Modeling and Predicting of News Popularity in Social Media Sources
The popularity of news, which conveys newsworthy events which occur during day to people, is substantially important for the spectator or audience. People interact with news website and share news links or their opinions. This study uses supervised learning based machine learning techniques in order...
Saved in:
| Published in | Computers, materials & continua Vol. 61; no. 1; pp. 69 - 80 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Henderson
Tech Science Press
2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1546-2226 1546-2218 1546-2226 |
| DOI | 10.32604/cmc.2019.08143 |
Cover
| Abstract | The popularity of news, which conveys newsworthy events which occur during day to people, is substantially important for the spectator or audience. People interact with news website and share news links or their opinions. This study uses supervised learning based machine learning techniques in order to predict news popularity in social media sources. These techniques consist of basically two phrases: a) the training data is sent as input to the classifier algorithm, b) the performance of pre-learned algorithm is tested on the testing data. And so, a knowledge discovery from the data is performed. In this context, firstly, twelve datasets from a set of data are obtained within the frame of four categories: Economic, Microsoft, Obama and Palestine. Second, news popularity prediction in social network services is carried out by utilizing Gradient Boosted Trees, Multi-Layer Perceptron and Random Forest learning algorithms. The prediction performances of all algorithms are examined by considering Mean Absolute Error, Root Mean Squared Error and the R-squared evaluation metrics. The results show that most of the models designed by using these algorithms are proved to be applicable for this subject. Consequently, a comprehensive study for the news prediction is presented, using different techniques, drawing conclusions about the performances of algorithms in this study. |
|---|---|
| AbstractList | The popularity of news, which conveys newsworthy events which occur during day to people, is substantially important for the spectator or audience. People interact with news website and share news links or their opinions. This study uses supervised learning based machine learning techniques in order to predict news popularity in social media sources. These techniques consist of basically two phrases: a) the training data is sent as input to the classifier algorithm, b) the performance of pre-learned algorithm is tested on the testing data. And so, a knowledge discovery from the data is performed. In this context, firstly, twelve datasets from a set of data are obtained within the frame of four categories: Economic, Microsoft, Obama and Palestine. Second, news popularity prediction in social network services is carried out by utilizing Gradient Boosted Trees, Multi-Layer Perceptron and Random Forest learning algorithms. The prediction performances of all algorithms are examined by considering Mean Absolute Error, Root Mean Squared Error and the R-squared evaluation metrics. The results show that most of the models designed by using these algorithms are proved to be applicable for this subject. Consequently, a comprehensive study for the news prediction is presented, using different techniques, drawing conclusions about the performances of algorithms in this study. |
| Author | Şen, Baha Akyol, Kemal |
| Author_xml | – sequence: 1 givenname: Kemal surname: Akyol fullname: Akyol, Kemal – sequence: 2 givenname: Baha surname: Şen fullname: Şen, Baha |
| BookMark | eNqFkMFLwzAUxoNMcJuevRY8d3tpmtgedegUNh2o55CmiWR0SU1axv57s82DeJin9x78vu99fCM0sM4qhK4xTEjGIJ_KjZxkgMsJFDgnZ2iIac7SLMvY4Nd-gUYhrAEIIyUM0f3S1aox9jMRtk5WXtVGdvvT6eRFbUOycm3fCG-6XWJs8uakEU2yjJiIR--lCpfoXIsmqKufOUYfjw_vs6d08Tp_nt0tUklI0aVSUE0rXZUFVaWWqq4IMCowphmpClXomgFUMi8ogwqY0BRA5bIGTUmucU3GCI6-vW3FbiuahrfebITfcQz80AGPHfB9B_zQQZTcHCWtd1-9Ch1fx8w2puQZKeO_nJX4NAVFtCPkNlL0SEnvQvBKc2k60RlnOy9McyLD9I_uv9Tf72mJmg |
| CitedBy_id | crossref_primary_10_32604_csse_2022_019987 crossref_primary_10_1155_2022_8280036 crossref_primary_10_3390_sym15020296 crossref_primary_10_1109_TCSS_2021_3131945 crossref_primary_10_3390_su15010133 crossref_primary_10_1007_s11042_021_11782_3 crossref_primary_10_1007_s13369_022_07444_7 crossref_primary_10_1016_j_scs_2021_103658 |
| ContentType | Journal Article |
| Copyright | Copyright Tech Science Press 2019 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: Copyright Tech Science Press 2019 – notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| DOI | 10.32604/cmc.2019.08143 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database Materials Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1546-2226 |
| EndPage | 80 |
| ExternalDocumentID | 10.32604/cmc.2019.08143 10_32604_cmc_2019_08143 |
| GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY PUEGO RTS TUS 7SC 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY |
| ID | FETCH-LOGICAL-c338t-ca5f5bfb985e9fcedb3065a11523b8e8fd600bc48560b06af500e4cd0f534f1d3 |
| IEDL.DBID | UNPAY |
| ISSN | 1546-2226 1546-2218 |
| IngestDate | Sun Sep 07 11:15:12 EDT 2025 Sun Sep 07 03:48:31 EDT 2025 Mon Jun 30 03:45:28 EDT 2025 Wed Oct 01 04:24:05 EDT 2025 Thu Apr 24 23:08:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-ca5f5bfb985e9fcedb3065a11523b8e8fd600bc48560b06af500e4cd0f534f1d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.32604/cmc.2019.08143 |
| PQID | 2396004691 |
| PQPubID | 2048737 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_32604_cmc_2019_08143 proquest_journals_2396004691 proquest_journals_2308019337 crossref_citationtrail_10_32604_cmc_2019_08143 crossref_primary_10_32604_cmc_2019_08143 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-00-00 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – year: 2019 text: 2019-00-00 |
| PublicationDecade | 2010 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computers, materials & continua |
| PublicationYear | 2019 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| SSID | ssj0036390 |
| Score | 2.1970215 |
| Snippet | The popularity of news, which conveys newsworthy events which occur during day to people, is substantially important for the spectator or audience. People... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 69 |
| SubjectTerms | Algorithms Digital media Machine learning Multilayers News Predictions Social networks Websites |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEB60HvTiW6wvcvCgh213m-wjBxErShEsRSz0tuSxAaFuq1bEf-_MPqoeqnsLmwdMkplvJsl8AKeOW8NNiDNgcAULgxhOahl7JlQ84jYKjKJ4x30_6g3F3SgcLUG_fgtD1yprnVgoajsxFCNvdzhibXLmgsvpi0esUXS6WlNoqIpawV4UKcaWYaVDmbEasNK96Q8eat2MwxdRF8QNkddB61Ym-0EI44u2eaaUhoFsoZUU_Led-gafq-_5VH1-qPH4hx263YT1CkCyq3LGt2Apy7dhoyZnYNVe3YEusZzRW3OmcssGr3QgQ1ec2cQx0mxsUFB3EXcde8pZ-UyX0bmNwgJF9N92YXh783jd8yrCBM-gpznzjApdqJ2WSZhJZzKriRdeIejrcJ1kibMoQm1EgjBH-5Fyoe9nwljfhVy4wPI9aOSTPNsHJmPtsIfMV0rgF2DbQBotgtg66aKoCa1aPKmpsokTqcU4Ra-ikGeK8kxJnmkhzyaczRtMy0Qai6se1fJOqx31lqKrhMZUch4v-F0vjyacz6fov5EO_u7qENaobhlxOYLG7PU9O0YMMtMn1cL6AhlO2Ok priority: 102 providerName: ProQuest |
| Title | Modeling and Predicting of News Popularity in Social Media Sources |
| URI | https://www.proquest.com/docview/2308019337 https://www.proquest.com/docview/2396004691 https://doi.org/10.32604/cmc.2019.08143 |
| UnpaywallVersion | publishedVersion |
| Volume | 61 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: ADMLS dateStart: 20150601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1546-2226 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: BENPR dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9ROHgSPyMGSQ8e9DDc6Af0CEZCTCTESIKnpe3WxIiD8BGjf72v20A0EnWnLWu75vV17_de298DOLc0MtRwHAGDGswMYjipZcMzXFFBIxEY5eIddz3RHbDbIR_mJEnuLMza-j0CC59dmRdHNBjIGtouRrehKDiC7gIUB71-6zFlQ2XCq9fTSF5-XxcZic9PLXy1P5-gcmeRTNTbqxqN1uxLpwTdZc-ybSXPtcVc18z7N9LGP3R9D3ZzjElamVLsw1acHEBpmb-B5NP5ENouEZo7jk5UEpH-1K3ZuF3QZGyJ-_mRfprdy6W3I08JyU7yEre0o_DBBf1nRzDo3Dxcd708p4Jn0Bmde0Zxy7XVssljaU0caZc6XiEurFPdjJs2QgSkDWsiEtK-UJb7fsxM5FtOmQ0iegyFZJzEJ0BkQ1tsIfaVYngFWDeQRrOgEVlphShDbSnp0OSE4y7vxShExyOVUIgSCp2EwlRCZbhYVZhkXBubi1aWQxfmk24WojeF9lZS2tjwGhXHhQOCMlyuRvu3L53-o2wFCvPpIj5DmDLXVSi2b3r9-2quqh9NouI_ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6lcKAXWtoiApTuASR6MNjetZM9oIpQooRHFFUgcTP7lJCCE0gQ4s_1t3XGDwoH4IRvlr278ux45pvdnfkANj23hpsEZ8CgBguDGE5q2QpMonjKbRoZResdp4O0dy6OLpKLBvytc2HoWGVtEwtDbceG1sh3Y45Ym4K56NfkJiDWKNpdrSk0VEWtYPeKEmNVYsexe7jHEG661_-N870Vx93Ds4NeULEMBAbDs1lgVOIT7bVsJ05646wmMnWFSCnmuu3a3uK42og2YgMdpsonYeiEsaFPuPCR5djvB5gXXEgM_uY7h4Phn9oX4OcWqzyIU9IgRm9aFhdCyBSKXXNNJRQjuYNeWfDnfvE_2F24yyfq4V6NRk_8XvczLFaAle2XGrYEDZd_gU81GQSrbMNX6BCrGuW2M5VbNrylDSA6Us3GnpElZcOCKoy48thVzsq0YEb7RApvaAdh-g3O30V0yzCXj3O3Aky2tMceXKiUwCvCtpE0WkQt66VP0ybs1OLJTFW9nEg0RhlGMYU8M5RnRvLMCnk2YfuxwaQs3PHyq-u1vLPqD55mGJqh85act154XKtjE34-TtFbI62-3tUPWOidnZ5kJ_3B8Rp8pHblas86zM1u79x3xD8zvVEpGYPL99brf_B_Fxo |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HTw5P3EyJQcPemhtm482xynKEBw7OJinkqQNiLMbW4foX-9LP-YUh9pTS5M0vLz0_d5L8nsInRmSaKIZjIAGDaYaMJxQInQ0k4SThPta2njHfZ_3hvRuxEYVSZI9C7Oyfg_AwqOX-sUSDfrCBdtFySZqcgagu4Gaw_6g-1iwoVLuBEERyavuA16S-PzUwlf78wkqtxbZVL69yvF4xb7ctlCv7lm5reTZXeTK1e_fSBv_0PUdtF1hTNwtlWIXbaTZHmrV-RtwNZ330ZVNhGaPo2OZJXgws2s2dhc0nhhsf354UGT3sunt8FOGy5O82C7tSHiwQf_5ARre3jxc95wqp4KjwRnNHS2ZYcooEbFUGJ0myqaOl4ALA6KiNDIJICClaQRISHlcGuZ5KdWJZxihxk_IIWpkkyw9QliEykALqSclhcuHur7QivphYoThvI3cWtKxrgjHbd6LcQyORyGhGCQUWwnFhYTa6HxZYVpybawv2qmHLq4m3TwGbwrsrSAkXPMaFMeGA_w2uliO9m9fOv5H2Q5q5LNFegIwJVenlYp-AEN54KU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+Predicting+of+News+Popularity+in+Social+Media+Sources&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Akyol%2C+Kemal&rft.au=%C5%9Een%2C+Baha&rft.date=2019&rft.issn=1546-2226&rft.volume=61&rft.issue=1&rft.spage=69&rft.epage=80&rft_id=info:doi/10.32604%2Fcmc.2019.08143&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2019_08143 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |