Lightweight coal and gangue detection algorithm based on improved Yolov7-tiny
This paper proposes a lightweight coal and gangue detection algorithm based on Yolov7-tiny for the current target detection algorithms, which have problems such as large model computation, low detection accuracy and low real-time detection performance. Firstly, we make cuts for the ShuffleNetV2 netw...
Saved in:
| Published in | International journal of coal preparation and utilization Vol. 44; no. 11; pp. 1773 - 1792 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Abingdon
Taylor & Francis
01.11.2024
Taylor & Francis Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1939-2699 1939-2702 |
| DOI | 10.1080/19392699.2023.2301304 |
Cover
| Abstract | This paper proposes a lightweight coal and gangue detection algorithm based on Yolov7-tiny for the current target detection algorithms, which have problems such as large model computation, low detection accuracy and low real-time detection performance. Firstly, we make cuts for the ShuffleNetV2 network and replace the Stage1 and Stage2 layers with CONV convolutional blocks to construct a new backbone network that improves the speed of feature extraction. Secondly, the neck of the original model is redesigned by fusing the original two paths of up-sampling and down-sampling into one path, introducing the CBAM attention mechanism to further improve the information extraction, fusion and interaction capabilities of the model, and the detection heads are reduced from three to two to improve the real-time inference capability of the model. Finally, SIoU is used to replace the loss function of the original network to improve the convergence ability and robustness of the model. The experimental results show that the accuracy and FPS of the lightweight model proposed in this paper reach 0.981 and 208, respectively. The improved model has higher real-time and accuracy, and the reduction of computation provides the possibility of deploying it on the edge devices. |
|---|---|
| AbstractList | This paper proposes a lightweight coal and gangue detection algorithm based on Yolov7-tiny for the current target detection algorithms, which have problems such as large model computation, low detection accuracy and low real-time detection performance. Firstly, we make cuts for the ShuffleNetV2 network and replace the Stage1 and Stage2 layers with CONV convolutional blocks to construct a new backbone network that improves the speed of feature extraction. Secondly, the neck of the original model is redesigned by fusing the original two paths of up-sampling and down-sampling into one path, introducing the CBAM attention mechanism to further improve the information extraction, fusion and interaction capabilities of the model, and the detection heads are reduced from three to two to improve the real-time inference capability of the model. Finally, SIoU is used to replace the loss function of the original network to improve the convergence ability and robustness of the model. The experimental results show that the accuracy and FPS of the lightweight model proposed in this paper reach 0.981 and 208, respectively. The improved model has higher real-time and accuracy, and the reduction of computation provides the possibility of deploying it on the edge devices. |
| Author | Fang, Liao Cao, Zhenguan Li, Zhuoqin Li, JinBiao |
| Author_xml | – sequence: 1 givenname: Zhenguan surname: Cao fullname: Cao, Zhenguan organization: Anhui University of Science and Technology – sequence: 2 givenname: Zhuoqin surname: Li fullname: Li, Zhuoqin email: eric1213864370@163.com organization: Anhui University of Science and Technology – sequence: 3 givenname: Liao surname: Fang fullname: Fang, Liao organization: Anhui University of Science and Technology – sequence: 4 givenname: JinBiao surname: Li fullname: Li, JinBiao organization: Anhui University of Science and Technology |
| BookMark | eNqFUMtKA0EQHCSCSfQThAXPG-exT7wowRdEvOjB09DbO5NM2MzE2UlC_t5dklw86KW7aKqqu2tEBtZZRcg1oxNGC3rLSlHyrCwnnHIx4YIyQZMzMuznMc8pH5xwR7ogo7ZdUppxViZD8jYz80XYqb5G6KCJwNbRHOx8o6JaBYXBOBtBM3fehMUqqqBVddSNzGrt3bbDX65x2zwOxu4vybmGplVXxz4mn0-PH9OXePb-_Dp9mMUoRBHiqkJeqAwVCCEAK41piSnLtaZIU0RVZYig6yRlUOokEylNU6SFLooaeAZiTG4Ovt0J3xvVBrl0G2-7lVIwLnJKS553rLsDC71rW6-0RBOg_yd4MI1kVPb5yVN-ss9PHvPr1Okv9dqbFfj9v7r7g85Y7fwKds43tQywb5zXHiya_sg_LX4ACreKHA |
| CitedBy_id | crossref_primary_10_1080_19392699_2024_2393885 crossref_primary_10_3390_s24227318 crossref_primary_10_1080_19392699_2024_2398522 crossref_primary_10_1080_19392699_2025_2480338 |
| Cites_doi | 10.1080/19392699.2022.2072305 10.3390/s22093467 10.4028/www.scientific.net/AMM.275-277.2350 10.3390/ijms23169330 10.3390/rs13245102 10.5281/zenodo.7347926 10.1007/s11554-021-01145-4 10.3390/rs13071269 10.1016/j.ngib.2016.02.001 10.1007/s11554-022-01215-1 10.1145/3573942.3574029 10.1109/ACCESS.2021.3090780 10.1155/2022/8522206 10.1109/ICCV.2015.169 10.3390/s21041349 10.1109/ACCESS.2019.2955725 10.3390/rs13091619 10.1109/TELFOR.2018.8611986 10.1109/ACCESS.2023.3233964 10.1016/j.petrol.2019.04.063 10.3390/sym13040623 10.1109/CACRE50138.2020.9230193 10.1109/ACCESS.2019.2961075 10.1007/978-3-030-01234-2_1 10.1609/aaai.v34i07.6999 10.1016/j.neucom.2021.04.049 10.1016/j.iot.2023.100762 10.3390/pr11041268 10.1016/j.resconrec.2021.106090 10.31590/ejosat.1171777 10.1109/ICCC56324.2022.10065775 10.1109/CVPR52729.2023.00721 10.1109/TIA.2022.3188749 10.1109/ICIBA52610.2021.9687869 10.1016/j.procs.2022.01.135 10.1109/ICCV.2019.00140 10.3390/s22249897 10.1080/19392699.2020.1760855 10.1109/TIM.2022.3219468 10.1016/j.microc.2022.108330 10.1007/978-3-030-01264-9_8 10.1109/ICPECA51329.2021.9362711 10.1155/2018/7068349 |
| ContentType | Journal Article |
| Copyright | 2024 Taylor & Francis Group, LLC 2024 2024 Taylor & Francis Group, LLC |
| Copyright_xml | – notice: 2024 Taylor & Francis Group, LLC 2024 – notice: 2024 Taylor & Francis Group, LLC |
| DBID | AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| DOI | 10.1080/19392699.2023.2301304 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-2702 |
| EndPage | 1792 |
| ExternalDocumentID | 10_1080_19392699_2023_2301304 2301304 |
| Genre | Research Article |
| GrantInformation_xml | – fundername: Natural Science Research Project of Anhui Educational Committee grantid: KJ2021A0427 – fundername: Postgraduate Innovation Fund of Anhui University of Science and Technology grantid: 2023cx2081 |
| GroupedDBID | .7F .QJ 0BK 0R~ 30N 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB AEISY AENEX AEOZL AEPSL AEYOC AFRAH AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDH ESX E~A E~B GTTXZ H13 HF~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ 4P2 AAYXX ABJIA ACUHS ADMLS ADUMR AGBKS CAG CITATION COF EJD EMK EPL I-F L8X NUSFT 7SP 7TB 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c338t-bbc28e6cea333acbfc59c517ff0c05cceb6ccafd451a9f4635055c08f88da26a3 |
| ISSN | 1939-2699 |
| IngestDate | Tue Aug 12 08:07:16 EDT 2025 Thu Apr 24 23:02:26 EDT 2025 Wed Oct 01 06:34:37 EDT 2025 Mon Oct 20 23:45:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c338t-bbc28e6cea333acbfc59c517ff0c05cceb6ccafd451a9f4635055c08f88da26a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3123700927 |
| PQPubID | 105604 |
| PageCount | 20 |
| ParticipantIDs | crossref_citationtrail_10_1080_19392699_2023_2301304 crossref_primary_10_1080_19392699_2023_2301304 informaworld_taylorfrancis_310_1080_19392699_2023_2301304 proquest_journals_3123700927 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Abingdon |
| PublicationPlace_xml | – name: Abingdon |
| PublicationTitle | International journal of coal preparation and utilization |
| PublicationYear | 2024 |
| Publisher | Taylor & Francis Taylor & Francis Ltd |
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
| References | e_1_3_4_4_1 e_1_3_4_3_1 e_1_3_4_2_1 e_1_3_4_9_1 e_1_3_4_8_1 e_1_3_4_42_1 e_1_3_4_7_1 e_1_3_4_20_1 e_1_3_4_41_1 e_1_3_4_6_1 e_1_3_4_40_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_46_1 e_1_3_4_24_1 e_1_3_4_45_1 e_1_3_4_21_1 e_1_3_4_44_1 e_1_3_4_22_1 e_1_3_4_43_1 e_1_3_4_27_1 e_1_3_4_28_1 e_1_3_4_49_1 e_1_3_4_25_1 e_1_3_4_48_1 e_1_3_4_26_1 e_1_3_4_47_1 e_1_3_4_29_1 Song L. (e_1_3_4_35_1) 2017; 37 e_1_3_4_31_1 e_1_3_4_30_1 e_1_3_4_12_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_10_1 e_1_3_4_33_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_16_1 e_1_3_4_39_1 e_1_3_4_17_1 e_1_3_4_38_1 e_1_3_4_14_1 e_1_3_4_37_1 e_1_3_4_15_1 e_1_3_4_36_1 e_1_3_4_18_1 e_1_3_4_19_1 |
| References_xml | – ident: e_1_3_4_16_1 doi: 10.1080/19392699.2022.2072305 – ident: e_1_3_4_17_1 doi: 10.3390/s22093467 – ident: e_1_3_4_46_1 doi: 10.4028/www.scientific.net/AMM.275-277.2350 – ident: e_1_3_4_13_1 doi: 10.3390/ijms23169330 – ident: e_1_3_4_45_1 doi: 10.3390/rs13245102 – ident: e_1_3_4_23_1 doi: 10.5281/zenodo.7347926 – volume: 37 start-page: 416 issue: 2 year: 2017 ident: e_1_3_4_35_1 article-title: A Classification Method Based on the Combination of Visible, Near-Infrared and Thermal Infrared Spectrum for Coal and Gangue Distinguishment publication-title: Guang pu xue yu guang pu fen xi = Guang pu – ident: e_1_3_4_18_1 doi: 10.1007/s11554-021-01145-4 – ident: e_1_3_4_5_1 doi: 10.3390/rs13071269 – ident: e_1_3_4_49_1 doi: 10.1016/j.ngib.2016.02.001 – ident: e_1_3_4_33_1 doi: 10.1007/s11554-022-01215-1 – ident: e_1_3_4_9_1 doi: 10.1145/3573942.3574029 – ident: e_1_3_4_41_1 doi: 10.1109/ACCESS.2021.3090780 – ident: e_1_3_4_38_1 – ident: e_1_3_4_32_1 doi: 10.1155/2022/8522206 – ident: e_1_3_4_14_1 doi: 10.1109/ICCV.2015.169 – ident: e_1_3_4_36_1 doi: 10.3390/s21041349 – ident: e_1_3_4_21_1 doi: 10.1109/ACCESS.2019.2955725 – ident: e_1_3_4_44_1 doi: 10.3390/rs13091619 – ident: e_1_3_4_7_1 doi: 10.1109/TELFOR.2018.8611986 – ident: e_1_3_4_30_1 doi: 10.1109/ACCESS.2023.3233964 – ident: e_1_3_4_4_1 doi: 10.1016/j.petrol.2019.04.063 – ident: e_1_3_4_12_1 doi: 10.3390/sym13040623 – ident: e_1_3_4_25_1 doi: 10.1109/CACRE50138.2020.9230193 – ident: e_1_3_4_27_1 doi: 10.1109/ACCESS.2019.2961075 – ident: e_1_3_4_42_1 doi: 10.1007/978-3-030-01234-2_1 – ident: e_1_3_4_47_1 doi: 10.1609/aaai.v34i07.6999 – ident: e_1_3_4_37_1 – ident: e_1_3_4_11_1 doi: 10.1016/j.neucom.2021.04.049 – ident: e_1_3_4_43_1 doi: 10.1016/j.iot.2023.100762 – ident: e_1_3_4_3_1 doi: 10.3390/pr11041268 – ident: e_1_3_4_6_1 doi: 10.1016/j.resconrec.2021.106090 – ident: e_1_3_4_2_1 doi: 10.31590/ejosat.1171777 – ident: e_1_3_4_29_1 doi: 10.1109/ICCC56324.2022.10065775 – ident: e_1_3_4_26_1 – ident: e_1_3_4_34_1 – ident: e_1_3_4_40_1 doi: 10.1109/CVPR52729.2023.00721 – ident: e_1_3_4_10_1 doi: 10.1109/TIA.2022.3188749 – ident: e_1_3_4_15_1 doi: 10.1109/ICIBA52610.2021.9687869 – ident: e_1_3_4_22_1 doi: 10.1016/j.procs.2022.01.135 – ident: e_1_3_4_19_1 doi: 10.1109/ICCV.2019.00140 – ident: e_1_3_4_24_1 doi: 10.3390/s22249897 – ident: e_1_3_4_28_1 doi: 10.1080/19392699.2020.1760855 – ident: e_1_3_4_8_1 doi: 10.1109/TIM.2022.3219468 – ident: e_1_3_4_20_1 doi: 10.1016/j.microc.2022.108330 – ident: e_1_3_4_31_1 doi: 10.1007/978-3-030-01264-9_8 – ident: e_1_3_4_48_1 doi: 10.1109/ICPECA51329.2021.9362711 – ident: e_1_3_4_39_1 doi: 10.1155/2018/7068349 |
| SSID | ssj0062194 |
| Score | 2.344209 |
| Snippet | This paper proposes a lightweight coal and gangue detection algorithm based on Yolov7-tiny for the current target detection algorithms, which have problems... |
| SourceID | proquest crossref informaworld |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1773 |
| SubjectTerms | Accuracy Algorithms coal and gangue Computation Gangue Information retrieval lightweight neural network model Real time Sampling Target detection target detection algorithms Yolov7-tiny |
| Title | Lightweight coal and gangue detection algorithm based on improved Yolov7-tiny |
| URI | https://www.tandfonline.com/doi/abs/10.1080/19392699.2023.2301304 https://www.proquest.com/docview/3123700927 |
