Numerical solution for a class of space-time fractional equation by the piecewise reproducing kernel method
Due to the non-locality of fractional derivative, the analytical solution and good approximate solution of fractional partial differential equations are usually difficult to get. Reproducing kernel space is a perfect space in studying this type of equations, however the numerical results of equation...
Saved in:
Published in | International journal of computer mathematics Vol. 96; no. 10; pp. 2100 - 2111 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
03.10.2019
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0020-7160 1029-0265 |
DOI | 10.1080/00207160.2018.1544367 |
Cover
Abstract | Due to the non-locality of fractional derivative, the analytical solution and good approximate solution of fractional partial differential equations are usually difficult to get. Reproducing kernel space is a perfect space in studying this type of equations, however the numerical results of equations by using the traditional reproducing kernel method (RKM) isn't very good. Based on this problem, we present the piecewise technique in the reproducing kernel space to solve this type of equations. The focus of this paper is to verify the stability and high accuracy of the present method by comparing the absolute error with traditional RKM and study the effect on absolute error for different values of α. Furthermore, we can study the distribution of entire space at a particular time period. Three numerical experiments are provided to verify the efficiency and stability of the proposed method. Meanwhile, it is tested by experiments that the change of the value of α has little effect on its accuracy. |
---|---|
AbstractList | Due to the non-locality of fractional derivative, the analytical solution and good approximate solution of fractional partial differential equations are usually difficult to get. Reproducing kernel space is a perfect space in studying this type of equations, however the numerical results of equations by using the traditional reproducing kernel method (RKM) isn't very good. Based on this problem, we present the piecewise technique in the reproducing kernel space to solve this type of equations. The focus of this paper is to verify the stability and high accuracy of the present method by comparing the absolute error with traditional RKM and study the effect on absolute error for different values of α. Furthermore, we can study the distribution of entire space at a particular time period. Three numerical experiments are provided to verify the efficiency and stability of the proposed method. Meanwhile, it is tested by experiments that the change of the value of α has little effect on its accuracy. |
Author | Zhang, Hao-lu Wang, Yu-Lan Jia, Li-na |
Author_xml | – sequence: 1 givenname: Yu-Lan surname: Wang fullname: Wang, Yu-Lan email: wylnei@163.com organization: Department of Mathematics, Inner Mongolia University of Technology – sequence: 2 givenname: Li-na surname: Jia fullname: Jia, Li-na organization: Department of Mathematics, Inner Mongolia University of Technology – sequence: 3 givenname: Hao-lu surname: Zhang fullname: Zhang, Hao-lu organization: School of Civil Engineering, Inner Mongolia University of Technology |
