Inexact SARAH algorithm for stochastic optimization

We develop and analyse a variant of the SARAH algorithm, which does not require computation of the exact gradient. Thus this new method can be applied to general expectation minimization problems rather than only finite sum problems. While the original SARAH algorithm, as well as its predecessor, SV...

Full description

Saved in:
Bibliographic Details
Published inOptimization methods & software Vol. 36; no. 1; pp. 237 - 258
Main Authors Nguyen, Lam M., Scheinberg, Katya, Takáč, Martin
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.01.2021
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1055-6788
1029-4937
DOI10.1080/10556788.2020.1818081

Cover

Abstract We develop and analyse a variant of the SARAH algorithm, which does not require computation of the exact gradient. Thus this new method can be applied to general expectation minimization problems rather than only finite sum problems. While the original SARAH algorithm, as well as its predecessor, SVRG, requires an exact gradient computation on each outer iteration, the inexact variant of SARAH (iSARAH), which we develop here, requires only stochastic gradient computed on a mini-batch of sufficient size. The proposed method combines variance reduction via sample size selection and iterative stochastic gradient updates. We analyse the convergence rate of the algorithms for strongly convex and non-strongly convex cases, under smooth assumption with appropriate mini-batch size selected for each case. We show that with an additional, reasonable, assumption iSARAH achieves the best-known complexity among stochastic methods in the case of non-strongly convex stochastic functions.
AbstractList We develop and analyse a variant of the SARAH algorithm, which does not require computation of the exact gradient. Thus this new method can be applied to general expectation minimization problems rather than only finite sum problems. While the original SARAH algorithm, as well as its predecessor, SVRG, requires an exact gradient computation on each outer iteration, the inexact variant of SARAH (iSARAH), which we develop here, requires only stochastic gradient computed on a mini-batch of sufficient size. The proposed method combines variance reduction via sample size selection and iterative stochastic gradient updates. We analyse the convergence rate of the algorithms for strongly convex and non-strongly convex cases, under smooth assumption with appropriate mini-batch size selected for each case. We show that with an additional, reasonable, assumption iSARAH achieves the best-known complexity among stochastic methods in the case of non-strongly convex stochastic functions.
Author Nguyen, Lam M.
Scheinberg, Katya
Takáč, Martin
Author_xml – sequence: 1
  givenname: Lam M.
  orcidid: 0000-0001-6083-606X
  surname: Nguyen
  fullname: Nguyen, Lam M.
  email: LamNguyen.MLTD@ibm.com
  organization: IBM Research, Thomas J. Watson Research Center
– sequence: 2
  givenname: Katya
  orcidid: 0000-0003-3547-1841
  surname: Scheinberg
  fullname: Scheinberg, Katya
  organization: School of Operations Research and Information Engineering, Cornell University
– sequence: 3
  givenname: Martin
  orcidid: 0000-0001-7455-2025
  surname: Takáč
  fullname: Takáč, Martin
  organization: Department of Industrial and Systems Engineering, Lehigh University
BookMark eNqFkE1LAzEQhoMo2FZ_grDgeevkazeLF0tRWygIfpxDms3alN1NTVK0_np3bb140NMMw_vMDM8QHbeuNQhdYBhjEHCFgfMsF2JMgHQjgQUIfIQGGEiRsoLmx33PedqHTtEwhDUAMMyyAaLz1nwoHZOnyeNklqj61XkbV01SOZ-E6PRKhWh14jbRNvZTRevaM3RSqTqY80MdoZe72-fpLF083M-nk0WqKRUxNTzjhOamKBUtcIFLymlZECJoDqXIBOSMKyAsA5rhHHNhmOECONElLJdqSUfocr93493b1oQo127r2-6kJCwXLCsoIV3qep_S3oXgTSW1jd9_Rq9sLTHI3pL8sSR7S_JgqaP5L3rjbaP87l_uZs_ZtjPVqHfn61JGtaudr7xqtQ2S_r3iC2oHfWw
CitedBy_id crossref_primary_10_1007_s10589_022_00375_x
crossref_primary_10_1137_20M1361158
crossref_primary_10_1109_TAC_2022_3159748
crossref_primary_10_1186_s13660_023_02922_4
crossref_primary_10_1007_s10107_020_01583_1
crossref_primary_10_1007_s00521_021_06348_1
crossref_primary_10_1007_s11071_022_07987_2
crossref_primary_10_32604_cmes_2022_019069
crossref_primary_10_1007_s13042_024_02524_6
crossref_primary_10_1007_s11590_023_02081_x
crossref_primary_10_1016_j_eswa_2023_121556
crossref_primary_10_1016_j_eswa_2022_117719
crossref_primary_10_1007_s10957_022_02157_1
Cites_doi 10.1007/978-1-4419-8853-9
10.1016/0041-5553(64)90137-5
10.1007/s10107-016-1030-6
10.1007/978-3-319-46128-1_50
10.1007/s10107-006-0706-8
ContentType Journal Article
Copyright 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
2020 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2020 Informa UK Limited, trading as Taylor & Francis Group 2020
– notice: 2020 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/10556788.2020.1818081
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4937
EndPage 258
ExternalDocumentID 10_1080_10556788_2020_1818081
1818081
Genre Research Article
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
123
29N
30N
4.4
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ACUHS
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-e565237e9da39191d353d9228370d8680745a024603617158e4e58052cd0bbab3
ISSN 1055-6788
IngestDate Wed Aug 13 06:22:24 EDT 2025
Wed Oct 01 02:03:33 EDT 2025
Thu Apr 24 23:02:11 EDT 2025
Mon Oct 20 23:48:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-e565237e9da39191d353d9228370d8680745a024603617158e4e58052cd0bbab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7455-2025
0000-0001-6083-606X
0000-0003-3547-1841
PQID 2478469322
PQPubID 186278
PageCount 22
ParticipantIDs crossref_citationtrail_10_1080_10556788_2020_1818081
crossref_primary_10_1080_10556788_2020_1818081
informaworld_taylorfrancis_310_1080_10556788_2020_1818081
proquest_journals_2478469322
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-02
PublicationDateYYYYMMDD 2021-01-02
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Optimization methods & software
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0001
CIT0012
CIT0011
CIT0003
CIT0014
CIT0002
CIT0013
CIT0005
CIT0016
CIT0004
CIT0015
CIT0007
CIT0018
CIT0006
CIT0017
CIT0009
CIT0008
CIT0019
References_xml – ident: CIT0009
  doi: 10.1007/978-1-4419-8853-9
– ident: CIT0015
– ident: CIT0016
– ident: CIT0011
– ident: CIT0014
– ident: CIT0012
– ident: CIT0013
– ident: CIT0017
  doi: 10.1016/0041-5553(64)90137-5
– ident: CIT0008
– ident: CIT0003
– ident: CIT0018
  doi: 10.1007/s10107-016-1030-6
– ident: CIT0006
– ident: CIT0001
– ident: CIT0002
– ident: CIT0004
  doi: 10.1007/978-3-319-46128-1_50
– ident: CIT0007
– ident: CIT0005
– ident: CIT0019
– ident: CIT0010
  doi: 10.1007/s10107-006-0706-8
SSID ssj0004146
Score 2.4519649
Snippet We develop and analyse a variant of the SARAH algorithm, which does not require computation of the exact gradient. Thus this new method can be applied to...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 237
SubjectTerms Algorithms
Computation
Iterative methods
Optimization
smooth convex
Stochastic gradient algorithms
stochastic optimization
variance reduction
Title Inexact SARAH algorithm for stochastic optimization
URI https://www.tandfonline.com/doi/abs/10.1080/10556788.2020.1818081
https://www.proquest.com/docview/2478469322
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1029-4937
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0004146
  issn: 1055-6788
  databaseCode: ABDBF
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1029-4937
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0004146
  issn: 1055-6788
  databaseCode: AMVHM
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1029-4937
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004146
  issn: 1055-6788
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1029-4937
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004146
  issn: 1055-6788
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AKHqrxES0E-0FPlYO-uvfYxIo0ChFQCR0RcVuv10qI2SUtcteXXM_vwI0pFgYsVbeKsPPN5dsbe7xuE3jBGUlEkypc4lj6NA-HngBw_F7DWSKxUIDQb-dMkHk3ph1k063Su2-ySMu_JX3fySv7HqzAGftUs2X_wbP2nMACfwb9wBA_D8a98_H6hbjTH8Uv_c390KM5PllDqn87N1kFI6uSp0CrMh0sIC3PHt2wno8etcddKemWgsILYfC2abbGTk6tbG57GYt7qQAwO_1FvEPsoyts6xmfizLyCD02yOnCsoErm2z1lwKF5ytDUpNlGw4_WriMdN4NIcxhsh76ecmNYN7Czmi5VsLVqJ2ugcpHT_c4uwtjquW_Ed7sh0jT1hMmgvMcwqOnqtu_Lup725JgPp-Mxz45m2QEZXlz6utmYfil_QAYWDQ_QFoblIOiirf5o8O1rQ6l1xLTquiryVxK8vXP2tbRmTfR2Y5E3mUu2g7ZdyeH1LX4eo45aPEGPWkKUTxFxSPIMkrwaSR5M4DVI8tpIeoamw6Ps3ch37TR8SUhS-gpyd7CySgtBUijTCxKRIrXyR0USa1WkSEDKFkNSE7IwShRVke54IYsgz0VOnqPuYrlQL5AnIZLTFJI7BtVDwSQU7USwgrJcUhpFbBfRyhpcOq153fLknIdOkrYyItdG5M6Iu6hXn3ZhxVbuOyFtm5qXBqbfLUI5uefc_cov3N3TK44pg4Qcahq89-evX6KHzW2yj7rlzyv1CtLTMn_toPQbMcCFDQ
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4MHtSDbyOKugevxWXbbtkjMZJFgYNCwq3ptkWMsBhcEuOvd7oPBY3hwHWTabbTx3zTzPcNQteck0DqusHK8xWmvitxBDsHRxJijfKMcaVlI3e6ftin9wM2WODC2LJKm0MPM6GI9K62h9s-RhclcTdpU0fI3SC98-CTpStb9vUmA7BvuxgQt_vDjcwZRmCCrU3B4vlvmKX4tKRe-ue2TkNQcw-p4uezypPX6jyJqurzl67jerPbR7s5QnUa2ZY6QBsmPkQ7C7qFR4i0YvMhVeI8NR4boSPHz9PZSzKaODANB9CkGkkr_-xM4T6a5ETPY9Rv3vVuQ5x3X8AK0tYEG4B6HuEm0JIEkNVpwogOMrUcXfetiA6TEOF9iIE1XmN1Qw2zDRKUdqNIRuQEleJpbE6Ro-Dg0wCwAAewqbmCHI9IrimPFKWM8TKihc-FyqXJbYeMsajlCqaFT4T1ich9UkbVb7O3TJtjlUGwuKAiSR9FhlkHE0FW2FaK1Rf5MX8XHuWA3wACe2drDH2FtsJepy3are7DOdr2bNWMfeTxKqiUzObmAmBPEl2m-_oLE13u_w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YTIwefBtR1B68LkJ326VHohLwQYxK4m2zL8QIhUBJjL_e2XaroDEcuDaZpjv7mG-2832D0DljJBK6ZrDyQ4VpWBFYwsrBUkCsUb4xFWHZyPftsNmhNy9BXk04cWWVNofuZkIR6VltN_dId_OKuIu0pyOkbpDd-fDIspUt-Xo1tH_FLIuj0v6hRjqCEZhga5OTeP57zVx4mhMv_XNYpxGosYVk_u1Z4cl7eZrIsvr8Jeu41OC20abDp149W1A7aMXEu2hjRrVwD5FWbD6ESryn-mO96Yn-63D8lvQGHozCAyypesKKP3tDOI0Gjua5jzqN6-fLJna9F7CCpDXBBoCeT5iJtCAR5HSaBERHmVaOroVWQicQEN_B54CBqkHNUBPY9ghKV6QUkhygQjyMzSHyFGx7GgESYAA1NVOQ4RHBNGVSURoErIho7nKunDC57Y_R51WnX5r7hFufcOeTIip_m40yZY5FBtHsfPIkvRLpZv1LOFlgW8onn7tNPuE-ZYDeAAD7R0u8-gytPVw1-F2rfXuM1n1bMmNvePwSKiTjqTkBzJPI03RVfwEX7u2j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inexact+SARAH+algorithm+for+stochastic+optimization&rft.jtitle=Optimization+methods+%26+software&rft.au=Nguyen%2C+Lam+M&rft.au=Scheinberg%2C+Katya&rft.au=Tak%C3%A1%C4%8D%2C+Martin&rft.date=2021-01-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=36&rft.issue=1&rft.spage=237&rft.epage=258&rft_id=info:doi/10.1080%2F10556788.2020.1818081&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon