires. General Technical Report, INT-143, U.S. Department of Agriculture (USDA) Forest Service, Intermountain Forest and Range Experiment Station, Ogden, 161p.
Hawryło, Bednarz, Wężyk, Szostak (b0190) 2018; 51
Stefanov, Ramsey, Christensen (b0415) 2001; 77
Oliveira, Moreira, Boca, San-Miguel-Ayanz, Pereira (b0330) 2013; 23
Hosseinalizadeh, Kariminejad, Chen, Pourghasemi, Alinejad, Mohammadian Behbahani, Tiefenbacher (b0210) 2019
Ricotta, Bajocco, Guglietta, Conedera (b0380) 2018; 1
Vadrevu, Eaturu, Badarinath (b0440) 2010; 166
Xie (b0465) 2006
Costafreda-Aumedes, Comas, Vega-Garcia (b0085) 2017; 26
Hong, Tsangaratos, Ilia, Liu, Zhu, Xu (b0205) 2018; 630
Vapnik, Vapnik (b0450) 1998
Sibold, Veblen (b0405) 2006; 33
Gutierrez-Velez, Uriarte, DeFries, Pinedo-Vasquez, Fernandes, Ceccato, Baethgen, Padoch (b0180) 2014; 24
Lorestan Natural Resources Administration (LNRA) (b0265) 2018
Zobeiri (b0485) 2008
Yousefi, Jalilvand (b0475) 2010
Bui, Le, Nguyen, Le, Revhaug (b0050) 2016; 8
Chen, Niu, Tong, Zhao, Sun, He (b0065) 2014
Ljubomir, Pourghasemi, Drobnjak, Bai (b0255) 2019; 10
Jolly, Cochrane, Freeborn, Holden, Brown, Williamson, Bowman (b0215) 2015; 6
Gayen, Pourghasemi, Saha, Keesstra, Bai (b0165) 2019
Amiri, Pourghasemi, Ghanbariana, Afzali (b0010) 2019; 340
Maeda, Arcoverde, Pellikka, Shimabukuro (b0270) 2011; 31
Beven, Kirkby (b0025) 1979; 24
Eskandari, S., Jaafari, M.R., Oliva, P., Ghorbanzadeh, O., Blaschke, Th., 2020a. Mapping land cover and tree canopy cover in Zagros forests of Iran: Application of Sentinel-2, Google Earth, and field data. Remote Sensing, 12, 1912, 1-31.
Stolle, Chomitz, Lambin, Tomich (b0420) 2003; 179
Eskandari, S., Pourghasemi, H.R., Miesel, J.R., 2020b. The temporal and spatial relationships between climatic parameters and fire occurrence in northeastern Iran. Ecological Indicators, in press.
Pettinari, Ottmar, Prichard, Andreu, Chuvieco (b0355) 2014; 23
Martinez, Vega-Garcia, Chuvieco (b0290) 2009; 90
Forest, Rangeland and Watershed Organization of Iran (FRWOI), 2019. Statistics and Data of Fire in Natural Resources of Iran. Protection Unit of FRWO Press, Tehran, Iran.
Ehrlich, Lambin, Malingreau (b0090) 1997; 61
Page, Morton, Bond-Lamberty, Pereira, Hurtt (b0345) 2015; 12
Zumbrunnen, Menendez, Bugmann, Conedera, Gimmi, Bürgi (b0490) 2012; 12
Forkel, Dorigo, Lasslop, Teubner, Chuvieco, Thonicke (b0160) 2016
Hantson, Padilla, Corti, Chuvieco (b0185) 2013; 131
Vollmar (b0455) 2014
Wotton, Flannigan, Marshall (b0460) 2017; 12
Moreno, Chuvieco (b0295) 2016; 7
Zumbrunnen, Pezzatti, Menéndez, Bugmann, Bürgi, Conedera (b0495) 2011; 261
Butler, B.W.
Eskandari, Oladi, Jalilvand, Saradjian (b0135) 2015; 24
Ozdemir, Altural (b0340) 2013; 64
Kursa, Rudnicki (b0235) 2010; 36
Mahdavi, Fallah Shamsi (b0275) 2012; 19
Mustafa, Rienow, Saadi, Cools, Teller (b0310) 2018; 51
Naghibi, Pourghasemi, Abbaspour (b0320) 2018; 131
Gigovic, Pourghasemi, Drobnjak, Bai (b0170) 2019; 10
Mousazadeh, Ghanbarian, Pourghasemi, Safaeian, Cerda (b0305) 2019; 11
Oliveira, Oehler, San-Miguel-Ayanz, Camia, Pereira (b0335) 2012; 275
Paschalidou, Kassomenos (b0350) 2016; 539
Koutsias, Martínez-Fernández, Allgöwer (b0230) 2010; 47
Pourghasemi (b0360) 2016; 31
Anderson, W.R., Catchpole, E.A., 2007. Influence of slope on fire spread rate. In: Destin, F.L. (Eds.), The fire environment-innovations, management, and policy (Conference Proceedings), U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 26-30 March 2007, USA, pp. 75-82.
Rodrigues, de la Riva, Fotheringham (b0385) 2014; 48
Narayanaraj, Wimberly (b0325) 2011; 20
Song, Kwan, Song, Zhu (b0410) 2017; 9
Tymstra, Flannigan, Armitage, Logan (b0430) 2007; 16
Heydarian, Rangzan, Maleki, Taghizadeh (b0195) 2014; 4
Eskandari, Jalilvand (b0120) 2017; 15
Lasslop, Kloster (b0245) 2017; 12
Bowman, Moreira-Munoz, Kolden, Chavez, Munoz, Salinas, Gonzalez-Reyes, Rocco, de la Barrera, Williamson, Borchers, Cifuentes, Abatzoglou, Johnston (b0040) 2018
Eskandari, Miesel (b0125) 2017; 8
Kushla, Ripple (b0240) 1997; 95
Armenteras, Gibbes, Vivacqua, Espinosa, Duleba, Goncalves, Castro (b0015) 2016; 7
Barbero, Abatzoglou, Larkin, Kolden, Stocks (b0020) 2015; 24
Erbek, Ozkan, Taberner (b0095) 2004; 25
Kariminejad, Hosseinalizadeh, Pourghasemi, Bernatek-Jakiel, Alinejad (b0220) 2019
Zabihi, Pourghasemi, Pourtaghi, Behzadfar (b0480) 2016; 75
Flannigan, Logan, Amiro, Skinner, Stocks (b0145) 2005; 72
Pourtaghi, Pourghasemi, Aretano, Semeraro (b0365) 2016; 64
Eskandari, Oladi, Jalilvand, Saradjian (b0130) 2015; 24
Rodrigues, Jimenez, de la Riva (b0390) 2016; 84
Rossi, Reichenbach (b0395) 2016; 9
Flannigan, Stock, Wotton (b0150) 2000; 262
Hong, Naghibi, Moradi Dashtpagerdi, Pourghasemi, Chen (b0200) 2017; 10
Eskandari, Chuvieco (b0110) 2015; 42
Van Wagner (b0445) 2011; 18
10.1016/j.foreco.2020.118338_b0155
Kodandapani (10.1016/j.foreco.2020.118338_b0225) 2008; 256
Stolle (10.1016/j.foreco.2020.118338_b0420) 2003; 179
Koutsias (10.1016/j.foreco.2020.118338_b0230) 2010; 47
Lorestan Natural Resources Administration (LNRA) (10.1016/j.foreco.2020.118338_b0260) 2014
Jolly (10.1016/j.foreco.2020.118338_b0215) 2015; 6
Chen (10.1016/j.foreco.2020.118338_b0065) 2014
Song (10.1016/j.foreco.2020.118338_b0410) 2017; 9
Reyn (10.1016/j.foreco.2020.118338_b0375) 2006; 51
Ehrlich (10.1016/j.foreco.2020.118338_b0090) 1997; 61
Hantson (10.1016/j.foreco.2020.118338_b0185) 2013; 131
Mousazadeh (10.1016/j.foreco.2020.118338_b0305) 2019; 11
Yousefi (10.1016/j.foreco.2020.118338_b0475) 2010
Tymstra (10.1016/j.foreco.2020.118338_b0430) 2007; 16
Hosseinalizadeh (10.1016/j.foreco.2020.118338_b0210) 2019
Barbero (10.1016/j.foreco.2020.118338_b0020) 2015; 24
Rossi (10.1016/j.foreco.2020.118338_b0395) 2016; 9
Paschalidou (10.1016/j.foreco.2020.118338_b0350) 2016; 539
Flannigan (10.1016/j.foreco.2020.118338_b0145) 2005; 72
Martinez (10.1016/j.foreco.2020.118338_b0290) 2009; 90
Gutierrez-Velez (10.1016/j.foreco.2020.118338_b0180) 2014; 24
Costafreda-Aumedes (10.1016/j.foreco.2020.118338_b0085) 2017; 26
Mahdavi (10.1016/j.foreco.2020.118338_b0275) 2012; 19
Xie (10.1016/j.foreco.2020.118338_b0465) 2006
Page (10.1016/j.foreco.2020.118338_b0345) 2015; 12
Moreno (10.1016/j.foreco.2020.118338_b0295) 2016; 7
Mustapha (10.1016/j.foreco.2020.118338_b0315) 2010; 10
Bowman (10.1016/j.foreco.2020.118338_b0030) 2009; 324
Vapnik (10.1016/j.foreco.2020.118338_b0450) 1998
Breiman (10.1016/j.foreco.2020.118338_b0045) 2001; 45
Kursa (10.1016/j.foreco.2020.118338_b0235) 2010; 36
Amiri (10.1016/j.foreco.2020.118338_b0010) 2019; 340
Rodrigues (10.1016/j.foreco.2020.118338_b0385) 2014; 48
Bui (10.1016/j.foreco.2020.118338_b0050) 2016; 8
Lorestan Natural Resources Administration (LNRA) (10.1016/j.foreco.2020.118338_b0265) 2018
10.1016/j.foreco.2020.118338_b0055
Cochrane (10.1016/j.foreco.2020.118338_b0080) 2016; 37
Eskandari (10.1016/j.foreco.2020.118338_b0105) 2015; 13
Hong (10.1016/j.foreco.2020.118338_b0205) 2018; 630
Flannigan (10.1016/j.foreco.2020.118338_b0150) 2000; 262
Lasslop (10.1016/j.foreco.2020.118338_b0245) 2017; 12
Heydarian (10.1016/j.foreco.2020.118338_b0195) 2014; 4
Zumbrunnen (10.1016/j.foreco.2020.118338_b0490) 2012; 12
Eskandari (10.1016/j.foreco.2020.118338_b0125) 2017; 8
Li (10.1016/j.foreco.2020.118338_b0250) 2017; 17
Sibold (10.1016/j.foreco.2020.118338_b0405) 2006; 33
Zabihi (10.1016/j.foreco.2020.118338_b0480) 2016; 75
ESA (European Space Agency) (10.1016/j.foreco.2020.118338_b0100)
Stefanov (10.1016/j.foreco.2020.118338_b0415) 2001; 77
Ozdemir (10.1016/j.foreco.2020.118338_b0340) 2013; 64
Urrutia-Jalabert (10.1016/j.foreco.2020.118338_b0435) 2018; 9
10.1016/j.foreco.2020.118338_b0115
Kushla (10.1016/j.foreco.2020.118338_b0240) 1997; 95
Maeda (10.1016/j.foreco.2020.118338_b0270) 2011; 31
Gillett (10.1016/j.foreco.2020.118338_b0175) 2004; 31
Eskandari (10.1016/j.foreco.2020.118338_b0130) 2015; 24
Butsic (10.1016/j.foreco.2020.118338_b0060) 2015; 4
Marchal (10.1016/j.foreco.2020.118338_b0285) 2017; 12
Narayanaraj (10.1016/j.foreco.2020.118338_b0325) 2011; 20
Naghibi (10.1016/j.foreco.2020.118338_b0320) 2018; 131
Price (10.1016/j.foreco.2020.118338_b0370) 1994; 7
10.1016/j.foreco.2020.118338_b0470
Eskandari (10.1016/j.foreco.2020.118338_b0120) 2017; 15
Bowman (10.1016/j.foreco.2020.118338_b0040) 2018
Abatzoglou (10.1016/j.foreco.2020.118338_b0005) 2013; 22
10.1016/j.foreco.2020.118338_b0400
Pourtaghi (10.1016/j.foreco.2020.118338_b0365) 2016; 64
Eskandari (10.1016/j.foreco.2020.118338_b0110) 2015; 42
Mustafa (10.1016/j.foreco.2020.118338_b0310) 2018; 51
Bowman (10.1016/j.foreco.2020.118338_b0035) 2011; 38
Pettinari (10.1016/j.foreco.2020.118338_b0355) 2014; 23
Ljubomir (10.1016/j.foreco.2020.118338_b0255) 2019; 10
Hong (10.1016/j.foreco.2020.118338_b0200) 2017; 10
Kariminejad (10.1016/j.foreco.2020.118338_b0220) 2019
Hawryło (10.1016/j.foreco.2020.118338_b0190) 2018; 51
Armenteras (10.1016/j.foreco.2020.118338_b0015) 2016; 7
Gayen (10.1016/j.foreco.2020.118338_b0165) 2019
Oliveira (10.1016/j.foreco.2020.118338_b0330) 2013; 23
Chuvieco (10.1016/j.foreco.2020.118338_b0075) 2008; 14
Forkel (10.1016/j.foreco.2020.118338_b0160) 2016
Beven (10.1016/j.foreco.2020.118338_b0025) 1979; 24
Mallet (10.1016/j.foreco.2020.118338_b0280) 1996; 35
Chuvieco (10.1016/j.foreco.2020.118338_b0070) 2014; 23
Vollmar (10.1016/j.foreco.2020.118338_b0455) 2014
Eskandari (10.1016/j.foreco.2020.118338_b0135) 2015; 24
Gigovic (10.1016/j.foreco.2020.118338_b0170) 2019; 10
Wotton (10.1016/j.foreco.2020.118338_b0460) 2017; 12
Van Wagner (10.1016/j.foreco.2020.118338_b0445) 2011; 18
Mountrakis (10.1016/j.foreco.2020.118338_b0300) 2011; 66
Zumbrunnen (10.1016/j.foreco.2020.118338_b0495) 2011; 261
Ricotta (10.1016/j.foreco.2020.118338_b0380) 2018; 1
Oliveira (10.1016/j.foreco.2020.118338_b0335) 2012; 275
Vadrevu (10.1016/j.foreco.2020.118338_b0440) 2010; 166
Erbek (10.1016/j.foreco.2020.118338_b0095) 2004; 25
Rodrigues (10.1016/j.foreco.2020.118338_b0390) 2016; 84
10.1016/j.foreco.2020.118338_b0140
Pourghasemi (10.1016/j.foreco.2020.118338_b0360) 2016; 31
Zobeiri (10.1016/j.foreco.2020.118338_b0485) 2008
References_xml – volume: 12
  start-page: 1
  year: 2017
  end-page: 13
  ident: b0460
  article-title: Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada
  publication-title: Environ. Res. Lett.
– volume: 95
  start-page: 97
  year: 1997
  end-page: 107
  ident: b0240
  article-title: The role of terrain in a fire mosaic of a temperate coniferous forest
  publication-title: For. Ecol. Manage.
– volume: 61
  start-page: 201
  year: 1997
  end-page: 209
  ident: b0090
  article-title: Biomass burning and broad-scale land-cover changes in western Africa
  publication-title: Remote Sens. Environ.
– volume: 24
  start-page: 43
  year: 1979
  end-page: 69
  ident: b0025
  article-title: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant
  publication-title: Hydrol. Sci. J.
– volume: 14
  start-page: 1488
  year: 2008
  end-page: 1502
  ident: b0075
  article-title: Global characterization of fire activity: towards defining fire regimes from earth observation data
  publication-title: Glob. Change Biol.
– volume: 31
  start-page: 76
  year: 2011
  end-page: 84
  ident: b0270
  article-title: Fire risk assessment in the Brazilian Amazon using MODIS imagery and change vector analysis
  publication-title: Appl. Geogr.
– volume: 8
  start-page: 1
  year: 2017
  end-page: 17
  ident: b0125
  article-title: Comparison of the fuzzy AHP method, the spatial correlation method, and the Dong model to predict the fire high-risk areas in Hyrcanian forests of Iran
  publication-title: Geomatics, Nat. Hazards Risk
– start-page: 405p
  year: 2008
  ident: b0485
  article-title: Forest Biometry
– reference: Forest, Rangeland and Watershed Organization of Iran (FRWOI), 2019. Statistics and Data of Fire in Natural Resources of Iran. Protection Unit of FRWO Press, Tehran, Iran.
– volume: 24
  start-page: 2305
  year: 2015
  end-page: 2308
  ident: b0135
  article-title: Evaluation of the MODIS fire-detection product in Neka-Zalemroud fire-prone forests in Northern Iran
  publication-title: Polish J. Environ. Stud.
– volume: 9
  start-page: 1
  year: 2018
  end-page: 18
  ident: b0435
  article-title: Climate variability and forest fires in central and south-central Chile
  publication-title: Ecosphere
– start-page: 71p
  year: 2014
  ident: b0455
  article-title: The influence of climate and land cover on wildfire patterns in the conterminous United States. M.Sc. thesis, Department of Physical Geography and Ecosystems
– reference: Rothermel, R.C., 1983. How to predict the spread and intensity of forest and range fires. General Technical Report, INT-143, U.S. Department of Agriculture (USDA) Forest Service, Intermountain Forest and Range Experiment Station, Ogden, 161p.
– volume: 7
  start-page: 1
  year: 2016
  end-page: 14
  ident: b0015
  article-title: Interactions between climate, land use and vegetation fire occurrences in El Salvador
  publication-title: Atmosphere
– volume: 11
  start-page: 3452
  year: 2019
  ident: b0305
  article-title: Maxent data mining technique and its comparison with a bivariate statistical model for predicting the habitat potential of
  publication-title: Sustainability
– volume: 26
  start-page: 983
  year: 2017
  end-page: 998
  ident: b0085
  article-title: Human-caused fire occurrence modelling in perspective: a review
  publication-title: Int. J. Wildland Fire
– volume: 10
  start-page: 408
  year: 2019
  ident: b0170
  article-title: Testing a new ensemble model based on SVM and random forest in forest fire susceptibility assessment and its mapping in Serbia’s Tara
  publication-title: Forests
– year: 2006
  ident: b0465
  article-title: Support Vector Machines for Land Use Change Modeling
– volume: 10
  start-page: 2847
  year: 2010
  end-page: 2854
  ident: b0315
  article-title: Comparison of neural network and maximum likelihood approaches in image classification
  publication-title: J. Appl. Sci.
– volume: 4
  start-page: 1
  year: 2014
  end-page: 10
  ident: b0195
  article-title: Land use change detection using post classification comparison LandSat satellite images (Case study: land of Tehran)
  publication-title: RS & GIS for Natural Resources
– volume: 64
  start-page: 180
  year: 2013
  end-page: 197
  ident: b0340
  article-title: A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey
  publication-title: J. Asian Earth Sci.
– year: 2018
  ident: b0040
  article-title: Human-environmental drivers and impacts of the globally extreme 2017 Chilean fires
  publication-title: Ambio
– volume: 23
  start-page: 620
  year: 2013
  end-page: 630
  ident: b0330
  article-title: Assessment of fire selectivity in relation to land cover and topography: a comparison between Southern European countries
  publication-title: Int. J. Wildland Fire (Special issue)
– volume: 38
  start-page: 2223
  year: 2011
  end-page: 2236
  ident: b0035
  article-title: The human dimension of fire regimes on earth
  publication-title: J. Biogeogr.
– volume: 12
  start-page: 887
  year: 2015
  end-page: 903
  ident: b0345
  article-title: HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers
  publication-title: Biogeosciences
– volume: 340
  start-page: 55
  year: 2019
  end-page: 69
  ident: b0010
  article-title: Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms
  publication-title: Geoderma
– year: 2019
  ident: b0220
  article-title: Two-hazard susceptibility assessment of gully headcuts and pipe collapses in semi-arid environment: Golestan Province
– volume: 66
  start-page: 247
  year: 2011
  end-page: 259
  ident: b0300
  article-title: Support vector machines in remote sensing: A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 90
  start-page: 1241
  year: 2009
  end-page: 1252
  ident: b0290
  article-title: Human-caused wildfire risk rating for prevention planning in Spain
  publication-title: J. Environ. Manage.
– volume: 24
  start-page: 892
  year: 2015
  end-page: 899
  ident: b0020
  article-title: Climate change presents increased potential for very large fires in the contiguous United States
  publication-title: Int. J. Wildland Fire
– volume: 18
  start-page: 820
  year: 2011
  end-page: 822
  ident: b0445
  article-title: Effect of slope on fires spreading downhill
  publication-title: Can. J. For. Res.
– volume: 275
  start-page: 117
  year: 2012
  end-page: 129
  ident: b0335
  article-title: Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest
  publication-title: For. Ecol. Manage.
– volume: 31
  start-page: 80
  year: 2016
  end-page: 98
  ident: b0360
  article-title: GIS-based forest fire susceptibility mapping in Iran: A comparison between evidential belief function and binary logistic regression models
  publication-title: Scand. J. For. Res.
– year: 2018
  ident: b0265
  article-title: Statistics and Data of Fire in Natural Resources of Lorestan Province
– volume: 25
  start-page: 1733
  year: 2004
  end-page: 1748
  ident: b0095
  article-title: Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities
  publication-title: Int. J. Remote Sens.
– volume: 19
  start-page: 77
  year: 2012
  end-page: 91
  ident: b0275
  article-title: Mapping forest cover change, using aerial photography and IRS-LISSIII imagery (Case study: Ilam Township)
  publication-title: J. Wood Forest Sci. Technol.
– volume: 179
  start-page: 277
  year: 2003
  end-page: 292
  ident: b0420
  article-title: Land use and vegetation fires in Jambi Province, Sumatra, Indonesia
  publication-title: For. Ecol. Manage.
– year: 2014
  ident: b0065
  article-title: The impact of precipitation regimes on forest fires in Yunnan Province
– volume: 131
  start-page: 967
  year: 2018
  end-page: 984
  ident: b0320
  article-title: A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS
  publication-title: Theatr. Appl. Climatol.
– start-page: 1
  year: 2010
  end-page: 15
  ident: b0475
  article-title: Investigation of fire situation in forest and pasture areas of Mazandaran Province (Basin of Sari Natural Resources Administration)
  publication-title: from 2004 to 2007. In: Proceedings of the Second International Conference on Climate Change and Tree Chronology, Sari
– volume: 4
  start-page: 140
  year: 2015
  end-page: 156
  ident: b0060
  article-title: Land use and wildfire: a review of local interactions and teleconnections
  publication-title: Land
– volume: 6
  start-page: 1
  year: 2015
  end-page: 11
  ident: b0215
  article-title: Climate-induced variations in global wildfire danger from 1979 to 2013
  publication-title: Nat. Commun.
– volume: 72
  start-page: 1
  year: 2005
  end-page: 16
  ident: b0145
  article-title: Future area burned in Canada
  publication-title: Clim. Change
– volume: 23
  start-page: 606
  year: 2014
  end-page: 619
  ident: b0070
  article-title: Integrating geospatial information into fire risk assessment
  publication-title: Int. J. Wildland Fire
– volume: 37
  start-page: 522
  year: 2016
  end-page: 527
  ident: b0080
  article-title: Synergisms among fire, land use, and climate change in the Amazon
  publication-title: Ambio
– volume: 8
  start-page: 1
  year: 2016
  end-page: 15
  ident: b0050
  article-title: Tropical forest fire susceptibility mapping at the Cat Ba National Park area, Hai Phong City, Vietnam, using GIS-based Kernel logistic regression
  publication-title: Remote Sens.
– volume: 261
  start-page: 2188
  year: 2011
  end-page: 2199
  ident: b0495
  article-title: Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland
  publication-title: For. Ecol. Manage.
– reference: Eskandari, S., Pourghasemi, H.R., Miesel, J.R., 2020b. The temporal and spatial relationships between climatic parameters and fire occurrence in northeastern Iran. Ecological Indicators, in press.
– volume: 7
  start-page: 1484
  year: 1994
  end-page: 1494
  ident: b0370
  article-title: The impact of a 2-X-CO2 climate on lightning-caused fires
  publication-title: J. Clim.
– reference: Eskandari, S., Jaafari, M.R., Oliva, P., Ghorbanzadeh, O., Blaschke, Th., 2020a. Mapping land cover and tree canopy cover in Zagros forests of Iran: Application of Sentinel-2, Google Earth, and field data. Remote Sensing, 12, 1912, 1-31.
– volume: 20
  start-page: 792
  year: 2011
  end-page: 803
  ident: b0325
  article-title: Influences of forest roads on the spatial pattern of wildfire boundaries
  publication-title: Int. J. Wildland Fire
– volume: 10
  start-page: 408
  year: 2019
  ident: b0255
  article-title: Testing a new ensemble model based on SVM and Random forest in forest fire susceptibility assessment and its mapping in Serbian National Park Tara
  publication-title: Forests
– year: 2015
  ident: b0100
  article-title: User Guide of Sentinel-2 Level-1C
– volume: 24
  start-page: 1323
  year: 2014
  end-page: 1340
  ident: b0180
  article-title: Land cover change interacts with drought severity to change fire regimes in Western Amazonia
  publication-title: Ecol. Appl.
– volume: 324
  start-page: 481
  year: 2009
  end-page: 484
  ident: b0030
  article-title: Fire in the earth system
  publication-title: Science
– volume: 33
  start-page: 833
  year: 2006
  end-page: 842
  ident: b0405
  article-title: Relationships of subalpine forest fires in the Colorado Front Range with interannual and multidecadal-scale climatic variation
  publication-title: J. Biogeogr.
– volume: 75
  year: 2016
  ident: b0480
  article-title: GISbased multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran
  publication-title: Environ. Earth Sci.
– volume: 131
  start-page: 152
  year: 2013
  end-page: 159
  ident: b0185
  article-title: Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence
  publication-title: Remote Sens. Environ.
– volume: 15
  start-page: 30
  year: 2017
  end-page: 39
  ident: b0120
  article-title: Effect of weather changes on fire regime of Neka and Behshahr forests
  publication-title: Iran. J. Forest Range Protect. Res.
– volume: 9
  start-page: 3533
  year: 2016
  end-page: 3543
  ident: b0395
  article-title: LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0
  publication-title: Geosci. Model Dev.
– year: 2016
  ident: b0160
  article-title: Identifying required model structures to predict global fire activity from satellite and climate data
  publication-title: Geosci. Model Dev. Discuss.
– volume: 166
  start-page: 223
  year: 2010
  end-page: 239
  ident: b0440
  article-title: Fire risk evaluation using multicriteria analysis, a case study
  publication-title: J. Environ. Monitor. Assess.
– volume: 48
  start-page: 52
  year: 2014
  end-page: 63
  ident: b0385
  article-title: Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression
  publication-title: Appl. Geogr.
– reference: Anderson, W.R., Catchpole, E.A., 2007. Influence of slope on fire spread rate. In: Destin, F.L. (Eds.), The fire environment-innovations, management, and policy (Conference Proceedings), U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 26-30 March 2007, USA, pp. 75-82.
– volume: 31
  start-page: 1
  year: 2004
  end-page: 4
  ident: b0175
  article-title: Detecting the effect of climate change on Canadian forest fires
  publication-title: Geophys. Res. Lett.
– volume: 12
  year: 2017
  ident: b0245
  article-title: Human impact on wildfires varies between regions and with vegetation productivity
  publication-title: Environ. Res. Lett.
– volume: 13
  start-page: 1
  year: 2015
  end-page: 10
  ident: b0105
  article-title: Investigation on the relationship between climate change and fire in the forests of Golestan Province, Iran
  publication-title: Iran. J. Forest Range Protect. Res.
– volume: 51
  start-page: 1765
  year: 2006
  end-page: 1778
  ident: b0375
  article-title: Choice of B-splines with free parameters in the flexible discriminant analysis context
  publication-title: Comput. Stat. Data Anal.
– volume: 7
  start-page: 262
  year: 2016
  end-page: 275
  ident: b0295
  article-title: Fire regime characteristics along environmental gradients in Spain
  publication-title: Forests
– volume: 36
  start-page: 1
  year: 2010
  end-page: 13
  ident: b0235
  article-title: Feature selection with the Boruta package
  publication-title: J. Stat. Softw.
– volume: 12
  start-page: 1
  year: 2017
  end-page: 17
  ident: b0285
  article-title: Land cover, more than monthly fire weather, drives fire-size distribution in Southern QueÂbec forests: Implications for fire risk management
  publication-title: PLoS ONE
– volume: 12
  start-page: 935
  year: 2012
  end-page: 949
  ident: b0490
  article-title: Human impacts on fire occurrence: a case study of hundred years of forest fires in a dry alpine valley in Switzerland
  publication-title: Reg. Environ. Change
– volume: 539
  start-page: 536
  year: 2016
  end-page: 545
  ident: b0350
  article-title: What are the most fire-dangerous atmospheric circulations in the Eastern-Mediterranean? Analysis of the synoptic wildfire climatology
  publication-title: Sci. Total Environ.
– volume: 47
  start-page: 221
  year: 2010
  end-page: 240
  ident: b0230
  article-title: Do factors causing wildfires vary in space? Evidence from geographically weighted regression
  publication-title: GIScience & Remote Sens.
– volume: 51
  start-page: 391
  year: 2018
  end-page: 401
  ident: b0310
  article-title: Comparing support vector machines with logistic regression for calibrating cellular automata land use change models
  publication-title: Eur. J. Remote Sens.
– volume: 16
  start-page: 153
  year: 2007
  end-page: 160
  ident: b0430
  article-title: Impact of climate change on area burned in Alberta’s boreal forest
  publication-title: Int. J. Wildland Fire
– volume: 51
  start-page: 194
  year: 2018
  end-page: 204
  ident: b0190
  article-title: Estimating defoliation of Scots pine stands using machine learning methods and vegetation indices of Sentinel-2
  publication-title: Eur. J. Remote Sens.
– volume: 24
  start-page: 2309
  year: 2015
  end-page: 2314
  ident: b0130
  article-title: Prediction of future forest fires using the MCDM method
  publication-title: Polish J. Environ. Stud.
– volume: 64
  start-page: 72
  year: 2016
  end-page: 84
  ident: b0365
  article-title: Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques
  publication-title: Ecol. Ind.
– volume: 262
  start-page: 221
  year: 2000
  end-page: 229
  ident: b0150
  article-title: Climate change and forest fires
  publication-title: Sci. Total Environ.
– volume: 35
  start-page: 157
  year: 1996
  end-page: 173
  ident: b0280
  article-title: Recent developments in discriminant analysis on high dimensional spectral data
  publication-title: Chemometr. Intell. Lab. Syst.
– reference: Butler, B.W.,
– volume: 10
  start-page: 167
  year: 2017
  ident: b0200
  article-title: A comparative assessment between linear and quadratic discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility mapping in China
  publication-title: Arabian J. Geosci.
– volume: 9
  start-page: 1
  year: 2017
  end-page: 21
  ident: b0410
  article-title: A Comparison between spatial econometric models and random forest for modeling fire occurrence
  publication-title: Susceptibility
– year: 1998
  ident: b0450
  article-title: Statistical Learning Theory
– volume: 630
  start-page: 1044
  year: 2018
  end-page: 1056
  ident: b0205
  article-title: Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models, the case of Dayu County, China
  publication-title: Sci. Total Environ.
– year: 2019
  ident: b0210
  article-title: Spatial modelling of gully headcuts using UAV data and four best-first decision classifier ensembles (BFTree, Bag-BFTree, RS-BFTree, and RF-BFTree)
  publication-title: Geomorphology
– volume: 42
  start-page: 57
  year: 2015
  end-page: 64
  ident: b0110
  article-title: Fire danger assessment in Iran based on geospatial information
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 22
  start-page: 1003
  year: 2013
  end-page: 1020
  ident: b0005
  article-title: Relationships between climate and macro scale area burned in the western United States
  publication-title: Int. J. Wildland Fire
– year: 2019
  ident: b0165
  article-title: Gully erosion susceptibility assessment and management of hazard prone areas using different machine learning algorithms in India
  publication-title: Sci. Total Environ.
– volume: 256
  start-page: 607
  year: 2008
  end-page: 617
  ident: b0225
  article-title: A comparative analysis of spatial, temporal, and ecological characteristics of forest fires in seasonally dry tropical ecosystems in the Western Ghats, India
  publication-title: For. Ecol. Manage.
– volume: 17
  start-page: 1
  year: 2017
  end-page: 19
  ident: b0250
  article-title: The Influence of Land Use on the Grassland Fire Occurrence in the Northeastern Inner Mongolia Autonomous Region
  publication-title: China. Sensors
– start-page: 420p
  year: 2014
  ident: b0260
  article-title: Comprehensive Plan of Koohdasht Region
– reference: Yesilnacar, E.K., 2005. The application of computational intelligence to landslide susceptibility mapping in Turkey. Ph.D. Thesis, Department of Geomatics, University of Melbourne, Melbourne, 423p.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0045
  article-title: Random forest
  publication-title: Mach. Learn.
– volume: 23
  start-page: 643
  year: 2014
  end-page: 654
  ident: b0355
  article-title: Development and mapping of fuel characteristics and associated fire potentials for South America
  publication-title: Int. J. Wildland Fire
– volume: 1
  year: 2018
  ident: b0380
  article-title: Assessing the influence of roads on fire ignition: does land cover matter?
  publication-title: Fire
– volume: 84
  start-page: 2049
  year: 2016
  end-page: 2070
  ident: b0390
  article-title: Analysis of recent spatial-temporal evolution of human driving factors of wildfires in Spain
  publication-title: Nat. Hazards
– volume: 77
  start-page: 173
  year: 2001
  end-page: 185
  ident: b0415
  article-title: Monitoring urban land cover change; an expert system approach to land cover classification of semiarid to arid urban centers
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 1484
  issue: 10
  year: 1994
  ident: 10.1016/j.foreco.2020.118338_b0370
  article-title: The impact of a 2-X-CO2 climate on lightning-caused fires
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(1994)007<1484:TIOACC>2.0.CO;2
– volume: 17
  start-page: 1
  issue: 437
  year: 2017
  ident: 10.1016/j.foreco.2020.118338_b0250
  article-title: The Influence of Land Use on the Grassland Fire Occurrence in the Northeastern Inner Mongolia Autonomous Region
  publication-title: China. Sensors
– volume: 261
  start-page: 2188
  year: 2011
  ident: 10.1016/j.foreco.2020.118338_b0495
  article-title: Weather and human impacts on forest fires: 100 years of fire history in two climatic regions of Switzerland
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2010.10.009
– year: 2016
  ident: 10.1016/j.foreco.2020.118338_b0160
  article-title: Identifying required model structures to predict global fire activity from satellite and climate data
  publication-title: Geosci. Model Dev. Discuss.
– year: 2019
  ident: 10.1016/j.foreco.2020.118338_b0220
– volume: 31
  start-page: 80
  issue: 1
  year: 2016
  ident: 10.1016/j.foreco.2020.118338_b0360
  article-title: GIS-based forest fire susceptibility mapping in Iran: A comparison between evidential belief function and binary logistic regression models
  publication-title: Scand. J. For. Res.
  doi: 10.1080/02827581.2015.1052750
– start-page: 71p
  year: 2014
  ident: 10.1016/j.foreco.2020.118338_b0455
– volume: 539
  start-page: 536
  year: 2016
  ident: 10.1016/j.foreco.2020.118338_b0350
  article-title: What are the most fire-dangerous atmospheric circulations in the Eastern-Mediterranean? Analysis of the synoptic wildfire climatology
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2015.09.039
– volume: 14
  start-page: 1488
  year: 2008
  ident: 10.1016/j.foreco.2020.118338_b0075
  article-title: Global characterization of fire activity: towards defining fire regimes from earth observation data
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2008.01585.x
– ident: 10.1016/j.foreco.2020.118338_b0400
  doi: 10.2737/INT-GTR-143
– volume: 24
  start-page: 1323
  issue: 6
  year: 2014
  ident: 10.1016/j.foreco.2020.118338_b0180
  article-title: Land cover change interacts with drought severity to change fire regimes in Western Amazonia
  publication-title: Ecol. Appl.
  doi: 10.1890/13-2101.1
– volume: 131
  start-page: 152
  year: 2013
  ident: 10.1016/j.foreco.2020.118338_b0185
  article-title: Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.004
– volume: 8
  start-page: 1
  issue: 4
  year: 2016
  ident: 10.1016/j.foreco.2020.118338_b0050
  article-title: Tropical forest fire susceptibility mapping at the Cat Ba National Park area, Hai Phong City, Vietnam, using GIS-based Kernel logistic regression
  publication-title: Remote Sens.
– year: 2019
  ident: 10.1016/j.foreco.2020.118338_b0210
  article-title: Spatial modelling of gully headcuts using UAV data and four best-first decision classifier ensembles (BFTree, Bag-BFTree, RS-BFTree, and RF-BFTree)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2019.01.006
– volume: 9
  start-page: 3533
  year: 2016
  ident: 10.1016/j.foreco.2020.118338_b0395
  article-title: LAND-SE: a software for statistically based landslide susceptibility zonation, version 1.0
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-9-3533-2016
– year: 2014
  ident: 10.1016/j.foreco.2020.118338_b0065
– volume: 64
  start-page: 72
  year: 2016
  ident: 10.1016/j.foreco.2020.118338_b0365
  article-title: Investigation of general indicators influencing on forest fire and its susceptibility modeling using different data mining techniques
  publication-title: Ecol. Ind.
  doi: 10.1016/j.ecolind.2015.12.030
– ident: 10.1016/j.foreco.2020.118338_b0115
  doi: 10.3390/rs12121912
– volume: 37
  start-page: 522
  year: 2016
  ident: 10.1016/j.foreco.2020.118338_b0080
  article-title: Synergisms among fire, land use, and climate change in the Amazon
  publication-title: Ambio
  doi: 10.1579/0044-7447-37.7.522
– volume: 16
  start-page: 153
  year: 2007
  ident: 10.1016/j.foreco.2020.118338_b0430
  article-title: Impact of climate change on area burned in Alberta’s boreal forest
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF06084
– volume: 31
  start-page: 76
  year: 2011
  ident: 10.1016/j.foreco.2020.118338_b0270
  article-title: Fire risk assessment in the Brazilian Amazon using MODIS imagery and change vector analysis
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2010.02.004
– volume: 256
  start-page: 607
  year: 2008
  ident: 10.1016/j.foreco.2020.118338_b0225
  article-title: A comparative analysis of spatial, temporal, and ecological characteristics of forest fires in seasonally dry tropical ecosystems in the Western Ghats, India
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2008.05.006
– volume: 12
  start-page: 1
  issue: 6
  year: 2017
  ident: 10.1016/j.foreco.2020.118338_b0285
  article-title: Land cover, more than monthly fire weather, drives fire-size distribution in Southern QueÂbec forests: Implications for fire risk management
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0179294
– volume: 72
  start-page: 1
  year: 2005
  ident: 10.1016/j.foreco.2020.118338_b0145
  article-title: Future area burned in Canada
  publication-title: Clim. Change
  doi: 10.1007/s10584-005-5935-y
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.foreco.2020.118338_b0125
  article-title: Comparison of the fuzzy AHP method, the spatial correlation method, and the Dong model to predict the fire high-risk areas in Hyrcanian forests of Iran
  publication-title: Geomatics, Nat. Hazards Risk
  doi: 10.1080/19475705.2017.1289249
– volume: 23
  start-page: 620
  issue: 5
  year: 2013
  ident: 10.1016/j.foreco.2020.118338_b0330
  article-title: Assessment of fire selectivity in relation to land cover and topography: a comparison between Southern European countries
  publication-title: Int. J. Wildland Fire (Special issue)
– year: 2019
  ident: 10.1016/j.foreco.2020.118338_b0165
  article-title: Gully erosion susceptibility assessment and management of hazard prone areas using different machine learning algorithms in India
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.02.436
– volume: 7
  start-page: 262
  year: 2016
  ident: 10.1016/j.foreco.2020.118338_b0295
  article-title: Fire regime characteristics along environmental gradients in Spain
  publication-title: Forests
  doi: 10.3390/f7110262
– year: 1998
  ident: 10.1016/j.foreco.2020.118338_b0450
– ident: 10.1016/j.foreco.2020.118338_b0155
– volume: 95
  start-page: 97
  year: 1997
  ident: 10.1016/j.foreco.2020.118338_b0240
  article-title: The role of terrain in a fire mosaic of a temperate coniferous forest
  publication-title: For. Ecol. Manage.
  doi: 10.1016/S0378-1127(97)82929-5
– volume: 38
  start-page: 2223
  year: 2011
  ident: 10.1016/j.foreco.2020.118338_b0035
  article-title: The human dimension of fire regimes on earth
  publication-title: J. Biogeogr.
  doi: 10.1111/j.1365-2699.2011.02595.x
– volume: 340
  start-page: 55
  year: 2019
  ident: 10.1016/j.foreco.2020.118338_b0010
  article-title: Assessment of the importance of gully erosion effective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning algorithms
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.12.042
– volume: 42
  start-page: 57
  year: 2015
  ident: 10.1016/j.foreco.2020.118338_b0110
  article-title: Fire danger assessment in Iran based on geospatial information
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 24
  start-page: 43
  issue: 1
  year: 1979
  ident: 10.1016/j.foreco.2020.118338_b0025
  article-title: A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626667909491834
– volume: 33
  start-page: 833
  year: 2006
  ident: 10.1016/j.foreco.2020.118338_b0405
  article-title: Relationships of subalpine forest fires in the Colorado Front Range with interannual and multidecadal-scale climatic variation
  publication-title: J. Biogeogr.
  doi: 10.1111/j.1365-2699.2006.01456.x
– volume: 630
  start-page: 1044
  year: 2018
  ident: 10.1016/j.foreco.2020.118338_b0205
  article-title: Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models, the case of Dayu County, China
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.02.278
– volume: 12
  year: 2017
  ident: 10.1016/j.foreco.2020.118338_b0245
  article-title: Human impact on wildfires varies between regions and with vegetation productivity
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aa8c82
– volume: 275
  start-page: 117
  year: 2012
  ident: 10.1016/j.foreco.2020.118338_b0335
  article-title: Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest
  publication-title: For. Ecol. Manage.
  doi: 10.1016/j.foreco.2012.03.003
– volume: 51
  start-page: 194
  issue: 1
  year: 2018
  ident: 10.1016/j.foreco.2020.118338_b0190
  article-title: Estimating defoliation of Scots pine stands using machine learning methods and vegetation indices of Sentinel-2
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2017.1417745
– start-page: 405p
  year: 2008
  ident: 10.1016/j.foreco.2020.118338_b0485
– volume: 7
  start-page: 1
  issue: 26
  year: 2016
  ident: 10.1016/j.foreco.2020.118338_b0015
  article-title: Interactions between climate, land use and vegetation fire occurrences in El Salvador
  publication-title: Atmosphere
– ident: 10.1016/j.foreco.2020.118338_b0140
  doi: 10.1016/j.ecolind.2020.106720
– volume: 179
  start-page: 277
  year: 2003
  ident: 10.1016/j.foreco.2020.118338_b0420
  article-title: Land use and vegetation fires in Jambi Province, Sumatra, Indonesia
  publication-title: For. Ecol. Manage.
  doi: 10.1016/S0378-1127(02)00547-9
– volume: 4
  start-page: 140
  year: 2015
  ident: 10.1016/j.foreco.2020.118338_b0060
  article-title: Land use and wildfire: a review of local interactions and teleconnections
  publication-title: Land
  doi: 10.3390/land4010140
– volume: 262
  start-page: 221
  year: 2000
  ident: 10.1016/j.foreco.2020.118338_b0150
  article-title: Climate change and forest fires
  publication-title: Sci. Total Environ.
  doi: 10.1016/S0048-9697(00)00524-6
– volume: 51
  start-page: 391
  issue: 1
  year: 2018
  ident: 10.1016/j.foreco.2020.118338_b0310
  article-title: Comparing support vector machines with logistic regression for calibrating cellular automata land use change models
  publication-title: Eur. J. Remote Sens.
  doi: 10.1080/22797254.2018.1442179
– volume: 15
  start-page: 30
  issue: 1
  year: 2017
  ident: 10.1016/j.foreco.2020.118338_b0120
  article-title: Effect of weather changes on fire regime of Neka and Behshahr forests
  publication-title: Iran. J. Forest Range Protect. Res.
– volume: 23
  start-page: 606
  year: 2014
  ident: 10.1016/j.foreco.2020.118338_b0070
  article-title: Integrating geospatial information into fire risk assessment
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF12052
– volume: 324
  start-page: 481
  issue: 5926
  year: 2009
  ident: 10.1016/j.foreco.2020.118338_b0030
  article-title: Fire in the earth system
  publication-title: Science
  doi: 10.1126/science.1163886
– volume: 61
  start-page: 201
  issue: 2
  year: 1997
  ident: 10.1016/j.foreco.2020.118338_b0090
  article-title: Biomass burning and broad-scale land-cover changes in western Africa
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00002-3
– ident: 10.1016/j.foreco.2020.118338_b0100
– volume: 6
  start-page: 1
  issue: 7537
  year: 2015
  ident: 10.1016/j.foreco.2020.118338_b0215
  article-title: Climate-induced variations in global wildfire danger from 1979 to 2013
  publication-title: Nat. Commun.
– volume: 35
  start-page: 157
  issue: 2
  year: 1996
  ident: 10.1016/j.foreco.2020.118338_b0280
  article-title: Recent developments in discriminant analysis on high dimensional spectral data
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(96)00050-0
– volume: 4
  start-page: 1
  issue: 4
  year: 2014
  ident: 10.1016/j.foreco.2020.118338_b0195
  article-title: Land use change detection using post classification comparison LandSat satellite images (Case study: land of Tehran)
  publication-title: RS & GIS for Natural Resources
– volume: 25
  start-page: 1733
  issue: 9
  year: 2004
  ident: 10.1016/j.foreco.2020.118338_b0095
  article-title: Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116031000150077
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.foreco.2020.118338_b0045
  article-title: Random forest
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 9
  start-page: 1
  issue: 4
  year: 2018
  ident: 10.1016/j.foreco.2020.118338_b0435
  article-title: Climate variability and forest fires in central and south-central Chile
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2171
– volume: 10
  start-page: 2847
  issue: 22
  year: 2010
  ident: 10.1016/j.foreco.2020.118338_b0315
  article-title: Comparison of neural network and maximum likelihood approaches in image classification
  publication-title: J. Appl. Sci.
  doi: 10.3923/jas.2010.2847.2854
– volume: 1
  issue: 24
  year: 2018
  ident: 10.1016/j.foreco.2020.118338_b0380
  article-title: Assessing the influence of roads on fire ignition: does land cover matter?
  publication-title: Fire
– volume: 12
  start-page: 887
  year: 2015
  ident: 10.1016/j.foreco.2020.118338_b0345
  article-title: HESFIRE: a global fire model to explore the role of anthropogenic and weather drivers
  publication-title: Biogeosciences
  doi: 10.5194/bg-12-887-2015
– volume: 9
  start-page: 1
  issue: 819
  year: 2017
  ident: 10.1016/j.foreco.2020.118338_b0410
  article-title: A Comparison between spatial econometric models and random forest for modeling fire occurrence
  publication-title: Susceptibility
– volume: 10
  start-page: 408
  issue: 5
  year: 2019
  ident: 10.1016/j.foreco.2020.118338_b0255
  article-title: Testing a new ensemble model based on SVM and Random forest in forest fire susceptibility assessment and its mapping in Serbian National Park Tara
  publication-title: Forests
  doi: 10.3390/f10050408
– volume: 64
  start-page: 180
  year: 2013
  ident: 10.1016/j.foreco.2020.118338_b0340
  article-title: A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey
  publication-title: J. Asian Earth Sci.
  doi: 10.1016/j.jseaes.2012.12.014
– start-page: 1
  year: 2010
  ident: 10.1016/j.foreco.2020.118338_b0475
  article-title: Investigation of fire situation in forest and pasture areas of Mazandaran Province (Basin of Sari Natural Resources Administration)
– volume: 12
  start-page: 1
  issue: 9
  year: 2017
  ident: 10.1016/j.foreco.2020.118338_b0460
  article-title: Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aa7e6e
– volume: 26
  start-page: 983
  year: 2017
  ident: 10.1016/j.foreco.2020.118338_b0085
  article-title: Human-caused fire occurrence modelling in perspective: a review
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF17026
– volume: 24
  start-page: 892
  issue: 7
  year: 2015
  ident: 10.1016/j.foreco.2020.118338_b0020
  article-title: Climate change presents increased potential for very large fires in the contiguous United States
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF15083
– volume: 23
  start-page: 643
  year: 2014
  ident: 10.1016/j.foreco.2020.118338_b0355
  article-title: Development and mapping of fuel characteristics and associated fire potentials for South America
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF12137
– start-page: 420p
  year: 2014
  ident: 10.1016/j.foreco.2020.118338_b0260
– volume: 90
  start-page: 1241
  year: 2009
  ident: 10.1016/j.foreco.2020.118338_b0290
  article-title: Human-caused wildfire risk rating for prevention planning in Spain
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2008.07.005
– volume: 18
  start-page: 820
  issue: 6
  year: 2011
  ident: 10.1016/j.foreco.2020.118338_b0445
  article-title: Effect of slope on fires spreading downhill
  publication-title: Can. J. For. Res.
  doi: 10.1139/x88-125
– volume: 47
  start-page: 221
  year: 2010
  ident: 10.1016/j.foreco.2020.118338_b0230
  article-title: Do factors causing wildfires vary in space? Evidence from geographically weighted regression
  publication-title: GIScience & Remote Sens.
  doi: 10.2747/1548-1603.47.2.221
– volume: 22
  start-page: 1003
  year: 2013
  ident: 10.1016/j.foreco.2020.118338_b0005
  article-title: Relationships between climate and macro scale area burned in the western United States
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF13019
– volume: 166
  start-page: 223
  year: 2010
  ident: 10.1016/j.foreco.2020.118338_b0440
  article-title: Fire risk evaluation using multicriteria analysis, a case study
  publication-title: J. Environ. Monitor. Assess.
  doi: 10.1007/s10661-009-0997-3
– ident: 10.1016/j.foreco.2020.118338_b0470
– volume: 36
  start-page: 1
  issue: 11
  year: 2010
  ident: 10.1016/j.foreco.2020.118338_b0235
  article-title: Feature selection with the Boruta package
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v036.i11
– volume: 48
  start-page: 52
  year: 2014
  ident: 10.1016/j.foreco.2020.118338_b0385
  article-title: Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression
  publication-title: Appl. Geogr.
  doi: 10.1016/j.apgeog.2014.01.011
– volume: 10
  start-page: 408
  year: 2019
  ident: 10.1016/j.foreco.2020.118338_b0170
  article-title: Testing a new ensemble model based on SVM and random forest in forest fire susceptibility assessment and its mapping in Serbia’s Tara
  publication-title: Forests
  doi: 10.3390/f10050408
– year: 2018
  ident: 10.1016/j.foreco.2020.118338_b0040
  article-title: Human-environmental drivers and impacts of the globally extreme 2017 Chilean fires
  publication-title: Ambio
– year: 2006
  ident: 10.1016/j.foreco.2020.118338_b0465
– volume: 31
  start-page: 1
  issue: 18
  year: 2004
  ident: 10.1016/j.foreco.2020.118338_b0175
  article-title: Detecting the effect of climate change on Canadian forest fires
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2004GL020876
– volume: 84
  start-page: 2049
  issue: 3
  year: 2016
  ident: 10.1016/j.foreco.2020.118338_b0390
  article-title: Analysis of recent spatial-temporal evolution of human driving factors of wildfires in Spain
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-016-2533-4
– volume: 24
  start-page: 2309
  issue: 5
  year: 2015
  ident: 10.1016/j.foreco.2020.118338_b0130
  article-title: Prediction of future forest fires using the MCDM method
  publication-title: Polish J. Environ. Stud.
– year: 2018
  ident: 10.1016/j.foreco.2020.118338_b0265
– volume: 11
  start-page: 3452
  year: 2019
  ident: 10.1016/j.foreco.2020.118338_b0305
  article-title: Maxent data mining technique and its comparison with a bivariate statistical model for predicting the habitat potential of Astragalus fasciculifolius Boiss: a proposed indicator plant for marl soil conservation in Zagros Mountain
  publication-title: Sustainability
  doi: 10.3390/su11123452
– ident: 10.1016/j.foreco.2020.118338_b0055
– volume: 10
  start-page: 167
  issue: 7
  year: 2017
  ident: 10.1016/j.foreco.2020.118338_b0200
  article-title: A comparative assessment between linear and quadratic discriminant analyses (LDA-QDA) with frequency ratio and weights-of-evidence models for forest fire susceptibility mapping in China
  publication-title: Arabian J. Geosci.
  doi: 10.1007/s12517-017-2905-4
– volume: 24
  start-page: 2305
  issue: 5
  year: 2015
  ident: 10.1016/j.foreco.2020.118338_b0135
  article-title: Evaluation of the MODIS fire-detection product in Neka-Zalemroud fire-prone forests in Northern Iran
  publication-title: Polish J. Environ. Stud.
– volume: 12
  start-page: 935
  year: 2012
  ident: 10.1016/j.foreco.2020.118338_b0490
  article-title: Human impacts on fire occurrence: a case study of hundred years of forest fires in a dry alpine valley in Switzerland
  publication-title: Reg. Environ. Change
  doi: 10.1007/s10113-012-0307-4
– volume: 77
  start-page: 173
  issue: 2
  year: 2001
  ident: 10.1016/j.foreco.2020.118338_b0415
  article-title: Monitoring urban land cover change; an expert system approach to land cover classification of semiarid to arid urban centers
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(01)00204-8
– volume: 131
  start-page: 967
  year: 2018
  ident: 10.1016/j.foreco.2020.118338_b0320
  article-title: A comparison between ten advanced and soft computing models for groundwater qanat potential assessment in Iran using R and GIS
  publication-title: Theatr. Appl. Climatol.
  doi: 10.1007/s00704-016-2022-4
– volume: 13
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.foreco.2020.118338_b0105
  article-title: Investigation on the relationship between climate change and fire in the forests of Golestan Province, Iran
  publication-title: Iran. J. Forest Range Protect. Res.
– volume: 19
  start-page: 77
  issue: 1
  year: 2012
  ident: 10.1016/j.foreco.2020.118338_b0275
  article-title: Mapping forest cover change, using aerial photography and IRS-LISSIII imagery (Case study: Ilam Township)
  publication-title: J. Wood Forest Sci. Technol.
– volume: 51
  start-page: 1765
  issue: 3
  year: 2006
  ident: 10.1016/j.foreco.2020.118338_b0375
  article-title: Choice of B-splines with free parameters in the flexible discriminant analysis context
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2005.11.018
– volume: 66
  start-page: 247
  issue: 3
  year: 2011
  ident: 10.1016/j.foreco.2020.118338_b0300
  article-title: Support vector machines in remote sensing: A review
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.11.001
– volume: 20
  start-page: 792
  issue: 6
  year: 2011
  ident: 10.1016/j.foreco.2020.118338_b0325
  article-title: Influences of forest roads on the spatial pattern of wildfire boundaries
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF10032
– volume: 75
  issue: 665
  year: 2016
  ident: 10.1016/j.foreco.2020.118338_b0480
  article-title: GISbased multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran
  publication-title: Environ. Earth Sci.
SSID ssj0005548
Score 2.5004725
Snippet •ML algorithm, showed a good efficiency for land cover mapping of central Koohdasht.•Distance from roads was the most important factor in fire susceptibility...
In recent years, land uses have been changing and aridity has been increasing in the forests and rangelands of central Koohdasht which is a region in the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118338
SubjectTerms Boruta algorithm
computer software
Data mining techniques
decision making
digital database
dry environmental conditions
Effective factors
Fire danger mapping
fire hazard
forest ecology
forests
Iran
Land cover
land use planning
linear models
rangelands
satellites
Sentinel-2A satellite images
statistical analysis
support vector machines
topography
Title Relations of land cover, topography, and climate to fire occurrence in natural regions of Iran: Applying new data mining techniques for modeling and mapping fire danger
URI https://dx.doi.org/10.1016/j.foreco.2020.118338
https://www.proquest.com/docview/2552017813
Volume 473
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005548
  issn: 0378-1127
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Freedom Collection
  customDbUrl:
  eissn: 1872-7042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005548
  issn: 0378-1127
  databaseCode: ACRLP
  dateStart: 20151001
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005548
  issn: 0378-1127
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005548
  issn: 0378-1127
  databaseCode: AIKHN
  dateStart: 20151001
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7042
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005548
  issn: 0378-1127
  databaseCode: AKRWK
  dateStart: 19760101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEA2iKF7ET_xmBI_GbZt023pbFmVV9KKCt5Ckqays7aLrwYu_x5_pTNouKoLgcUPa7Haykzf0zXuMHQYmllhlOJ7ZbsClzANOEiA8TkRo8kibwrdHX113B3fy4j6-n2H9theGaJVN7q9zus_WzUineZqd8XDYuQkEdUn694hUxFCjuZQJuRgcv3-hecTeQYsmc5rdts95jhfiQizysEqMKHekgrpUfj-efiRqf_qcLbOlBjZCr_5mK2zGlatsvjaSfFtlC-SwSbZta-xjSm-DqgDiLYIlmuYRTKpxo099BH54NES46nAcCnwIUFnrxZqsg2EJXvETlyTnhuZm53iunQDhVuqNAgTkQARTePImEzCVg30B_MXgPXZonNZ60qQD8VAvlPte43V2d3Z62x_wxo6BWyGyCQ-tMxIBgdZBITIXGJs6GegiNzpLyRfQhEaKJIhclMaxI1vjMCvyyMnEkpuH2GCzZVW6TQYuJJV3m-aI7WVYpLqrtYwx5DLJulmWbzHRRkHZRqucLDNGqiWlPao6dopip-rYbTE-vWpca3X8MT9pA6y-7TmFx8kfVx60-0Hh35HesejSVa8vCis0hFS4McX2v---wxbpU00Z3GWzk-dXt4fQZ2L2_d7eZ3O988vB9ScPBgSd
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB1RUD8uFYVWpR8wSBxxN4ntTdJbhYoWClwAiZtlO061FSSrshy48Hv6MzvjJCtaISFx9TrxbsY7fqO8eQ9gJ3FaUZURROnHiVCqSgRLgAidy9RVmXV1bI8-PhlPztXhhb5Ygr2hF4ZplX3u73J6zNb9yKh_mqPZdDo6TSR3Scb3iFzE6GewonSWcwX25e4ez0NHCy2eLXj60D8XSV4EDKnKozIx4-RRSG5Tefh8-i9Tx-NnfxVe97gRv3Vf7Q0shWYNnndOkrdr8IItNtm3bR3-LPht2NbIxEX0zNPcxXk76wWqdzEOX04JrwYax5qeArbeR7UmH3DaYJT8pCXZuqG_2QEdbF-RgSs3RyEhcmSGKV5Flwlc6MFeI_1ijCY7PM5rXVkWgvjZLVTFZuO3cL7__WxvIno_BuGlLOci9cEpQgTWJrUsQ-J8EVRi68rZsmBjQJc6JfMkC1mhdWBf47Ssqyyo3LOdh3wHy03bhPeAIWWZd19UBO5VWhd2bK3SFHOVl-OyrDZADlEwvhcrZ8-MSzOw0n6ZLnaGY2e62G2AWFw168Q6HpmfDwE2_2w6Q-fJI1duD_vB0P-RX7LYJrQ314ZKNMJUtDPlhyfffQteTs6Oj8zRwcmPj_CKP-n4g59gef77JnwmHDR3m3Gf_wUB8gYy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relations+of+land+cover%2C+topography%2C+and+climate+to+fire+occurrence+in+natural+regions+of+Iran%3A+Applying+new+data+mining+techniques+for+modeling+and+mapping+fire+danger&rft.jtitle=Forest+ecology+and+management&rft.au=Eskandari%2C+Saeedeh&rft.au=Pourghasemi%2C+Hamid+Reza&rft.au=Tiefenbacher%2C+John+P.&rft.date=2020-10-01&rft.pub=Elsevier+B.V&rft.issn=0378-1127&rft.eissn=1872-7042&rft.volume=473&rft_id=info:doi/10.1016%2Fj.foreco.2020.118338&rft.externalDocID=S0378112720311075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-1127&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-1127&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-1127&client=summon