BookMark | eNqFkMtKBDEQRYMoOD4-QQi47jGPTtKDG0V8gehG1yGTrmi0uzMmaWT-3rSjGxe6KgrOvVSdPbQ9hAEQOqJkTklDTghhRFFJ5ozQZk5FXXOpttCMEraoCJNiG80mppqgXbSX0ishpFkoOUNv92MP0VvT4RS6MfswYBciNth2JiUcHE4rY6HKvgfsorETUmh4H80XvVzj_AJ45cHCh0-AI6xiaEfrh2f8BnGADveQX0J7gHac6RIcfs999HR1-XhxU909XN9enN9VlvMmV65dygaEFcrJhWW1bWsqjGrVwgmhGueIYtQZoygztOFLITmXNVjJywKc8X10vOktd7yPkLJ-DWMsRyfNmGhkTcv3hTrdUDaGlCI4bX3-eilH4ztNiZ7s6h-7erKrv-2WtPiVXkXfm7j-N3e2yfmhaO7NR4hdq7NZdyEWu4P1SfO_Kz4BpBeTzA |
CitedBy_id | crossref_primary_10_1177_14613484231224611 crossref_primary_10_1177_14613484211063747 crossref_primary_10_3390_fractalfract6030136 crossref_primary_10_3934_math_2022716 crossref_primary_10_1016_j_aml_2024_109242 crossref_primary_10_3934_math_2022569 crossref_primary_10_1155_2020_1794975 crossref_primary_10_3934_math_2024901 crossref_primary_10_1088_1402_4896_adbd8f crossref_primary_10_1007_s40819_021_01061_y crossref_primary_10_1016_j_matcom_2022_05_037 crossref_primary_10_1007_s12190_024_02210_4 crossref_primary_10_32604_cmes_2022_022323 crossref_primary_10_3934_math_2021195 crossref_primary_10_1155_2020_8101843 crossref_primary_10_1142_S0218348X22402290 |
Cites_doi | 10.1108/HFF-07-2016-0278 10.1016/j.apm.2016.12.029 10.1002/num.22209 10.1016/j.cnsns.2010.12.019 10.1016/j.apnum.2017.03.014 10.1016/j.cam.2016.06.029 10.1016/j.cam.2016.08.010 10.1016/j.cam.2014.11.014 10.1002/num.20460 10.1007/s00500-016-2262-3 10.1016/j.cam.2015.10.035 10.1016/j.amc.2011.02.002 10.1016/j.aml.2017.04.011 10.1016/j.aml.2011.10.025 10.1016/j.cam.2017.06.030 10.1016/j.camwa.2010.11.019 10.1016/j.jcp.2011.11.008 10.1016/j.cam.2017.05.025 10.1007/s00500-015-1707-4 10.1007/s11075-016-0201-0 10.1016/j.amc.2016.06.002 10.1016/j.apm.2015.10.011 10.1016/j.apm.2015.01.021 10.1016/j.aml.2015.09.004 10.1007/s00521-015-2110-x 10.1080/00207160.2017.1398325 10.1016/j.cam.2012.11.002 10.1016/j.camwa.2016.11.020 10.1016/j.aml.2015.10.009 10.1016/j.amc.2012.12.009 10.1016/j.cam.2003.09.028 10.1016/j.camwa.2016.11.032 10.1016/j.cam.2014.06.016 10.1016/j.cam.2016.07.030 10.1016/j.cnsns.2014.09.026 10.1016/j.amc.2016.03.006 10.1016/j.camwa.2018.01.020 |
ContentType | Journal Article |
Copyright | 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 2018 Informa UK Limited, trading as Taylor & Francis Group |
Copyright_xml | – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group 2018 – notice: 2018 Informa UK Limited, trading as Taylor & Francis Group |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/00207160.2018.1544367 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1029-0265 |
EndPage | 2111 |
ExternalDocumentID | 10_1080_00207160_2018_1544367 1544367 |
Genre | Review |
GrantInformation_xml | – fundername: Inner Mongolia University of Technology grantid: KC2014001 funderid: 10.13039/501100009408 – fundername: National Natural Science Foundation of China grantid: 11361037 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Inner Mongolia grantid: 2017MS0103 funderid: 10.13039/501100004763 |
GroupedDBID | -~X .4S .7F .DC .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACNCT ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AI. AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EJD EMK EPL EST ESX E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z MK~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TUS TWF UPT UT5 UU3 VH1 WH7 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION 7SC 8FD JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c338t-fdb68e5c57f69c24cd415a7d79f5578ff0721faa712a183b563364ec6383be323 |
ISSN | 0020-7160 |
