Krill herd algorithm-based neural network in structural seismic reliability evaluation

In this research work, the relative displacement of the stories has been determined by means of a feedforward Artificial Neural Network (ANN) model, which employs one of the novel methods for the optimization of the artificial neural network weights, namely the krill herd algorithm. For the purpose...

Full description

Saved in:
Bibliographic Details
Published inMechanics of advanced materials and structures Vol. 26; no. 13; pp. 1146 - 1153
Main Authors Asteris, Panagiotis G., Nozhati, Saeed, Nikoo, Mehdi, Cavaleri, Liborio, Nikoo, Mohammad
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 03.07.2019
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1537-6494
1537-6532
DOI10.1080/15376494.2018.1430874

Cover

Abstract In this research work, the relative displacement of the stories has been determined by means of a feedforward Artificial Neural Network (ANN) model, which employs one of the novel methods for the optimization of the artificial neural network weights, namely the krill herd algorithm. For the purpose of this work, the area, elasticity, and load parameters were the input parameters and the relative displacement of the stories was the output parameter. To assess the precision of the feedforward (FF) model optimized using the Krill Herd Optimization (FF-KH) algorithm, comparison of results has been performed relative to the results obtained by the linear regression model, the Genetic Algorithm (GA), and the back propagation neural network model. The comparison of results has been carried out in the training and test phases. It has been revealed that the artificial neural network optimized with the krill herd algorithm supersedes the afore-mentioned models in potential, flexibility, and precision.
AbstractList In this research work, the relative displacement of the stories has been determined by means of a feedforward Artificial Neural Network (ANN) model, which employs one of the novel methods for the optimization of the artificial neural network weights, namely the krill herd algorithm. For the purpose of this work, the area, elasticity, and load parameters were the input parameters and the relative displacement of the stories was the output parameter. To assess the precision of the feedforward (FF) model optimized using the Krill Herd Optimization (FF-KH) algorithm, comparison of results has been performed relative to the results obtained by the linear regression model, the Genetic Algorithm (GA), and the back propagation neural network model. The comparison of results has been carried out in the training and test phases. It has been revealed that the artificial neural network optimized with the krill herd algorithm supersedes the afore-mentioned models in potential, flexibility, and precision.
Author Nikoo, Mohammad
Nozhati, Saeed
Nikoo, Mehdi
Cavaleri, Liborio
Asteris, Panagiotis G.
Author_xml – sequence: 1
  givenname: Panagiotis G.
  orcidid: 0000-0002-7142-4981
  surname: Asteris
  fullname: Asteris, Panagiotis G.
  email: asteris@aspete.gr, panagiotisasteris@gmail.com
  organization: Computational Mechanics Laboratory, School of Pedagogical and Technological Education
– sequence: 2
  givenname: Saeed
  surname: Nozhati
  fullname: Nozhati, Saeed
  organization: Department of Mathematics, Statistics and Computer Science, Marquette University
– sequence: 3
  givenname: Mehdi
  surname: Nikoo
  fullname: Nikoo, Mehdi
  organization: Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University
– sequence: 4
  givenname: Liborio
  surname: Cavaleri
  fullname: Cavaleri, Liborio
  organization: Department of Civil, Environmental, Aerospace and Materials Engineering (DICAM), University of Palermo
– sequence: 5
  givenname: Mohammad
  surname: Nikoo
  fullname: Nikoo, Mohammad
  organization: SAMA Technical and Vocational Training College, Islamic Azad University, Ahvaz Branch
BookMark eNqFkEtPwzAQhC1UJJ4_ASkS5xQ_YicVF1DFSyBxAa7WJnaowY3L2gH135PS9sIBTrsazcyuvgMy6kJnCTlhdMxoRc-YFKUqJsWYU1aNWSFoVRY7ZH-l50oKPtrug2mPHMT4RilnkrN98nKPzvtsZtFk4F8DujSb5zVEa7LO9gh-GOkr4Hvmuiwm7Jv0o0br4tw1GVrvoHbepWVmP8H3kFzojshuCz7a4808JM_XV0_T2_zh8eZuevmQN0JUKW-pAGukEqxmgk9qVtcVKGVkKU1jFfCCGcHKCTMclAFRKFWXvOFVLQqqRCsOyem6d4Hho7cx6bfQYzec1JwXclKVpeSD63ztajDEiLbVjUs_fyYE5zWjegVSb0HqFUi9ATmk5a_0At0ccPlv7mKdc10bcA4DRG90gqUP2CJ0jYta_F3xDWhYjMs
CitedBy_id crossref_primary_10_1016_j_prostr_2019_08_122
crossref_primary_10_1016_j_prostr_2019_08_123
crossref_primary_10_1109_ACCESS_2023_3308048
crossref_primary_10_3390_app9183715
crossref_primary_10_1016_j_engstruct_2024_117534
crossref_primary_10_3390_app10051871
crossref_primary_10_3390_app8030405
crossref_primary_10_1080_15376494_2021_1968083
crossref_primary_10_1007_s00521_018_03965_1
crossref_primary_10_1007_s40891_023_00495_2
crossref_primary_10_3390_su12062229
crossref_primary_10_1007_s00366_019_00849_3
crossref_primary_10_3390_app10134580
crossref_primary_10_1016_j_heliyon_2023_e22502
crossref_primary_10_1007_s00521_020_04822_w
crossref_primary_10_2174_1874836802014010268
crossref_primary_10_1016_j_catena_2020_104802
crossref_primary_10_3390_geosciences13060156
crossref_primary_10_1007_s00521_020_05244_4
crossref_primary_10_1007_s00521_021_06217_x
crossref_primary_10_1007_s40098_024_00933_6
crossref_primary_10_3390_app9183841
crossref_primary_10_1007_s00500_022_07141_5
crossref_primary_10_3390_app9153172
crossref_primary_10_1007_s00366_019_00895_x
crossref_primary_10_1007_s42417_024_01749_7
crossref_primary_10_3390_app9214650
crossref_primary_10_1007_s11053_019_09573_7
crossref_primary_10_1007_s00366_019_00875_1
crossref_primary_10_3390_app10020434
crossref_primary_10_1016_j_engstruct_2023_117276
crossref_primary_10_1007_s00521_020_05214_w
crossref_primary_10_1007_s00366_019_00932_9
crossref_primary_10_1177_87552930211042393
crossref_primary_10_1007_s00366_020_00937_9
crossref_primary_10_3390_math9151743
crossref_primary_10_1016_j_engstruct_2021_113276
crossref_primary_10_1016_j_cscm_2022_e01617
crossref_primary_10_3390_su13042062
crossref_primary_10_1007_s00366_020_01136_2
crossref_primary_10_1007_s40098_023_00780_x
crossref_primary_10_1016_j_buildenv_2023_110252
crossref_primary_10_1080_13467581_2022_2097238
crossref_primary_10_3390_su151511554
crossref_primary_10_1007_s00366_021_01288_9
crossref_primary_10_1007_s00366_019_00816_y
crossref_primary_10_3390_app8050841
crossref_primary_10_1007_s11069_020_04180_9
crossref_primary_10_1007_s41062_024_01808_8
crossref_primary_10_3390_math9182335
crossref_primary_10_1016_j_engstruct_2024_119460
crossref_primary_10_3390_app9020243
crossref_primary_10_3390_app9061042
crossref_primary_10_1016_j_istruc_2023_05_052
crossref_primary_10_2174_1874836802014010237
crossref_primary_10_1080_19648189_2022_2102081
crossref_primary_10_1371_journal_pone_0243030
crossref_primary_10_1007_s00366_020_01003_0
crossref_primary_10_1016_j_istruc_2023_105712
crossref_primary_10_1002_adts_201800131
crossref_primary_10_1007_s41939_024_00527_y
crossref_primary_10_3390_app10030869
crossref_primary_10_1061__ASCE_GM_1943_5622_0002234
crossref_primary_10_1016_j_cscm_2022_e01238
crossref_primary_10_1080_15397734_2020_1853564
crossref_primary_10_1080_15376494_2023_2253548
crossref_primary_10_1007_s00366_020_01267_6
crossref_primary_10_3390_math12111701
crossref_primary_10_3390_su12104023
crossref_primary_10_1016_j_heliyon_2024_e25997
crossref_primary_10_1080_15376494_2024_2352800
crossref_primary_10_1016_j_pce_2023_103503
crossref_primary_10_1016_j_soildyn_2023_108217
crossref_primary_10_1016_j_istruc_2023_105724
crossref_primary_10_1617_s11527_021_01646_5
crossref_primary_10_1080_23080477_2024_2408927
crossref_primary_10_1007_s13369_020_05041_0
crossref_primary_10_3390_buildings11060229
crossref_primary_10_3390_su14095274
crossref_primary_10_3390_app9245372
crossref_primary_10_1061_JSENDH_STENG_12633
crossref_primary_10_3390_app9142806
crossref_primary_10_1007_s00521_019_04663_2
crossref_primary_10_3390_app10020472
crossref_primary_10_1080_15376494_2019_1710308
crossref_primary_10_1109_ACCESS_2021_3089205
crossref_primary_10_1007_s12040_024_02341_z
crossref_primary_10_1016_j_istruc_2023_05_117
crossref_primary_10_1007_s00366_019_00919_6
crossref_primary_10_3390_su12072622
crossref_primary_10_1016_j_jcsr_2020_106443
crossref_primary_10_1109_ACCESS_2020_2987689
crossref_primary_10_1016_j_arcontrol_2022_09_002
crossref_primary_10_1016_j_istruc_2023_05_122
crossref_primary_10_1016_j_tws_2020_106744
crossref_primary_10_2174_1874836802014010041
crossref_primary_10_2516_stet_2024014
crossref_primary_10_3390_app9204313
crossref_primary_10_1016_j_acme_2018_07_004
crossref_primary_10_1016_j_heliyon_2024_e30677
crossref_primary_10_3390_app9142824
crossref_primary_10_1007_s00500_022_07685_6
crossref_primary_10_1007_s00366_019_00908_9
crossref_primary_10_1016_j_engstruct_2023_115600
crossref_primary_10_3390_app9142788
crossref_primary_10_3390_su11247118
crossref_primary_10_3390_app9132630
crossref_primary_10_3390_app9081621
Cites_doi 10.1080/19648189.2016.1246693
10.1155/2017/3508189
10.1016/S0045-7949(01)00039-6
10.1016/j.conbuildmat.2014.01.041
10.1016/j.jobe.2017.04.001
10.1007/s00521-017-3007-7
10.3390/coatings7040049
10.1016/S0141-0296(96)00149-6
10.1016/j.neucom.2014.01.023
10.1111/0885-9507.00219
10.3390/s17061344
10.1007/s11709-016-0363-9
10.1007/s00500-014-1258-0
10.3390/ma9050396
10.1504/IJBIC.2015.10004283
10.1016/j.asoc.2016.08.041
10.1007/s00521-016-2181-3
10.1016/S1644-9665(12)60053-3
10.1016/j.cnsns.2012.05.010
10.1016/j.asoc.2017.06.059
10.1504/IJBIC.2016.081335
10.1007/s00521-015-2135-1
10.1504/IJBIC.2013.057191
10.1029/GL006i009p00689
10.3390/coatings7100160
10.1108/K-11-2012-0108
10.1088/0964-1726/13/4/029
10.1007/s00521-014-1645-6
10.1016/j.compositesb.2014.11.023
10.1007/s11069-016-2176-5
10.1016/j.measurement.2014.09.075
10.1016/j.ins.2014.02.123
10.1006/jsvi.2001.3991
ContentType Journal Article
Copyright 2018 Taylor & Francis Group, LLC 2018
2018 Taylor & Francis Group, LLC
Copyright_xml – notice: 2018 Taylor & Francis Group, LLC 2018
– notice: 2018 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1080/15376494.2018.1430874
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1537-6532
EndPage 1153
ExternalDocumentID 10_1080_15376494_2018_1430874
1430874
Genre Article
GroupedDBID .7F
.QJ
0BK
0R~
29M
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADMLS
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EJD
EMK
EPL
EST
ESX
E~A
E~B
GEVLZ
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
MK~
NA5
NX~
O9-
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SR
7TB
8BQ
8FD
ADYSH
FR3
JG9
KR7
ID FETCH-LOGICAL-c338t-f03aed5631b1329b1bb8a66d575dce6a241d31791d2a6da3466b72c28b34063f3
ISSN 1537-6494
IngestDate Sun Jul 13 04:13:59 EDT 2025
Wed Oct 01 01:25:54 EDT 2025
Thu Apr 24 22:52:45 EDT 2025
Mon Oct 20 23:49:02 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-f03aed5631b1329b1bb8a66d575dce6a241d31791d2a6da3466b72c28b34063f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7142-4981
PQID 2245987752
PQPubID 2045238
PageCount 8
ParticipantIDs crossref_primary_10_1080_15376494_2018_1430874
informaworld_taylorfrancis_310_1080_15376494_2018_1430874
proquest_journals_2245987752
crossref_citationtrail_10_1080_15376494_2018_1430874
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-03
PublicationDateYYYYMMDD 2019-07-03
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-03
  day: 03
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Mechanics of advanced materials and structures
PublicationYear 2019
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0033
cit0012
cit0031
cit0010
cit0032
cit0030
Minitab 17 Statistical Software (cit0041) 2010
Friswell M. I. (cit0011) 1992; 1992
Nikoo M. (cit0038) 2012; 16
cit0019
cit0017
cit0018
cit0015
cit0037
Mansouri I. (cit0006) 2016
cit0016
cit0013
cit0035
cit0014
cit0022
cit0001
cit0023
cit0020
cit0021
Mazzoni S. (cit0036) 2006
Wang G.-G. (cit0034) 2017
Nikoo M. (cit0039) 2012; 2
Haldar A. (cit0040) 2000
cit0008
cit0009
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0027
cit0002
cit0024
cit0003
cit0025
References_xml – ident: cit0002
  doi: 10.1080/19648189.2016.1246693
– volume-title: Probability, Reliability and Statistical Method in Engineering Design
  year: 2000
  ident: cit0040
– ident: cit0018
  doi: 10.1155/2017/3508189
– volume: 16
  start-page: 1699
  issue: 12
  year: 2012
  ident: cit0038
  publication-title: World Appl. Sci. J.
– ident: cit0008
  doi: 10.1016/S0045-7949(01)00039-6
– ident: cit0007
  doi: 10.1016/j.conbuildmat.2014.01.041
– ident: cit0024
  doi: 10.1016/j.jobe.2017.04.001
– ident: cit0004
  doi: 10.1007/s00521-017-3007-7
– ident: cit0020
  doi: 10.3390/coatings7040049
– ident: cit0013
  doi: 10.1016/S0141-0296(96)00149-6
– ident: cit0028
  doi: 10.1016/j.neucom.2014.01.023
– ident: cit0001
  doi: 10.1111/0885-9507.00219
– ident: cit0010
  doi: 10.3390/s17061344
– ident: cit0016
  doi: 10.1007/s11709-016-0363-9
– ident: cit0023
  doi: 10.1007/s00500-014-1258-0
– ident: cit0009
  doi: 10.3390/ma9050396
– volume: 1992
  start-page: 516
  year: 1992
  ident: cit0011
  publication-title: Proc. Int. Modal Anal. Conf.
– ident: cit0031
  doi: 10.1504/IJBIC.2015.10004283
– volume: 2
  start-page: 6605
  issue: 7
  year: 2012
  ident: cit0039
  publication-title: J. Basic Appl. Sci. Res.
– ident: cit0026
  doi: 10.1016/j.asoc.2016.08.041
– ident: cit0003
  doi: 10.1007/s00521-016-2181-3
– ident: cit0015
  doi: 10.1016/S1644-9665(12)60053-3
– ident: cit0027
  doi: 10.1016/j.cnsns.2012.05.010
– ident: cit0033
  doi: 10.1016/j.asoc.2017.06.059
– ident: cit0032
  doi: 10.1504/IJBIC.2016.081335
– year: 2006
  ident: cit0036
  publication-title: Pac. Earthq. Eng. Res. Cent.
– ident: cit0035
  doi: 10.1007/s00521-015-2135-1
– start-page: 1
  year: 2016
  ident: cit0006
  publication-title: Neural Comput. Appl.
– ident: cit0025
  doi: 10.1504/IJBIC.2013.057191
– ident: cit0037
  doi: 10.1029/GL006i009p00689
– volume-title: [Computer software]. State College
  year: 2010
  ident: cit0041
– ident: cit0019
  doi: 10.3390/coatings7100160
– ident: cit0029
  doi: 10.1108/K-11-2012-0108
– ident: cit0014
  doi: 10.1088/0964-1726/13/4/029
– start-page: 1
  year: 2017
  ident: cit0034
  publication-title: Artif. Intell. Rev.
– ident: cit0021
  doi: 10.1007/s00521-014-1645-6
– ident: cit0005
  doi: 10.1016/j.compositesb.2014.11.023
– ident: cit0022
  doi: 10.1007/s11069-016-2176-5
– ident: cit0017
  doi: 10.1016/j.measurement.2014.09.075
– ident: cit0030
  doi: 10.1016/j.ins.2014.02.123
– ident: cit0012
  doi: 10.1006/jsvi.2001.3991
SSID ssj0021521
Score 2.5228353
Snippet In this research work, the relative displacement of the stories has been determined by means of a feedforward Artificial Neural Network (ANN) model, which...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1146
SubjectTerms Algorithms
Artificial intelligence techniques
artificial krill herd algorithm
Artificial neural networks
Back propagation
Back propagation networks
Elasticity
Genetic algorithms
Krill
krill herd
Network reliability
Neural networks
Optimization
Parameters
Regression models
Reliability analysis
Reliability engineering
seismic reliability assessment of structures
Structural reliability
Title Krill herd algorithm-based neural network in structural seismic reliability evaluation
URI https://www.tandfonline.com/doi/abs/10.1080/15376494.2018.1430874
https://www.proquest.com/docview/2245987752
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1537-6532
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0021521
  issn: 1537-6494
  databaseCode: ABDBF
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1537-6532
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0021521
  issn: 1537-6494
  databaseCode: ADMLS
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-6532
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021521
  issn: 1537-6494
  databaseCode: AHDZW
  dateStart: 20020101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-6532
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021521
  issn: 1537-6494
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4ED4qcYG8gHdppSkjhxkmPFVlWoLQdaqLhE_pU1omvGWg7sr-JP5Dl2GpdODLhElSs7id8X-7P93vcQehNGQhQZU54MeOJFSnCPceXDYEgVTPAspkLvQ44ndDiL3s_jeafz0_Fa-r7hPXFza1zJ_1gVysCuOkr2Hyy7bRQK4DfYF65gYbj-lY3hC13qUMZrecqWFxWs8xeXnp6X5KnWqYTeXxkvb72rYZRi69K1KteXtXbzsjQ63T8c2W-Xr46VjgzWSs6uvwCwXPN69dFD03Drjdhf1wrQhqHqPEjVply3Wbwm1c2CGTeCj0zZ6Kr6bORrVe_cjtVClu3pCDyZDYgflTqTV-VuVdTRUZ5PtuCa7mUNcVyXzOCbeDQySY97yimLyc6IbWLsG2QSZ_wN7Ibm3sRgPCl1a_oG2qUvhUlCyyFG7UzYnP5PPuSD2WiUT8_n0xMyuPrm6Sxl-jT_hJwZGN1DByHMI34XHfSHZ18-bxf5mg8ZjV7zLk3UWOq_vfXuO3xoRy13jx3UlGf6CD20axXcN8B7jDpq9QQ9cBQsn6JPNQSxhiD-DYLYQBBbCOJyhVsIYgtB7EAQtxB8hmaD8-m7oWdTdXiCkHTjFT5hSsaUBDwgYcYDzlNGqYTFgBSKMuCJkmglXBkyKhmJKOVJKMKUE2CUpCDPUXdVrdQLhLO0EHGQiCwKZRSnKmUx81laMKAIgkfBIYqaDsuF1bHX6VSWeWDlbpt-znU_57afD1FvW-3KCLncVSFzrZFvavQWBrg5uaPucWO63I4X6xzIcpylSRKHL__89xG63349x6gLtlGvgPpu-GuLtl9rx69v
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEIAtKAMw8EaUpwfWlCZ-JBkRApVXJ0Bsll-BiDQgGgb49fjiBAoIMbAmOivx2Xfn0_k7hPYjqnWWShuYUMUBtVoFUtm-M4bcOgcvGdeQh7wc8sE1PbtltxN3YaCsEs7QmQdF1LYaNjcko9uSuIMQGCQ0hZRImLi9DlQ7Oo1mmAv2oYsB6Q8_Dl3gnzwzNQ5Apr3F89swX_zTF3rpD2tdu6CTRaTbj_eVJw-9l0r19Ns3ruP__m4JLTQRKj70S2oZTdlyBc1PcAtX0Y0zDUWBnboNlsXd43Ne3Y8CcIgGAyDTiZe-vBznJfaI2vrp2ObjUa7xsy1yDwh_xZ-88TV0fXJ8dTQImgYNgXYn2yrI-kRawzgJFfSrV6FSieTcuBDQaMuliw4MAf6piSQ3klDOVRzpKFHExREkI-uoUz6WdgPhNMk0C2Od0shQlthEMtmXSSadY9CKhl1EW7UI3dDLoYlGIcIGctpOm4BpE820dVHvQ-zJ4zv-EkgndS6qOm-S-SYngvwhu90uENFYgrFwIRJLkzhm0eY_ht5Ds4OrywtxcTo830Jz7lVa1wyTbdRxSrQ7LjKq1G699N8BpX0AaQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEIAtKBKCgTeiUMADa0oTO04yIqAqr4qBIjbLr0BEmlZtGODXY8dJaUGoQ9dEZyU---5sn78D4MzDQsQRU450eeBgJbjDuGppY0iUdvDMJ8LsQz50SaeHb1_8KptwXKZVmjV0bEERha02k3so4yoj7tw1CBIcmR0RN9RT3UDt8DJYIeZUzNziaHUnay7jniwyNXCMTHWJ579mZtzTDLz0j7EuPFB7E_Dq223iyXvzI-dN8fUL67jQz22BjTI-hRd2QG2DJZXtgPUpauEueNaGIU2hVraELH0djJL8re8YdyihwWNq8cwml8MkgxZQWzwdq2TcTwQcqTSxePBP-EMb3wO99vXTZccpyzM4Qq9rcyduIaakT5DLTbV67nIeMkKkDgClUITp2EAiQz-VHiOSIUwIDzzhhRzpKALFaB_UskGmDgCMwlj4biAi7EnshypkPmuxMGbaLQiO3TrAlVaoKNnlpoRGSt0ScVp1GzXdRstuq4PmRGxo4R3zBKJpldO82DWJbYkTiubINqrxQUs7MKY6QPKjMAh873CBpk_B6uNVm97fdO-OwJp-ExUJw6gBalqH6liHRTk_KQb-N3Tc_v4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Krill+herd+algorithm-based+neural+network+in+structural+seismic+reliability+evaluation&rft.jtitle=Mechanics+of+advanced+materials+and+structures&rft.au=Asteris%2C+Panagiotis+G&rft.au=Nozhati%2C+Saeed&rft.au=Nikoo%2C+Mehdi&rft.au=Cavaleri%2C+Liborio&rft.date=2019-07-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1537-6494&rft.eissn=1537-6532&rft.volume=26&rft.issue=13&rft.spage=1146&rft_id=info:doi/10.1080%2F15376494.2018.1430874&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-6494&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-6494&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-6494&client=summon