Krill herd algorithm-based neural network in structural seismic reliability evaluation
In this research work, the relative displacement of the stories has been determined by means of a feedforward Artificial Neural Network (ANN) model, which employs one of the novel methods for the optimization of the artificial neural network weights, namely the krill herd algorithm. For the purpose...
        Saved in:
      
    
          | Published in | Mechanics of advanced materials and structures Vol. 26; no. 13; pp. 1146 - 1153 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Abingdon
          Taylor & Francis
    
        03.07.2019
     Taylor & Francis Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1537-6494 1537-6532  | 
| DOI | 10.1080/15376494.2018.1430874 | 
Cover
| Abstract | In this research work, the relative displacement of the stories has been determined by means of a feedforward Artificial Neural Network (ANN) model, which employs one of the novel methods for the optimization of the artificial neural network weights, namely the krill herd algorithm. For the purpose of this work, the area, elasticity, and load parameters were the input parameters and the relative displacement of the stories was the output parameter. To assess the precision of the feedforward (FF) model optimized using the Krill Herd Optimization (FF-KH) algorithm, comparison of results has been performed relative to the results obtained by the linear regression model, the Genetic Algorithm (GA), and the back propagation neural network model. The comparison of results has been carried out in the training and test phases. It has been revealed that the artificial neural network optimized with the krill herd algorithm supersedes the afore-mentioned models in potential, flexibility, and precision. | 
    
|---|---|
| AbstractList | In this research work, the relative displacement of the stories has been determined by means of a feedforward Artificial Neural Network (ANN) model, which employs one of the novel methods for the optimization of the artificial neural network weights, namely the krill herd algorithm. For the purpose of this work, the area, elasticity, and load parameters were the input parameters and the relative displacement of the stories was the output parameter. To assess the precision of the feedforward (FF) model optimized using the Krill Herd Optimization (FF-KH) algorithm, comparison of results has been performed relative to the results obtained by the linear regression model, the Genetic Algorithm (GA), and the back propagation neural network model. The comparison of results has been carried out in the training and test phases. It has been revealed that the artificial neural network optimized with the krill herd algorithm supersedes the afore-mentioned models in potential, flexibility, and precision. | 
    
| Author | Nikoo, Mohammad Nozhati, Saeed Nikoo, Mehdi Cavaleri, Liborio Asteris, Panagiotis G.  | 
    
| Author_xml | – sequence: 1 givenname: Panagiotis G. orcidid: 0000-0002-7142-4981 surname: Asteris fullname: Asteris, Panagiotis G. email: asteris@aspete.gr, panagiotisasteris@gmail.com organization: Computational Mechanics Laboratory, School of Pedagogical and Technological Education – sequence: 2 givenname: Saeed surname: Nozhati fullname: Nozhati, Saeed organization: Department of Mathematics, Statistics and Computer Science, Marquette University – sequence: 3 givenname: Mehdi surname: Nikoo fullname: Nikoo, Mehdi organization: Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University – sequence: 4 givenname: Liborio surname: Cavaleri fullname: Cavaleri, Liborio organization: Department of Civil, Environmental, Aerospace and Materials Engineering (DICAM), University of Palermo – sequence: 5 givenname: Mohammad surname: Nikoo fullname: Nikoo, Mohammad organization: SAMA Technical and Vocational Training College, Islamic Azad University, Ahvaz Branch  | 
    
| BookMark | eNqFkEtPwzAQhC1UJJ4_ASkS5xQ_YicVF1DFSyBxAa7WJnaowY3L2gH135PS9sIBTrsazcyuvgMy6kJnCTlhdMxoRc-YFKUqJsWYU1aNWSFoVRY7ZH-l50oKPtrug2mPHMT4RilnkrN98nKPzvtsZtFk4F8DujSb5zVEa7LO9gh-GOkr4Hvmuiwm7Jv0o0br4tw1GVrvoHbepWVmP8H3kFzojshuCz7a4808JM_XV0_T2_zh8eZuevmQN0JUKW-pAGukEqxmgk9qVtcVKGVkKU1jFfCCGcHKCTMclAFRKFWXvOFVLQqqRCsOyem6d4Hho7cx6bfQYzec1JwXclKVpeSD63ztajDEiLbVjUs_fyYE5zWjegVSb0HqFUi9ATmk5a_0At0ccPlv7mKdc10bcA4DRG90gqUP2CJ0jYta_F3xDWhYjMs | 
    
| CitedBy_id | crossref_primary_10_1016_j_prostr_2019_08_122 crossref_primary_10_1016_j_prostr_2019_08_123 crossref_primary_10_1109_ACCESS_2023_3308048 crossref_primary_10_3390_app9183715 crossref_primary_10_1016_j_engstruct_2024_117534 crossref_primary_10_3390_app10051871 crossref_primary_10_3390_app8030405 crossref_primary_10_1080_15376494_2021_1968083 crossref_primary_10_1007_s00521_018_03965_1 crossref_primary_10_1007_s40891_023_00495_2 crossref_primary_10_3390_su12062229 crossref_primary_10_1007_s00366_019_00849_3 crossref_primary_10_3390_app10134580 crossref_primary_10_1016_j_heliyon_2023_e22502 crossref_primary_10_1007_s00521_020_04822_w crossref_primary_10_2174_1874836802014010268 crossref_primary_10_1016_j_catena_2020_104802 crossref_primary_10_3390_geosciences13060156 crossref_primary_10_1007_s00521_020_05244_4 crossref_primary_10_1007_s00521_021_06217_x crossref_primary_10_1007_s40098_024_00933_6 crossref_primary_10_3390_app9183841 crossref_primary_10_1007_s00500_022_07141_5 crossref_primary_10_3390_app9153172 crossref_primary_10_1007_s00366_019_00895_x crossref_primary_10_1007_s42417_024_01749_7 crossref_primary_10_3390_app9214650 crossref_primary_10_1007_s11053_019_09573_7 crossref_primary_10_1007_s00366_019_00875_1 crossref_primary_10_3390_app10020434 crossref_primary_10_1016_j_engstruct_2023_117276 crossref_primary_10_1007_s00521_020_05214_w crossref_primary_10_1007_s00366_019_00932_9 crossref_primary_10_1177_87552930211042393 crossref_primary_10_1007_s00366_020_00937_9 crossref_primary_10_3390_math9151743 crossref_primary_10_1016_j_engstruct_2021_113276 crossref_primary_10_1016_j_cscm_2022_e01617 crossref_primary_10_3390_su13042062 crossref_primary_10_1007_s00366_020_01136_2 crossref_primary_10_1007_s40098_023_00780_x crossref_primary_10_1016_j_buildenv_2023_110252 crossref_primary_10_1080_13467581_2022_2097238 crossref_primary_10_3390_su151511554 crossref_primary_10_1007_s00366_021_01288_9 crossref_primary_10_1007_s00366_019_00816_y crossref_primary_10_3390_app8050841 crossref_primary_10_1007_s11069_020_04180_9 crossref_primary_10_1007_s41062_024_01808_8 crossref_primary_10_3390_math9182335 crossref_primary_10_1016_j_engstruct_2024_119460 crossref_primary_10_3390_app9020243 crossref_primary_10_3390_app9061042 crossref_primary_10_1016_j_istruc_2023_05_052 crossref_primary_10_2174_1874836802014010237 crossref_primary_10_1080_19648189_2022_2102081 crossref_primary_10_1371_journal_pone_0243030 crossref_primary_10_1007_s00366_020_01003_0 crossref_primary_10_1016_j_istruc_2023_105712 crossref_primary_10_1002_adts_201800131 crossref_primary_10_1007_s41939_024_00527_y crossref_primary_10_3390_app10030869 crossref_primary_10_1061__ASCE_GM_1943_5622_0002234 crossref_primary_10_1016_j_cscm_2022_e01238 crossref_primary_10_1080_15397734_2020_1853564 crossref_primary_10_1080_15376494_2023_2253548 crossref_primary_10_1007_s00366_020_01267_6 crossref_primary_10_3390_math12111701 crossref_primary_10_3390_su12104023 crossref_primary_10_1016_j_heliyon_2024_e25997 crossref_primary_10_1080_15376494_2024_2352800 crossref_primary_10_1016_j_pce_2023_103503 crossref_primary_10_1016_j_soildyn_2023_108217 crossref_primary_10_1016_j_istruc_2023_105724 crossref_primary_10_1617_s11527_021_01646_5 crossref_primary_10_1080_23080477_2024_2408927 crossref_primary_10_1007_s13369_020_05041_0 crossref_primary_10_3390_buildings11060229 crossref_primary_10_3390_su14095274 crossref_primary_10_3390_app9245372 crossref_primary_10_1061_JSENDH_STENG_12633 crossref_primary_10_3390_app9142806 crossref_primary_10_1007_s00521_019_04663_2 crossref_primary_10_3390_app10020472 crossref_primary_10_1080_15376494_2019_1710308 crossref_primary_10_1109_ACCESS_2021_3089205 crossref_primary_10_1007_s12040_024_02341_z crossref_primary_10_1016_j_istruc_2023_05_117 crossref_primary_10_1007_s00366_019_00919_6 crossref_primary_10_3390_su12072622 crossref_primary_10_1016_j_jcsr_2020_106443 crossref_primary_10_1109_ACCESS_2020_2987689 crossref_primary_10_1016_j_arcontrol_2022_09_002 crossref_primary_10_1016_j_istruc_2023_05_122 crossref_primary_10_1016_j_tws_2020_106744 crossref_primary_10_2174_1874836802014010041 crossref_primary_10_2516_stet_2024014 crossref_primary_10_3390_app9204313 crossref_primary_10_1016_j_acme_2018_07_004 crossref_primary_10_1016_j_heliyon_2024_e30677 crossref_primary_10_3390_app9142824 crossref_primary_10_1007_s00500_022_07685_6 crossref_primary_10_1007_s00366_019_00908_9 crossref_primary_10_1016_j_engstruct_2023_115600 crossref_primary_10_3390_app9142788 crossref_primary_10_3390_su11247118 crossref_primary_10_3390_app9132630 crossref_primary_10_3390_app9081621  | 
    
| Cites_doi | 10.1080/19648189.2016.1246693 10.1155/2017/3508189 10.1016/S0045-7949(01)00039-6 10.1016/j.conbuildmat.2014.01.041 10.1016/j.jobe.2017.04.001 10.1007/s00521-017-3007-7 10.3390/coatings7040049 10.1016/S0141-0296(96)00149-6 10.1016/j.neucom.2014.01.023 10.1111/0885-9507.00219 10.3390/s17061344 10.1007/s11709-016-0363-9 10.1007/s00500-014-1258-0 10.3390/ma9050396 10.1504/IJBIC.2015.10004283 10.1016/j.asoc.2016.08.041 10.1007/s00521-016-2181-3 10.1016/S1644-9665(12)60053-3 10.1016/j.cnsns.2012.05.010 10.1016/j.asoc.2017.06.059 10.1504/IJBIC.2016.081335 10.1007/s00521-015-2135-1 10.1504/IJBIC.2013.057191 10.1029/GL006i009p00689 10.3390/coatings7100160 10.1108/K-11-2012-0108 10.1088/0964-1726/13/4/029 10.1007/s00521-014-1645-6 10.1016/j.compositesb.2014.11.023 10.1007/s11069-016-2176-5 10.1016/j.measurement.2014.09.075 10.1016/j.ins.2014.02.123 10.1006/jsvi.2001.3991  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 Taylor & Francis Group, LLC 2018 2018 Taylor & Francis Group, LLC  | 
    
| Copyright_xml | – notice: 2018 Taylor & Francis Group, LLC 2018 – notice: 2018 Taylor & Francis Group, LLC  | 
    
| DBID | AAYXX CITATION 7SR 7TB 8BQ 8FD FR3 JG9 KR7  | 
    
| DOI | 10.1080/15376494.2018.1430874 | 
    
| DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts  | 
    
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX  | 
    
| DatabaseTitleList | Materials Research Database | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1537-6532 | 
    
| EndPage | 1153 | 
    
| ExternalDocumentID | 10_1080_15376494_2018_1430874 1430874  | 
    
| Genre | Article | 
    
| GroupedDBID | .7F .QJ 0BK 0R~ 29M 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACUHS ADCVX ADGTB ADMLS ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EJD EMK EPL EST ESX E~A E~B GEVLZ GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z MK~ NA5 NX~ O9- RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SR 7TB 8BQ 8FD ADYSH FR3 JG9 KR7  | 
    
| ID | FETCH-LOGICAL-c338t-f03aed5631b1329b1bb8a66d575dce6a241d31791d2a6da3466b72c28b34063f3 | 
    
| ISSN | 1537-6494 | 
    
| IngestDate | Sun Jul 13 04:13:59 EDT 2025 Wed Oct 01 01:25:54 EDT 2025 Thu Apr 24 22:52:45 EDT 2025 Mon Oct 20 23:49:02 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 13 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c338t-f03aed5631b1329b1bb8a66d575dce6a241d31791d2a6da3466b72c28b34063f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-7142-4981 | 
    
| PQID | 2245987752 | 
    
| PQPubID | 2045238 | 
    
| PageCount | 8 | 
    
| ParticipantIDs | crossref_primary_10_1080_15376494_2018_1430874 informaworld_taylorfrancis_310_1080_15376494_2018_1430874 proquest_journals_2245987752 crossref_citationtrail_10_1080_15376494_2018_1430874  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-07-03 | 
    
| PublicationDateYYYYMMDD | 2019-07-03 | 
    
| PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-03 day: 03  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Abingdon | 
    
| PublicationPlace_xml | – name: Abingdon | 
    
| PublicationTitle | Mechanics of advanced materials and structures | 
    
| PublicationYear | 2019 | 
    
| Publisher | Taylor & Francis Taylor & Francis Ltd  | 
    
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd  | 
    
| References | cit0033 cit0012 cit0031 cit0010 cit0032 cit0030 Minitab 17 Statistical Software (cit0041) 2010 Friswell M. I. (cit0011) 1992; 1992 Nikoo M. (cit0038) 2012; 16 cit0019 cit0017 cit0018 cit0015 cit0037 Mansouri I. (cit0006) 2016 cit0016 cit0013 cit0035 cit0014 cit0022 cit0001 cit0023 cit0020 cit0021 Mazzoni S. (cit0036) 2006 Wang G.-G. (cit0034) 2017 Nikoo M. (cit0039) 2012; 2 Haldar A. (cit0040) 2000 cit0008 cit0009 cit0028 cit0007 cit0029 cit0004 cit0026 cit0005 cit0027 cit0002 cit0024 cit0003 cit0025  | 
    
| References_xml | – ident: cit0002 doi: 10.1080/19648189.2016.1246693 – volume-title: Probability, Reliability and Statistical Method in Engineering Design year: 2000 ident: cit0040 – ident: cit0018 doi: 10.1155/2017/3508189 – volume: 16 start-page: 1699 issue: 12 year: 2012 ident: cit0038 publication-title: World Appl. Sci. J. – ident: cit0008 doi: 10.1016/S0045-7949(01)00039-6 – ident: cit0007 doi: 10.1016/j.conbuildmat.2014.01.041 – ident: cit0024 doi: 10.1016/j.jobe.2017.04.001 – ident: cit0004 doi: 10.1007/s00521-017-3007-7 – ident: cit0020 doi: 10.3390/coatings7040049 – ident: cit0013 doi: 10.1016/S0141-0296(96)00149-6 – ident: cit0028 doi: 10.1016/j.neucom.2014.01.023 – ident: cit0001 doi: 10.1111/0885-9507.00219 – ident: cit0010 doi: 10.3390/s17061344 – ident: cit0016 doi: 10.1007/s11709-016-0363-9 – ident: cit0023 doi: 10.1007/s00500-014-1258-0 – ident: cit0009 doi: 10.3390/ma9050396 – volume: 1992 start-page: 516 year: 1992 ident: cit0011 publication-title: Proc. Int. Modal Anal. Conf. – ident: cit0031 doi: 10.1504/IJBIC.2015.10004283 – volume: 2 start-page: 6605 issue: 7 year: 2012 ident: cit0039 publication-title: J. Basic Appl. Sci. Res. – ident: cit0026 doi: 10.1016/j.asoc.2016.08.041 – ident: cit0003 doi: 10.1007/s00521-016-2181-3 – ident: cit0015 doi: 10.1016/S1644-9665(12)60053-3 – ident: cit0027 doi: 10.1016/j.cnsns.2012.05.010 – ident: cit0033 doi: 10.1016/j.asoc.2017.06.059 – ident: cit0032 doi: 10.1504/IJBIC.2016.081335 – year: 2006 ident: cit0036 publication-title: Pac. Earthq. Eng. Res. Cent. – ident: cit0035 doi: 10.1007/s00521-015-2135-1 – start-page: 1 year: 2016 ident: cit0006 publication-title: Neural Comput. Appl. – ident: cit0025 doi: 10.1504/IJBIC.2013.057191 – ident: cit0037 doi: 10.1029/GL006i009p00689 – volume-title: [Computer software]. State College year: 2010 ident: cit0041 – ident: cit0019 doi: 10.3390/coatings7100160 – ident: cit0029 doi: 10.1108/K-11-2012-0108 – ident: cit0014 doi: 10.1088/0964-1726/13/4/029 – start-page: 1 year: 2017 ident: cit0034 publication-title: Artif. Intell. Rev. – ident: cit0021 doi: 10.1007/s00521-014-1645-6 – ident: cit0005 doi: 10.1016/j.compositesb.2014.11.023 – ident: cit0022 doi: 10.1007/s11069-016-2176-5 – ident: cit0017 doi: 10.1016/j.measurement.2014.09.075 – ident: cit0030 doi: 10.1016/j.ins.2014.02.123 – ident: cit0012 doi: 10.1006/jsvi.2001.3991  | 
    
| SSID | ssj0021521 | 
    
| Score | 2.5228353 | 
    
| Snippet | In this research work, the relative displacement of the stories has been determined by means of a feedforward Artificial Neural Network (ANN) model, which... | 
    
| SourceID | proquest crossref informaworld  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1146 | 
    
| SubjectTerms | Algorithms Artificial intelligence techniques artificial krill herd algorithm Artificial neural networks Back propagation Back propagation networks Elasticity Genetic algorithms Krill krill herd Network reliability Neural networks Optimization Parameters Regression models Reliability analysis Reliability engineering seismic reliability assessment of structures Structural reliability  | 
    
| Title | Krill herd algorithm-based neural network in structural seismic reliability evaluation | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/15376494.2018.1430874 https://www.proquest.com/docview/2245987752  | 
    
| Volume | 26 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1537-6532 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0021521 issn: 1537-6494 databaseCode: ABDBF dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1537-6532 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0021521 issn: 1537-6494 databaseCode: ADMLS dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-6532 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021521 issn: 1537-6494 databaseCode: AHDZW dateStart: 20020101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-6532 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021521 issn: 1537-6494 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4ED4qcYG8gHdppSkjhxkmPFVlWoLQdaqLhE_pU1omvGWg7sr-JP5Dl2GpdODLhElSs7id8X-7P93vcQehNGQhQZU54MeOJFSnCPceXDYEgVTPAspkLvQ44ndDiL3s_jeafz0_Fa-r7hPXFza1zJ_1gVysCuOkr2Hyy7bRQK4DfYF65gYbj-lY3hC13qUMZrecqWFxWs8xeXnp6X5KnWqYTeXxkvb72rYZRi69K1KteXtXbzsjQ63T8c2W-Xr46VjgzWSs6uvwCwXPN69dFD03Drjdhf1wrQhqHqPEjVply3Wbwm1c2CGTeCj0zZ6Kr6bORrVe_cjtVClu3pCDyZDYgflTqTV-VuVdTRUZ5PtuCa7mUNcVyXzOCbeDQySY97yimLyc6IbWLsG2QSZ_wN7Ibm3sRgPCl1a_oG2qUvhUlCyyFG7UzYnP5PPuSD2WiUT8_n0xMyuPrm6Sxl-jT_hJwZGN1DByHMI34XHfSHZ18-bxf5mg8ZjV7zLk3UWOq_vfXuO3xoRy13jx3UlGf6CD20axXcN8B7jDpq9QQ9cBQsn6JPNQSxhiD-DYLYQBBbCOJyhVsIYgtB7EAQtxB8hmaD8-m7oWdTdXiCkHTjFT5hSsaUBDwgYcYDzlNGqYTFgBSKMuCJkmglXBkyKhmJKOVJKMKUE2CUpCDPUXdVrdQLhLO0EHGQiCwKZRSnKmUx81laMKAIgkfBIYqaDsuF1bHX6VSWeWDlbpt-znU_57afD1FvW-3KCLncVSFzrZFvavQWBrg5uaPucWO63I4X6xzIcpylSRKHL__89xG63349x6gLtlGvgPpu-GuLtl9rx69v | 
    
| linkProvider | Library Specific Holdings | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEIAtKAMw8EaUpwfWlCZ-JBkRApVXJ0Bsll-BiDQgGgb49fjiBAoIMbAmOivx2Xfn0_k7hPYjqnWWShuYUMUBtVoFUtm-M4bcOgcvGdeQh7wc8sE1PbtltxN3YaCsEs7QmQdF1LYaNjcko9uSuIMQGCQ0hZRImLi9DlQ7Oo1mmAv2oYsB6Q8_Dl3gnzwzNQ5Apr3F89swX_zTF3rpD2tdu6CTRaTbj_eVJw-9l0r19Ns3ruP__m4JLTQRKj70S2oZTdlyBc1PcAtX0Y0zDUWBnboNlsXd43Ne3Y8CcIgGAyDTiZe-vBznJfaI2vrp2ObjUa7xsy1yDwh_xZ-88TV0fXJ8dTQImgYNgXYn2yrI-kRawzgJFfSrV6FSieTcuBDQaMuliw4MAf6piSQ3klDOVRzpKFHExREkI-uoUz6WdgPhNMk0C2Od0shQlthEMtmXSSadY9CKhl1EW7UI3dDLoYlGIcIGctpOm4BpE820dVHvQ-zJ4zv-EkgndS6qOm-S-SYngvwhu90uENFYgrFwIRJLkzhm0eY_ht5Ds4OrywtxcTo830Jz7lVa1wyTbdRxSrQ7LjKq1G699N8BpX0AaQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEIAtKBKCgTeiUMADa0oTO04yIqAqr4qBIjbLr0BEmlZtGODXY8dJaUGoQ9dEZyU---5sn78D4MzDQsQRU450eeBgJbjDuGppY0iUdvDMJ8LsQz50SaeHb1_8KptwXKZVmjV0bEERha02k3so4yoj7tw1CBIcmR0RN9RT3UDt8DJYIeZUzNziaHUnay7jniwyNXCMTHWJ579mZtzTDLz0j7EuPFB7E_Dq223iyXvzI-dN8fUL67jQz22BjTI-hRd2QG2DJZXtgPUpauEueNaGIU2hVraELH0djJL8re8YdyihwWNq8cwml8MkgxZQWzwdq2TcTwQcqTSxePBP-EMb3wO99vXTZccpyzM4Qq9rcyduIaakT5DLTbV67nIeMkKkDgClUITp2EAiQz-VHiOSIUwIDzzhhRzpKALFaB_UskGmDgCMwlj4biAi7EnshypkPmuxMGbaLQiO3TrAlVaoKNnlpoRGSt0ScVp1GzXdRstuq4PmRGxo4R3zBKJpldO82DWJbYkTiubINqrxQUs7MKY6QPKjMAh873CBpk_B6uNVm97fdO-OwJp-ExUJw6gBalqH6liHRTk_KQb-N3Tc_v4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Krill+herd+algorithm-based+neural+network+in+structural+seismic+reliability+evaluation&rft.jtitle=Mechanics+of+advanced+materials+and+structures&rft.au=Asteris%2C+Panagiotis+G&rft.au=Nozhati%2C+Saeed&rft.au=Nikoo%2C+Mehdi&rft.au=Cavaleri%2C+Liborio&rft.date=2019-07-03&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1537-6494&rft.eissn=1537-6532&rft.volume=26&rft.issue=13&rft.spage=1146&rft_id=info:doi/10.1080%2F15376494.2018.1430874&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1537-6494&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1537-6494&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1537-6494&client=summon |