IngestDate | Wed Aug 13 09:54:50 EDT 2025 Thu Apr 24 22:53:14 EDT 2025 Tue Jul 01 01:04:48 EDT 2025 Wed Dec 25 09:08:46 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-fdb68e5c57f69c24cd415a7d79f5578ff0721faa712a183b563364ec6383be323 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2258641008 |
PQPubID | 52924 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1080_00207160_2018_1544367 crossref_primary_10_1080_00207160_2018_1544367 proquest_journals_2258641008 informaworld_taylorfrancis_310_1080_00207160_2018_1544367 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-03 |
PublicationDateYYYYMMDD | 2019-10-03 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | International journal of computer mathematics |
PublicationYear | 2019 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0010 CIT0032 CIT0031 CIT0034 Wu B.Y. (CIT0039) 2012 CIT0011 CIT0033 Zhao J. (CIT0041) 2013; 2013 Abu Arqub O. (CIT0009) 2017 Podlubny I. (CIT0030) 1999 CIT0014 Dehghan M. (CIT0017) 2010; 26 CIT0036 CIT0013 CIT0035 CIT0016 CIT0038 CIT0015 CIT0037 CIT0018 CIT0019 CIT0040 CIT0021 CIT0020 CIT0001 CIT0023 CIT0022 Al-Smadi M. (CIT0012) 2016; 291 CIT0003 CIT0025 CIT0002 CIT0024 CIT0005 CIT0027 CIT0004 CIT0026 CIT0007 CIT0029 CIT0006 CIT0028 CIT0008 |
References_xml | – ident: CIT0007 doi: 10.1108/HFF-07-2016-0278 – ident: CIT0032 doi: 10.1016/j.apm.2016.12.029 – ident: CIT0008 doi: 10.1002/num.22209 – ident: CIT0022 doi: 10.1016/j.cnsns.2010.12.019 – ident: CIT0023 doi: 10.1016/j.apnum.2017.03.014 – ident: CIT0034 doi: 10.1016/j.cam.2016.06.029 – ident: CIT0027 doi: 10.1016/j.cam.2016.08.010 – ident: CIT0001 doi: 10.1016/j.cam.2014.11.014 – year: 2017 ident: CIT0009 publication-title: J. Porous. Media. – volume: 26 start-page: 448 year: 2010 ident: CIT0017 publication-title: Numer. Meth. Part. D. E. doi: 10.1002/num.20460 – volume: 2013 start-page: 1 year: 2013 ident: CIT0041 publication-title: Abstr. Appl. Anal. – ident: CIT0011 doi: 10.1007/s00500-016-2262-3 – ident: CIT0002 doi: 10.1016/j.cam.2015.10.035 – ident: CIT0038 doi: 10.1016/j.amc.2011.02.002 – ident: CIT0018 doi: 10.1016/j.aml.2017.04.011 – ident: CIT0019 doi: 10.1016/j.aml.2011.10.025 – ident: CIT0033 doi: 10.1016/j.cam.2017.06.030 – ident: CIT0037 doi: 10.1016/j.camwa.2010.11.019 – ident: CIT0014 doi: 10.1016/j.jcp.2011.11.008 – ident: CIT0013 doi: 10.1016/j.cam.2017.05.025 – ident: CIT0010 doi: 10.1007/s00500-015-1707-4 – ident: CIT0004 doi: 10.1007/s11075-016-0201-0 – volume: 291 start-page: 137 year: 2016 ident: CIT0012 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2016.06.002 – ident: CIT0031 doi: 10.1016/j.apm.2015.10.011 – ident: CIT0020 doi: 10.1016/j.apm.2015.01.021 – volume-title: Fractional Differential Equations year: 1999 ident: CIT0030 – ident: CIT0040 doi: 10.1016/j.aml.2015.09.004 – ident: CIT0005 doi: 10.1007/s00521-015-2110-x – ident: CIT0028 doi: 10.1080/00207160.2017.1398325 – ident: CIT0025 doi: 10.1016/j.cam.2012.11.002 – ident: CIT0015 doi: 10.1016/j.camwa.2016.11.020 – ident: CIT0026 doi: 10.1016/j.aml.2015.10.009 – ident: CIT0036 doi: 10.1016/j.amc.2012.12.009 – ident: CIT0029 doi: 10.1016/j.cam.2003.09.028 – ident: CIT0006 doi: 10.1016/j.camwa.2016.11.032 – ident: CIT0024 doi: 10.1016/j.cam.2014.06.016 – ident: CIT0003 doi: 10.1016/j.cam.2016.07.030 – ident: CIT0021 doi: 10.1016/j.cnsns.2014.09.026 – volume-title: Applied Reproducing Kernel Spaces year: 2012 ident: CIT0039 – ident: CIT0035 doi: 10.1016/j.amc.2016.03.006 – ident: CIT0016 doi: 10.1016/j.camwa.2018.01.020 |
SSID | ssj0008976 |
Score | 2.299155 |
SecondaryResourceType | review_article |
Snippet | Due to the non-locality of fractional derivative, the analytical solution and good approximate solution of fractional partial differential equations are... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2100 |
SubjectTerms | approximate solution Caputo fractional derivative Error analysis Exact solutions Kernels Mathematical analysis Partial differential equations Piecewise technique reproducing kernel space space-time fractional equation Stability |
Title | Numerical solution for a class of space-time fractional equation by the piecewise reproducing kernel method |
URI | https://www.tandfonline.com/doi/abs/10.1080/00207160.2018.1544367 https://www.proquest.com/docview/2258641008 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9swECZcZ-nSd9E0ScGhm8FAEimJGoO2gRGkmRwk7SKIFAkYceXEkVC0_6H_OUeRouk6QPpYBEO2RMH38V66-w6h94AJIWiVkCyPOGEi1UTwvAYsx6mCzVXR2jQ4fz7Lpufs5DK9HI1-BVVLXSsO5c97-0r-RapwDuRqumT_QrL-pnACPoN84QgShuMfyfiss-9bFpNhHVsUOZHGJzZ-IOgLqYgZID_RK9vDAL9WN5bgu_c9TavUXEn1fX5rRqhc9xSwJoFwpVaNWrgZ06ETu5lFDLgnpBsRMfnmyWC9y37hEtNfOnK6RuSJrdU9nZPG2wefw55WS7LowrxEXPQVbtQjabY1IiRUwxCzQqBmX8goq3lNHQ4EhGmomu2w2wGC0YaijaLAaCdOZW8ZhKGCMonMeqaUj5tkGqN2CMhvXNvum0doJ8nBFRujnaPpx68X3rTzop9W6J9_aAkzZO33LbHh7GxQ4W6Z_t6fmT1DT1wggo8sqp6jkWpeoKfDkA_sdP5LdOVBhgeQYVgAV7gHGV5qvAYZXoMMDyDD4gcGNGAPMhyADFuQYQuyV-j8-NPsw5S4CR1EUspbomuRcZXKNNdZIRMma_AHq7zOC52CKdDasO_pqsrjpALbIdKM0owpCUqfCkUT-hqNm2Wj3iBMWZFTLpIIIg4milwkNUQaXFFJY4iJ613Ehr-ylI6-3kxRWZSxZ7m1EiiNBEongV106C-7tvwtD11QhHIq2x7H2kK4pA9cuz8ItXSb77YEg8kzZji03v7HrffQ4_Um20fjdtWpA3CHW_HOgfQON0yviw |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DLDwRjwKeGBN1caOnYwIgQq0mUDqZsWOLVWtSimpEPx67uKkoiDUoXNyVuKcv_vs3H1HyDX4hNYsCwMhW3HAdeQCHcscfLkdWVhcGcuxwLmXis4Lf-xH_R-1MJhWiXto54UiSqzGxY2H0XVKHJZwQ2QULczMivFshDMh18lmBHQc0_pYK52jcZyUDebQJECbuornv2EW4tOCeukftC5D0P0uMfXD-8yTYXNW6Kb5-qXruNrb7ZGdiqHSG-9S-2TNjg_Ibt39gVZgcEiG6cz_7RnR2n8pvAbNqEFGTl8dBbQyNsD29dRNfQUF3G3fvLw41Z8U6CedDKyxH4N3S1FhEwVoIZzSoZ2O7Yj6DtdH5OX-7vm2E1StGwIDe94icLkWsY1MJJ1ITMhNDkQhk7lMXAQY4RzKsrksk-0wA1DRkWBMcGsADZi2LGTHZGP8OrYnhDKeSBbrsAVUlOtE6jAHChpbZlgbNkv5KeH1B1Om0jXH9hoj1Z7Ln_oJVTihqprQU9Kcm028sMcyg-SnN6iiPFFxvv2JYktsG7XrqAoj3hUgaSw4iiudrTD0FdnqPPe6qvuQPp2TbbiUlLmGrEE2iunMXgBnKvRluSi-ATlrBpk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgSIgLO6KsPnBNlcaOnRwRULFWHEDiZsWOLVWt2tKmQvD1zMRJxSLEoedkrNgZv3lOZt4QcgY-oTXLokDIMAm4jl2gE5mDL7djC5srYzkWOD90xfUzv32J62zCaZVWiWdo54UiSqzGzT3OXZ0RhxXcEBhFiIlZCX4a4UzIZbIiQpaifD4Lu3MwTtKyvxyaBGhTF_H8Ncy38PRNvPQXWJcRqLNBdP3sPvGk35oVumU-fsg6LjS5TbJe8VN67h1qiyzZ4TbZqHs_0AoKdki_O_P_ega09l4Ks6AZNcjH6chRwCpjA2xeT93E10_A3fbVi4tT_U6BfNJxzxr71ptaivqaKD8LwZT27WRoB9T3t94lz52rp4vroGrcEBg48RaBy7VIbGxi6URqIm5yoAmZzGXqYkAI51CUzWWZbEcZQIqOBWOCWwNYwLRlEdsjjeFoaPcJZTyVLNFRCESU61TqKAcCmlhmWBuOSnmT8Pp9KVOpmmNzjYFqz8VP_YIqXFBVLWiTtOZmYy_r8Z9B-tUZVFF-T3G--Yli_9ge1Z6jKoSYKsDRRHCUVjpYYOhTsvp42VH3N927Q7IGV9Iy0ZAdkUYxmdljIEyFPim3xCcGeAVG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solution+for+a+class+of+space-time+fractional+equation+by+the+piecewise+reproducing+kernel+method&rft.jtitle=International+journal+of+computer+mathematics&rft.au=Wang%2C+Yu-Lan&rft.au=Jia%2C+Li-na&rft.au=Zhang%2C+Hao-lu&rft.date=2019-10-03&rft.pub=Taylor+%26+Francis&rft.issn=0020-7160&rft.eissn=1029-0265&rft.volume=96&rft.issue=10&rft.spage=2100&rft.epage=2111&rft_id=info:doi/10.1080%2F00207160.2018.1544367&rft.externalDocID=1544367 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon |