A hierarchical heuristic algorithm for multi-objective order allocation problem subject to supply uncertainties
In this paper, a hierarchical heuristic algorithm is proposed to allocate order quantities to suppliers and determine the best lot sizing for each supplier. Pre-defined policies are first implemented to generate the initial order allocation to suppliers. The solutions are then modified by reducing t...
Saved in:
| Published in | Journal of industrial and production engineering Vol. 40; no. 5; pp. 343 - 359 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Abingdon
Taylor & Francis
04.07.2023
Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2168-1015 2168-1023 |
| DOI | 10.1080/21681015.2023.2200611 |
Cover
| Abstract | In this paper, a hierarchical heuristic algorithm is proposed to allocate order quantities to suppliers and determine the best lot sizing for each supplier. Pre-defined policies are first implemented to generate the initial order allocation to suppliers. The solutions are then modified by reducing the gap of the least satisfying level to search for a compromised solution, and this process is repeated until no further improvement can be made. The fine-tuning process finally reduces the gap between the two consecutive order allocation schemes. In the second level, a dynamic programming approach is modified to determine the best lot-sizing plan and compensate for the loss of quality and late delivery. The contributions of this work are to develop not only the best order allocation plan instead of supplier selection but also effective lot sizing plan that can reduce supply uncertainties. Experiments are tested to confirm the performance of the proposed method. |
|---|---|
| AbstractList | In this paper, a hierarchical heuristic algorithm is proposed to allocate order quantities to suppliers and determine the best lot sizing for each supplier. Pre-defined policies are first implemented to generate the initial order allocation to suppliers. The solutions are then modified by reducing the gap of the least satisfying level to search for a compromised solution, and this process is repeated until no further improvement can be made. The fine-tuning process finally reduces the gap between the two consecutive order allocation schemes. In the second level, a dynamic programming approach is modified to determine the best lot-sizing plan and compensate for the loss of quality and late delivery. The contributions of this work are to develop not only the best order allocation plan instead of supplier selection but also effective lot sizing plan that can reduce supply uncertainties. Experiments are tested to confirm the performance of the proposed method. |
| Author | Nguyen, Van Hop |
| Author_xml | – sequence: 1 givenname: Van Hop surname: Nguyen fullname: Nguyen, Van Hop email: nvhop@hcmiu.edu.vn organization: International University, VNU-HCM |
| BookMark | eNqFkE9PGzEQxS1EJSjlI1SyxHlT_4mNIy4gVAoSEpf2bE28duPIuw5jb6t8exwCHDiALx6N33sz_n0lh2MePSHfOZtxZtgPwbXhjKuZYELOhGBMc35Ajnf9jrfe4VvN1RE5LWXN2jFK8Pn8mOQruooeAd0qOkh05SeMpUZHIf3NGOtqoCEjHaZUY5eXa-9q_Odpxt5j06TsoMY80g3mZfIDLdOzhtbcys0mbek0Oo8V4lijL9_IlwCp-NOX-4T8ufn5-_q2u3_4dXd9dd85KU3tvDYLUGB647gDJrRinKnAlNN6CUzr9jo3oWceQPdOGjCBS3euAiyCmy_kCTnb57a9Hidfql3nCcc20gojhNKSSdlUF3uVw1wK-mBdrM__qQgxWc7sDrJ9hWx3kO0L5OZW79wbjAPg9lPf5d4Xx4Z2gP8ZU28rbFPGgDC6WKz8OOIJH2qXDA |
| CitedBy_id | crossref_primary_10_1080_21681015_2024_2358823 crossref_primary_10_1108_K_10_2022_1493 crossref_primary_10_3390_admsci14090206 |
| Cites_doi | 10.1080/0951192X.2016.1145813 10.1016/j.ejor.2017.07.014 10.1016/j.ijpe.2019.02.003 10.1016/j.apm.2020.10.024 10.1016/j.ijpe.2020.107830 10.1007/s10479-015-2004-4 10.1016/j.fss.2019.09.016 10.4018/IJBAN.2018040103 10.1016/j.ijpe.2004.06.022 10.1016/j.tre.2016.09.005 10.1016/j.cie.2022.108825 10.1016/j.apm.2019.06.001 10.1016/j.cie.2018.11.017 10.1016/j.apm.2017.11.020 10.1016/j.ijpe.2019.03.018 10.1016/j.cie.2018.02.041 10.1016/j.ijpe.2020.108007 10.1016/j.jclepro.2018.04.131 10.1016/j.jclepro.2018.12.315 10.1080/00207543.2017.1400706 10.1016/j.jclepro.2020.122597 10.1002/joom.1113 10.1016/j.cie.2020.106267 10.1016/j.jclepro.2017.11.012 10.1016/j.jclepro.2018.02.211 10.1016/j.samod.2022.100008 10.1007/s40092-019-00334-y 10.1016/j.cie.2017.03.028 10.1016/j.cie.2018.05.042 10.1016/j.eswa.2017.09.041 |
| ContentType | Journal Article |
| Copyright | 2023 Chinese Institute of Industrial Engineers 2020 2023 Chinese Institute of Industrial Engineers |
| Copyright_xml | – notice: 2023 Chinese Institute of Industrial Engineers 2020 – notice: 2023 Chinese Institute of Industrial Engineers |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1080/21681015.2023.2200611 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2168-1023 |
| EndPage | 359 |
| ExternalDocumentID | 10_1080_21681015_2023_2200611 2200611 |
| Genre | Research Article |
| GroupedDBID | .QJ 0BK 0R~ 30N 4.4 AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABDBF ABFIM ABLIJ ABPAQ ABPEM ABXUL ABXYU ACIWK ACTIO ACUHS ADCVX ADGTB ADMLS AEISY AEOZL AEPSL AEYOC AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW BLEHA CCCUG DGEBU DKSSO EBS ESX E~A E~B H13 IPNFZ KYCEM LJTGL M4Z MK~ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TTHFI TUROJ TUS UT5 ZGOLN ~S~ AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c338t-e689a5a8d8c1ca02650105f05c66ba0669a548fd0eaa6dc38a8f13c75fa9fc493 |
| ISSN | 2168-1015 |
| IngestDate | Wed Aug 13 04:22:28 EDT 2025 Wed Oct 01 03:40:34 EDT 2025 Thu Apr 24 22:57:32 EDT 2025 Mon Oct 20 23:45:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c338t-e689a5a8d8c1ca02650105f05c66ba0669a548fd0eaa6dc38a8f13c75fa9fc493 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2822563033 |
| PQPubID | 436410 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2822563033 crossref_citationtrail_10_1080_21681015_2023_2200611 informaworld_taylorfrancis_310_1080_21681015_2023_2200611 crossref_primary_10_1080_21681015_2023_2200611 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-04 |
| PublicationDateYYYYMMDD | 2023-07-04 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Journal of industrial and production engineering |
| PublicationYear | 2023 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | cit0011 cit0033 cit0012 Moheb-Alizadeh H (cit0015) 2017; 56 cit0031 cit0010 cit0030 cit0019 cit0017 cit0018 cit0016 cit0013 cit0014 cit0022 cit0001 cit0023 cit0020 Ahmad MT (cit0021) 2022; 171 cit0008 cit0009 cit0006 cit0028 cit0007 cit0029 cit0004 cit0026 cit0005 cit0027 cit0002 cit0024 cit0003 cit0025 Pasquale VD (cit0032) 2023; 136476 |
| References_xml | – ident: cit0006 doi: 10.1080/0951192X.2016.1145813 – ident: cit0022 doi: 10.1016/j.ejor.2017.07.014 – ident: cit0003 doi: 10.1016/j.ijpe.2019.02.003 – ident: cit0001 doi: 10.1016/j.apm.2020.10.024 – ident: cit0013 doi: 10.1016/j.ijpe.2020.107830 – ident: cit0020 doi: 10.1007/s10479-015-2004-4 – ident: cit0023 doi: 10.1016/j.fss.2019.09.016 – ident: cit0011 doi: 10.4018/IJBAN.2018040103 – ident: cit0025 doi: 10.1016/j.ijpe.2004.06.022 – ident: cit0030 doi: 10.1016/j.tre.2016.09.005 – ident: cit0029 doi: 10.1016/j.cie.2022.108825 – ident: cit0016 doi: 10.1016/j.apm.2019.06.001 – ident: cit0007 doi: 10.1016/j.cie.2018.11.017 – ident: cit0033 doi: 10.1016/j.apm.2017.11.020 – ident: cit0028 doi: 10.1016/j.ijpe.2019.03.018 – ident: cit0002 doi: 10.1016/j.cie.2018.02.041 – ident: cit0017 doi: 10.1016/j.ijpe.2020.108007 – ident: cit0004 doi: 10.1016/j.jclepro.2018.04.131 – ident: cit0008 doi: 10.1016/j.jclepro.2018.12.315 – ident: cit0010 doi: 10.1080/00207543.2017.1400706 – ident: cit0018 doi: 10.1016/j.jclepro.2020.122597 – ident: cit0019 doi: 10.1002/joom.1113 – volume: 171 start-page: 1 issue: 108394 year: 2022 ident: cit0021 publication-title: Comput Ind Eng – ident: cit0024 doi: 10.1016/j.cie.2020.106267 – ident: cit0009 doi: 10.1016/j.jclepro.2017.11.012 – ident: cit0012 doi: 10.1016/j.jclepro.2018.02.211 – ident: cit0031 doi: 10.1016/j.samod.2022.100008 – ident: cit0026 doi: 10.1007/s40092-019-00334-y – ident: cit0027 doi: 10.1016/j.cie.2017.03.028 – volume: 136476 start-page: 1 year: 2023 ident: cit0032 publication-title: J Clean Prod – volume: 56 start-page: 6890 issue: 21 year: 2017 ident: cit0015 publication-title: Int J P Res – ident: cit0014 doi: 10.1016/j.cie.2018.05.042 – ident: cit0005 doi: 10.1016/j.eswa.2017.09.041 |
| SSID | ssj0000852144 |
| Score | 2.2966313 |
| Snippet | In this paper, a hierarchical heuristic algorithm is proposed to allocate order quantities to suppliers and determine the best lot sizing for each supplier.... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 343 |
| SubjectTerms | Algorithms Component and supplier management defective quantity Dynamic programming Heuristic methods late delivery Lot sizing Order allocation Uncertainty |
| Title | A hierarchical heuristic algorithm for multi-objective order allocation problem subject to supply uncertainties |
| URI | https://www.tandfonline.com/doi/abs/10.1080/21681015.2023.2200611 https://www.proquest.com/docview/2822563033 |
| Volume | 40 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2168-1023 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0000852144 issn: 2168-1015 databaseCode: ABDBF dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2168-1023 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0000852144 issn: 2168-1015 databaseCode: ADMLS dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 2168-1023 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852144 issn: 2168-1015 databaseCode: AHDZW dateStart: 20130101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 2168-1023 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000852144 issn: 2168-1015 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoED4ikWFuQDe4oSmjgP51jBVhVayiVFvUWOEy-gpSk0OSx3_jcztvMoXbHAJaqc2m77fR1P7JlvCHnFq1QpWNhcBd6BG5a-dIUop25QgG9fRLxKCswdfr-MF6vw3TpaTyY_R1FLbVN48se1eSX_gyq0Aa6YJfsPyPaDQgO8BnzhCgjD9a8wnjlYyVqfBUid09ga3WVHXF7U8NT_6auOItRBg25dfDHGzdFymw6euJv9OsdWlXF2rX4P-qM7rPZ55cCqZ2IGmi7Y8NCR_TxU_zCqA1pDFsetBrHDDtiPYE8W9dZZXrRXNgvN7jkETMenDnuO2UH5j1EMEliuwI9RM9bkaXrVuM0kF3em1yg1WYpFIzvKjHaTXZKZEQ0_sPYmPBJHxsk8_KRegHsk1n7vqWsvP-Tz1fl5np2ts1M2335zsfQYHtGfsreGG7fI7QAWB6wAwqbLfqsOvFIUlsMyhd0X63LB-PT1tdPveTl7GrgHa752ZLL75J4Fjs4MnR6QSbV5SO6OdCkfkXpGx8SiPbFoTywKc9HfiEU1sehALGqJRS2xaFNTQyy6R6zHZDU_y94sXFuZw5WM8catYp6KSPCSS18KeIyPsNCqmkYyjgsBXizcDbkqp5UQcSkZF1z5TCaREqmSYcqekKNNvameEhonZRomSRFLFYQJZ0IqCS5rVCaRL1VVHpOw-yVzaWXrsXrKZe5bddsOgBwByC0Ax8Tru22NbstNHdIxTHmjOa4MvXN2Q9-TDtPcmoddjvHZKL7H2LM_335O7gz_sRNy1Hxvqxfg6TbFS83DX9PlqcU |
| linkProvider | Taylor & Francis |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYCBN-JRwAOrQ9PEiTNWCFSg7QQSm-U4Nu8GQTrAr-fOTlABIYZukZyzEj_uPtvn7yPkSJjMWghszAI6YHERaqZU0WHdHLB9zoVJc7w7PBwl_ev44obfTN2FwbRKXENbTxThfDVObtyMblLijrshsmiFPEDt76CLq2K83jvPAeyjikHUGX3tswCkQFYw1JgDK4ZmzUWev2r6FqK-EZj-ctguCp2tEN18v08-eQwmVR7ojx_UjrP94CpZrkEq7flRtUbmzHidLE1RF26QskdRRdudQ0A30zsz8ZzPVD3dlq_31d0zhT-iLmGRlfmDd6zUUX1SPO33e4W0VrShbxP3Dq1KeARo_E4h4vp8BeR83STXZ6dXJ31WizcwDaveiplEZIorUQgdagUrPY5anLbDdZLkCoAOlMbCFh2jVFLoSChhw0in3KrM6jiLtkhrXI7NNqFJWmRxmuaJtt04FZHSVgOq4UXKQ21NsUPipr-krpnNUWDjSYY1AWrTnhLbU9btuUOCL7MXT-3xn0E2PRhk5fZUrBdAkdE_tu1m5MjaS7xJTOFFfrYo2p2h6kOy0L8aDuTgfHS5RxaxyOUTx23Sql4nZh9QU5UfuGnxCbziCbA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLYQSAgGbsSNB1aHpokTZ0RAxVkxgMRm-aRcDaLpAL8ePztBLQgxdIvkPCvx8Q77ve9D6ICZwlpn2Ih13gFJdayIELpF2tL59pIyk0uoHb7uZmd36cU9bbIJB3VaJcTQNgBFeF0Nm_tN2yYj7rAdA4hWTCOg_o7aEBRDde9MBrdiUMXR6n4fsziPAkDBgGLOSREQa-p4_uppzEKN4Zf-0tfeCHUWkWw-P-SePEfDSkbq8wey40T_t4QWahcVH4U1tYymTH8FzY8AF66i8ggDh7a_hXCTjHtmGBCfsXh5KN8fq94rdj-EfboiKeVTUKvYA31iuOsPJ4W45rPBg6F_B1ele3SO8Qd29jZkKwDi6xq665zeHp-RmrqBKBfzVsRkrBBUMM1UrISL8ygwcdoWVVkmhXNzXGvKrG4ZITKtEiaYjROVUysKq9IiWUfT_bJvNhDOcl2keS4zZdtpzhKhrHI-DdU5jZU1ehOlzXRxVeOaA73GC49r-NNmPDmMJ6_HcxNF32JvAdjjP4FidC3wyp-o2EB_wpN_ZHeahcNrHTHgkMAL6GxJsjVB1_to9uakw6_Ou5fbaA5afDJxuoOmq_eh2XUuUyX3_Kb4AmihCFQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hierarchical+heuristic+algorithm+for+multi-objective+order+allocation+problem+subject+to+supply+uncertainties&rft.jtitle=Journal+of+industrial+and+production+engineering&rft.au=Van+Hop+Nguyen&rft.date=2023-07-04&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=2168-1015&rft.eissn=2168-1023&rft.volume=40&rft.issue=5&rft.spage=343&rft.epage=359&rft_id=info:doi/10.1080%2F21681015.2023.2200611&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-1015&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-1015&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-1015&client=summon |