A hierarchical heuristic algorithm for multi-objective order allocation problem subject to supply uncertainties

In this paper, a hierarchical heuristic algorithm is proposed to allocate order quantities to suppliers and determine the best lot sizing for each supplier. Pre-defined policies are first implemented to generate the initial order allocation to suppliers. The solutions are then modified by reducing t...

Full description

Saved in:
Bibliographic Details
Published inJournal of industrial and production engineering Vol. 40; no. 5; pp. 343 - 359
Main Author Nguyen, Van Hop
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 04.07.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN2168-1015
2168-1023
DOI10.1080/21681015.2023.2200611

Cover

Abstract In this paper, a hierarchical heuristic algorithm is proposed to allocate order quantities to suppliers and determine the best lot sizing for each supplier. Pre-defined policies are first implemented to generate the initial order allocation to suppliers. The solutions are then modified by reducing the gap of the least satisfying level to search for a compromised solution, and this process is repeated until no further improvement can be made. The fine-tuning process finally reduces the gap between the two consecutive order allocation schemes. In the second level, a dynamic programming approach is modified to determine the best lot-sizing plan and compensate for the loss of quality and late delivery. The contributions of this work are to develop not only the best order allocation plan instead of supplier selection but also effective lot sizing plan that can reduce supply uncertainties. Experiments are tested to confirm the performance of the proposed method.
AbstractList In this paper, a hierarchical heuristic algorithm is proposed to allocate order quantities to suppliers and determine the best lot sizing for each supplier. Pre-defined policies are first implemented to generate the initial order allocation to suppliers. The solutions are then modified by reducing the gap of the least satisfying level to search for a compromised solution, and this process is repeated until no further improvement can be made. The fine-tuning process finally reduces the gap between the two consecutive order allocation schemes. In the second level, a dynamic programming approach is modified to determine the best lot-sizing plan and compensate for the loss of quality and late delivery. The contributions of this work are to develop not only the best order allocation plan instead of supplier selection but also effective lot sizing plan that can reduce supply uncertainties. Experiments are tested to confirm the performance of the proposed method.
Author Nguyen, Van Hop
Author_xml – sequence: 1
  givenname: Van Hop
  surname: Nguyen
  fullname: Nguyen, Van Hop
  email: nvhop@hcmiu.edu.vn
  organization: International University, VNU-HCM
BookMark eNqFkE9PGzEQxS1EJSjlI1SyxHlT_4mNIy4gVAoSEpf2bE28duPIuw5jb6t8exwCHDiALx6N33sz_n0lh2MePSHfOZtxZtgPwbXhjKuZYELOhGBMc35Ajnf9jrfe4VvN1RE5LWXN2jFK8Pn8mOQruooeAd0qOkh05SeMpUZHIf3NGOtqoCEjHaZUY5eXa-9q_Odpxt5j06TsoMY80g3mZfIDLdOzhtbcys0mbek0Oo8V4lijL9_IlwCp-NOX-4T8ufn5-_q2u3_4dXd9dd85KU3tvDYLUGB647gDJrRinKnAlNN6CUzr9jo3oWceQPdOGjCBS3euAiyCmy_kCTnb57a9Hidfql3nCcc20gojhNKSSdlUF3uVw1wK-mBdrM__qQgxWc7sDrJ9hWx3kO0L5OZW79wbjAPg9lPf5d4Xx4Z2gP8ZU28rbFPGgDC6WKz8OOIJH2qXDA
CitedBy_id crossref_primary_10_1080_21681015_2024_2358823
crossref_primary_10_1108_K_10_2022_1493
crossref_primary_10_3390_admsci14090206
Cites_doi 10.1080/0951192X.2016.1145813
10.1016/j.ejor.2017.07.014
10.1016/j.ijpe.2019.02.003
10.1016/j.apm.2020.10.024
10.1016/j.ijpe.2020.107830
10.1007/s10479-015-2004-4
10.1016/j.fss.2019.09.016
10.4018/IJBAN.2018040103
10.1016/j.ijpe.2004.06.022
10.1016/j.tre.2016.09.005
10.1016/j.cie.2022.108825
10.1016/j.apm.2019.06.001
10.1016/j.cie.2018.11.017
10.1016/j.apm.2017.11.020
10.1016/j.ijpe.2019.03.018
10.1016/j.cie.2018.02.041
10.1016/j.ijpe.2020.108007
10.1016/j.jclepro.2018.04.131
10.1016/j.jclepro.2018.12.315
10.1080/00207543.2017.1400706
10.1016/j.jclepro.2020.122597
10.1002/joom.1113
10.1016/j.cie.2020.106267
10.1016/j.jclepro.2017.11.012
10.1016/j.jclepro.2018.02.211
10.1016/j.samod.2022.100008
10.1007/s40092-019-00334-y
10.1016/j.cie.2017.03.028
10.1016/j.cie.2018.05.042
10.1016/j.eswa.2017.09.041
ContentType Journal Article
Copyright 2023 Chinese Institute of Industrial Engineers 2020
2023 Chinese Institute of Industrial Engineers
Copyright_xml – notice: 2023 Chinese Institute of Industrial Engineers 2020
– notice: 2023 Chinese Institute of Industrial Engineers
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1080/21681015.2023.2200611
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-1023
EndPage 359
ExternalDocumentID 10_1080_21681015_2023_2200611
2200611
Genre Research Article
GroupedDBID .QJ
0BK
0R~
30N
4.4
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABDBF
ABFIM
ABLIJ
ABPAQ
ABPEM
ABXUL
ABXYU
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADMLS
AEISY
AEOZL
AEPSL
AEYOC
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
BLEHA
CCCUG
DGEBU
DKSSO
EBS
ESX
E~A
E~B
H13
IPNFZ
KYCEM
LJTGL
M4Z
MK~
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
TUS
UT5
ZGOLN
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-e689a5a8d8c1ca02650105f05c66ba0669a548fd0eaa6dc38a8f13c75fa9fc493
ISSN 2168-1015
IngestDate Wed Aug 13 04:22:28 EDT 2025
Wed Oct 01 03:40:34 EDT 2025
Thu Apr 24 22:57:32 EDT 2025
Mon Oct 20 23:45:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-e689a5a8d8c1ca02650105f05c66ba0669a548fd0eaa6dc38a8f13c75fa9fc493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2822563033
PQPubID 436410
PageCount 17
ParticipantIDs proquest_journals_2822563033
crossref_citationtrail_10_1080_21681015_2023_2200611
informaworld_taylorfrancis_310_1080_21681015_2023_2200611
crossref_primary_10_1080_21681015_2023_2200611
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-04
PublicationDateYYYYMMDD 2023-07-04
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-04
  day: 04
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of industrial and production engineering
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References cit0011
cit0033
cit0012
Moheb-Alizadeh H (cit0015) 2017; 56
cit0031
cit0010
cit0030
cit0019
cit0017
cit0018
cit0016
cit0013
cit0014
cit0022
cit0001
cit0023
cit0020
Ahmad MT (cit0021) 2022; 171
cit0008
cit0009
cit0006
cit0028
cit0007
cit0029
cit0004
cit0026
cit0005
cit0027
cit0002
cit0024
cit0003
cit0025
Pasquale VD (cit0032) 2023; 136476
References_xml – ident: cit0006
  doi: 10.1080/0951192X.2016.1145813
– ident: cit0022
  doi: 10.1016/j.ejor.2017.07.014
– ident: cit0003
  doi: 10.1016/j.ijpe.2019.02.003
– ident: cit0001
  doi: 10.1016/j.apm.2020.10.024
– ident: cit0013
  doi: 10.1016/j.ijpe.2020.107830
– ident: cit0020
  doi: 10.1007/s10479-015-2004-4
– ident: cit0023
  doi: 10.1016/j.fss.2019.09.016
– ident: cit0011
  doi: 10.4018/IJBAN.2018040103
– ident: cit0025
  doi: 10.1016/j.ijpe.2004.06.022
– ident: cit0030
  doi: 10.1016/j.tre.2016.09.005
– ident: cit0029
  doi: 10.1016/j.cie.2022.108825
– ident: cit0016
  doi: 10.1016/j.apm.2019.06.001
– ident: cit0007
  doi: 10.1016/j.cie.2018.11.017
– ident: cit0033
  doi: 10.1016/j.apm.2017.11.020
– ident: cit0028
  doi: 10.1016/j.ijpe.2019.03.018
– ident: cit0002
  doi: 10.1016/j.cie.2018.02.041
– ident: cit0017
  doi: 10.1016/j.ijpe.2020.108007
– ident: cit0004
  doi: 10.1016/j.jclepro.2018.04.131
– ident: cit0008
  doi: 10.1016/j.jclepro.2018.12.315
– ident: cit0010
  doi: 10.1080/00207543.2017.1400706
– ident: cit0018
  doi: 10.1016/j.jclepro.2020.122597
– ident: cit0019
  doi: 10.1002/joom.1113
– volume: 171
  start-page: 1
  issue: 108394
  year: 2022
  ident: cit0021
  publication-title: Comput Ind Eng
– ident: cit0024
  doi: 10.1016/j.cie.2020.106267
– ident: cit0009
  doi: 10.1016/j.jclepro.2017.11.012
– ident: cit0012
  doi: 10.1016/j.jclepro.2018.02.211
– ident: cit0031
  doi: 10.1016/j.samod.2022.100008
– ident: cit0026
  doi: 10.1007/s40092-019-00334-y
– ident: cit0027
  doi: 10.1016/j.cie.2017.03.028
– volume: 136476
  start-page: 1
  year: 2023
  ident: cit0032
  publication-title: J Clean Prod
– volume: 56
  start-page: 6890
  issue: 21
  year: 2017
  ident: cit0015
  publication-title: Int J P Res
– ident: cit0014
  doi: 10.1016/j.cie.2018.05.042
– ident: cit0005
  doi: 10.1016/j.eswa.2017.09.041
SSID ssj0000852144
Score 2.2966313
Snippet In this paper, a hierarchical heuristic algorithm is proposed to allocate order quantities to suppliers and determine the best lot sizing for each supplier....
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 343
SubjectTerms Algorithms
Component and supplier management
defective quantity
Dynamic programming
Heuristic methods
late delivery
Lot sizing
Order allocation
Uncertainty
Title A hierarchical heuristic algorithm for multi-objective order allocation problem subject to supply uncertainties
URI https://www.tandfonline.com/doi/abs/10.1080/21681015.2023.2200611
https://www.proquest.com/docview/2822563033
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2168-1023
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0000852144
  issn: 2168-1015
  databaseCode: ABDBF
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2168-1023
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0000852144
  issn: 2168-1015
  databaseCode: ADMLS
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 2168-1023
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852144
  issn: 2168-1015
  databaseCode: AHDZW
  dateStart: 20130101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 2168-1023
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000852144
  issn: 2168-1015
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoED4ikWFuQDe4oSmjgP51jBVhVayiVFvUWOEy-gpSk0OSx3_jcztvMoXbHAJaqc2m77fR1P7JlvCHnFq1QpWNhcBd6BG5a-dIUop25QgG9fRLxKCswdfr-MF6vw3TpaTyY_R1FLbVN48se1eSX_gyq0Aa6YJfsPyPaDQgO8BnzhCgjD9a8wnjlYyVqfBUid09ga3WVHXF7U8NT_6auOItRBg25dfDHGzdFymw6euJv9OsdWlXF2rX4P-qM7rPZ55cCqZ2IGmi7Y8NCR_TxU_zCqA1pDFsetBrHDDtiPYE8W9dZZXrRXNgvN7jkETMenDnuO2UH5j1EMEliuwI9RM9bkaXrVuM0kF3em1yg1WYpFIzvKjHaTXZKZEQ0_sPYmPBJHxsk8_KRegHsk1n7vqWsvP-Tz1fl5np2ts1M2335zsfQYHtGfsreGG7fI7QAWB6wAwqbLfqsOvFIUlsMyhd0X63LB-PT1tdPveTl7GrgHa752ZLL75J4Fjs4MnR6QSbV5SO6OdCkfkXpGx8SiPbFoTywKc9HfiEU1sehALGqJRS2xaFNTQyy6R6zHZDU_y94sXFuZw5WM8catYp6KSPCSS18KeIyPsNCqmkYyjgsBXizcDbkqp5UQcSkZF1z5TCaREqmSYcqekKNNvameEhonZRomSRFLFYQJZ0IqCS5rVCaRL1VVHpOw-yVzaWXrsXrKZe5bddsOgBwByC0Ax8Tru22NbstNHdIxTHmjOa4MvXN2Q9-TDtPcmoddjvHZKL7H2LM_335O7gz_sRNy1Hxvqxfg6TbFS83DX9PlqcU
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQGYCBN-JRwAOrQ9PEiTNWCFSg7QQSm-U4Nu8GQTrAr-fOTlABIYZukZyzEj_uPtvn7yPkSJjMWghszAI6YHERaqZU0WHdHLB9zoVJc7w7PBwl_ev44obfTN2FwbRKXENbTxThfDVObtyMblLijrshsmiFPEDt76CLq2K83jvPAeyjikHUGX3tswCkQFYw1JgDK4ZmzUWev2r6FqK-EZj-ctguCp2tEN18v08-eQwmVR7ojx_UjrP94CpZrkEq7flRtUbmzHidLE1RF26QskdRRdudQ0A30zsz8ZzPVD3dlq_31d0zhT-iLmGRlfmDd6zUUX1SPO33e4W0VrShbxP3Dq1KeARo_E4h4vp8BeR83STXZ6dXJ31WizcwDaveiplEZIorUQgdagUrPY5anLbDdZLkCoAOlMbCFh2jVFLoSChhw0in3KrM6jiLtkhrXI7NNqFJWmRxmuaJtt04FZHSVgOq4UXKQ21NsUPipr-krpnNUWDjSYY1AWrTnhLbU9btuUOCL7MXT-3xn0E2PRhk5fZUrBdAkdE_tu1m5MjaS7xJTOFFfrYo2p2h6kOy0L8aDuTgfHS5RxaxyOUTx23Sql4nZh9QU5UfuGnxCbziCbA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLYQSAgGbsSNB1aHpokTZ0RAxVkxgMRm-aRcDaLpAL8ePztBLQgxdIvkPCvx8Q77ve9D6ICZwlpn2Ih13gFJdayIELpF2tL59pIyk0uoHb7uZmd36cU9bbIJB3VaJcTQNgBFeF0Nm_tN2yYj7rAdA4hWTCOg_o7aEBRDde9MBrdiUMXR6n4fsziPAkDBgGLOSREQa-p4_uppzEKN4Zf-0tfeCHUWkWw-P-SePEfDSkbq8wey40T_t4QWahcVH4U1tYymTH8FzY8AF66i8ggDh7a_hXCTjHtmGBCfsXh5KN8fq94rdj-EfboiKeVTUKvYA31iuOsPJ4W45rPBg6F_B1ele3SO8Qd29jZkKwDi6xq665zeHp-RmrqBKBfzVsRkrBBUMM1UrISL8ygwcdoWVVkmhXNzXGvKrG4ZITKtEiaYjROVUysKq9IiWUfT_bJvNhDOcl2keS4zZdtpzhKhrHI-DdU5jZU1ehOlzXRxVeOaA73GC49r-NNmPDmMJ6_HcxNF32JvAdjjP4FidC3wyp-o2EB_wpN_ZHeahcNrHTHgkMAL6GxJsjVB1_to9uakw6_Ou5fbaA5afDJxuoOmq_eh2XUuUyX3_Kb4AmihCFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hierarchical+heuristic+algorithm+for+multi-objective+order+allocation+problem+subject+to+supply+uncertainties&rft.jtitle=Journal+of+industrial+and+production+engineering&rft.au=Van+Hop+Nguyen&rft.date=2023-07-04&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=2168-1015&rft.eissn=2168-1023&rft.volume=40&rft.issue=5&rft.spage=343&rft.epage=359&rft_id=info:doi/10.1080%2F21681015.2023.2200611&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-1015&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-1015&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-1015&client=summon