Modeling and Predicting of News Popularity in Social Media Sources

The popularity of news, which conveys newsworthy events which occur during day to people, is substantially important for the spectator or audience. People interact with news website and share news links or their opinions. This study uses supervised learning based machine learning techniques in order...

Full description

Saved in:
Bibliographic Details
Published inComputers, materials & continua Vol. 61; no. 1; pp. 69 - 80
Main Authors Akyol, Kemal, Şen, Baha
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2019
Subjects
Online AccessGet full text
ISSN1546-2226
1546-2218
1546-2226
DOI10.32604/cmc.2019.08143

Cover

Abstract The popularity of news, which conveys newsworthy events which occur during day to people, is substantially important for the spectator or audience. People interact with news website and share news links or their opinions. This study uses supervised learning based machine learning techniques in order to predict news popularity in social media sources. These techniques consist of basically two phrases: a) the training data is sent as input to the classifier algorithm, b) the performance of pre-learned algorithm is tested on the testing data. And so, a knowledge discovery from the data is performed. In this context, firstly, twelve datasets from a set of data are obtained within the frame of four categories: Economic, Microsoft, Obama and Palestine. Second, news popularity prediction in social network services is carried out by utilizing Gradient Boosted Trees, Multi-Layer Perceptron and Random Forest learning algorithms. The prediction performances of all algorithms are examined by considering Mean Absolute Error, Root Mean Squared Error and the R-squared evaluation metrics. The results show that most of the models designed by using these algorithms are proved to be applicable for this subject. Consequently, a comprehensive study for the news prediction is presented, using different techniques, drawing conclusions about the performances of algorithms in this study.
AbstractList The popularity of news, which conveys newsworthy events which occur during day to people, is substantially important for the spectator or audience. People interact with news website and share news links or their opinions. This study uses supervised learning based machine learning techniques in order to predict news popularity in social media sources. These techniques consist of basically two phrases: a) the training data is sent as input to the classifier algorithm, b) the performance of pre-learned algorithm is tested on the testing data. And so, a knowledge discovery from the data is performed. In this context, firstly, twelve datasets from a set of data are obtained within the frame of four categories: Economic, Microsoft, Obama and Palestine. Second, news popularity prediction in social network services is carried out by utilizing Gradient Boosted Trees, Multi-Layer Perceptron and Random Forest learning algorithms. The prediction performances of all algorithms are examined by considering Mean Absolute Error, Root Mean Squared Error and the R-squared evaluation metrics. The results show that most of the models designed by using these algorithms are proved to be applicable for this subject. Consequently, a comprehensive study for the news prediction is presented, using different techniques, drawing conclusions about the performances of algorithms in this study.
Author Şen, Baha
Akyol, Kemal
Author_xml – sequence: 1
  givenname: Kemal
  surname: Akyol
  fullname: Akyol, Kemal
– sequence: 2
  givenname: Baha
  surname: Şen
  fullname: Şen, Baha
BookMark eNqFkMFLwzAUxoNMcJuevRY8d3tpmtgedegUNh2o55CmiWR0SU1axv57s82DeJin9x78vu99fCM0sM4qhK4xTEjGIJ_KjZxkgMsJFDgnZ2iIac7SLMvY4Nd-gUYhrAEIIyUM0f3S1aox9jMRtk5WXtVGdvvT6eRFbUOycm3fCG-6XWJs8uakEU2yjJiIR--lCpfoXIsmqKufOUYfjw_vs6d08Tp_nt0tUklI0aVSUE0rXZUFVaWWqq4IMCowphmpClXomgFUMi8ogwqY0BRA5bIGTUmucU3GCI6-vW3FbiuahrfebITfcQz80AGPHfB9B_zQQZTcHCWtd1-9Ch1fx8w2puQZKeO_nJX4NAVFtCPkNlL0SEnvQvBKc2k60RlnOy9McyLD9I_uv9Tf72mJmg
CitedBy_id crossref_primary_10_32604_csse_2022_019987
crossref_primary_10_1155_2022_8280036
crossref_primary_10_3390_sym15020296
crossref_primary_10_1109_TCSS_2021_3131945
crossref_primary_10_3390_su15010133
crossref_primary_10_1007_s11042_021_11782_3
crossref_primary_10_1007_s13369_022_07444_7
crossref_primary_10_1016_j_scs_2021_103658
ContentType Journal Article
Copyright Copyright Tech Science Press 2019
2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Copyright Tech Science Press 2019
– notice: 2019. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.32604/cmc.2019.08143
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Materials Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 80
ExternalDocumentID 10.32604/cmc.2019.08143
10_32604_cmc_2019_08143
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
PUEGO
RTS
TUS
7SC
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c338t-ca5f5bfb985e9fcedb3065a11523b8e8fd600bc48560b06af500e4cd0f534f1d3
IEDL.DBID UNPAY
ISSN 1546-2226
1546-2218
IngestDate Sun Sep 07 11:15:12 EDT 2025
Sun Sep 07 03:48:31 EDT 2025
Mon Jun 30 03:45:28 EDT 2025
Wed Oct 01 04:24:05 EDT 2025
Thu Apr 24 23:08:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-ca5f5bfb985e9fcedb3065a11523b8e8fd600bc48560b06af500e4cd0f534f1d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.32604/cmc.2019.08143
PQID 2396004691
PQPubID 2048737
PageCount 12
ParticipantIDs unpaywall_primary_10_32604_cmc_2019_08143
proquest_journals_2396004691
proquest_journals_2308019337
crossref_citationtrail_10_32604_cmc_2019_08143
crossref_primary_10_32604_cmc_2019_08143
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-00-00
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019-00-00
PublicationDecade 2010
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2019
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
SSID ssj0036390
Score 2.1970215
Snippet The popularity of news, which conveys newsworthy events which occur during day to people, is substantially important for the spectator or audience. People...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 69
SubjectTerms Algorithms
Digital media
Machine learning
Multilayers
News
Predictions
Social networks
Websites
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEB60HvTiW6wvcvCgh213m-wjBxErShEsRSz0tuSxAaFuq1bEf-_MPqoeqnsLmwdMkplvJsl8AKeOW8NNiDNgcAULgxhOahl7JlQ84jYKjKJ4x30_6g3F3SgcLUG_fgtD1yprnVgoajsxFCNvdzhibXLmgsvpi0esUXS6WlNoqIpawV4UKcaWYaVDmbEasNK96Q8eat2MwxdRF8QNkddB61Ym-0EI44u2eaaUhoFsoZUU_Led-gafq-_5VH1-qPH4hx263YT1CkCyq3LGt2Apy7dhoyZnYNVe3YEusZzRW3OmcssGr3QgQ1ec2cQx0mxsUFB3EXcde8pZ-UyX0bmNwgJF9N92YXh783jd8yrCBM-gpznzjApdqJ2WSZhJZzKriRdeIejrcJ1kibMoQm1EgjBH-5Fyoe9nwljfhVy4wPI9aOSTPNsHJmPtsIfMV0rgF2DbQBotgtg66aKoCa1aPKmpsokTqcU4Ra-ikGeK8kxJnmkhzyaczRtMy0Qai6se1fJOqx31lqKrhMZUch4v-F0vjyacz6fov5EO_u7qENaobhlxOYLG7PU9O0YMMtMn1cL6AhlO2Ok
  priority: 102
  providerName: ProQuest
Title Modeling and Predicting of News Popularity in Social Media Sources
URI https://www.proquest.com/docview/2308019337
https://www.proquest.com/docview/2396004691
https://doi.org/10.32604/cmc.2019.08143
UnpaywallVersion publishedVersion
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: ADMLS
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFH9ROHgSPyMGSQ8e9DDc6Af0CEZCTCTESIKnpe3WxIiD8BGjf72v20A0EnWnLWu75vV17_de298DOLc0MtRwHAGDGswMYjipZcMzXFFBIxEY5eIddz3RHbDbIR_mJEnuLMza-j0CC59dmRdHNBjIGtouRrehKDiC7gIUB71-6zFlQ2XCq9fTSF5-XxcZic9PLXy1P5-gcmeRTNTbqxqN1uxLpwTdZc-ybSXPtcVc18z7N9LGP3R9D3ZzjElamVLsw1acHEBpmb-B5NP5ENouEZo7jk5UEpH-1K3ZuF3QZGyJ-_mRfprdy6W3I08JyU7yEre0o_DBBf1nRzDo3Dxcd708p4Jn0Bmde0Zxy7XVssljaU0caZc6XiEurFPdjJs2QgSkDWsiEtK-UJb7fsxM5FtOmQ0iegyFZJzEJ0BkQ1tsIfaVYngFWDeQRrOgEVlphShDbSnp0OSE4y7vxShExyOVUIgSCp2EwlRCZbhYVZhkXBubi1aWQxfmk24WojeF9lZS2tjwGhXHhQOCMlyuRvu3L53-o2wFCvPpIj5DmDLXVSi2b3r9-2quqh9NouI_
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB6lcKAXWtoiApTuASR6MNjetZM9oIpQooRHFFUgcTP7lJCCE0gQ4s_1t3XGDwoH4IRvlr278ux45pvdnfkANj23hpsEZ8CgBguDGE5q2QpMonjKbRoZResdp4O0dy6OLpKLBvytc2HoWGVtEwtDbceG1sh3Y45Ym4K56NfkJiDWKNpdrSk0VEWtYPeKEmNVYsexe7jHEG661_-N870Vx93Ds4NeULEMBAbDs1lgVOIT7bVsJ05646wmMnWFSCnmuu3a3uK42og2YgMdpsonYeiEsaFPuPCR5djvB5gXXEgM_uY7h4Phn9oX4OcWqzyIU9IgRm9aFhdCyBSKXXNNJRQjuYNeWfDnfvE_2F24yyfq4V6NRk_8XvczLFaAle2XGrYEDZd_gU81GQSrbMNX6BCrGuW2M5VbNrylDSA6Us3GnpElZcOCKoy48thVzsq0YEb7RApvaAdh-g3O30V0yzCXj3O3Aky2tMceXKiUwCvCtpE0WkQt66VP0ybs1OLJTFW9nEg0RhlGMYU8M5RnRvLMCnk2YfuxwaQs3PHyq-u1vLPqD55mGJqh85act154XKtjE34-TtFbI62-3tUPWOidnZ5kJ_3B8Rp8pHblas86zM1u79x3xD8zvVEpGYPL99brf_B_Fxo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6HTw5P3EyJQcPemhtm482xynKEBw7OJinkqQNiLMbW4foX-9LP-YUh9pTS5M0vLz0_d5L8nsInRmSaKIZjIAGDaYaMJxQInQ0k4SThPta2njHfZ_3hvRuxEYVSZI9C7Oyfg_AwqOX-sUSDfrCBdtFySZqcgagu4Gaw_6g-1iwoVLuBEERyavuA16S-PzUwlf78wkqtxbZVL69yvF4xb7ctlCv7lm5reTZXeTK1e_fSBv_0PUdtF1hTNwtlWIXbaTZHmrV-RtwNZ330ZVNhGaPo2OZJXgws2s2dhc0nhhsf354UGT3sunt8FOGy5O82C7tSHiwQf_5ARre3jxc95wqp4KjwRnNHS2ZYcooEbFUGJ0myqaOl4ALA6KiNDIJICClaQRISHlcGuZ5KdWJZxihxk_IIWpkkyw9QliEykALqSclhcuHur7QivphYoThvI3cWtKxrgjHbd6LcQyORyGhGCQUWwnFhYTa6HxZYVpybawv2qmHLq4m3TwGbwrsrSAkXPMaFMeGA_w2uliO9m9fOv5H2Q5q5LNFegIwJVenlYp-AEN54KU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+and+Predicting+of+News+Popularity+in+Social+Media+Sources&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Akyol%2C+Kemal&rft.au=%C5%9Een%2C+Baha&rft.date=2019&rft.issn=1546-2226&rft.volume=61&rft.issue=1&rft.spage=69&rft.epage=80&rft_id=info:doi/10.32604%2Fcmc.2019.08143&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2019_08143
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon