Covariate-Dependent Clustering of Undirected Networks with Brain-Imaging Data
This article focuses on model-based clustering of subjects based on the shared relationships of subject-specific networks and covariates in scenarios when there are differences in the relationship between networks and covariates for different groups of subjects. It is also of interest to identify th...
Saved in:
| Published in | Technometrics Vol. 66; no. 3; pp. 422 - 437 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Alexandria
Taylor & Francis
02.07.2024
American Society for Quality |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0040-1706 1537-2723 |
| DOI | 10.1080/00401706.2024.2321930 |
Cover
| Abstract | This article focuses on model-based clustering of subjects based on the shared relationships of subject-specific networks and covariates in scenarios when there are differences in the relationship between networks and covariates for different groups of subjects. It is also of interest to identify the network nodes significantly associated with each covariate in each cluster of subjects. To address these methodological questions, we propose a novel nonparametric Bayesian mixture modeling framework with an undirected network response and scalar predictors. The symmetric matrix coefficients corresponding to the scalar predictors of interest in each mixture component involve low-rankness and group sparsity within the low-rank structure. While the low-rank structure in the network coefficients adds parsimony and computational efficiency, the group sparsity within the low-rank structure enables drawing inference on network nodes and cells significantly associated with each scalar predictor. Being a principled Bayesian mixture modeling framework, our approach allows model-based identification of the number of clusters, offers clustering uncertainty in terms of the co-clustering matrix and presents precise characterization of uncertainty in identifying network nodes significantly related to a predictor in each cluster. Empirical results in various simulation scenarios illustrate substantial inferential gains of the proposed framework in comparison with competitors. Analysis of a real brain connectome dataset using the proposed method provides interesting insights into the brain regions of interest (ROIs) significantly related to creative achievement in each cluster of subjects.
Supplementary material
shows the convergence rate for the posterior predictive density of the proposed model, additional simulation examples with model misspecification, full conditional distributions to run the Markov chain Monte Carlo (MCMC) algorithm and also presents traceplots for various model parameters to demonstrate convergence of the MCMC algorithm. |
|---|---|
| AbstractList | This article focuses on model-based clustering of subjects based on the shared relationships of subject-specific networks and covariates in scenarios when there are differences in the relationship between networks and covariates for different groups of subjects. It is also of interest to identify the network nodes significantly associated with each covariate in each cluster of subjects. To address these methodological questions, we propose a novel nonparametric Bayesian mixture modeling framework with an undirected network response and scalar predictors. The symmetric matrix coefficients corresponding to the scalar predictors of interest in each mixture component involve low-rankness and group sparsity within the low-rank structure. While the low-rank structure in the network coefficients adds parsimony and computational efficiency, the group sparsity within the low-rank structure enables drawing inference on network nodes and cells significantly associated with each scalar predictor. Being a principled Bayesian mixture modeling framework, our approach allows model-based identification of the number of clusters, offers clustering uncertainty in terms of the co-clustering matrix and presents precise characterization of uncertainty in identifying network nodes significantly related to a predictor in each cluster. Empirical results in various simulation scenarios illustrate substantial inferential gains of the proposed framework in comparison with competitors. Analysis of a real brain connectome dataset using the proposed method provides interesting insights into the brain regions of interest (ROIs) significantly related to creative achievement in each cluster of subjects.
Supplementary material
shows the convergence rate for the posterior predictive density of the proposed model, additional simulation examples with model misspecification, full conditional distributions to run the Markov chain Monte Carlo (MCMC) algorithm and also presents traceplots for various model parameters to demonstrate convergence of the MCMC algorithm. This article focuses on model-based clustering of subjects based on the shared relationships of subject-specific networks and covariates in scenarios when there are differences in the relationship between networks and covariates for different groups of subjects. It is also of interest to identify the network nodes significantly associated with each covariate in each cluster of subjects. To address these methodological questions, we propose a novel nonparametric Bayesian mixture modeling framework with an undirected network response and scalar predictors. The symmetric matrix coefficients corresponding to the scalar predictors of interest in each mixture component involve low-rankness and group sparsity within the low-rank structure. While the low-rank structure in the network coefficients adds parsimony and computational efficiency, the group sparsity within the low-rank structure enables drawing inference on network nodes and cells significantly associated with each scalar predictor. Being a principled Bayesian mixture modeling framework, our approach allows model-based identification of the number of clusters, offers clustering uncertainty in terms of the co-clustering matrix and presents precise characterization of uncertainty in identifying network nodes significantly related to a predictor in each cluster. Empirical results in various simulation scenarios illustrate substantial inferential gains of the proposed framework in comparison with competitors. Analysis of a real brain connectome dataset using the proposed method provides interesting insights into the brain regions of interest (ROIs) significantly related to creative achievement in each cluster of subjects. Supplementary material shows the convergence rate for the posterior predictive density of the proposed model, additional simulation examples with model misspecification, full conditional distributions to run the Markov chain Monte Carlo (MCMC) algorithm and also presents traceplots for various model parameters to demonstrate convergence of the MCMC algorithm. |
| Author | Guha, Sharmistha Guhaniyogi, Rajarshi |
| Author_xml | – sequence: 1 givenname: Sharmistha orcidid: 0000-0002-9335-0952 surname: Guha fullname: Guha, Sharmistha organization: Department of Statistics, Texas A & M University – sequence: 2 givenname: Rajarshi surname: Guhaniyogi fullname: Guhaniyogi, Rajarshi organization: Department of Statistics, Texas A & M University |
| BookMark | eNqFkMtOAjEUhhujiYA-gskkrgd7mUsbNyp4IUHdyLo5dFosDi12ioS3dybgxoWuzub7_3PO10fHzjuN0AXBQ4I5vsI4w6TExZBimg0po0QwfIR6JGdlSkvKjlGvY9IOOkX9plliTBjlZQ89j_wXBAtRp2O91q7SLiajetNEHaxbJN4kM1fZoFXUVfKi49aHjybZ2vie3AWwLp2sYNGRY4hwhk4M1I0-P8wBmj3cv42e0unr42R0O00VYzymSoMRoppTIUqAOcM5KZQQis01r0ptKiVKoTDn3NC8BA0MQBXCFCTLKlCKDdDlvncd_OdGN1Eu_Sa4dqVkWLQC2vd4S13vKRV80wRtpLIRovUutpfXkmDZ-ZM__mTnTx78ten8V3od7ArC7t_czT5nnfFhBa2wupIRdrUPJoBTtj3y74pvGH-JTA |
