Change of Dendritic Cell Subsets Involved in Protection Against Listeria monocytogenes Infection in Short-Term-Fasted Mice
The gastrointestinal tract is the first organ directly affected by fasting. However, little is known about how fasting influences the intestinal immune system. Intestinal dendritic cells (DCs) capture antigens, migrate to secondary lymphoid organs, and provoke adaptive immune responses. We evaluated...
Saved in:
Published in | Immune network Vol. 22; no. 2; pp. e16 - 20 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Korea (South)
The Korean Association of Immunologists
01.04.2022
대한면역학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1598-2629 2092-6685 2092-6685 |
DOI | 10.4110/in.2022.22.e16 |
Cover
Abstract | The gastrointestinal tract is the first organ directly affected by fasting. However, little is known about how fasting influences the intestinal immune system. Intestinal dendritic cells (DCs) capture antigens, migrate to secondary lymphoid organs, and provoke adaptive immune responses. We evaluated the changes of intestinal DCs in mice with short-term fasting and their effects on protective immunity against
(LM). Fasting induced an increased number of CD103
CD11b
DCs in both small intestinal lamina propria (SILP) and mesenteric lymph nodes (mLN). The SILP CD103
CD11b
DCs showed proliferation and migration, coincident with increased levels of GM-CSF and C-C chemokine receptor type 7, respectively. At 24 h post-infection with LM, there was a significant reduction in the bacterial burden in the spleen, liver, and mLN of the short-term-fasted mice compared to those fed
. Also, short-term-fasted mice showed increased survival after LM infection compared with
-fed mice. It could be that significantly high TGF-β2 and Aldh1a2 expression in CD103
CD11b
DCs in mice infected with LM might affect to increase of Foxp3
regulatory T cells. Changes of major subset of DCs from CD103
to CD103
may induce the increase of IFN-γ-producing cells with forming Th1-biased environment. Therefore, the short-term fasting affects protection against LM infection by changing major subset of intestinal DCs from tolerogenic to Th1 immunogenic. |
---|---|
AbstractList | The gastrointestinal tract is the first organ directly affected by fasting. However, little is known about how fasting influences the intestinal immune system. Intestinal dendritic cells (DCs) capture antigens, migrate to secondary lymphoid organs, and provoke adaptive immune responses. We evaluated the changes of intestinal DCs in mice with short-term fasting and their effects on protective immunity against Listeria monocytogenes (LM). Fasting induced an increased number of CD103+CD11b- DCs in both small intestinal lamina propria (SILP) and mesenteric lymph nodes (mLN). The SILP CD103+CD11b- DCs showed proliferation and migration, coincident with increased levels of GM-CSF and C-C chemokine receptor type 7, respectively. At 24 h post-infection with LM, there was a significant reduction in the bacterial burden in the spleen, liver, and mLN of the short-term-fasted mice compared to those fed ad libitum. Also, short-term-fasted mice showed increased survival after LM infection compared with ad libitum-fed mice. It could be that significantly high TGF-β2 and Aldh1a2 expression in CD103+CD11b- DCs in mice infected with LM might affect to increase of Foxp3+ regulatory T cells. Changes of major subset of DCs from CD103+ to CD103- may induce the increase of IFN-γ-producing cells with forming Th1-biased environment. Therefore, the short-term fasting affects protection against LM infection by changing major subset of intestinal DCs from tolerogenic to Th1 immunogenic.The gastrointestinal tract is the first organ directly affected by fasting. However, little is known about how fasting influences the intestinal immune system. Intestinal dendritic cells (DCs) capture antigens, migrate to secondary lymphoid organs, and provoke adaptive immune responses. We evaluated the changes of intestinal DCs in mice with short-term fasting and their effects on protective immunity against Listeria monocytogenes (LM). Fasting induced an increased number of CD103+CD11b- DCs in both small intestinal lamina propria (SILP) and mesenteric lymph nodes (mLN). The SILP CD103+CD11b- DCs showed proliferation and migration, coincident with increased levels of GM-CSF and C-C chemokine