| Volume | 44 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1939-2702 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0062194 issn: 1939-2699 databaseCode: ABDBF dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1939-2702 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0062194 issn: 1939-2699 databaseCode: ADMLS dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1939-2702 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062194 issn: 1939-2699 databaseCode: AHDZW dateStart: 20080301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1939-2702 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062194 issn: 1939-2699 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF656aU9VH2qadOKQ3OycIFdHnvsI1YUOe7FltxeECy7CZIDjoUbKX-pf7Iz7ILXitW0vSA0sKzY-ZgZZudByIeEqrBIuO_G0pMu49RzuVKJK2QRM0YzVnDMdz6fRqdzdrYIF4PBLytqadPkI3G7N6_kf7gKNOArZsn-A2f7hwIBzoG_cAQOw_GveDzBP-ub1rk5FLXJ-r9ADyRmQzXStAFfXtTrsrm8GqLKKnB7oGxdCXD-HWTfz9htympne3fXT2hVl2hnWa2lrhhuIpnhDZcmnXO7pdG6YH9cSnSHbsN-Sk3d1NelRczq4TgzKrS_66ysPsMV2y0RMJOf1wFpdqdDiBWmhIKWU-4GkW6ONJIWLfZ2pLOuDtmh0LdkrR_rJihGb4NkCfbqBB1EiQ_H-UbYLx7D30F5s60S7Db-p9_S8XwySWcni9kxHa-uXWxQhhv5x_SrRtAD8jAAFYJ9Qqg37dR-BKLfhDDoF-vSxRLv4965dwyhnTK5d8yC1taZPSVPzE-K80kj7hkZyOo5eWyVrnxBzi3sOYgKB5DgaOw5PfacHntOiz0HSB32HAt7L8l8fDL7cuqa1hyuoDRp3DwXQSIjITNKaSZyJUIuQj9WyhNeKITMIxANqmChn3HFwKr1wlB4iUqSIguijL4iB1VdydfEif0iKqhginPBfAUKJRQ-mPVCMCrDKD4krFunVJi69dg-ZZn6prxtt7wpLm9qlveQjPphK1245b4B3GZC2rQIVhq8Kb1n7FHHsdR8kzgkoDHWNIvf_PnyW_Jo-wUdkYNmvZHvwNRt8vctxH4DfkmmPA |
| linkProvider | Taylor & Francis |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1EokIHVJYkfiUeEqAq0nYpUpig526WipKhKQfDrsfNABYQ6dIuSnJPY58_ny913CF2ERDMZCg8HylWYCuJioXWIQcmAUhJTKWy-c7fH2w_0bsAGc7kwNqzS7qF1QRSRY7Wd3NYZXYXEXRqjQ_hc2DwTn9hQZgPEdBWtMWPs2yoGxO1VaMzNjCz_LAtsZaosnv-a-bE-_WAv_YPW-RLU2kZQvXwRefLcnGVJEz5_8Tou93U7aKu0UJ2rQqV20YpK99DmHG_hPup27Jb-PfeqOjAxd5unOUPr-lSOVFke3pU68Xg4mY6ypxfHrpXSMadGuQ_DHD8a0H0LcDZKPw7QQ-umf93GZV0GDGZDm-EkAT9UHFRMCIkh0cAEMC_Q2gWXAaiEG73QkjIvFpoak8ZlDNxQh6GMfR6TQ1RLJ6k6Qk7gSS4JUC0EUE8bNGHgGZsOgBLFeFBHtBqNCErScls7Yxx5Jbdp1VuR7a2o7K06an6LvRasHYsExPxQR1nuLtFFbZOILJBtVHoRlQBgRXwSWEKr4HiJps_Rervf7USd2979Cdowl2iRB9lAtWw6U6fGIMqSs1zjvwD5J_wK |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54SAgOvBHj2QPXjLZ5tDkiYBqPTRyYBKeqdZIxMbppFBD8epI-0AZCO-xWtXWaJrbjOPZnhE5CopkMhYcD5SpMBXGx0DrEoGRAKYmpFDbfudXmzQ69fmBVNOFrGVZp99C6AIrIdbUV7qHUVUTcqbE5hM-FTTPxiY1kNnqYzqNFbk_FbBaH266UMTcCWR4sC2xpqiSe_5qZWJ4mwEv_KOt8BWqsoaTqexF48lx_y5I6fP2CdZzp59bRammfOmcFQ22gOZVuopUx1MIt1Lq1G_qP3KfqwMC8bT7mdK3jUzlSZXlwV-rE_e5g1MueXhy7UkrH3OrlHgxz_WhU7nuAs176uY06jcv78yYuqzJgMNvZDCcJ-KHioGJCSAyJBiaAeYHWLrgMQCXccIWWlHmx0NQYNC5j4IY6DGXs85jsoIV0kKpd5ASe5JIA1UIA9bTRJQw8Y9EBUKIYD2qIVpMRQQlZbitn9COvRDatRiuyoxWVo1VD9R-yYYHZMY1AjM90lOXOEl1UNonIFNqDii2iUvwtiU8CC2cV7M3Q9DFaurtoRLdX7Zt9tGye0CIJ8gAtZKM3dWisoSw5yvn9G9b_-q4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight+coal+and+gangue+detection+algorithm+based+on+improved+Yolov7-tiny&rft.jtitle=International+journal+of+coal+preparation+and+utilization&rft.au=Cao%2C+Zhenguan&rft.au=Li%2C+Zhuoqin&rft.au=Liao+Fang&rft.au=Li%2C+JinBiao&rft.date=2024-11-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1939-2699&rft.eissn=1939-2702&rft.volume=44&rft.issue=11&rft.spage=1773&rft.epage=1792&rft_id=info:doi/10.1080%2F19392699.2023.2301304&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-2699&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-2699&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-2699&client=summon |