| CitedBy_id | crossref_primary_10_1007_s12021_024_09670_w |
| Cites_doi | 10.1227/00006123-198507000-00007 10.1093/biomet/asn054 10.1214/21-BA1280 10.1198/016214504000001015 10.1093/bioinformatics/btx050 10.1198/106186002411 10.1002/hbm.20874 10.1080/01621459.1995.10476550 10.1093/biostatistics/kxz057 10.1111/j.1541-0420.2010.01392.x 10.1198/016214502388618906 10.1016/j.neuroimage.2006.01.021 10.1111/j.1467-9868.2011.00781.x 10.1093/biomet/85.1.1 10.5705/ss.2010.051 10.1080/08964289.1991.9935164 10.1198/106186007X238855 10.1016/j.neuroimage.2020.116611 10.1016/0028-3932(81)90016-6 10.1214/19-AOAS1252 10.1038/srep42911 10.1007/978-3-540-77004-6_11 10.1080/01621459.2015.1131699 10.1111/biom.12540 10.1198/jasa.2009.tm08024 10.1016/j.cub.2017.04.051 10.1198/016214501753208735 10.1080/10618600.2014.948181 10.1016/0028-3932(85)90023-5 10.1038/nrn2575 10.1080/00401706.2019.1708463 10.1016/j.brainresbull.2007.02.008 10.1080/00401706.2020.1784799 10.1093/biomet/83.1.67 10.1007/BF01908075 10.1080/01621459.2020.1772079 10.1016/j.neuroimage.2014.08.008 10.1371/journal.pone.0073186 10.1093/biomet/asm071 10.3150/bj/1068128979 10.1109/TKDE.2014.2373411 10.1207/s15326934crj1701_4 10.1016/j.neuroimage.2013.04.084 10.1080/01621459.1986.10478342 10.1089/brain.2012.0080 10.1016/j.neuroimage.2014.11.059 |
| ContentType | Journal Article |
| Copyright | 2024 American Statistical Association and the American Society for Quality 2024 Copyright American Society for Quality Aug 2024 |
| Copyright_xml | – notice: 2024 American Statistical Association and the American Society for Quality 2024 – notice: Copyright American Society for Quality Aug 2024 |
| DBID | AAYXX CITATION |
| DOI | 10.1080/00401706.2024.2321930 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Mathematics |
| EISSN | 1537-2723 |
| EndPage | 437 |
| ExternalDocumentID | 10_1080_00401706_2024_2321930 2321930 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: National Science Foundation grantid: DMS-2210672, DMS-2220840 – fundername: National Institute Of Neurological Disorders And Stroke – fundername: National Institutes of Health grantid: R01NS131604 |
| GroupedDBID | -ET -~X ..I .7F .DC .QJ 07G 0BK 0R~ 123 29Q 30N 4.4 5RE 7WY 85S 8FL 96U AAAVZ AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFAN ABFIM ABJNI ABLIJ ABPAQ ABPEM ABPPZ ABTAI ABXUL ABXYU ABYWD ACBEA ACGFO ACGFS ACGOD ACIWK ACMTB ACNCT ACTIO ACTMH ADCVX ADGTB AEGXH AEISY AELLO AENEX AEOZL AEPSL AEYOC AFAZI AFRVT AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AIYEW AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AMXXU AQRUH AQTUD AVBZW AWYRJ BCCOT BLEHA BPLKW C06 CCCUG CS3 DGEBU DKSSO DU5 DWIFK EBS E~A E~B F5P GTTXZ H13 HFX HF~ HZ~ H~P I-F IHF IPNFZ J.P JAA K60 K6~ KYCEM LJTGL M4Z MS~ MW2 NA5 NY~ O9- P2P RIG RNANH ROSJB RTWRZ RWL S-T SNACF TAE TAQ TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ U5U UB9 UT5 UU3 WH7 WZA YNT ZGOLN ~02 ~S~ AAYXX CITATION ALIPV |
| ID | FETCH-LOGICAL-c338t-ceaf99db2997aab30516c99c3be8d7efdc979c0888f257aea3aac69f6144dacc3 |
| ISSN | 0040-1706 |
| IngestDate | Wed Aug 13 07:52:53 EDT 2025 Thu Apr 24 23:00:51 EDT 2025 Wed Oct 01 03:06:57 EDT 2025 Mon Oct 20 23:43:39 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c338t-ceaf99db2997aab30516c99c3be8d7efdc979c0888f257aea3aac69f6144dacc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9335-0952 |
| PQID | 3093210138 |
| PQPubID | 24108 |
| PageCount | 16 |
| ParticipantIDs | crossref_primary_10_1080_00401706_2024_2321930 proquest_journals_3093210138 crossref_citationtrail_10_1080_00401706_2024_2321930 informaworld_taylorfrancis_310_1080_00401706_2024_2321930 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-02 |
| PublicationDateYYYYMMDD | 2024-07-02 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Alexandria |
| PublicationPlace_xml | – name: Alexandria |
| PublicationTitle | Technometrics |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis American Society for Quality |
| Publisher_xml | – name: Taylor & Francis – name: American Society for Quality |
| References | e_1_3_3_52_1 e_1_3_3_50_1 Cao X. (e_1_3_3_5_1) 2013 e_1_3_3_18_1 e_1_3_3_39_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_56_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_54_1 e_1_3_3_40_1 e_1_3_3_7_1 e_1_3_3_9_1 e_1_3_3_29_1 e_1_3_3_25_1 e_1_3_3_27_1 e_1_3_3_46_1 e_1_3_3_3_1 e_1_3_3_44_1 e_1_3_3_23_1 e_1_3_3_30_1 e_1_3_3_51_1 Shahbaba B. (e_1_3_3_49_1) 2009; 10 Hannah L. A. (e_1_3_3_21_1) 2011; 12 Rabusseau G. (e_1_3_3_42_1) 2016 e_1_3_3_17_1 e_1_3_3_19_1 e_1_3_3_13_1 e_1_3_3_38_1 Wu T. (e_1_3_3_53_1) 2016 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_34_1 e_1_3_3_55_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_41_1 Guhaniyogi R. (e_1_3_3_20_1) 2017; 18 e_1_3_3_6_1 e_1_3_3_8_1 e_1_3_3_28_1 e_1_3_3_24_1 e_1_3_3_26_1 e_1_3_3_47_1 Sethuraman J. (e_1_3_3_48_1) 1994; 4 e_1_3_3_2_1 e_1_3_3_45_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_43_1 |
| References_xml | – ident: e_1_3_3_51_1 doi: 10.1227/00006123-198507000-00007 – ident: e_1_3_3_45_1 doi: 10.1093/biomet/asn054 – ident: e_1_3_3_19_1 doi: 10.1214/21-BA1280 – ident: e_1_3_3_22_1 doi: 10.1198/016214504000001015 – ident: e_1_3_3_52_1 doi: 10.1093/bioinformatics/btx050 – ident: e_1_3_3_27_1 doi: 10.1198/106186002411 – ident: e_1_3_3_28_1 doi: 10.1002/hbm.20874 – ident: e_1_3_3_12_1 doi: 10.1080/01621459.1995.10476550 – ident: e_1_3_3_55_1 doi: 10.1093/biostatistics/kxz057 – ident: e_1_3_3_33_1 doi: 10.1111/j.1541-0420.2010.01392.x – volume: 12 start-page: 923 year: 2011 ident: e_1_3_3_21_1 article-title: “Dirichlet Process Mixtures of Generalized Linear Models,” publication-title: Journal of Machine Learning Research – ident: e_1_3_3_24_1 doi: 10.1198/016214502388618906 – volume-title: Twenty-Third International Joint Conference on Artificial Intelligence year: 2013 ident: e_1_3_3_5_1 – ident: e_1_3_3_10_1 doi: 10.1016/j.neuroimage.2006.01.021 – ident: e_1_3_3_46_1 doi: 10.1111/j.1467-9868.2011.00781.x – ident: e_1_3_3_16_1 doi: 10.1093/biomet/85.1.1 – ident: e_1_3_3_23_1 doi: 10.5705/ss.2010.051 – ident: e_1_3_3_13_1 doi: 10.1080/08964289.1991.9935164 – ident: e_1_3_3_32_1 doi: 10.1198/106186007X238855 – ident: e_1_3_3_41_1 doi: 10.1016/j.neuroimage.2020.116611 – ident: e_1_3_3_31_1 doi: 10.1016/0028-3932(81)90016-6 – ident: e_1_3_3_30_1 – ident: e_1_3_3_44_1 doi: 10.1214/19-AOAS1252 – ident: e_1_3_3_50_1 doi: 10.1038/srep42911 – ident: e_1_3_3_54_1 doi: 10.1007/978-3-540-77004-6_11 – ident: e_1_3_3_56_1 doi: 10.1080/01621459.2015.1131699 – ident: e_1_3_3_9_1 doi: 10.1111/biom.12540 – ident: e_1_3_3_25_1 doi: 10.1198/jasa.2009.tm08024 – ident: e_1_3_3_3_1 doi: 10.1016/j.cub.2017.04.051 – ident: e_1_3_3_40_1 doi: 10.1198/016214501753208735 – ident: e_1_3_3_8_1 doi: 10.1080/10618600.2014.948181 – ident: e_1_3_3_38_1 doi: 10.1016/0028-3932(85)90023-5 – ident: e_1_3_3_4_1 doi: 10.1038/nrn2575 – ident: e_1_3_3_15_1 doi: 10.1080/00401706.2019.1708463 – ident: e_1_3_3_43_1 doi: 10.1016/j.brainresbull.2007.02.008 – start-page: 2559 year: 2016 ident: e_1_3_3_53_1 article-title: “General Tensor Spectral Co-clustering for Higher-Order Data,” in publication-title: Advances in Neural Information Processing Systems – volume: 18 start-page: 1 year: 2017 ident: e_1_3_3_20_1 article-title: “Bayesian Tensor Regression,” publication-title: Journal of Machine Learning Research – ident: e_1_3_3_17_1 doi: 10.1080/00401706.2020.1784799 – ident: e_1_3_3_39_1 doi: 10.1093/biomet/83.1.67 – start-page: 1867 year: 2016 ident: e_1_3_3_42_1 article-title: “Low-Rank Regression with Tensor Responses,” publication-title: in Advances in Neural Information Processing Systems – volume: 10 start-page: 1829 year: 2009 ident: e_1_3_3_49_1 article-title: “Nonlinear Models Using Dirichlet Process Mixtures,” publication-title: Journal of Machine Learning Research – ident: e_1_3_3_29_1 – ident: e_1_3_3_26_1 doi: 10.1007/BF01908075 – ident: e_1_3_3_18_1 doi: 10.1080/01621459.2020.1772079 – volume: 4 start-page: 639 year: 1994 ident: e_1_3_3_48_1 article-title: “A Constructive Definition of Dirichlet Priors,” publication-title: Statistica Sinica – ident: e_1_3_3_7_1 doi: 10.1016/j.neuroimage.2014.08.008 – ident: e_1_3_3_35_1 doi: 10.1371/journal.pone.0073186 – ident: e_1_3_3_11_1 doi: 10.1093/biomet/asm071 – ident: e_1_3_3_2_1 doi: 10.3150/bj/1068128979 – ident: e_1_3_3_34_1 doi: 10.1109/TKDE.2014.2373411 – ident: e_1_3_3_6_1 doi: 10.1207/s15326934crj1701_4 – ident: e_1_3_3_36_1 doi: 10.1016/j.neuroimage.2013.04.084 – ident: e_1_3_3_14_1 doi: 10.1080/01621459.1986.10478342 – ident: e_1_3_3_47_1 doi: 10.1089/brain.2012.0080 – ident: e_1_3_3_37_1 doi: 10.1016/j.neuroimage.2014.11.059 |
| SSID | ssj0013287 |
| Score | 2.407774 |
| Snippet | This article focuses on model-based clustering of subjects based on the shared relationships of subject-specific networks and covariates in scenarios when... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 422 |
| SubjectTerms | Algorithms Bayesian analysis Bayesian mixture modeling Brain Brain connectome data Clustering Computer simulation Convergence Magnetic resonance imaging Markov analysis Markov chains Mixtures Monte Carlo simulation Network clustering Network node selection Networks Nodes Parameter identification Sparsity Spike and slab prior Uncertainty |
| Title | Covariate-Dependent Clustering of Undirected Networks with Brain-Imaging Data |
| URI | https://www.tandfonline.com/doi/abs/10.1080/00401706.2024.2321930 https://www.proquest.com/docview/3093210138 |
