Performance-oriented road structure and material design method based on enhanced XGBoost algorithm

A well-designed road structure is critical for reducing road operational period diseases and saving construction management and maintenance funds throughout the life cycle of roads. Excessive design may cause waste in materials or pavement distresses. This study proposes an intelligent optimisation...

Full description

Saved in:
Bibliographic Details
Published inThe international journal of pavement engineering Vol. 25; no. 1
Main Authors Li, Jiale, Zhang, Zhishuai, Wang, Xuefei
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 31.12.2024
Taylor & Francis LLC
Subjects
Online AccessGet full text
ISSN1029-8436
1477-268X
DOI10.1080/10298436.2023.2295899

Cover

Abstract A well-designed road structure is critical for reducing road operational period diseases and saving construction management and maintenance funds throughout the life cycle of roads. Excessive design may cause waste in materials or pavement distresses. This study proposes an intelligent optimisation design method for road structure and materials based on pavement performance and cost. The Long-Term Pavement Performance (LTPP) database were used to training the prediction model using the particle swarm optimisation (PSO) algorithm and the extreme gradient boosting algorithm (XGBoost) algorithm. Subsequently, an automated design model encompassing pavement thickness, pavement material, and subgrade material was established based on the predictive model derived from the PSO algorithms. The results indicate that the R 2 between the actual values and the predicted values of the PSO-XGBoost model is above 0.935, and the Pareto optimal solution is obtained using the multi-objective Particle Swarm Optimisation algorithm. This investigation showcases the potential of data-driven methodologies in furnishing valuable guidance for the initial stages of road design and construction.
AbstractList A well-designed road structure is critical for reducing road operational period diseases and saving construction management and maintenance funds throughout the life cycle of roads. Excessive design may cause waste in materials or pavement distresses. This study proposes an intelligent optimisation design method for road structure and materials based on pavement performance and cost. The Long-Term Pavement Performance (LTPP) database were used to training the prediction model using the particle swarm optimisation (PSO) algorithm and the extreme gradient boosting algorithm (XGBoost) algorithm. Subsequently, an automated design model encompassing pavement thickness, pavement material, and subgrade material was established based on the predictive model derived from the PSO algorithms. The results indicate that the R 2 between the actual values and the predicted values of the PSO-XGBoost model is above 0.935, and the Pareto optimal solution is obtained using the multi-objective Particle Swarm Optimisation algorithm. This investigation showcases the potential of data-driven methodologies in furnishing valuable guidance for the initial stages of road design and construction.
A well-designed road structure is critical for reducing road operational period diseases and saving construction management and maintenance funds throughout the life cycle of roads. Excessive design may cause waste in materials or pavement distresses. This study proposes an intelligent optimisation design method for road structure and materials based on pavement performance and cost. The Long-Term Pavement Performance (LTPP) database were used to training the prediction model using the particle swarm optimisation (PSO) algorithm and the extreme gradient boosting algorithm (XGBoost) algorithm. Subsequently, an automated design model encompassing pavement thickness, pavement material, and subgrade material was established based on the predictive model derived from the PSO algorithms. The results indicate that the R2 between the actual values and the predicted values of the PSO-XGBoost model is above 0.935, and the Pareto optimal solution is obtained using the multi-objective Particle Swarm Optimisation algorithm. This investigation showcases the potential of data-driven methodologies in furnishing valuable guidance for the initial stages of road design and construction.
Author Zhang, Zhishuai
Wang, Xuefei
Li, Jiale
Author_xml – sequence: 1
  givenname: Jiale
  surname: Li
  fullname: Li, Jiale
  organization: Hebei University of Technology
– sequence: 2
  givenname: Zhishuai
  surname: Zhang
  fullname: Zhang, Zhishuai
  organization: Hebei University of Technology
– sequence: 3
  givenname: Xuefei
  surname: Wang
  fullname: Wang, Xuefei
  email: xxw165@case.edu
  organization: Hebei University of Technology
BookMark eNqFkE1LHTEUhkOxULX9CYVA13Obj8lMQjdVsSoI7aIFd-FMcsYbmUlskov4753x2k0Xujpn8bzvOTxH5CCmiIR85mzDmWZfORNGt7LbCCbkRgijtDHvyCFv-74Rnb45WPaFaVboAzkq5Y4xwTmTh2T4hXlMeYbosEk5YKzoaU7gaal55-ouI4Xo6QwVc4CJeizhNtIZ6zZ5OkBZ-BQpxu3a4enNxWlKpVKYbpe-up0_kvcjTAU_vcxj8ufH-e-zy-b658XV2cl146TUtUE_MNQejAAA4R0bBCouu960pte6dyOgVq4flelGPvQdCqcGbKEzCjo2ymPyZd97n9PfHZZq79Iux-WklVyJVupWyYVSe8rlVErG0d7nMEN-tJzZVaf9p9OuOu2LziX37b-cCxVqSLFmCNOb6e_7dIjPth9Snryt8DilPOZFXFiffLXiCcaskdw
CitedBy_id crossref_primary_10_3390_su16177591
crossref_primary_10_1109_TITS_2024_3514105
crossref_primary_10_1016_j_soildyn_2024_108943
Cites_doi 10.1016/j.jobe.2019.100967
10.1016/j.rineng.2021.100294
10.1016/j.autcon.2021.104111
10.1080/10298436.2021.1955114
10.1016/j.conbuildmat.2022.129211
10.1016/j.jtte.2020.08.002
10.1016/j.conbuildmat.2018.05.007
10.1016/j.conbuildmat.2022.128862
10.1177/0361198118822501
10.1016/j.autcon.2021.103810
10.1016/j.proeng.2012.01.880
10.1016/j.proeng.2016.06.072
10.1016/j.buildenv.2021.107855
10.1016/j.trgeo.2021.100546
10.1080/10298436.2023.2176494
10.1016/j.jclepro.2020.122210
10.1016/j.jreng.2022.07.001
10.1016/j.jtte.2016.09.007
10.1016/B978-0-08-102671-7.10448-8
10.1016/j.conbuildmat.2020.122140
10.1080/10298436.2023.2168662
10.1177/03611981211057527
10.1016/j.cscm.2022.e00889
10.1109/CEC.2006.1688431
10.1016/j.conbuildmat.2021.125025
10.1016/j.asej.2022.101840
10.1016/j.trgeo.2022.100730
10.1061/JPEODX.0000312
10.1080/10298436.2021.1883016
10.1080/10298436.2023.2164892
10.1016/j.trgeo.2022.100878
10.1016/j.asej.2021.09.023
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
8FD
FR3
KR7
DOI 10.1080/10298436.2023.2295899
DatabaseName CrossRef
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1477-268X
ExternalDocumentID 10_1080_10298436_2023_2295899
2295899
Genre Research Article
GrantInformation_xml – fundername: Natural Science Foundation of Tianjin City
  grantid: 22JCQNJC00400
  funderid: 10.13039/501100006606
– fundername: Natural Science Foundation of Hebei Province
  grantid: E2022202007
  funderid: 10.13039/501100003787
GroupedDBID .7F
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
8FD
ACUHS
FR3
KR7
RIG
ID FETCH-LOGICAL-c338t-edb0e8da92aaa2dc0b2e513679497887cfae85c7f596f1b76e2c5be4a695a60f3
ISSN 1029-8436
IngestDate Wed Aug 13 09:17:07 EDT 2025
Wed Oct 01 00:27:29 EDT 2025
Thu Apr 24 23:07:17 EDT 2025
Mon Oct 20 23:47:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-edb0e8da92aaa2dc0b2e513679497887cfae85c7f596f1b76e2c5be4a695a60f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3152438453
PQPubID 53119
ParticipantIDs proquest_journals_3152438453
informaworld_taylorfrancis_310_1080_10298436_2023_2295899
crossref_primary_10_1080_10298436_2023_2295899
crossref_citationtrail_10_1080_10298436_2023_2295899
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-31
PublicationDateYYYYMMDD 2024-12-31
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-31
  day: 31
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle The international journal of pavement engineering
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References e_1_3_2_27_1
e_1_3_2_28_1
e_1_3_2_29_1
Chen T. (e_1_3_2_7_1) 2015; 1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_23_1
e_1_3_2_24_1
e_1_3_2_25_1
Nyirandayisabye R. (e_1_3_2_26_1) 2022; 100657
e_1_3_2_16_1
e_1_3_2_9_1
e_1_3_2_17_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_19_1
Lu J. (e_1_3_2_20_1) 2023; 100974
e_1_3_2_2_1
e_1_3_2_31_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_33_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_5_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_14_1
e_1_3_2_37_1
e_1_3_2_3_1
e_1_3_2_15_1
e_1_3_2_36_1
References_xml – ident: e_1_3_2_10_1
  doi: 10.1016/j.jobe.2019.100967
– ident: e_1_3_2_31_1
  doi: 10.1016/j.rineng.2021.100294
– ident: e_1_3_2_17_1
  doi: 10.1016/j.autcon.2021.104111
– ident: e_1_3_2_37_1
  doi: 10.1080/10298436.2021.1955114
– ident: e_1_3_2_18_1
  doi: 10.1016/j.conbuildmat.2022.129211
– ident: e_1_3_2_5_1
  doi: 10.1016/j.jtte.2020.08.002
– volume: 100657
  year: 2022
  ident: e_1_3_2_26_1
  article-title: Automatic pavement damage predictions using various machine learning algorithms: Evaluation and comparison
  publication-title: Results in Engineering
– ident: e_1_3_2_11_1
  doi: 10.1016/j.conbuildmat.2018.05.007
– ident: e_1_3_2_16_1
  doi: 10.1016/j.conbuildmat.2022.128862
– ident: e_1_3_2_35_1
  doi: 10.1177/0361198118822501
– ident: e_1_3_2_19_1
  doi: 10.1016/j.autcon.2021.103810
– ident: e_1_3_2_29_1
  doi: 10.1016/j.proeng.2012.01.880
– ident: e_1_3_2_30_1
  doi: 10.1016/j.proeng.2016.06.072
– ident: e_1_3_2_34_1
  doi: 10.1016/j.buildenv.2021.107855
– ident: e_1_3_2_32_1
  doi: 10.1016/j.trgeo.2021.100546
– ident: e_1_3_2_3_1
  doi: 10.1080/10298436.2023.2176494
– ident: e_1_3_2_24_1
  doi: 10.1016/j.jclepro.2020.122210
– ident: e_1_3_2_6_1
  doi: 10.1016/j.jreng.2022.07.001
– volume: 100974
  year: 2023
  ident: e_1_3_2_20_1
  article-title: Fabrication of superhydrophobic soil stabilizers derived from solid wastes applied for road construction: A review
  publication-title: Transportation Geotechnics
– ident: e_1_3_2_21_1
  doi: 10.1016/j.jtte.2016.09.007
– volume: 1
  start-page: 1
  issue: 4
  year: 2015
  ident: e_1_3_2_7_1
  article-title: Xgboost: extreme gradient boosting
  publication-title: R package version 0.4-2
– ident: e_1_3_2_2_1
  doi: 10.1016/B978-0-08-102671-7.10448-8
– ident: e_1_3_2_15_1
– ident: e_1_3_2_13_1
  doi: 10.1016/j.conbuildmat.2020.122140
– ident: e_1_3_2_23_1
– ident: e_1_3_2_27_1
  doi: 10.1080/10298436.2023.2168662
– ident: e_1_3_2_38_1
  doi: 10.1177/03611981211057527
– ident: e_1_3_2_4_1
  doi: 10.1016/j.cscm.2022.e00889
– ident: e_1_3_2_28_1
  doi: 10.1109/CEC.2006.1688431
– ident: e_1_3_2_8_1
  doi: 10.1016/j.conbuildmat.2021.125025
– ident: e_1_3_2_14_1
  doi: 10.1016/j.asej.2022.101840
– ident: e_1_3_2_22_1
  doi: 10.1016/j.trgeo.2022.100730
– ident: e_1_3_2_9_1
  doi: 10.1061/JPEODX.0000312
– ident: e_1_3_2_12_1
  doi: 10.1080/10298436.2021.1883016
– ident: e_1_3_2_36_1
  doi: 10.1080/10298436.2023.2164892
– ident: e_1_3_2_25_1
  doi: 10.1016/j.trgeo.2022.100878
– ident: e_1_3_2_33_1
  doi: 10.1016/j.asej.2021.09.023
SSID ssj0021103
Score 2.3721538
Snippet A well-designed road structure is critical for reducing road operational period diseases and saving construction management and maintenance funds throughout...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Construction management
Design optimization
Design techniques
machine learning (ML)
Optimal pavement design
optimal subgrade design
Pareto optimum
particle swarm optimisation (PSO)
Particle swarm optimization
Pavement construction
Pavement materials
Pavements
Prediction models
Predictions
Road design
Road maintenance
Roads & highways
Subgrades
Title Performance-oriented road structure and material design method based on enhanced XGBoost algorithm
URI https://www.tandfonline.com/doi/abs/10.1080/10298436.2023.2295899
https://www.proquest.com/docview/3152438453
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1477-268X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021103
  issn: 1029-8436
  databaseCode: AHDZW
  dateStart: 19990101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1477-268X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021103
  issn: 1029-8436
  databaseCode: 30N
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOiKcoFOQDt5UXx3YS51ieqx4Qh1aseolsx2FXKklF00vVH884drxZuqKUS7Sy5JE389kznsx8g9BbDiaYWloQbRNGhEokUYmqia4LSbXJKbN9lu_XbHEijpbpcjK5HleXdHpurnbWlfyPVmEM9OqqZO-g2SgUBuA36BeeoGF4_pOOv22y_knrCIud-_irVdXM08IOHwfAK-2XM6v6fI3QNnrmLFjlvhbYZuUTAZZf3rfthYsC_wB53ern2Hd1iFpvBRBHtBPnqice70BWJDiMyT59xsARLCCiKMapT1fri9WlWm8C-358eWlrux7HJFhkPozHqEuqkYIHkms_JvKcsKxvJBzPXl_0PMbYjSPd50A6iU7g3LV7n7se5NI3Vtqm0P7DtMWEwyQwoQ5iSiemDGLuoT0GNoFO0d7h4uPp93hhB9fIF2iEfzNUgEn6bud6tnybLebbG5a-d1-OH6GH4d6BDz2IHqOJbZ6gByM2yqdI74ITdnDCEU4Y4IQHOGEPJ-zhhHs44bbBA5xwgBOOcHqGTj5_Ov6wIKEFBzGcy47YSlMrK1UwpRSrDNWwdx3LX-E6E8rc1MrK1OR1WmR1ovPMMpNqK1RWpCqjNX-Opk3b2BcIW5ZTy5lKk0wLk3GVyVrk3AgNI3CJ2EdieHmlCfz0rk3KWflX5e2jeZx27glabptQjDVTdn1krPZtbEp-y9yDQY1l2GJuSsoElyLlL--6llfo_mb7HKApKNO-Bie3028CFn8DxQqhDg
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLY4BmDgRtx4YHXl-EjiERBQoFQMVOoW2Y5NJUqCSlj49dg5SgtCHTpFSvQsx8_2e8_6_H0AnFMXgrHBAikTEMRkECMZSIuUFTFWOsLElCjfbtjusfs-70_chfGwSl9D24oootyr_eL2h9ENJM49iYgZ9QgDQltekNpVDYtgmbtk36sYUNwdF10uvFUgeyKQt2lu8fzXzFR8mmIv_bNblyHoZgPopvMV8uS19Vmolv76xes4399tgvU6Q4UX1ZTaAgsm2wZrE7yFO0A9_Vw3QLlnSnZ5KxzlMoUVH-3nyEDXAejS4XKGw7QEisBKrxr60JnCPIMmG5QIBNi_vczzjwLK4Ytrrxi87YLezfXzVRvVYg1Iuyq3QCZV2MSpFERKSVKNlfOy54MTXsMujrSVJuY6slyENlBRaIjmyjAZCi5DbOkeWMryzOwDaEiEDSWSB6FiOqQyjC2LqGbKvXHp5gFgjYsSXTOZe0GNYRLUhKfNECZ-CJN6CA9Aa2z2XlF5zDIQk_5PivIMxVaCJwmdYXvcTJak3hW8CSeMxozTwzmaPgMr7efHTtK56z4cgVX3qWaePAZLzsfmxGVJhTotl8E3A2wDaA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgG3ojy9MDqyrEdJx55lfJQxUClbpHt2FSiJBWkC78eOw8oIMTQKVKiuyS-s-8u-fwdAKfUhWBssEDKBAQxGcRIBtIiZUWMlY4wMSXKt897A3Y7DBs04VsNq_Q1tK2IIsq12k_uSWobRJw7EhEz6gEGhHZ8P2pXNCyCJe7_ivldHLj_WXO56FZh7IlAXqbZxPOXmm_h6Rt56a_FuoxA3XWgmmevgCfPnWmhOvr9B63jXC-3Adbq_BSeVQ61CRZMtgVWZ1gLt4F6-NpsgHLPk-yyVviayxRWbLTTVwPd_aFLhkv_hmkJE4FVt2roA2cK8wyabFTiD-Dw-jzP3woox09OXzF62QGD7tXjRQ_VrRqQdjVugUyqsIlTKYiUkqQaK2djzwYnfAe7ONJWmjjUkQ0Ft4GKuCE6VIZJLkLJsaW7oJXlmdkD0JAIG0pkGHDFNKeSx5ZFVDPlzrhksw1YY6FE1zzmvp3GOAlqutNmCBM_hEk9hG3Q-RSbVEQe_wmIWfMnRfkFxVbtThL6j-xh4ytJvSZ4kZAwGrOQ7s-h-gQsP1x2k_ub_t0BWHFXatrJQ9ByJjZHLkUq1HE5CT4AxUYCDA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance-oriented+road+structure+and+material+design+method+based+on+enhanced+XGBoost+algorithm&rft.jtitle=The+international+journal+of+pavement+engineering&rft.au=Li%2C+Jiale&rft.au=Zhang%2C+Zhishuai&rft.au=Wang%2C+Xuefei&rft.date=2024-12-31&rft.issn=1029-8436&rft.eissn=1477-268X&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1080%2F10298436.2023.2295899&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10298436_2023_2295899
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8436&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8436&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8436&client=summon