receptor type 7, respectively. At 24 h post-infection with LM, there was a significant reduction in the bacterial burden in the spleen, liver, and mLN of the short-term-fasted mice compared to those fed ad libitum. Also, short-term-fasted mice showed increased survival after LM infection compared with ad libitum-fed mice. It could be that significantly high TGF-β2 and Aldh1a2 expression in CD103+CD11b- DCs in mice infected with LM might affect to increase of Foxp3+ regulatory T cells. Changes of major subset of DCs from CD103+ to CD103- may induce the increase of IFN-γ-producing cells with forming Th1-biased environment. Therefore, the short-term fasting affects protection against LM infection by changing major subset of intestinal DCs from tolerogenic to Th1 immunogenic. The gastrointestinal tract is the first organ directly affected by fasting. However, little is known about how fasting influences the intestinal immune system. Intestinal dendritic cells (DCs) capture antigens, migrate to secondary lymphoid organs, and provoke adaptive immune responses. We evaluated the changes of intestinal DCs in mice with short-term fasting and their effects on protective immunity against (LM). Fasting induced an increased number of CD103 CD11b DCs in both small intestinal lamina propria (SILP) and mesenteric lymph nodes (mLN). The SILP CD103 CD11b DCs showed proliferation and migration, coincident with increased levels of GM-CSF and C-C chemokine receptor type 7, respectively. At 24 h post-infection with LM, there was a significant reduction in the bacterial burden in the spleen, liver, and mLN of the short-term-fasted mice compared to those fed . Also, short-term-fasted mice showed increased survival after LM infection compared with -fed mice. It could be that significantly high TGF-β2 and Aldh1a2 expression in CD103 CD11b DCs in mice infected with LM might affect to increase of Foxp3 regulatory T cells. Changes of major subset of DCs from CD103 to CD103 may induce the increase of IFN-γ-producing cells with forming Th1-biased environment. Therefore, the short-term fasting affects protection against LM infection by changing major subset of intestinal DCs from tolerogenic to Th1 immunogenic. The gastrointestinal tract is the first organ directly affected by fasting. However, little is known about how fasting influences the intestinal immune system. Intestinal dendritic cells (DCs) capture antigens, migrate to secondary lymphoid organs, and provoke adaptive immune responses. We evaluated the changes of intestinal DCs in mice with short-term fasting and their effects on protective immunity against Listeria monocytogenes (LM). Fasting induced an increased number of CD103+CD11b− DCs in both small intestinal lamina propria (SILP) and mesenteric lymph nodes (mLN). The SILP CD103+CD11b− DCs showed proliferation and migration, coincident with increased levels of GM-CSF and C-C chemokine receptor type 7, respectively. At 24 h post-infection with LM, there was a significant reduction in the bacterial burden in the spleen, liver, and mLN of the short-term-fasted mice compared to those fed ad libitum. Also, short-term-fasted mice showed increased survival after LM infection compared with ad libitum-fed mice. It could be that significantly high TGF-β2 and Aldh1a2 expression in CD103+CD11b− DCs in mice infected with LM might affect to increase of Foxp3+ regulatory T cells. Changes of major subset of DCs from CD103+ to CD103− may induce the increase of IFN-γ–producing cells with forming Th1-biased environment. Therefore, the short-term fasting affects protection against LM infection by changing major subset of intestinal DCs from tolerogenic to Th1 immunogenic. KCI Citation Count: 0 The gastrointestinal tract is the first organ directly affected by fasting. However, little is known about how fasting influences the intestinal immune system. Intestinal dendritic cells (DCs) capture antigens, migrate to secondary lymphoid organs, and provoke adaptive immune responses. We evaluated the changes of intestinal DCs in mice with short-term fasting and their effects on protective immunity against Listeria monocytogenes (LM). Fasting induced an increased number of CD103+CD11b− DCs in both small intestinal lamina propria (SILP) and mesenteric lymph nodes (mLN). The SILP CD103+CD11b− DCs showed proliferation and migration, coincident with increased levels of GM-CSF and C-C chemokine receptor type 7, respectively. At 24 h post-infection with LM, there was a significant reduction in the bacterial burden in the spleen, liver, and mLN of the short-term-fasted mice compared to those fed ad libitum. Also, short-term-fasted mice showed increased survival after LM infection compared with ad libitum-fed mice. It could be that significantly high TGF-β2 and Aldh1a2 expression in CD103+CD11b− DCs in mice infected with LM might affect to increase of Foxp3+ regulatory T cells. Changes of major subset of DCs from CD103+ to CD103− may induce the increase of IFN-γ–producing cells with forming Th1-biased environment. Therefore, the short-term fasting affects protection against LM infection by changing major subset of intestinal DCs from tolerogenic to Th1 immunogenic. |
Author | Cho, Jae-Ho Kye, Yoon-Chul Lee, Kyung-Min Ju, Young-Jun Kim, Girak Park, Byung-Chul Kim, Han Wool Chu, Hyuk Chang, Pahn-Shick Han, Seung Hyun Yun, Cheol-Heui |
AuthorAffiliation | 7 Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea 4 Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun Hospital, Hwasun 58128, Korea 6 Center for Food and Biocenvergence, Seoul National University, Seoul 08826, Korea 2 Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea 5 Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Korea 3 Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea 1 Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea |
AuthorAffiliation_xml | – name: 5 Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Korea – name: 6 Center for Food and Biocenvergence, Seoul National University, Seoul 08826, Korea – name: 1 Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea – name: 4 Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun Hospital, Hwasun 58128, Korea – name: 7 Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea – name: 2 Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea – name: 3 Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea |
Author_xml | – sequence: 1 givenname: Young-Jun orcidid: 0000-0002-7561-0677 surname: Ju fullname: Ju, Young-Jun organization: Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea – sequence: 2 givenname: Kyung-Min surname: Lee fullname: Lee, Kyung-Min organization: Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea – sequence: 3 givenname: Girak surname: Kim fullname: Kim, Girak organization: Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea – sequence: 4 givenname: Yoon-Chul orcidid: 0000-0003-0261-5247 surname: Kye fullname: Kye, Yoon-Chul organization: Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea – sequence: 5 givenname: Han Wool surname: Kim fullname: Kim, Han Wool organization: Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea – sequence: 6 givenname: Hyuk orcidid: 0000-0002-7044-2942 surname: Chu fullname: Chu, Hyuk organization: Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea – sequence: 7 givenname: Byung-Chul surname: Park fullname: Park, Byung-Chul organization: Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea – sequence: 8 givenname: Jae-Ho orcidid: 0000-0002-3081-7674 surname: Cho fullname: Cho, Jae-Ho organization: Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasun Hospital, Hwasun 58128, Korea – sequence: 9 givenname: Pahn-Shick orcidid: 0000-0001-9645-7010 surname: Chang fullname: Chang, Pahn-Shick organization: Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea., Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Korea., Center for Food and Biocenvergence, Seoul National University, Seoul 08826, Korea – sequence: 10 givenname: Seung Hyun orcidid: 0000-0001-9418-9278 surname: Han fullname: Han, Seung Hyun organization: Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul 08826, Korea – sequence: 11 givenname: Cheol-Heui orcidid: 0000-0002-0041-2887 surname: Yun fullname: Yun, Cheol-Heui organization: Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea., Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea., Center for Food and Biocenvergence, Seoul National University, Seoul 08826, Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35573152$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002838005$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNqFkc1vEzEQxS1URNPClSPyEQ6beu21N3tBigKFSEEgGs6W1ztOTDd2ajtB6V9fLwmfEkIaaQ7ze_NGby7QmfMOEHpeknFVluTKujEllI5zQSkeoRElDS2EmPAzNCp5MymooM05uojxKyGiYjV_gs4Z5zUrOR2h-9lauRVgb_AbcF2wyWo8g77HN7s2Qop47va-30OHrcOfgk-gk_UOT1fKupjwwsYEwSq88c7rQ_IrcDCozAnMspu1D6lYQtgU1yrjHf5gNTxFj43qIzw79Uv05frtcva-WHx8N59NF4VmrBGF4UY3tOomvGtNp6sKTKsJsLYtKXRlJYyBirOWaFMLVite1sZ0Sk1Y1xDVcHaJXh33umDkrbbSK_u9r7y8DXL6eTmXTZMTqyeZvTqyO7dVh2-q7-U22I0KB1kSOSQurZND4jJXTjwrXh8V2127gU6DS0H9Ug1ef06cXWfnvWyIEIRUecHL04Lg73YQk9zYqPMHlAO_i5IKwcvMsgF98bvXT5Mf78zA-Ajo4GMMYP5_ffWXQNukhr_lW23_L9kDOPPGAA |
CitedBy_id | crossref_primary_10_1002_agm2_12342 crossref_primary_10_1111_imm_13664 |
Cites_doi | 10.1038/ni.1615 10.1371/journal.ppat.1009719 10.1083/jcb.151.3.673 10.1002/eji.201343592 10.1084/jem.20130728 10.1084/jem.20091627 10.1038/s41577-018-0088-1 10.1038/mi.2014.40 10.1016/S0065-2776(06)92003-3 10.1126/science.1145697 10.1038/372190a0 10.4049/jimmunol.176.2.803 10.1038/mi.2012.53 10.1084/jem.20021598 10.4049/jimmunol.166.5.3402 10.1016/j.cmet.2013.12.008 10.4049/jimmunol.1301158 10.4049/jimmunol.168.4.1528 10.1126/science.1172539 10.1038/ni1181 10.1146/annurev.immunol.18.1.767 10.1016/j.cell.2008.05.009 10.1084/jem.20030323 10.1128/iai.28.3.771-776.1980 10.4049/jimmunol.166.6.4065 10.1016/j.immuni.2022.01.004 10.1038/s41385-020-0299-1 10.1016/j.chom.2010.01.006 10.1016/j.immuni.2009.08.010 10.1182/blood-2011-11-370130 10.1038/mi.2017.22 10.1016/j.immuni.2013.01.009 10.1016/j.celrep.2016.09.091 10.1016/j.cell.2019.07.047 10.1038/382250a0 10.1016/j.cmet.2018.05.006 10.1084/jem.191.3.435 10.1084/jem.20081666 10.1038/nm.3709 10.4049/jimmunol.180.6.4109 10.1084/jem.20070590 10.1146/annurev.physiol.68.040104.105739 10.1084/jem.20080414 10.1038/mi.2012.113 10.1016/0003-2697(70)90174-0 10.4049/jimmunol.181.10.6923 10.4049/jimmunol.1101721 10.1371/journal.pone.0087772 10.1038/nri1350 10.1016/j.immuni.2008.09.018 10.1084/jem.20091925 10.4049/jimmunol.174.9.5444 10.1016/j.immuni.2012.03.027 10.4049/jimmunol.168.12.6382 10.1016/j.it.2011.06.003 10.1021/pr060183+ 10.1038/srep23505 10.1016/j.immuni.2016.10.026 10.1182/blood-2008-02-140277 10.1111/j.1474-9726.2009.00532.x 10.1016/j.cell.2016.07.026 10.1146/annurev.immunol.021908.132723 10.1084/jem.20070602 10.1073/pnas.0400810101 10.4110/in.2016.16.1.52 |
ContentType | Journal Article |
Copyright | Copyright © 2022. The Korean Association of Immunologists. Copyright © 2022. The Korean Association of Immunologists 2022 The Korean Association of Immunologists |
Copyright_xml | – notice: Copyright © 2022. The Korean Association of Immunologists. – notice: Copyright © 2022. The Korean Association of Immunologists 2022 The Korean Association of Immunologists |
DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY ACYCR |
DOI | 10.4110/in.2022.22.e16 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Korean Citation Index |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2092-6685 |
EndPage | 20 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9968578 10.4110/in.2022.22.e16 PMC9066004 35573152 10_4110_in_2022_22_e16 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; – fundername: ; grantid: PJ016201; PJ016613 |
GroupedDBID | 5-W 53G 8JR 8XY 9ZL AAYXX ACYCR ADBBV ADRAZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL CITATION DBRKI DIK E3Z EF. F5P GW5 HYE KQ8 KVFHK M48 MZR O5R O5S OK1 PGMZT RPM TDB ZZE .UV M~E NPM 7X8 5PM ADTOC UNPAY |
ID | FETCH-LOGICAL-c3396-f5fc924d85dbfdc44efbc0e3bb12ed146ffe453b0cf7637a517ffdaa83d90a953 |
IEDL.DBID | M48 |
ISSN | 1598-2629 2092-6685 |
IngestDate | Tue Nov 21 21:46:07 EST 2023 Sun Sep 07 11:22:47 EDT 2025 Tue Sep 30 16:40:31 EDT 2025 Fri Jul 11 15:38:17 EDT 2025 Thu Jan 02 22:53:31 EST 2025 Thu Apr 24 22:55:29 EDT 2025 Tue Jul 01 00:45:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Dendritic cells Listeria monocytogenes Fasting |
Language | English |
License | Copyright © 2022. The Korean Association of Immunologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3396-f5fc924d85dbfdc44efbc0e3bb12ed146ffe453b0cf7637a517ffdaa83d90a953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Young-Jun Ju, Kyung-Min Lee, and Girak Kim have contributed equally to this work. https://immunenetwork.org/DOIx.php?id=10.4110/in.2022.22.e16 |
ORCID | 0000-0003-0261-5247 0000-0002-7044-2942 0000-0002-3081-7674 0000-0001-9645-7010 0000-0002-0041-2887 0000-0001-9418-9278 0000-0002-7561-0677 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.4110/in.2022.22.e16 |
PMID | 35573152 |
PQID | 2665106634 |
PQPubID | 23479 |
PageCount | 20 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9968578 unpaywall_primary_10_4110_in_2022_22_e16 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9066004 proquest_miscellaneous_2665106634 pubmed_primary_35573152 crossref_primary_10_4110_in_2022_22_e16 crossref_citationtrail_10_4110_in_2022_22_e16 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Korea (South) |
PublicationPlace_xml | – name: Korea (South) |
PublicationTitle | Immune network |
PublicationTitleAlternate | Immune Netw |
PublicationYear | 2022 |
Publisher | The Korean Association of Immunologists 대한면역학회 |
Publisher_xml | – name: The Korean Association of Immunologists – name: 대한면역학회 |
References | Karsunky (10.4110/in.2022.22.e16_ref46) 2003; 198 Zhao (10.4110/in.2022.22.e16_ref36) 2008; 112 Waskow (10.4110/in.2022.22.e16_ref47) 2008; 9 Al-Hassi (10.4110/in.2022.22.e16_ref11) 2013; 6 van de Laar (10.4110/in.2022.22.e16_ref32) 2012; 119 Cepek (10.4110/in.2022.22.e16_ref30) 1994; 372 Peng (10.4110/in.2022.22.e16_ref54) 2004; 101 Jaensson (10.4110/in.2022.22.e16_ref44) 2008; 205 Mucida (10.4110/in.2022.22.e16_ref55) 2007; 317 Schulz (10.4110/in.2022.22.e16_ref49) 2009; 206 Wing (10.4110/in.2022.22.e16_ref3) 1980; 28 Cerovic (10.4110/in.2022.22.e16_ref21) 2015; 8 Fontana (10.4110/in.2022.22.e16_ref1) 2010; 328 Wang (10.4110/in.2022.22.e16_ref42) 2016; 166 Clay (10.4110/in.2022.22.e16_ref58) 2020; 13 Greter (10.4110/in.2022.22.e16_ref45) 2012; 36 Mitchell (10.4110/in.2022.22.e16_ref4) 2010; 9 Saucillo (10.4110/in.2022.22.e16_ref8) 2014; 192 Nagai (10.4110/in.2022.22.e16_ref43) 2019; 178 Clatworthy (10.4110/in.2022.22.e16_ref34) 2014; 20 Ahima (10.4110/in.2022.22.e16_ref7) 1996; 382 La Cava (10.4110/in.2022.22.e16_ref9) 2004; 4 Yoo (10.4110/in.2022.22.e16_ref39) 2016; 16 Scott (10.4110/in.2022.22.e16_ref14) 2011; 32 Moraes-Vieira (10.4110/in.2022.22.e16_ref10) 2014; 44 Edelson (10.4110/in.2022.22.e16_ref22) 2010; 207 Huleatt (10.4110/in.2022.22.e16_ref61) 2001; 166 Liang (10.4110/in.2022.22.e16_ref23) 2016; 17 Jang (10.4110/in.2022.22.e16_ref17) 2006; 176 Belkaid (10.4110/in.2022.22.e16_ref52) 2009; 27 Pope (10.4110/in.2022.22.e16_ref63) 2001; 166 Joeris (10.4110/in.2022.22.e16_ref29) 2017; 10 Shushimita (10.4110/in.2022.22.e16_ref5) 2014; 9 Lenaerts (10.4110/in.2022.22.e16_ref6) 2006; 5 Cignarella (10.4110/in.2022.22.e16_ref41) 2018; 27 Sakaguchi (10.4110/in.2022.22.e16_ref50) 2008; 133 Welty (10.4110/in.2022.22.e16_ref24) 2013; 210 Hirata (10.4110/in.2022.22.e16_ref33) 2010; 7 Farache (10.4110/in.2022.22.e16_ref16) 2013; 38 Ohta (10.4110/in.2022.22.e16_ref59) 2016; 6 Eisenbarth (10.4110/in.2022.22.e16_ref13) 2019; 19 Collins (10.4110/in.2022.22.e16_ref64) 2022; 55 Mahnke (10.4110/in.2022.22.e16_ref57) 2000; 151 Levings (10.4110/in.2022.22.e16_ref51) 2006; 92 Zhu (10.4110/in.2022.22.e16_ref38) 2009; 206 Bogunovic (10.4110/in.2022.22.e16_ref48) 2009; 31 Sun (10.4110/in.2022.22.e16_ref19) 2007; 204 Orgun (10.4110/in.2022.22.e16_ref35) 2008; 180 Huang (10.4110/in.2022.22.e16_ref15) 2000; 191 Yamazaki (10.4110/in.2022.22.e16_ref40) 2008; 181 Hill (10.4110/in.2022.22.e16_ref20) 2008; 29 Foulds (10.4110/in.2022.22.e16_ref28) 2002; 168 Shi (10.4110/in.2022.22.e16_ref60) 2011; 187 Wang (10.4110/in.2022.22.e16_ref26) 2006; 68 Longo (10.4110/in.2022.22.e16_ref2) 2014; 19 Kursar (10.4110/in.2022.22.e16_ref62) 2002; 168 Banchereau (10.4110/in.2022.22.e16_ref12) 2000; 18 Becher (10.4110/in.2022.22.e16_ref31) 2016; 45 Suffia (10.4110/in.2022.22.e16_ref37) 2005; 174 Coombes (10.4110/in.2022.22.e16_ref18) 2007; 204 Koch (10.4110/in.2022.22.e16_ref27) 1970; 38 Graef (10.4110/in.2022.22.e16_ref65) 2021; 17 Belkaid (10.4110/in.2022.22.e16_ref53) 2005; 6 Bonifaz (10.4110/in.2022.22.e16_ref56) 2002; 196 Cerovic (10.4110/in.2022.22.e16_ref25) 2013; 6 |
References_xml | – volume: 9 start-page: 676 year: 2008 ident: 10.4110/in.2022.22.e16_ref47 publication-title: Nat Immunol doi: 10.1038/ni.1615 – volume: 17 start-page: e1009719 year: 2021 ident: 10.4110/in.2022.22.e16_ref65 publication-title: PLoS Pathog doi: 10.1371/journal.ppat.1009719 – volume: 151 start-page: 673 year: 2000 ident: 10.4110/in.2022.22.e16_ref57 publication-title: J Cell Biol doi: 10.1083/jcb.151.3.673 – volume: 44 start-page: 794 year: 2014 ident: 10.4110/in.2022.22.e16_ref10 publication-title: Eur J Immunol doi: 10.1002/eji.201343592 – volume: 210 start-page: 2011 year: 2013 ident: 10.4110/in.2022.22.e16_ref24 publication-title: J Exp Med doi: 10.1084/jem.20130728 – volume: 207 start-page: 823 year: 2010 ident: 10.4110/in.2022.22.e16_ref22 publication-title: J Exp Med doi: 10.1084/jem.20091627 – volume: 19 start-page: 89 year: 2019 ident: 10.4110/in.2022.22.e16_ref13 publication-title: Nat Rev Immunol doi: 10.1038/s41577-018-0088-1 – volume: 8 start-page: 38 year: 2015 ident: 10.4110/in.2022.22.e16_ref21 publication-title: Mucosal Immunol doi: 10.1038/mi.2014.40 – volume: 92 start-page: 119 year: 2006 ident: 10.4110/in.2022.22.e16_ref51 publication-title: Adv Immunol doi: 10.1016/S0065-2776(06)92003-3 – volume: 317 start-page: 256 year: 2007 ident: 10.4110/in.2022.22.e16_ref55 publication-title: Science doi: 10.1126/science.1145697 – volume: 372 start-page: 190 year: 1994 ident: 10.4110/in.2022.22.e16_ref30 publication-title: Nature doi: 10.1038/372190a0 – volume: 176 start-page: 803 year: 2006 ident: 10.4110/in.2022.22.e16_ref17 publication-title: J Immunol doi: 10.4049/jimmunol.176.2.803 – volume: 6 start-page: 104 year: 2013 ident: 10.4110/in.2022.22.e16_ref25 publication-title: Mucosal Immunol doi: 10.1038/mi.2012.53 – volume: 196 start-page: 1627 year: 2002 ident: 10.4110/in.2022.22.e16_ref56 publication-title: J Exp Med doi: 10.1084/jem.20021598 – volume: 166 start-page: 3402 year: 2001 ident: 10.4110/in.2022.22.e16_ref63 publication-title: J Immunol doi: 10.4049/jimmunol.166.5.3402 – volume: 19 start-page: 181 year: 2014 ident: 10.4110/in.2022.22.e16_ref2 publication-title: Cell Metab doi: 10.1016/j.cmet.2013.12.008 – volume: 192 start-page: 136 year: 2014 ident: 10.4110/in.2022.22.e16_ref8 publication-title: J Immunol doi: 10.4049/jimmunol.1301158 – volume: 168 start-page: 1528 year: 2002 ident: 10.4110/in.2022.22.e16_ref28 publication-title: J Immunol doi: 10.4049/jimmunol.168.4.1528 – volume: 328 start-page: 321 year: 2010 ident: 10.4110/in.2022.22.e16_ref1 publication-title: Science doi: 10.1126/science.1172539 – volume: 6 start-page: 353 year: 2005 ident: 10.4110/in.2022.22.e16_ref53 publication-title: Nat Immunol doi: 10.1038/ni1181 – volume: 18 start-page: 767 year: 2000 ident: 10.4110/in.2022.22.e16_ref12 publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.18.1.767 – volume: 133 start-page: 775 year: 2008 ident: 10.4110/in.2022.22.e16_ref50 publication-title: Cell doi: 10.1016/j.cell.2008.05.009 – volume: 198 start-page: 305 year: 2003 ident: 10.4110/in.2022.22.e16_ref46 publication-title: J Exp Med doi: 10.1084/jem.20030323 – volume: 28 start-page: 771 year: 1980 ident: 10.4110/in.2022.22.e16_ref3 publication-title: Infect Immun doi: 10.1128/iai.28.3.771-776.1980 – volume: 166 start-page: 4065 year: 2001 ident: 10.4110/in.2022.22.e16_ref61 publication-title: J Immunol doi: 10.4049/jimmunol.166.6.4065 – volume: 55 start-page: 210 year: 2022 ident: 10.4110/in.2022.22.e16_ref64 publication-title: Immunity doi: 10.1016/j.immuni.2022.01.004 – volume: 13 start-page: 946 year: 2020 ident: 10.4110/in.2022.22.e16_ref58 publication-title: Mucosal Immunol doi: 10.1038/s41385-020-0299-1 – volume: 7 start-page: 151 year: 2010 ident: 10.4110/in.2022.22.e16_ref33 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2010.01.006 – volume: 31 start-page: 513 year: 2009 ident: 10.4110/in.2022.22.e16_ref48 publication-title: Immunity doi: 10.1016/j.immuni.2009.08.010 – volume: 119 start-page: 3383 year: 2012 ident: 10.4110/in.2022.22.e16_ref32 publication-title: Blood doi: 10.1182/blood-2011-11-370130 – volume: 10 start-page: 845 year: 2017 ident: 10.4110/in.2022.22.e16_ref29 publication-title: Mucosal Immunol doi: 10.1038/mi.2017.22 – volume: 38 start-page: 581 year: 2013 ident: 10.4110/in.2022.22.e16_ref16 publication-title: Immunity doi: 10.1016/j.immuni.2013.01.009 – volume: 17 start-page: 1330 year: 2016 ident: 10.4110/in.2022.22.e16_ref23 publication-title: Cell Reports doi: 10.1016/j.celrep.2016.09.091 – volume: 178 start-page: 1072 year: 2019 ident: 10.4110/in.2022.22.e16_ref43 publication-title: Cell doi: 10.1016/j.cell.2019.07.047 – volume: 382 start-page: 250 year: 1996 ident: 10.4110/in.2022.22.e16_ref7 publication-title: Nature doi: 10.1038/382250a0 – volume: 27 start-page: 1222 year: 2018 ident: 10.4110/in.2022.22.e16_ref41 publication-title: Cell Metab doi: 10.1016/j.cmet.2018.05.006 – volume: 191 start-page: 435 year: 2000 ident: 10.4110/in.2022.22.e16_ref15 publication-title: J Exp Med doi: 10.1084/jem.191.3.435 – volume: 206 start-page: 329 year: 2009 ident: 10.4110/in.2022.22.e16_ref38 publication-title: J Exp Med doi: 10.1084/jem.20081666 – volume: 20 start-page: 1458 year: 2014 ident: 10.4110/in.2022.22.e16_ref34 publication-title: Nat Med doi: 10.1038/nm.3709 – volume: 180 start-page: 4109 year: 2008 ident: 10.4110/in.2022.22.e16_ref35 publication-title: J Immunol doi: 10.4049/jimmunol.180.6.4109 – volume: 204 start-page: 1757 year: 2007 ident: 10.4110/in.2022.22.e16_ref18 publication-title: J Exp Med doi: 10.1084/jem.20070590 – volume: 68 start-page: 223 year: 2006 ident: 10.4110/in.2022.22.e16_ref26 publication-title: Annu Rev Physiol doi: 10.1146/annurev.physiol.68.040104.105739 – volume: 205 start-page: 2139 year: 2008 ident: 10.4110/in.2022.22.e16_ref44 publication-title: J Exp Med doi: 10.1084/jem.20080414 – volume: 6 start-page: 751 year: 2013 ident: 10.4110/in.2022.22.e16_ref11 publication-title: Mucosal Immunol doi: 10.1038/mi.2012.113 – volume: 38 start-page: 252 year: 1970 ident: 10.4110/in.2022.22.e16_ref27 publication-title: Anal Biochem doi: 10.1016/0003-2697(70)90174-0 – volume: 181 start-page: 6923 year: 2008 ident: 10.4110/in.2022.22.e16_ref40 publication-title: J Immunol doi: 10.4049/jimmunol.181.10.6923 – volume: 187 start-page: 5293 year: 2011 ident: 10.4110/in.2022.22.e16_ref60 publication-title: J Immunol doi: 10.4049/jimmunol.1101721 – volume: 9 start-page: e87772 year: 2014 ident: 10.4110/in.2022.22.e16_ref5 publication-title: PLoS One doi: 10.1371/journal.pone.0087772 – volume: 4 start-page: 371 year: 2004 ident: 10.4110/in.2022.22.e16_ref9 publication-title: Nat Rev Immunol doi: 10.1038/nri1350 – volume: 29 start-page: 758 year: 2008 ident: 10.4110/in.2022.22.e16_ref20 publication-title: Immunity doi: 10.1016/j.immuni.2008.09.018 – volume: 206 start-page: 3101 year: 2009 ident: 10.4110/in.2022.22.e16_ref49 publication-title: J Exp Med doi: 10.1084/jem.20091925 – volume: 174 start-page: 5444 year: 2005 ident: 10.4110/in.2022.22.e16_ref37 publication-title: J Immunol doi: 10.4049/jimmunol.174.9.5444 – volume: 36 start-page: 1031 year: 2012 ident: 10.4110/in.2022.22.e16_ref45 publication-title: Immunity doi: 10.1016/j.immuni.2012.03.027 – volume: 168 start-page: 6382 year: 2002 ident: 10.4110/in.2022.22.e16_ref62 publication-title: J Immunol doi: 10.4049/jimmunol.168.12.6382 – volume: 32 start-page: 412 year: 2011 ident: 10.4110/in.2022.22.e16_ref14 publication-title: Trends Immunol doi: 10.1016/j.it.2011.06.003 – volume: 5 start-page: 2113 year: 2006 ident: 10.4110/in.2022.22.e16_ref6 publication-title: J Proteome Res doi: 10.1021/pr060183+ – volume: 6 start-page: 23505 year: 2016 ident: 10.4110/in.2022.22.e16_ref59 publication-title: Sci Rep doi: 10.1038/srep23505 – volume: 45 start-page: 963 year: 2016 ident: 10.4110/in.2022.22.e16_ref31 publication-title: Immunity doi: 10.1016/j.immuni.2016.10.026 – volume: 112 start-page: 2129 year: 2008 ident: 10.4110/in.2022.22.e16_ref36 publication-title: Blood doi: 10.1182/blood-2008-02-140277 – volume: 9 start-page: 40 year: 2010 ident: 10.4110/in.2022.22.e16_ref4 publication-title: Aging Cell doi: 10.1111/j.1474-9726.2009.00532.x – volume: 166 start-page: 1512 year: 2016 ident: 10.4110/in.2022.22.e16_ref42 publication-title: Cell doi: 10.1016/j.cell.2016.07.026 – volume: 27 start-page: 551 year: 2009 ident: 10.4110/in.2022.22.e16_ref52 publication-title: Annu Rev Immunol doi: 10.1146/annurev.immunol.021908.132723 – volume: 204 start-page: 1775 year: 2007 ident: 10.4110/in.2022.22.e16_ref19 publication-title: J Exp Med doi: 10.1084/jem.20070602 – volume: 101 start-page: 4572 year: 2004 ident: 10.4110/in.2022.22.e16_ref54 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0400810101 – volume: 16 start-page: 52 year: 2016 ident: 10.4110/in.2022.22.e16_ref39 publication-title: Immune Netw doi: 10.4110/in.2016.16.1.52 |
SSID | ssj0064375 |
Score | 2.1961093 |
Snippet | The gastrointestinal tract is the first organ directly affected by fasting. However, little is known about how fasting influences the intestinal immune system.... |
SourceID | nrf unpaywall pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e16 |
SubjectTerms | Original 면역학 |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZYJwQv4w7hJoOQ4MVdGttJ81gNyobYNIlVGk-Wr13UyJm6dKj79RwnabXC0JAiRUlObvaX4-_E9ncQ-pBbFavc5YSnlhNGtSK54ZLwRomFuSyhYaLw4VG6P2HfTvlpN0A2zIW51n_PoGXaLYJGaZL0YbGDdAttp6EjqYe2J0fHo5-NGGoOVZ026ciSOE9Img55q854wwU2Wp8tP3c3Ecu_x0feW_hzufwly_Ja4zN-gL6uHrsdczLrL2rV11d_KDre_l4P0U7HP_GoBcwjdMf6x-hum5Fy-QRdtbMNcOXwZ-tNkwcB79myxMHD2PoCH3hwaJfW4MLj41bkAaoWj6ayAKaJvwfYAKgxwLvSy7qaBmcKZ7nOEE77cQacn5xAm0DGMvxuxYfgrp6iyfjLyd4-6dIzEE1pnhLHnYbozQy5Uc5oxqxTOrZUqUFiDXhg5yzjVMXagRPLJB9kzhkph9Tkscw5fYZ6vvL2BcIJ7AzSb4mjhg1CCKOYBSpIDdeSMxMhsqo2oTvt8pBCoxQQw4TyFIUXoTwFLFCeEfq4tj9vVTv-afkeUCBmuhBBaDusp5WYzQWEEwcCgsEhuLQIvVuBRMDXF7pUpLfV4kIAvQGnBqyNReh5C5r1DYHJZRToUYSyDTitDcINN4_44qxR-M7jAHO45qc18G55j5f_b_oK3Q9b7fCj16hXzxf2DTCrWr3tPqvfPNQeCA priority: 102 providerName: Unpaywall |
Title | Change of Dendritic Cell Subsets Involved in Protection Against Listeria monocytogenes Infection in Short-Term-Fasted Mice |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35573152 https://www.proquest.com/docview/2665106634 https://pubmed.ncbi.nlm.nih.gov/PMC9066004 https://doi.org/10.4110/in.2022.22.e16 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002838005 |
UnpaywallVersion | publishedVersion |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Immune Network, 2022, 22(2), , pp.1-20 |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2092-6685 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064375 issn: 1598-2629 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2092-6685 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064375 issn: 1598-2629 databaseCode: DIK dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVERR databaseName: KoreaMed Open Access customDbUrl: eissn: 2092-6685 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064375 issn: 1598-2629 databaseCode: 5-W dateStart: 20010101 isFulltext: true titleUrlDefault: https://koreamed.org/journals providerName: Korean Association of Medical Journal Editors – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2092-6685 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064375 issn: 1598-2629 databaseCode: RPM dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2092-6685 dateEnd: 20250831 omitProxy: true ssIdentifier: ssj0064375 issn: 1598-2629 databaseCode: M48 dateStart: 20090201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZ2EYKXiTsZMBmEgBeXNraT5glVg2pDdJrEKo0ny4ntLlrkdL0A5ddzTpJGVBSBFClSYufic_z5O7HzHUJeJTbtpolLmIysZIJnKUuM1ExWSizCxSHHH4VHZ9HJWHy6lJc7ZL2Ut2nA-dbQDvNJjWdF58fN6j10eOCvHQGj17scdUzDsAOb7UWvpzcMk0rh5GuTYWOX7MNAFaLTj0Q7yYBTVrKSU03AWaIwqTUdt1xyY8za9TO3jY7-uary9tJP9eq7LorfhqzhXXLQcE06qJ3jHtmx_j65VWefXD0gP-s_C2jp6AfrTZXzgB7boqCIJnYxp6cewOubNTT39LwWdAAz0sFE58Aq6Wd0EXBgCi9fZqtFOUHghFquKQjVvlxB07ILwH821PhplY4Amh6S8fDjxfEJa1IxsIzzJGJOugwiNdOXJnUmE8K6NOtanqa90BpAW-eskDztZg4AK9ayFztntO5zk3R1IvkjsudLb58QGsJBlHkLHTeih-FKKizQPm5kpqUwAWHrxlZZo1OO6TIKBfEKGkflXqFxFGxgnIC8actPa4WOv5Z8CbZT11muUFQb95NSXc8UhA6nCgK_PsBXQF6sTaugp-H0ifa2XM4VUBkAMGBoIiCPa1O3NwTWFnOgQgGJN5ygLYA33Dzj86tKzTuBSwJSBeRt6y7_eI_D_3jEp-QO1qjXGD0je4vZ0j4H-rRIj6pOcET2x2fng6-_ACAkHDo |
linkProvider | Scholars Portal |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZYJwQv4w7hJoOQ4MVdGttJ81gNyobYNIlVGk-Wr13UyJm6dKj79RwnabXC0JAiRUlObvaX4-_E9ncQ-pBbFavc5YSnlhNGtSK54ZLwRomFuSyhYaLw4VG6P2HfTvlpN0A2zIW51n_PoGXaLYJGaZL0YbGDdAttp6EjqYe2J0fHo5-NGGoOVZ026ciSOE9Img55q854wwU2Wp8tP3c3Ecu_x0feW_hzufwly_Ja4zN-gL6uHrsdczLrL2rV11d_KDre_l4P0U7HP_GoBcwjdMf6x-hum5Fy-QRdtbMNcOXwZ-tNkwcB79myxMHD2PoCH3hwaJfW4MLj41bkAaoWj6ayAKaJvwfYAKgxwLvSy7qaBmcKZ7nOEE77cQacn5xAm0DGMvxuxYfgrp6iyfjLyd4-6dIzEE1pnhLHnYbozQy5Uc5oxqxTOrZUqUFiDXhg5yzjVMXagRPLJB9kzhkph9Tkscw5fYZ6vvL2BcIJ7AzSb4mjhg1CCKOYBSpIDdeSMxMhsqo2oTvt8pBCoxQQw4TyFIUXoTwFLFCeEfq4tj9vVTv-afkeUCBmuhBBaDusp5WYzQWEEwcCgsEhuLQIvVuBRMDXF7pUpLfV4kIAvQGnBqyNReh5C5r1DYHJZRToUYSyDTitDcINN4_44qxR-M7jAHO45qc18G55j5f_b_oK3Q9b7fCj16hXzxf2DTCrWr3tPqvfPNQeCA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Change+of+Dendritic+Cell+Subsets+Involved+in+Protection+Against+Listeria+monocytogenes+Infection+in+Short-Term-Fasted+Mice&rft.jtitle=Immune+network&rft.au=Ju%2C+Young-Jun&rft.au=Lee%2C+Kyung-Min&rft.au=Kim%2C+Girak&rft.au=Kye%2C+Yoon-Chul&rft.date=2022-04-01&rft.issn=1598-2629&rft.volume=22&rft.issue=2&rft.spage=e16&rft_id=info:doi/10.4110%2Fin.2022.22.e16&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-2629&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-2629&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-2629&client=summon |