| Volume | 66 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1537-2723 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0013287 issn: 0040-1706 databaseCode: AMVHM dateStart: 20130201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1537-2723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013287 issn: 0040-1706 databaseCode: AHDZW dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1537-2723 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013287 issn: 0040-1706 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwELZgvIwHBAPEYKA8IF6QqzR24_hxtIwOWIXEKu3Nsh1HgLZ0QIoEv5672E5SrWLAS9QmclP5zneffXffEfI85dyBo6porjNHeYZrbiIEBXAiBZs44ao222KRz5f87dnkbFBxjdUljRnZX1vrSv5HqnAP5IpVsv8g2e5H4QZ8BvnCFSQM17-S8XT1A7a6gBbpLPSybV5Oz9fIfRCSmZe191kAKxc-4TuUs73C1hD0-MI3KZr5CrUOpvoD9wvsttUnw79Z--AQcjyjdnzSwyf1559gRVuJ6S8ak6OHBwoZb5NP--1nFykapo16Qo-hccJMRKTe8X4kGk9BM-Hrh6N19T1Vghaxgankvh75igmPOY-8ZfYZ4T8cAewDoJn2PivG6eeHH9WH2ZF6f7x49-LyK8VuYhh1D61VbpJbGVh7bOnB0sUgulSImE2JL4mVXci5vu29G5hlg9H2igdvYcnpXXIn7CeSQ68c98gNV--R2wOWSfh20lHzft8ju7i98Ozc98nJFg1Keg1KVlXSa1ASNShBDUo2NChBDXpAlkevT6dzGhpsUMtY0VDrdCVlaQCSCK0NmP5xbqW0zLiihFVaWimkBT9UVGDZtdNMa5vLCg8RSm0te0h26lXtHpHEZqKsSgeLPXWAEU0hrTO5cM6YyhUp3yc8TqGygX0em6Ccq3FHUutnXuHMqzDz-2TUDbv09CvXDZBD-aimPfeqfJMaxa4ZexCFqcIqhyGpxDK3MSse__nxE7Lbr6YDstN8W7unAFgb86zVvt98hZHC |
| linkProvider | Taylor & Francis |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAo4B444E1VZqX4xFaqhZoJyp1i2znvAAtoikDv567OKlaEGJgjKKLEvt8951z_j7Grv0oAkxU1ktUAF4U0JqLhfAQnEgRxiDAlt0Ww6Q3iu7H8XjpLAy1VVINbR1RRBmraXHTZnTdEkeEPCXtC5Z3QdRETIAoBMv2jRjBPqkYhP5w6U9CKurOObKpT_H89piV_LTCXvojWpcpqLvLTP3yrvPkuTkvdNN8fuN1_N_X7bGdCqHyG-dS-2wNJg22vcRbiFeDBdnrrMG2CLA6vucDNmhPP7D8RgTrdSp93YK3X-bEx4C2fGr5aOLyKOR86JrQZ5y2g_ktyVV4_ddSOIl3VKEO2ah799TueZVkg2ew1i08A8pKmWtMckIpjcGklRgpTaghzXHecyOFNBjZUouxQoEKlTKJtFSW5sqY8IitT6YTOGbcBCK3OaD7-ICoQ6fSgE4EgNYWUj86YVE9UZmp-MxJVuMlay1oT91AZjSQWTWQJ6y5MHtzhB5_GchlL8iKcifFOtmTLPzD9rx2mayKDWjiSzo41QrT0388-opt9p4Gj9ljf_hwxrboVtlFHJyz9eJ9DheIlQp9WS6GL3JEA-w |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4MJgYP_kCNKGoPXkfGNtb1qCABFeJBEm9L271exEFkePCv93XdCGgMB47L8pqtP977Xvv1e4TcukEAGKi0EwoPnMAza67NmIPghDO_DQx0zrYYhf1x8PjWLtmE84JWaXJobYUicl9tFvcs0SUjzujx5KovmN15QRMhAYIQzNp3Q3MqZm5xuKOVg4SIlcQ5Y1Ne4vmvmbXwtCZe-sdZ5xGod0hk-e2WePLeXGSyqb5_yTpu9XNH5KDAp_TOTqhjsgNpjeyvqBbi03Ap9TqvkaqBq1bt-YQMO9MvTL4RvzrdorpuRjuThVFjQFs61XSc2igKCR1ZCvqcms1gem-KVTiDj7xsEu2KTJySce_htdN3ioINjsJMN3MUCM15IjHEMSEkupJWqDhXvoQowVFPFGdcoV-LNHoKAcIXQoVcm6Q0EUr5Z6SSTlM4J1R5LNEJ4ORxATGHjLgCGTIAKTVEblAnQTlOsSrUzE1RjUncWoqe2o6MTUfGRUfWSXNpNrNyHpsM-OokiLN8H0Xboiexv8G2Uc6YuPAMaOJyc22q5UcXWzR9Q_Zeur34eTB6uiRV8yanEHsNUsk-F3CFQCmT1_lS-AEvqAKQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Covariate-Dependent+Clustering+of+Undirected+Networks+with+Brain-Imaging+Data&rft.jtitle=Technometrics&rft.au=Guha%2C+Sharmistha&rft.au=Guhaniyogi%2C+Rajarshi&rft.date=2024-07-02&rft.pub=American+Society+for+Quality&rft.issn=0040-1706&rft.eissn=1537-2723&rft.volume=66&rft.issue=3&rft.spage=422&rft_id=info:doi/10.1080%2F00401706.2024.2321930&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-1706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-1706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-1706&client=summon |