Performance-oriented road structure and material design method based on enhanced XGBoost algorithm
A well-designed road structure is critical for reducing road operational period diseases and saving construction management and maintenance funds throughout the life cycle of roads. Excessive design may cause waste in materials or pavement distresses. This study proposes an intelligent optimisation...
Saved in:
| Published in | The international journal of pavement engineering Vol. 25; no. 1 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Abingdon
Taylor & Francis
31.12.2024
Taylor & Francis LLC |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1029-8436 1477-268X |
| DOI | 10.1080/10298436.2023.2295899 |
Cover
| Abstract | A well-designed road structure is critical for reducing road operational period diseases and saving construction management and maintenance funds throughout the life cycle of roads. Excessive design may cause waste in materials or pavement distresses. This study proposes an intelligent optimisation design method for road structure and materials based on pavement performance and cost. The Long-Term Pavement Performance (LTPP) database were used to training the prediction model using the particle swarm optimisation (PSO) algorithm and the extreme gradient boosting algorithm (XGBoost) algorithm. Subsequently, an automated design model encompassing pavement thickness, pavement material, and subgrade material was established based on the predictive model derived from the PSO algorithms. The results indicate that the R
2
between the actual values and the predicted values of the PSO-XGBoost model is above 0.935, and the Pareto optimal solution is obtained using the multi-objective Particle Swarm Optimisation algorithm. This investigation showcases the potential of data-driven methodologies in furnishing valuable guidance for the initial stages of road design and construction. |
|---|---|
| AbstractList | A well-designed road structure is critical for reducing road operational period diseases and saving construction management and maintenance funds throughout the life cycle of roads. Excessive design may cause waste in materials or pavement distresses. This study proposes an intelligent optimisation design method for road structure and materials based on pavement performance and cost. The Long-Term Pavement Performance (LTPP) database were used to training the prediction model using the particle swarm optimisation (PSO) algorithm and the extreme gradient boosting algorithm (XGBoost) algorithm. Subsequently, an automated design model encompassing pavement thickness, pavement material, and subgrade material was established based on the predictive model derived from the PSO algorithms. The results indicate that the R
2
between the actual values and the predicted values of the PSO-XGBoost model is above 0.935, and the Pareto optimal solution is obtained using the multi-objective Particle Swarm Optimisation algorithm. This investigation showcases the potential of data-driven methodologies in furnishing valuable guidance for the initial stages of road design and construction. A well-designed road structure is critical for reducing road operational period diseases and saving construction management and maintenance funds throughout the life cycle of roads. Excessive design may cause waste in materials or pavement distresses. This study proposes an intelligent optimisation design method for road structure and materials based on pavement performance and cost. The Long-Term Pavement Performance (LTPP) database were used to training the prediction model using the particle swarm optimisation (PSO) algorithm and the extreme gradient boosting algorithm (XGBoost) algorithm. Subsequently, an automated design model encompassing pavement thickness, pavement material, and subgrade material was established based on the predictive model derived from the PSO algorithms. The results indicate that the R2 between the actual values and the predicted values of the PSO-XGBoost model is above 0.935, and the Pareto optimal solution is obtained using the multi-objective Particle Swarm Optimisation algorithm. This investigation showcases the potential of data-driven methodologies in furnishing valuable guidance for the initial stages of road design and construction. |
| Author | Zhang, Zhishuai Wang, Xuefei Li, Jiale |
| Author_xml | – sequence: 1 givenname: Jiale surname: Li fullname: Li, Jiale organization: Hebei University of Technology – sequence: 2 givenname: Zhishuai surname: Zhang fullname: Zhang, Zhishuai organization: Hebei University of Technology – sequence: 3 givenname: Xuefei surname: Wang fullname: Wang, Xuefei email: xxw165@case.edu organization: Hebei University of Technology |
| BookMark | eNqFkE1LHTEUhkOxULX9CYVA13Obj8lMQjdVsSoI7aIFd-FMcsYbmUlskov4753x2k0Xujpn8bzvOTxH5CCmiIR85mzDmWZfORNGt7LbCCbkRgijtDHvyCFv-74Rnb45WPaFaVboAzkq5Y4xwTmTh2T4hXlMeYbosEk5YKzoaU7gaal55-ouI4Xo6QwVc4CJeizhNtIZ6zZ5OkBZ-BQpxu3a4enNxWlKpVKYbpe-up0_kvcjTAU_vcxj8ufH-e-zy-b658XV2cl146TUtUE_MNQejAAA4R0bBCouu960pte6dyOgVq4flelGPvQdCqcGbKEzCjo2ymPyZd97n9PfHZZq79Iux-WklVyJVupWyYVSe8rlVErG0d7nMEN-tJzZVaf9p9OuOu2LziX37b-cCxVqSLFmCNOb6e_7dIjPth9Snryt8DilPOZFXFiffLXiCcaskdw |
| CitedBy_id | crossref_primary_10_3390_su16177591 crossref_primary_10_1109_TITS_2024_3514105 crossref_primary_10_1016_j_soildyn_2024_108943 |
| Cites_doi | 10.1016/j.jobe.2019.100967 10.1016/j.rineng.2021.100294 10.1016/j.autcon.2021.104111 10.1080/10298436.2021.1955114 10.1016/j.conbuildmat.2022.129211 10.1016/j.jtte.2020.08.002 10.1016/j.conbuildmat.2018.05.007 10.1016/j.conbuildmat.2022.128862 10.1177/0361198118822501 10.1016/j.autcon.2021.103810 10.1016/j.proeng.2012.01.880 10.1016/j.proeng.2016.06.072 10.1016/j.buildenv.2021.107855 10.1016/j.trgeo.2021.100546 10.1080/10298436.2023.2176494 10.1016/j.jclepro.2020.122210 10.1016/j.jreng.2022.07.001 10.1016/j.jtte.2016.09.007 10.1016/B978-0-08-102671-7.10448-8 10.1016/j.conbuildmat.2020.122140 10.1080/10298436.2023.2168662 10.1177/03611981211057527 10.1016/j.cscm.2022.e00889 10.1109/CEC.2006.1688431 10.1016/j.conbuildmat.2021.125025 10.1016/j.asej.2022.101840 10.1016/j.trgeo.2022.100730 10.1061/JPEODX.0000312 10.1080/10298436.2021.1883016 10.1080/10298436.2023.2164892 10.1016/j.trgeo.2022.100878 10.1016/j.asej.2021.09.023 |
| ContentType | Journal Article |
| Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 2023 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 8FD FR3 KR7 |
| DOI | 10.1080/10298436.2023.2295899 |
| DatabaseName | CrossRef Technology Research Database Engineering Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Technology Research Database Civil Engineering Abstracts Engineering Research Database |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1477-268X |
| ExternalDocumentID | 10_1080_10298436_2023_2295899 2295899 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: Natural Science Foundation of Tianjin City grantid: 22JCQNJC00400 funderid: 10.13039/501100006606 – fundername: Natural Science Foundation of Hebei Province grantid: E2022202007 funderid: 10.13039/501100003787 |
| GroupedDBID | .7F .QJ 0BK 0R~ 29J 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EST ESX E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 O9- P2P PQQKQ RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 8FD ACUHS FR3 KR7 RIG |
| ID | FETCH-LOGICAL-c338t-edb0e8da92aaa2dc0b2e513679497887cfae85c7f596f1b76e2c5be4a695a60f3 |
| ISSN | 1029-8436 |
| IngestDate | Wed Aug 13 09:17:07 EDT 2025 Wed Oct 01 00:27:29 EDT 2025 Thu Apr 24 23:07:17 EDT 2025 Mon Oct 20 23:47:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c338t-edb0e8da92aaa2dc0b2e513679497887cfae85c7f596f1b76e2c5be4a695a60f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3152438453 |
| PQPubID | 53119 |
| ParticipantIDs | proquest_journals_3152438453 informaworld_taylorfrancis_310_1080_10298436_2023_2295899 crossref_primary_10_1080_10298436_2023_2295899 crossref_citationtrail_10_1080_10298436_2023_2295899 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-31 |
| PublicationDateYYYYMMDD | 2024-12-31 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | The international journal of pavement engineering |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis Taylor & Francis LLC |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC |
| References | e_1_3_2_27_1 e_1_3_2_28_1 e_1_3_2_29_1 Chen T. (e_1_3_2_7_1) 2015; 1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_23_1 e_1_3_2_24_1 e_1_3_2_25_1 Nyirandayisabye R. (e_1_3_2_26_1) 2022; 100657 e_1_3_2_16_1 e_1_3_2_9_1 e_1_3_2_17_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_19_1 Lu J. (e_1_3_2_20_1) 2023; 100974 e_1_3_2_2_1 e_1_3_2_31_1 e_1_3_2_30_1 e_1_3_2_10_1 e_1_3_2_33_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_5_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_14_1 e_1_3_2_37_1 e_1_3_2_3_1 e_1_3_2_15_1 e_1_3_2_36_1 |
| References_xml | – ident: e_1_3_2_10_1 doi: 10.1016/j.jobe.2019.100967 – ident: e_1_3_2_31_1 doi: 10.1016/j.rineng.2021.100294 – ident: e_1_3_2_17_1 doi: 10.1016/j.autcon.2021.104111 – ident: e_1_3_2_37_1 doi: 10.1080/10298436.2021.1955114 – ident: e_1_3_2_18_1 doi: 10.1016/j.conbuildmat.2022.129211 – ident: e_1_3_2_5_1 doi: 10.1016/j.jtte.2020.08.002 – volume: 100657 year: 2022 ident: e_1_3_2_26_1 article-title: Automatic pavement damage predictions using various machine learning algorithms: Evaluation and comparison publication-title: Results in Engineering – ident: e_1_3_2_11_1 doi: 10.1016/j.conbuildmat.2018.05.007 – ident: e_1_3_2_16_1 doi: 10.1016/j.conbuildmat.2022.128862 – ident: e_1_3_2_35_1 doi: 10.1177/0361198118822501 – ident: e_1_3_2_19_1 doi: 10.1016/j.autcon.2021.103810 – ident: e_1_3_2_29_1 doi: 10.1016/j.proeng.2012.01.880 – ident: e_1_3_2_30_1 doi: 10.1016/j.proeng.2016.06.072 – ident: e_1_3_2_34_1 doi: 10.1016/j.buildenv.2021.107855 – ident: e_1_3_2_32_1 doi: 10.1016/j.trgeo.2021.100546 – ident: e_1_3_2_3_1 doi: 10.1080/10298436.2023.2176494 – ident: e_1_3_2_24_1 doi: 10.1016/j.jclepro.2020.122210 – ident: e_1_3_2_6_1 doi: 10.1016/j.jreng.2022.07.001 – volume: 100974 year: 2023 ident: e_1_3_2_20_1 article-title: Fabrication of superhydrophobic soil stabilizers derived from solid wastes applied for road construction: A review publication-title: Transportation Geotechnics – ident: e_1_3_2_21_1 doi: 10.1016/j.jtte.2016.09.007 – volume: 1 start-page: 1 issue: 4 year: 2015 ident: e_1_3_2_7_1 article-title: Xgboost: extreme gradient boosting publication-title: R package version 0.4-2 – ident: e_1_3_2_2_1 doi: 10.1016/B978-0-08-102671-7.10448-8 – ident: e_1_3_2_15_1 – ident: e_1_3_2_13_1 doi: 10.1016/j.conbuildmat.2020.122140 – ident: e_1_3_2_23_1 – ident: e_1_3_2_27_1 doi: 10.1080/10298436.2023.2168662 – ident: e_1_3_2_38_1 doi: 10.1177/03611981211057527 – ident: e_1_3_2_4_1 doi: 10.1016/j.cscm.2022.e00889 – ident: e_1_3_2_28_1 doi: 10.1109/CEC.2006.1688431 – ident: e_1_3_2_8_1 doi: 10.1016/j.conbuildmat.2021.125025 – ident: e_1_3_2_14_1 doi: 10.1016/j.asej.2022.101840 – ident: e_1_3_2_22_1 doi: 10.1016/j.trgeo.2022.100730 – ident: e_1_3_2_9_1 doi: 10.1061/JPEODX.0000312 – ident: e_1_3_2_12_1 doi: 10.1080/10298436.2021.1883016 – ident: e_1_3_2_36_1 doi: 10.1080/10298436.2023.2164892 – ident: e_1_3_2_25_1 doi: 10.1016/j.trgeo.2022.100878 – ident: e_1_3_2_33_1 doi: 10.1016/j.asej.2021.09.023 |
| SSID | ssj0021103 |
| Score | 2.3721538 |
| Snippet | A well-designed road structure is critical for reducing road operational period diseases and saving construction management and maintenance funds throughout... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Construction management Design optimization Design techniques machine learning (ML) Optimal pavement design optimal subgrade design Pareto optimum particle swarm optimisation (PSO) Particle swarm optimization Pavement construction Pavement materials Pavements Prediction models Predictions Road design Road maintenance Roads & highways Subgrades |
| Title | Performance-oriented road structure and material design method based on enhanced XGBoost algorithm |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10298436.2023.2295899 https://www.proquest.com/docview/3152438453 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1477-268X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021103 issn: 1029-8436 databaseCode: AHDZW dateStart: 19990101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1477-268X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021103 issn: 1029-8436 databaseCode: 30N dateStart: 19990101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW7QUOiKcoFOQDt5UXx3YS51ieqx4Qh1aseolsx2FXKklF00vVH884drxZuqKUS7Sy5JE389kznsx8g9BbDiaYWloQbRNGhEokUYmqia4LSbXJKbN9lu_XbHEijpbpcjK5HleXdHpurnbWlfyPVmEM9OqqZO-g2SgUBuA36BeeoGF4_pOOv22y_knrCIud-_irVdXM08IOHwfAK-2XM6v6fI3QNnrmLFjlvhbYZuUTAZZf3rfthYsC_wB53ern2Hd1iFpvBRBHtBPnqice70BWJDiMyT59xsARLCCiKMapT1fri9WlWm8C-358eWlrux7HJFhkPozHqEuqkYIHkms_JvKcsKxvJBzPXl_0PMbYjSPd50A6iU7g3LV7n7se5NI3Vtqm0P7DtMWEwyQwoQ5iSiemDGLuoT0GNoFO0d7h4uPp93hhB9fIF2iEfzNUgEn6bud6tnybLebbG5a-d1-OH6GH4d6BDz2IHqOJbZ6gByM2yqdI74ITdnDCEU4Y4IQHOGEPJ-zhhHs44bbBA5xwgBOOcHqGTj5_Ov6wIKEFBzGcy47YSlMrK1UwpRSrDNWwdx3LX-E6E8rc1MrK1OR1WmR1ovPMMpNqK1RWpCqjNX-Opk3b2BcIW5ZTy5lKk0wLk3GVyVrk3AgNI3CJ2EdieHmlCfz0rk3KWflX5e2jeZx27glabptQjDVTdn1krPZtbEp-y9yDQY1l2GJuSsoElyLlL--6llfo_mb7HKApKNO-Bie3028CFn8DxQqhDg |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLY4BmDgRtx4YHXl-EjiERBQoFQMVOoW2Y5NJUqCSlj49dg5SgtCHTpFSvQsx8_2e8_6_H0AnFMXgrHBAikTEMRkECMZSIuUFTFWOsLElCjfbtjusfs-70_chfGwSl9D24oootyr_eL2h9ENJM49iYgZ9QgDQltekNpVDYtgmbtk36sYUNwdF10uvFUgeyKQt2lu8fzXzFR8mmIv_bNblyHoZgPopvMV8uS19Vmolv76xes4399tgvU6Q4UX1ZTaAgsm2wZrE7yFO0A9_Vw3QLlnSnZ5KxzlMoUVH-3nyEDXAejS4XKGw7QEisBKrxr60JnCPIMmG5QIBNi_vczzjwLK4Ytrrxi87YLezfXzVRvVYg1Iuyq3QCZV2MSpFERKSVKNlfOy54MTXsMujrSVJuY6slyENlBRaIjmyjAZCi5DbOkeWMryzOwDaEiEDSWSB6FiOqQyjC2LqGbKvXHp5gFgjYsSXTOZe0GNYRLUhKfNECZ-CJN6CA9Aa2z2XlF5zDIQk_5PivIMxVaCJwmdYXvcTJak3hW8CSeMxozTwzmaPgMr7efHTtK56z4cgVX3qWaePAZLzsfmxGVJhTotl8E3A2wDaA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgG3ojy9MDqyrEdJx55lfJQxUClbpHt2FSiJBWkC78eOw8oIMTQKVKiuyS-s-8u-fwdAKfUhWBssEDKBAQxGcRIBtIiZUWMlY4wMSXKt897A3Y7DBs04VsNq_Q1tK2IIsq12k_uSWobRJw7EhEz6gEGhHZ8P2pXNCyCJe7_ivldHLj_WXO56FZh7IlAXqbZxPOXmm_h6Rt56a_FuoxA3XWgmmevgCfPnWmhOvr9B63jXC-3Adbq_BSeVQ61CRZMtgVWZ1gLt4F6-NpsgHLPk-yyVviayxRWbLTTVwPd_aFLhkv_hmkJE4FVt2roA2cK8wyabFTiD-Dw-jzP3woox09OXzF62QGD7tXjRQ_VrRqQdjVugUyqsIlTKYiUkqQaK2djzwYnfAe7ONJWmjjUkQ0Ft4GKuCE6VIZJLkLJsaW7oJXlmdkD0JAIG0pkGHDFNKeSx5ZFVDPlzrhksw1YY6FE1zzmvp3GOAlqutNmCBM_hEk9hG3Q-RSbVEQe_wmIWfMnRfkFxVbtThL6j-xh4ytJvSZ4kZAwGrOQ7s-h-gQsP1x2k_ub_t0BWHFXatrJQ9ByJjZHLkUq1HE5CT4AxUYCDA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance-oriented+road+structure+and+material+design+method+based+on+enhanced+XGBoost+algorithm&rft.jtitle=The+international+journal+of+pavement+engineering&rft.au=Li%2C+Jiale&rft.au=Zhang%2C+Zhishuai&rft.au=Wang%2C+Xuefei&rft.date=2024-12-31&rft.issn=1029-8436&rft.eissn=1477-268X&rft.volume=25&rft.issue=1&rft_id=info:doi/10.1080%2F10298436.2023.2295899&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10298436_2023_2295899 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8436&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8436&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8436&client=summon |