Inexact SARAH algorithm for stochastic optimization
We develop and analyse a variant of the SARAH algorithm, which does not require computation of the exact gradient. Thus this new method can be applied to general expectation minimization problems rather than only finite sum problems. While the original SARAH algorithm, as well as its predecessor, SV...
Saved in:
| Published in | Optimization methods & software Vol. 36; no. 1; pp. 237 - 258 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Abingdon
Taylor & Francis
02.01.2021
Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1055-6788 1029-4937 |
| DOI | 10.1080/10556788.2020.1818081 |
Cover
| Abstract | We develop and analyse a variant of the SARAH algorithm, which does not require computation of the exact gradient. Thus this new method can be applied to general expectation minimization problems rather than only finite sum problems. While the original SARAH algorithm, as well as its predecessor, SVRG, requires an exact gradient computation on each outer iteration, the inexact variant of SARAH (iSARAH), which we develop here, requires only stochastic gradient computed on a mini-batch of sufficient size. The proposed method combines variance reduction via sample size selection and iterative stochastic gradient updates. We analyse the convergence rate of the algorithms for strongly convex and non-strongly convex cases, under smooth assumption with appropriate mini-batch size selected for each case. We show that with an additional, reasonable, assumption iSARAH achieves the best-known complexity among stochastic methods in the case of non-strongly convex stochastic functions. |
|---|---|
| AbstractList | We develop and analyse a variant of the SARAH algorithm, which does not require computation of the exact gradient. Thus this new method can be applied to general expectation minimization problems rather than only finite sum problems. While the original SARAH algorithm, as well as its predecessor, SVRG, requires an exact gradient computation on each outer iteration, the inexact variant of SARAH (iSARAH), which we develop here, requires only stochastic gradient computed on a mini-batch of sufficient size. The proposed method combines variance reduction via sample size selection and iterative stochastic gradient updates. We analyse the convergence rate of the algorithms for strongly convex and non-strongly convex cases, under smooth assumption with appropriate mini-batch size selected for each case. We show that with an additional, reasonable, assumption iSARAH achieves the best-known complexity among stochastic methods in the case of non-strongly convex stochastic functions. |
| Author | Nguyen, Lam M. Scheinberg, Katya Takáč, Martin |
| Author_xml | – sequence: 1 givenname: Lam M. orcidid: 0000-0001-6083-606X surname: Nguyen fullname: Nguyen, Lam M. email: LamNguyen.MLTD@ibm.com organization: IBM Research, Thomas J. Watson Research Center – sequence: 2 givenname: Katya orcidid: 0000-0003-3547-1841 surname: Scheinberg fullname: Scheinberg, Katya organization: School of Operations Research and Information Engineering, Cornell University – sequence: 3 givenname: Martin orcidid: 0000-0001-7455-2025 surname: Takáč fullname: Takáč, Martin organization: Department of Industrial and Systems Engineering, Lehigh University |
| BookMark | eNqFkE1LAzEQhoMo2FZ_grDgeevkazeLF0tRWygIfpxDms3alN1NTVK0_np3bb140NMMw_vMDM8QHbeuNQhdYBhjEHCFgfMsF2JMgHQjgQUIfIQGGEiRsoLmx33PedqHTtEwhDUAMMyyAaLz1nwoHZOnyeNklqj61XkbV01SOZ-E6PRKhWh14jbRNvZTRevaM3RSqTqY80MdoZe72-fpLF083M-nk0WqKRUxNTzjhOamKBUtcIFLymlZECJoDqXIBOSMKyAsA5rhHHNhmOECONElLJdqSUfocr93493b1oQo127r2-6kJCwXLCsoIV3qep_S3oXgTSW1jd9_Rq9sLTHI3pL8sSR7S_JgqaP5L3rjbaP87l_uZs_ZtjPVqHfn61JGtaudr7xqtQ2S_r3iC2oHfWw |
| CitedBy_id | crossref_primary_10_1007_s10589_022_00375_x crossref_primary_10_1137_20M1361158 crossref_primary_10_1109_TAC_2022_3159748 crossref_primary_10_1186_s13660_023_02922_4 crossref_primary_10_1007_s10107_020_01583_1 crossref_primary_10_1007_s00521_021_06348_1 crossref_primary_10_1007_s11071_022_07987_2 crossref_primary_10_32604_cmes_2022_019069 crossref_primary_10_1007_s13042_024_02524_6 crossref_primary_10_1007_s11590_023_02081_x crossref_primary_10_1016_j_eswa_2023_121556 crossref_primary_10_1016_j_eswa_2022_117719 crossref_primary_10_1007_s10957_022_02157_1 |
| Cites_doi | 10.1007/978-1-4419-8853-9 10.1016/0041-5553(64)90137-5 10.1007/s10107-016-1030-6 10.1007/978-3-319-46128-1_50 10.1007/s10107-006-0706-8 |
| ContentType | Journal Article |
| Copyright | 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 2020 Informa UK Limited, trading as Taylor & Francis Group |
| Copyright_xml | – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020 – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1080/10556788.2020.1818081 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1029-4937 |
| EndPage | 258 |
| ExternalDocumentID | 10_1080_10556788_2020_1818081 1818081 |
| Genre | Research Article |
| GroupedDBID | .4S .7F .DC .QJ 0BK 0R~ 123 29N 30N 4.4 AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ACUHS ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EMK EPL EST ESX E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEJ TFL TFT TFW TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c338t-e565237e9da39191d353d9228370d8680745a024603617158e4e58052cd0bbab3 |
| ISSN | 1055-6788 |
| IngestDate | Wed Aug 13 06:22:24 EDT 2025 Wed Oct 01 02:03:33 EDT 2025 Thu Apr 24 23:02:11 EDT 2025 Mon Oct 20 23:48:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c338t-e565237e9da39191d353d9228370d8680745a024603617158e4e58052cd0bbab3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7455-2025 0000-0001-6083-606X 0000-0003-3547-1841 |
| PQID | 2478469322 |
| PQPubID | 186278 |
| PageCount | 22 |
| ParticipantIDs | crossref_citationtrail_10_1080_10556788_2020_1818081 crossref_primary_10_1080_10556788_2020_1818081 informaworld_taylorfrancis_310_1080_10556788_2020_1818081 proquest_journals_2478469322 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-02 |
| PublicationDateYYYYMMDD | 2021-01-02 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | Optimization methods & software |
| PublicationYear | 2021 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | CIT0010 CIT0001 CIT0012 CIT0011 CIT0003 CIT0014 CIT0002 CIT0013 CIT0005 CIT0016 CIT0004 CIT0015 CIT0007 CIT0018 CIT0006 CIT0017 CIT0009 CIT0008 CIT0019 |
| References_xml | – ident: CIT0009 doi: 10.1007/978-1-4419-8853-9 – ident: CIT0015 – ident: CIT0016 – ident: CIT0011 – ident: CIT0014 – ident: CIT0012 – ident: CIT0013 – ident: CIT0017 doi: 10.1016/0041-5553(64)90137-5 – ident: CIT0008 – ident: CIT0003 – ident: CIT0018 doi: 10.1007/s10107-016-1030-6 – ident: CIT0006 – ident: CIT0001 – ident: CIT0002 – ident: CIT0004 doi: 10.1007/978-3-319-46128-1_50 – ident: CIT0007 – ident: CIT0005 – ident: CIT0019 – ident: CIT0010 doi: 10.1007/s10107-006-0706-8 |
| SSID | ssj0004146 |
| Score | 2.4519649 |
| Snippet | We develop and analyse a variant of the SARAH algorithm, which does not require computation of the exact gradient. Thus this new method can be applied to... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 237 |
| SubjectTerms | Algorithms Computation Iterative methods Optimization smooth convex Stochastic gradient algorithms stochastic optimization variance reduction |
| Title | Inexact SARAH algorithm for stochastic optimization |
| URI | https://www.tandfonline.com/doi/abs/10.1080/10556788.2020.1818081 https://www.proquest.com/docview/2478469322 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1029-4937 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0004146 issn: 1055-6788 databaseCode: ABDBF dateStart: 20020201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1029-4937 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0004146 issn: 1055-6788 databaseCode: AMVHM dateStart: 19920101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1029-4937 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004146 issn: 1055-6788 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1029-4937 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004146 issn: 1055-6788 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AKHqrxES0E-0FPlYO-uvfYxIo0ChFQCR0RcVuv10qI2SUtcteXXM_vwI0pFgYsVbeKsPPN5dsbe7xuE3jBGUlEkypc4lj6NA-HngBw_F7DWSKxUIDQb-dMkHk3ph1k063Su2-ySMu_JX3fySv7HqzAGftUs2X_wbP2nMACfwb9wBA_D8a98_H6hbjTH8Uv_c390KM5PllDqn87N1kFI6uSp0CrMh0sIC3PHt2wno8etcddKemWgsILYfC2abbGTk6tbG57GYt7qQAwO_1FvEPsoyts6xmfizLyCD02yOnCsoErm2z1lwKF5ytDUpNlGw4_WriMdN4NIcxhsh76ecmNYN7Czmi5VsLVqJ2ugcpHT_c4uwtjquW_Ed7sh0jT1hMmgvMcwqOnqtu_Lup725JgPp-Mxz45m2QEZXlz6utmYfil_QAYWDQ_QFoblIOiirf5o8O1rQ6l1xLTquiryVxK8vXP2tbRmTfR2Y5E3mUu2g7ZdyeH1LX4eo45aPEGPWkKUTxFxSPIMkrwaSR5M4DVI8tpIeoamw6Ps3ch37TR8SUhS-gpyd7CySgtBUijTCxKRIrXyR0USa1WkSEDKFkNSE7IwShRVke54IYsgz0VOnqPuYrlQL5AnIZLTFJI7BtVDwSQU7USwgrJcUhpFbBfRyhpcOq153fLknIdOkrYyItdG5M6Iu6hXn3ZhxVbuOyFtm5qXBqbfLUI5uefc_cov3N3TK44pg4Qcahq89-evX6KHzW2yj7rlzyv1CtLTMn_toPQbMcCFDQ |
| linkProvider | Library Specific Holdings |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4MHtSDbyOKugevxWXbbtkjMZJFgYNCwq3ptkWMsBhcEuOvd7oPBY3hwHWTabbTx3zTzPcNQteck0DqusHK8xWmvitxBDsHRxJijfKMcaVlI3e6ftin9wM2WODC2LJKm0MPM6GI9K62h9s-RhclcTdpU0fI3SC98-CTpStb9vUmA7BvuxgQt_vDjcwZRmCCrU3B4vlvmKX4tKRe-ue2TkNQcw-p4uezypPX6jyJqurzl67jerPbR7s5QnUa2ZY6QBsmPkQ7C7qFR4i0YvMhVeI8NR4boSPHz9PZSzKaODANB9CkGkkr_-xM4T6a5ETPY9Rv3vVuQ5x3X8AK0tYEG4B6HuEm0JIEkNVpwogOMrUcXfetiA6TEOF9iIE1XmN1Qw2zDRKUdqNIRuQEleJpbE6Ro-Dg0wCwAAewqbmCHI9IrimPFKWM8TKihc-FyqXJbYeMsajlCqaFT4T1ich9UkbVb7O3TJtjlUGwuKAiSR9FhlkHE0FW2FaK1Rf5MX8XHuWA3wACe2drDH2FtsJepy3are7DOdr2bNWMfeTxKqiUzObmAmBPEl2m-_oLE13u_w |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YTIwefBtR1B68LkJ326VHohLwQYxK4m2zL8QIhUBJjL_e2XaroDEcuDaZpjv7mG-2832D0DljJBK6ZrDyQ4VpWBFYwsrBUkCsUb4xFWHZyPftsNmhNy9BXk04cWWVNofuZkIR6VltN_dId_OKuIu0pyOkbpDd-fDIspUt-Xo1tH_FLIuj0v6hRjqCEZhga5OTeP57zVx4mhMv_XNYpxGosYVk_u1Z4cl7eZrIsvr8Jeu41OC20abDp149W1A7aMXEu2hjRrVwD5FWbD6ESryn-mO96Yn-63D8lvQGHozCAyypesKKP3tDOI0Gjua5jzqN6-fLJna9F7CCpDXBBoCeT5iJtCAR5HSaBERHmVaOroVWQicQEN_B54CBqkHNUBPY9ghKV6QUkhygQjyMzSHyFGx7GgESYAA1NVOQ4RHBNGVSURoErIho7nKunDC57Y_R51WnX5r7hFufcOeTIip_m40yZY5FBtHsfPIkvRLpZv1LOFlgW8onn7tNPuE-ZYDeAAD7R0u8-gytPVw1-F2rfXuM1n1bMmNvePwSKiTjqTkBzJPI03RVfwEX7u2j |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inexact+SARAH+algorithm+for+stochastic+optimization&rft.jtitle=Optimization+methods+%26+software&rft.au=Nguyen%2C+Lam+M&rft.au=Scheinberg%2C+Katya&rft.au=Tak%C3%A1%C4%8D%2C+Martin&rft.date=2021-01-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=36&rft.issue=1&rft.spage=237&rft.epage=258&rft_id=info:doi/10.1080%2F10556788.2020.1818081&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon |