Covariate-Dependent Clustering of Undirected Networks with Brain-Imaging Data

This article focuses on model-based clustering of subjects based on the shared relationships of subject-specific networks and covariates in scenarios when there are differences in the relationship between networks and covariates for different groups of subjects. It is also of interest to identify th...

Full description

Saved in:
Bibliographic Details
Published inTechnometrics Vol. 66; no. 3; pp. 422 - 437
Main Authors Guha, Sharmistha, Guhaniyogi, Rajarshi
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 02.07.2024
American Society for Quality
Subjects
Online AccessGet full text
ISSN0040-1706
1537-2723
DOI10.1080/00401706.2024.2321930

Cover

Abstract This article focuses on model-based clustering of subjects based on the shared relationships of subject-specific networks and covariates in scenarios when there are differences in the relationship between networks and covariates for different groups of subjects. It is also of interest to identify the network nodes significantly associated with each covariate in each cluster of subjects. To address these methodological questions, we propose a novel nonparametric Bayesian mixture modeling framework with an undirected network response and scalar predictors. The symmetric matrix coefficients corresponding to the scalar predictors of interest in each mixture component involve low-rankness and group sparsity within the low-rank structure. While the low-rank structure in the network coefficients adds parsimony and computational efficiency, the group sparsity within the low-rank structure enables drawing inference on network nodes and cells significantly associated with each scalar predictor. Being a principled Bayesian mixture modeling framework, our approach allows model-based identification of the number of clusters, offers clustering uncertainty in terms of the co-clustering matrix and presents precise characterization of uncertainty in identifying network nodes significantly related to a predictor in each cluster. Empirical results in various simulation scenarios illustrate substantial inferential gains of the proposed framework in comparison with competitors. Analysis of a real brain connectome dataset using the proposed method provides interesting insights into the brain regions of interest (ROIs) significantly related to creative achievement in each cluster of subjects. Supplementary material shows the convergence rate for the posterior predictive density of the proposed model, additional simulation examples with model misspecification, full conditional distributions to run the Markov chain Monte Carlo (MCMC) algorithm and also presents traceplots for various model parameters to demonstrate convergence of the MCMC algorithm.
AbstractList This article focuses on model-based clustering of subjects based on the shared relationships of subject-specific networks and covariates in scenarios when there are differences in the relationship between networks and covariates for different groups of subjects. It is also of interest to identify the network nodes significantly associated with each covariate in each cluster of subjects. To address these methodological questions, we propose a novel nonparametric Bayesian mixture modeling framework with an undirected network response and scalar predictors. The symmetric matrix coefficients corresponding to the scalar predictors of interest in each mixture component involve low-rankness and group sparsity within the low-rank structure. While the low-rank structure in the network coefficients adds parsimony and computational efficiency, the group sparsity within the low-rank structure enables drawing inference on network nodes and cells significantly associated with each scalar predictor. Being a principled Bayesian mixture modeling framework, our approach allows model-based identification of the number of clusters, offers clustering uncertainty in terms of the co-clustering matrix and presents precise characterization of uncertainty in identifying network nodes significantly related to a predictor in each cluster. Empirical results in various simulation scenarios illustrate substantial inferential gains of the proposed framework in comparison with competitors. Analysis of a real brain connectome dataset using the proposed method provides interesting insights into the brain regions of interest (ROIs) significantly related to creative achievement in each cluster of subjects. Supplementary material shows the convergence rate for the posterior predictive density of the proposed model, additional simulation examples with model misspecification, full conditional distributions to run the Markov chain Monte Carlo (MCMC) algorithm and also presents traceplots for various model parameters to demonstrate convergence of the MCMC algorithm.
This article focuses on model-based clustering of subjects based on the shared relationships of subject-specific networks and covariates in scenarios when there are differences in the relationship between networks and covariates for different groups of subjects. It is also of interest to identify the network nodes significantly associated with each covariate in each cluster of subjects. To address these methodological questions, we propose a novel nonparametric Bayesian mixture modeling framework with an undirected network response and scalar predictors. The symmetric matrix coefficients corresponding to the scalar predictors of interest in each mixture component involve low-rankness and group sparsity within the low-rank structure. While the low-rank structure in the network coefficients adds parsimony and computational efficiency, the group sparsity within the low-rank structure enables drawing inference on network nodes and cells significantly associated with each scalar predictor. Being a principled Bayesian mixture modeling framework, our approach allows model-based identification of the number of clusters, offers clustering uncertainty in terms of the co-clustering matrix and presents precise characterization of uncertainty in identifying network nodes significantly related to a predictor in each cluster. Empirical results in various simulation scenarios illustrate substantial inferential gains of the proposed framework in comparison with competitors. Analysis of a real brain connectome dataset using the proposed method provides interesting insights into the brain regions of interest (ROIs) significantly related to creative achievement in each cluster of subjects. Supplementary material shows the convergence rate for the posterior predictive density of the proposed model, additional simulation examples with model misspecification, full conditional distributions to run the Markov chain Monte Carlo (MCMC) algorithm and also presents traceplots for various model parameters to demonstrate convergence of the MCMC algorithm.
Author Guha, Sharmistha
Guhaniyogi, Rajarshi
Author_xml – sequence: 1
  givenname: Sharmistha
  orcidid: 0000-0002-9335-0952
  surname: Guha
  fullname: Guha, Sharmistha
  organization: Department of Statistics, Texas A & M University
– sequence: 2
  givenname: Rajarshi
  surname: Guhaniyogi
  fullname: Guhaniyogi, Rajarshi
  organization: Department of Statistics, Texas A & M University
BookMark eNqFkMtOAjEUhhujiYA-gskkrgd7mUsbNyp4IUHdyLo5dFosDi12ioS3dybgxoWuzub7_3PO10fHzjuN0AXBQ4I5vsI4w6TExZBimg0po0QwfIR6JGdlSkvKjlGvY9IOOkX9plliTBjlZQ89j_wXBAtRp2O91q7SLiajetNEHaxbJN4kM1fZoFXUVfKi49aHjybZ2vie3AWwLp2sYNGRY4hwhk4M1I0-P8wBmj3cv42e0unr42R0O00VYzymSoMRoppTIUqAOcM5KZQQis01r0ptKiVKoTDn3NC8BA0MQBXCFCTLKlCKDdDlvncd_OdGN1Eu_Sa4dqVkWLQC2vd4S13vKRV80wRtpLIRovUutpfXkmDZ-ZM__mTnTx78ten8V3od7ArC7t_czT5nnfFhBa2wupIRdrUPJoBTtj3y74pvGH-JTA
CitedBy_id crossref_primary_10_1007_s12021_024_09670_w
Cites_doi 10.1227/00006123-198507000-00007
10.1093/biomet/asn054
10.1214/21-BA1280
10.1198/016214504000001015
10.1093/bioinformatics/btx050
10.1198/106186002411
10.1002/hbm.20874
10.1080/01621459.1995.10476550
10.1093/biostatistics/kxz057
10.1111/j.1541-0420.2010.01392.x
10.1198/016214502388618906
10.1016/j.neuroimage.2006.01.021
10.1111/j.1467-9868.2011.00781.x
10.1093/biomet/85.1.1
10.5705/ss.2010.051
10.1080/08964289.1991.9935164
10.1198/106186007X238855
10.1016/j.neuroimage.2020.116611
10.1016/0028-3932(81)90016-6
10.1214/19-AOAS1252
10.1038/srep42911
10.1007/978-3-540-77004-6_11
10.1080/01621459.2015.1131699
10.1111/biom.12540
10.1198/jasa.2009.tm08024
10.1016/j.cub.2017.04.051
10.1198/016214501753208735
10.1080/10618600.2014.948181
10.1016/0028-3932(85)90023-5
10.1038/nrn2575
10.1080/00401706.2019.1708463
10.1016/j.brainresbull.2007.02.008
10.1080/00401706.2020.1784799
10.1093/biomet/83.1.67
10.1007/BF01908075
10.1080/01621459.2020.1772079
10.1016/j.neuroimage.2014.08.008
10.1371/journal.pone.0073186
10.1093/biomet/asm071
10.3150/bj/1068128979
10.1109/TKDE.2014.2373411
10.1207/s15326934crj1701_4
10.1016/j.neuroimage.2013.04.084
10.1080/01621459.1986.10478342
10.1089/brain.2012.0080
10.1016/j.neuroimage.2014.11.059
ContentType Journal Article
Copyright 2024 American Statistical Association and the American Society for Quality 2024
Copyright American Society for Quality Aug 2024
Copyright_xml – notice: 2024 American Statistical Association and the American Society for Quality 2024
– notice: Copyright American Society for Quality Aug 2024
DBID AAYXX
CITATION
DOI 10.1080/00401706.2024.2321930
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1537-2723
EndPage 437
ExternalDocumentID 10_1080_00401706_2024_2321930
2321930
Genre Research Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: DMS-2210672, DMS-2220840
– fundername: National Institute Of Neurological Disorders And Stroke
– fundername: National Institutes of Health
  grantid: R01NS131604
GroupedDBID -ET
-~X
..I
.7F
.DC
.QJ
07G
0BK
0R~
123
29Q
30N
4.4
5RE
7WY
85S
8FL
96U
AAAVZ
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFAN
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABPPZ
ABTAI
ABXUL
ABXYU
ABYWD
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACMTB
ACNCT
ACTIO
ACTMH
ADCVX
ADGTB
AEGXH
AEISY
AELLO
AENEX
AEOZL
AEPSL
AEYOC
AFAZI
AFRVT
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AIYEW
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AMXXU
AQRUH
AQTUD
AVBZW
AWYRJ
BCCOT
BLEHA
BPLKW
C06
CCCUG
CS3
DGEBU
DKSSO
DU5
DWIFK
EBS
E~A
E~B
F5P
GTTXZ
H13
HFX
HF~
HZ~
H~P
I-F
IHF
IPNFZ
J.P
JAA
K60
K6~
KYCEM
LJTGL
M4Z
MS~
MW2
NA5
NY~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
RWL
S-T
SNACF
TAE
TAQ
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
U5U
UB9
UT5
UU3
WH7
WZA
YNT
ZGOLN
~02
~S~
AAYXX
CITATION
ALIPV
ID FETCH-LOGICAL-c338t-ceaf99db2997aab30516c99c3be8d7efdc979c0888f257aea3aac69f6144dacc3
ISSN 0040-1706
IngestDate Wed Aug 13 07:52:53 EDT 2025
Thu Apr 24 23:00:51 EDT 2025
Wed Oct 01 03:06:57 EDT 2025
Mon Oct 20 23:43:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-ceaf99db2997aab30516c99c3be8d7efdc979c0888f257aea3aac69f6144dacc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9335-0952
PQID 3093210138
PQPubID 24108
PageCount 16
ParticipantIDs crossref_primary_10_1080_00401706_2024_2321930
proquest_journals_3093210138
crossref_citationtrail_10_1080_00401706_2024_2321930
informaworld_taylorfrancis_310_1080_00401706_2024_2321930
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-02
PublicationDateYYYYMMDD 2024-07-02
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-02
  day: 02
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Technometrics
PublicationYear 2024
Publisher Taylor & Francis
American Society for Quality
Publisher_xml – name: Taylor & Francis
– name: American Society for Quality
References e_1_3_3_52_1
e_1_3_3_50_1
Cao X. (e_1_3_3_5_1) 2013
e_1_3_3_18_1
e_1_3_3_39_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_56_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_54_1
e_1_3_3_40_1
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_29_1
e_1_3_3_25_1
e_1_3_3_27_1
e_1_3_3_46_1
e_1_3_3_3_1
e_1_3_3_44_1
e_1_3_3_23_1
e_1_3_3_30_1
e_1_3_3_51_1
Shahbaba B. (e_1_3_3_49_1) 2009; 10
Hannah L. A. (e_1_3_3_21_1) 2011; 12
Rabusseau G. (e_1_3_3_42_1) 2016
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_13_1
e_1_3_3_38_1
Wu T. (e_1_3_3_53_1) 2016
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_34_1
e_1_3_3_55_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_41_1
Guhaniyogi R. (e_1_3_3_20_1) 2017; 18
e_1_3_3_6_1
e_1_3_3_8_1
e_1_3_3_28_1
e_1_3_3_24_1
e_1_3_3_26_1
e_1_3_3_47_1
Sethuraman J. (e_1_3_3_48_1) 1994; 4
e_1_3_3_2_1
e_1_3_3_45_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_51_1
  doi: 10.1227/00006123-198507000-00007
– ident: e_1_3_3_45_1
  doi: 10.1093/biomet/asn054
– ident: e_1_3_3_19_1
  doi: 10.1214/21-BA1280
– ident: e_1_3_3_22_1
  doi: 10.1198/016214504000001015
– ident: e_1_3_3_52_1
  doi: 10.1093/bioinformatics/btx050
– ident: e_1_3_3_27_1
  doi: 10.1198/106186002411
– ident: e_1_3_3_28_1
  doi: 10.1002/hbm.20874
– ident: e_1_3_3_12_1
  doi: 10.1080/01621459.1995.10476550
– ident: e_1_3_3_55_1
  doi: 10.1093/biostatistics/kxz057
– ident: e_1_3_3_33_1
  doi: 10.1111/j.1541-0420.2010.01392.x
– volume: 12
  start-page: 923
  year: 2011
  ident: e_1_3_3_21_1
  article-title: “Dirichlet Process Mixtures of Generalized Linear Models,”
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_3_24_1
  doi: 10.1198/016214502388618906
– volume-title: Twenty-Third International Joint Conference on Artificial Intelligence
  year: 2013
  ident: e_1_3_3_5_1
– ident: e_1_3_3_10_1
  doi: 10.1016/j.neuroimage.2006.01.021
– ident: e_1_3_3_46_1
  doi: 10.1111/j.1467-9868.2011.00781.x
– ident: e_1_3_3_16_1
  doi: 10.1093/biomet/85.1.1
– ident: e_1_3_3_23_1
  doi: 10.5705/ss.2010.051
– ident: e_1_3_3_13_1
  doi: 10.1080/08964289.1991.9935164
– ident: e_1_3_3_32_1
  doi: 10.1198/106186007X238855
– ident: e_1_3_3_41_1
  doi: 10.1016/j.neuroimage.2020.116611
– ident: e_1_3_3_31_1
  doi: 10.1016/0028-3932(81)90016-6
– ident: e_1_3_3_30_1
– ident: e_1_3_3_44_1
  doi: 10.1214/19-AOAS1252
– ident: e_1_3_3_50_1
  doi: 10.1038/srep42911
– ident: e_1_3_3_54_1
  doi: 10.1007/978-3-540-77004-6_11
– ident: e_1_3_3_56_1
  doi: 10.1080/01621459.2015.1131699
– ident: e_1_3_3_9_1
  doi: 10.1111/biom.12540
– ident: e_1_3_3_25_1
  doi: 10.1198/jasa.2009.tm08024
– ident: e_1_3_3_3_1
  doi: 10.1016/j.cub.2017.04.051
– ident: e_1_3_3_40_1
  doi: 10.1198/016214501753208735
– ident: e_1_3_3_8_1
  doi: 10.1080/10618600.2014.948181
– ident: e_1_3_3_38_1
  doi: 10.1016/0028-3932(85)90023-5
– ident: e_1_3_3_4_1
  doi: 10.1038/nrn2575
– ident: e_1_3_3_15_1
  doi: 10.1080/00401706.2019.1708463
– ident: e_1_3_3_43_1
  doi: 10.1016/j.brainresbull.2007.02.008
– start-page: 2559
  year: 2016
  ident: e_1_3_3_53_1
  article-title: “General Tensor Spectral Co-clustering for Higher-Order Data,” in
  publication-title: Advances in Neural Information Processing Systems
– volume: 18
  start-page: 1
  year: 2017
  ident: e_1_3_3_20_1
  article-title: “Bayesian Tensor Regression,”
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_3_17_1
  doi: 10.1080/00401706.2020.1784799
– ident: e_1_3_3_39_1
  doi: 10.1093/biomet/83.1.67
– start-page: 1867
  year: 2016
  ident: e_1_3_3_42_1
  article-title: “Low-Rank Regression with Tensor Responses,”
  publication-title: in Advances in Neural Information Processing Systems
– volume: 10
  start-page: 1829
  year: 2009
  ident: e_1_3_3_49_1
  article-title: “Nonlinear Models Using Dirichlet Process Mixtures,”
  publication-title: Journal of Machine Learning Research
– ident: e_1_3_3_29_1
– ident: e_1_3_3_26_1
  doi: 10.1007/BF01908075
– ident: e_1_3_3_18_1
  doi: 10.1080/01621459.2020.1772079
– volume: 4
  start-page: 639
  year: 1994
  ident: e_1_3_3_48_1
  article-title: “A Constructive Definition of Dirichlet Priors,”
  publication-title: Statistica Sinica
– ident: e_1_3_3_7_1
  doi: 10.1016/j.neuroimage.2014.08.008
– ident: e_1_3_3_35_1
  doi: 10.1371/journal.pone.0073186
– ident: e_1_3_3_11_1
  doi: 10.1093/biomet/asm071
– ident: e_1_3_3_2_1
  doi: 10.3150/bj/1068128979
– ident: e_1_3_3_34_1
  doi: 10.1109/TKDE.2014.2373411
– ident: e_1_3_3_6_1
  doi: 10.1207/s15326934crj1701_4
– ident: e_1_3_3_36_1
  doi: 10.1016/j.neuroimage.2013.04.084
– ident: e_1_3_3_14_1
  doi: 10.1080/01621459.1986.10478342
– ident: e_1_3_3_47_1
  doi: 10.1089/brain.2012.0080
– ident: e_1_3_3_37_1
  doi: 10.1016/j.neuroimage.2014.11.059
SSID ssj0013287
Score 2.407774
Snippet This article focuses on model-based clustering of subjects based on the shared relationships of subject-specific networks and covariates in scenarios when...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 422
SubjectTerms Algorithms
Bayesian analysis
Bayesian mixture modeling
Brain
Brain connectome data
Clustering
Computer simulation
Convergence
Magnetic resonance imaging
Markov analysis
Markov chains
Mixtures
Monte Carlo simulation
Network clustering
Network node selection
Networks
Nodes
Parameter identification
Sparsity
Spike and slab prior
Uncertainty
Title Covariate-Dependent Clustering of Undirected Networks with Brain-Imaging Data
URI https://www.tandfonline.com/doi/abs/10.1080/00401706.2024.2321930
https://www.proquest.com/docview/3093210138
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1537-2723
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0013287
  issn: 0040-1706
  databaseCode: AMVHM
  dateStart: 20130201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-2723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013287
  issn: 0040-1706
  databaseCode: AHDZW
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-2723
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013287
  issn: 0040-1706
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELZgvIwHBAPEYKA8IF6QqzR24_hxtIwOWIXEKu3Nsh1HgLZ0QIoEv5672E5SrWLAS9QmclP5zneffXffEfI85dyBo6porjNHeYZrbiIEBXAiBZs44ao222KRz5f87dnkbFBxjdUljRnZX1vrSv5HqnAP5IpVsv8g2e5H4QZ8BvnCFSQM17-S8XT1A7a6gBbpLPSybV5Oz9fIfRCSmZe191kAKxc-4TuUs73C1hD0-MI3KZr5CrUOpvoD9wvsttUnw79Z--AQcjyjdnzSwyf1559gRVuJ6S8ak6OHBwoZb5NP--1nFykapo16Qo-hccJMRKTe8X4kGk9BM-Hrh6N19T1Vghaxgankvh75igmPOY-8ZfYZ4T8cAewDoJn2PivG6eeHH9WH2ZF6f7x49-LyK8VuYhh1D61VbpJbGVh7bOnB0sUgulSImE2JL4mVXci5vu29G5hlg9H2igdvYcnpXXIn7CeSQ68c98gNV--R2wOWSfh20lHzft8ju7i98Ozc98nJFg1Keg1KVlXSa1ASNShBDUo2NChBDXpAlkevT6dzGhpsUMtY0VDrdCVlaQCSCK0NmP5xbqW0zLiihFVaWimkBT9UVGDZtdNMa5vLCg8RSm0te0h26lXtHpHEZqKsSgeLPXWAEU0hrTO5cM6YyhUp3yc8TqGygX0em6Ccq3FHUutnXuHMqzDz-2TUDbv09CvXDZBD-aimPfeqfJMaxa4ZexCFqcIqhyGpxDK3MSse__nxE7Lbr6YDstN8W7unAFgb86zVvt98hZHC
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAo4B444E1VZqX4xFaqhZoJyp1i2znvAAtoikDv567OKlaEGJgjKKLEvt8951z_j7Grv0oAkxU1ktUAF4U0JqLhfAQnEgRxiDAlt0Ww6Q3iu7H8XjpLAy1VVINbR1RRBmraXHTZnTdEkeEPCXtC5Z3QdRETIAoBMv2jRjBPqkYhP5w6U9CKurOObKpT_H89piV_LTCXvojWpcpqLvLTP3yrvPkuTkvdNN8fuN1_N_X7bGdCqHyG-dS-2wNJg22vcRbiFeDBdnrrMG2CLA6vucDNmhPP7D8RgTrdSp93YK3X-bEx4C2fGr5aOLyKOR86JrQZ5y2g_ktyVV4_ddSOIl3VKEO2ah799TueZVkg2ew1i08A8pKmWtMckIpjcGklRgpTaghzXHecyOFNBjZUouxQoEKlTKJtFSW5sqY8IitT6YTOGbcBCK3OaD7-ICoQ6fSgE4EgNYWUj86YVE9UZmp-MxJVuMlay1oT91AZjSQWTWQJ6y5MHtzhB5_GchlL8iKcifFOtmTLPzD9rx2mayKDWjiSzo41QrT0388-opt9p4Gj9ljf_hwxrboVtlFHJyz9eJ9DheIlQp9WS6GL3JEA-w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4MJgYP_kCNKGoPXkfGNtb1qCABFeJBEm9L271exEFkePCv93XdCGgMB47L8pqtP977Xvv1e4TcukEAGKi0EwoPnMAza67NmIPghDO_DQx0zrYYhf1x8PjWLtmE84JWaXJobYUicl9tFvcs0SUjzujx5KovmN15QRMhAYIQzNp3Q3MqZm5xuKOVg4SIlcQ5Y1Ne4vmvmbXwtCZe-sdZ5xGod0hk-e2WePLeXGSyqb5_yTpu9XNH5KDAp_TOTqhjsgNpjeyvqBbi03Ap9TqvkaqBq1bt-YQMO9MvTL4RvzrdorpuRjuThVFjQFs61XSc2igKCR1ZCvqcms1gem-KVTiDj7xsEu2KTJySce_htdN3ioINjsJMN3MUCM15IjHEMSEkupJWqDhXvoQowVFPFGdcoV-LNHoKAcIXQoVcm6Q0EUr5Z6SSTlM4J1R5LNEJ4ORxATGHjLgCGTIAKTVEblAnQTlOsSrUzE1RjUncWoqe2o6MTUfGRUfWSXNpNrNyHpsM-OokiLN8H0Xboiexv8G2Uc6YuPAMaOJyc22q5UcXWzR9Q_Zeur34eTB6uiRV8yanEHsNUsk-F3CFQCmT1_lS-AEvqAKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covariate-Dependent+Clustering+of+Undirected+Networks+with+Brain-Imaging+Data&rft.jtitle=Technometrics&rft.au=Guha%2C+Sharmistha&rft.au=Guhaniyogi%2C+Rajarshi&rft.date=2024-07-02&rft.pub=American+Society+for+Quality&rft.issn=0040-1706&rft.eissn=1537-2723&rft.volume=66&rft.issue=3&rft.spage=422&rft_id=info:doi/10.1080%2F00401706.2024.2321930&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-1706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-1706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-1706&client=summon