Lightweight coal and gangue detection algorithm based on improved Yolov7-tiny

This paper proposes a lightweight coal and gangue detection algorithm based on Yolov7-tiny for the current target detection algorithms, which have problems such as large model computation, low detection accuracy and low real-time detection performance. Firstly, we make cuts for the ShuffleNetV2 netw...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of coal preparation and utilization Vol. 44; no. 11; pp. 1773 - 1792
Main Authors Cao, Zhenguan, Li, Zhuoqin, Fang, Liao, Li, JinBiao
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 01.11.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1939-2699
1939-2702
DOI10.1080/19392699.2023.2301304

Cover

Abstract This paper proposes a lightweight coal and gangue detection algorithm based on Yolov7-tiny for the current target detection algorithms, which have problems such as large model computation, low detection accuracy and low real-time detection performance. Firstly, we make cuts for the ShuffleNetV2 network and replace the Stage1 and Stage2 layers with CONV convolutional blocks to construct a new backbone network that improves the speed of feature extraction. Secondly, the neck of the original model is redesigned by fusing the original two paths of up-sampling and down-sampling into one path, introducing the CBAM attention mechanism to further improve the information extraction, fusion and interaction capabilities of the model, and the detection heads are reduced from three to two to improve the real-time inference capability of the model. Finally, SIoU is used to replace the loss function of the original network to improve the convergence ability and robustness of the model. The experimental results show that the accuracy and FPS of the lightweight model proposed in this paper reach 0.981 and 208, respectively. The improved model has higher real-time and accuracy, and the reduction of computation provides the possibility of deploying it on the edge devices.
AbstractList This paper proposes a lightweight coal and gangue detection algorithm based on Yolov7-tiny for the current target detection algorithms, which have problems such as large model computation, low detection accuracy and low real-time detection performance. Firstly, we make cuts for the ShuffleNetV2 network and replace the Stage1 and Stage2 layers with CONV convolutional blocks to construct a new backbone network that improves the speed of feature extraction. Secondly, the neck of the original model is redesigned by fusing the original two paths of up-sampling and down-sampling into one path, introducing the CBAM attention mechanism to further improve the information extraction, fusion and interaction capabilities of the model, and the detection heads are reduced from three to two to improve the real-time inference capability of the model. Finally, SIoU is used to replace the loss function of the original network to improve the convergence ability and robustness of the model. The experimental results show that the accuracy and FPS of the lightweight model proposed in this paper reach 0.981 and 208, respectively. The improved model has higher real-time and accuracy, and the reduction of computation provides the possibility of deploying it on the edge devices.
Author Fang, Liao
Cao, Zhenguan
Li, Zhuoqin
Li, JinBiao
Author_xml – sequence: 1
  givenname: Zhenguan
  surname: Cao
  fullname: Cao, Zhenguan
  organization: Anhui University of Science and Technology
– sequence: 2
  givenname: Zhuoqin
  surname: Li
  fullname: Li, Zhuoqin
  email: eric1213864370@163.com
  organization: Anhui University of Science and Technology
– sequence: 3
  givenname: Liao
  surname: Fang
  fullname: Fang, Liao
  organization: Anhui University of Science and Technology
– sequence: 4
  givenname: JinBiao
  surname: Li
  fullname: Li, JinBiao
  organization: Anhui University of Science and Technology
BookMark eNqFUMtKA0EQHCSCSfQThAXPG-exT7wowRdEvOjB09DbO5NM2MzE2UlC_t5dklw86KW7aKqqu2tEBtZZRcg1oxNGC3rLSlHyrCwnnHIx4YIyQZMzMuznMc8pH5xwR7ogo7ZdUppxViZD8jYz80XYqb5G6KCJwNbRHOx8o6JaBYXBOBtBM3fehMUqqqBVddSNzGrt3bbDX65x2zwOxu4vybmGplVXxz4mn0-PH9OXePb-_Dp9mMUoRBHiqkJeqAwVCCEAK41piSnLtaZIU0RVZYig6yRlUOokEylNU6SFLooaeAZiTG4Ovt0J3xvVBrl0G2-7lVIwLnJKS553rLsDC71rW6-0RBOg_yd4MI1kVPb5yVN-ss9PHvPr1Okv9dqbFfj9v7r7g85Y7fwKds43tQywb5zXHiya_sg_LX4ACreKHA
CitedBy_id crossref_primary_10_1080_19392699_2024_2393885
crossref_primary_10_3390_s24227318
crossref_primary_10_1080_19392699_2024_2398522
crossref_primary_10_1080_19392699_2025_2480338
Cites_doi 10.1080/19392699.2022.2072305
10.3390/s22093467
10.4028/www.scientific.net/AMM.275-277.2350
10.3390/ijms23169330
10.3390/rs13245102
10.5281/zenodo.7347926
10.1007/s11554-021-01145-4
10.3390/rs13071269
10.1016/j.ngib.2016.02.001
10.1007/s11554-022-01215-1
10.1145/3573942.3574029
10.1109/ACCESS.2021.3090780
10.1155/2022/8522206
10.1109/ICCV.2015.169
10.3390/s21041349
10.1109/ACCESS.2019.2955725
10.3390/rs13091619
10.1109/TELFOR.2018.8611986
10.1109/ACCESS.2023.3233964
10.1016/j.petrol.2019.04.063
10.3390/sym13040623
10.1109/CACRE50138.2020.9230193
10.1109/ACCESS.2019.2961075
10.1007/978-3-030-01234-2_1
10.1609/aaai.v34i07.6999
10.1016/j.neucom.2021.04.049
10.1016/j.iot.2023.100762
10.3390/pr11041268
10.1016/j.resconrec.2021.106090
10.31590/ejosat.1171777
10.1109/ICCC56324.2022.10065775
10.1109/CVPR52729.2023.00721
10.1109/TIA.2022.3188749
10.1109/ICIBA52610.2021.9687869
10.1016/j.procs.2022.01.135
10.1109/ICCV.2019.00140
10.3390/s22249897
10.1080/19392699.2020.1760855
10.1109/TIM.2022.3219468
10.1016/j.microc.2022.108330
10.1007/978-3-030-01264-9_8
10.1109/ICPECA51329.2021.9362711
10.1155/2018/7068349
ContentType Journal Article
Copyright 2024 Taylor & Francis Group, LLC 2024
2024 Taylor & Francis Group, LLC
Copyright_xml – notice: 2024 Taylor & Francis Group, LLC 2024
– notice: 2024 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1080/19392699.2023.2301304
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-2702
EndPage 1792
ExternalDocumentID 10_1080_19392699_2023_2301304
2301304
Genre Research Article
GrantInformation_xml – fundername: Natural Science Research Project of Anhui Educational Committee
  grantid: KJ2021A0427
– fundername: Postgraduate Innovation Fund of Anhui University of Science and Technology
  grantid: 2023cx2081
GroupedDBID .7F
.QJ
0BK
0R~
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFRAH
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDH
ESX
E~A
E~B
GTTXZ
H13
HF~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
4P2
AAYXX
ABJIA
ACUHS
ADMLS
ADUMR
AGBKS
CAG
CITATION
COF
EJD
EMK
EPL
I-F
L8X
NUSFT
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c338t-bbc28e6cea333acbfc59c517ff0c05cceb6ccafd451a9f4635055c08f88da26a3
ISSN 1939-2699
IngestDate Tue Aug 12 08:07:16 EDT 2025
Thu Apr 24 23:02:26 EDT 2025
Wed Oct 01 06:34:37 EDT 2025
Mon Oct 20 23:45:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-bbc28e6cea333acbfc59c517ff0c05cceb6ccafd451a9f4635055c08f88da26a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3123700927
PQPubID 105604
PageCount 20
ParticipantIDs crossref_citationtrail_10_1080_19392699_2023_2301304
crossref_primary_10_1080_19392699_2023_2301304
informaworld_taylorfrancis_310_1080_19392699_2023_2301304
proquest_journals_3123700927
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of coal preparation and utilization
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_4_4_1
e_1_3_4_3_1
e_1_3_4_2_1
e_1_3_4_9_1
e_1_3_4_8_1
e_1_3_4_42_1
e_1_3_4_7_1
e_1_3_4_20_1
e_1_3_4_41_1
e_1_3_4_6_1
e_1_3_4_40_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_46_1
e_1_3_4_24_1
e_1_3_4_45_1
e_1_3_4_21_1
e_1_3_4_44_1
e_1_3_4_22_1
e_1_3_4_43_1
e_1_3_4_27_1
e_1_3_4_28_1
e_1_3_4_49_1
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_26_1
e_1_3_4_47_1
e_1_3_4_29_1
Song L. (e_1_3_4_35_1) 2017; 37
e_1_3_4_31_1
e_1_3_4_30_1
e_1_3_4_12_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_10_1
e_1_3_4_33_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_17_1
e_1_3_4_38_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_18_1
e_1_3_4_19_1
References_xml – ident: e_1_3_4_16_1
  doi: 10.1080/19392699.2022.2072305
– ident: e_1_3_4_17_1
  doi: 10.3390/s22093467
– ident: e_1_3_4_46_1
  doi: 10.4028/www.scientific.net/AMM.275-277.2350
– ident: e_1_3_4_13_1
  doi: 10.3390/ijms23169330
– ident: e_1_3_4_45_1
  doi: 10.3390/rs13245102
– ident: e_1_3_4_23_1
  doi: 10.5281/zenodo.7347926
– volume: 37
  start-page: 416
  issue: 2
  year: 2017
  ident: e_1_3_4_35_1
  article-title: A Classification Method Based on the Combination of Visible, Near-Infrared and Thermal Infrared Spectrum for Coal and Gangue Distinguishment
  publication-title: Guang pu xue yu guang pu fen xi = Guang pu
– ident: e_1_3_4_18_1
  doi: 10.1007/s11554-021-01145-4
– ident: e_1_3_4_5_1
  doi: 10.3390/rs13071269
– ident: e_1_3_4_49_1
  doi: 10.1016/j.ngib.2016.02.001
– ident: e_1_3_4_33_1
  doi: 10.1007/s11554-022-01215-1
– ident: e_1_3_4_9_1
  doi: 10.1145/3573942.3574029
– ident: e_1_3_4_41_1
  doi: 10.1109/ACCESS.2021.3090780
– ident: e_1_3_4_38_1
– ident: e_1_3_4_32_1
  doi: 10.1155/2022/8522206
– ident: e_1_3_4_14_1
  doi: 10.1109/ICCV.2015.169
– ident: e_1_3_4_36_1
  doi: 10.3390/s21041349
– ident: e_1_3_4_21_1
  doi: 10.1109/ACCESS.2019.2955725
– ident: e_1_3_4_44_1
  doi: 10.3390/rs13091619
– ident: e_1_3_4_7_1
  doi: 10.1109/TELFOR.2018.8611986
– ident: e_1_3_4_30_1
  doi: 10.1109/ACCESS.2023.3233964
– ident: e_1_3_4_4_1
  doi: 10.1016/j.petrol.2019.04.063
– ident: e_1_3_4_12_1
  doi: 10.3390/sym13040623
– ident: e_1_3_4_25_1
  doi: 10.1109/CACRE50138.2020.9230193
– ident: e_1_3_4_27_1
  doi: 10.1109/ACCESS.2019.2961075
– ident: e_1_3_4_42_1
  doi: 10.1007/978-3-030-01234-2_1
– ident: e_1_3_4_47_1
  doi: 10.1609/aaai.v34i07.6999
– ident: e_1_3_4_37_1
– ident: e_1_3_4_11_1
  doi: 10.1016/j.neucom.2021.04.049
– ident: e_1_3_4_43_1
  doi: 10.1016/j.iot.2023.100762
– ident: e_1_3_4_3_1
  doi: 10.3390/pr11041268
– ident: e_1_3_4_6_1
  doi: 10.1016/j.resconrec.2021.106090
– ident: e_1_3_4_2_1
  doi: 10.31590/ejosat.1171777
– ident: e_1_3_4_29_1
  doi: 10.1109/ICCC56324.2022.10065775
– ident: e_1_3_4_26_1
– ident: e_1_3_4_34_1
– ident: e_1_3_4_40_1
  doi: 10.1109/CVPR52729.2023.00721
– ident: e_1_3_4_10_1
  doi: 10.1109/TIA.2022.3188749
– ident: e_1_3_4_15_1
  doi: 10.1109/ICIBA52610.2021.9687869
– ident: e_1_3_4_22_1
  doi: 10.1016/j.procs.2022.01.135
– ident: e_1_3_4_19_1
  doi: 10.1109/ICCV.2019.00140
– ident: e_1_3_4_24_1
  doi: 10.3390/s22249897
– ident: e_1_3_4_28_1
  doi: 10.1080/19392699.2020.1760855
– ident: e_1_3_4_8_1
  doi: 10.1109/TIM.2022.3219468
– ident: e_1_3_4_20_1
  doi: 10.1016/j.microc.2022.108330
– ident: e_1_3_4_31_1
  doi: 10.1007/978-3-030-01264-9_8
– ident: e_1_3_4_48_1
  doi: 10.1109/ICPECA51329.2021.9362711
– ident: e_1_3_4_39_1
  doi: 10.1155/2018/7068349
SSID ssj0062194
Score 2.344209
Snippet This paper proposes a lightweight coal and gangue detection algorithm based on Yolov7-tiny for the current target detection algorithms, which have problems...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1773
SubjectTerms Accuracy
Algorithms
coal and gangue
Computation
Gangue
Information retrieval
lightweight neural network model
Real time
Sampling
Target detection
target detection algorithms
Yolov7-tiny
Title Lightweight coal and gangue detection algorithm based on improved Yolov7-tiny
URI https://www.tandfonline.com/doi/abs/10.1080/19392699.2023.2301304
https://www.proquest.com/docview/3123700927
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1939-2702
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0062194
  issn: 1939-2699
  databaseCode: ABDBF
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1939-2702
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0062194
  issn: 1939-2699
  databaseCode: ADMLS
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1939-2702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062194
  issn: 1939-2699
  databaseCode: AHDZW
  dateStart: 20080301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1939-2702
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062194
  issn: 1939-2699
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb5tAEF656aU9VH2qadOKQ3OycIFdHnvsI1YUOe7FltxeECy7CZIDjoUbKX-pf7Iz7ILXitW0vSA0sKzY-ZgZZudByIeEqrBIuO_G0pMu49RzuVKJK2QRM0YzVnDMdz6fRqdzdrYIF4PBLytqadPkI3G7N6_kf7gKNOArZsn-A2f7hwIBzoG_cAQOw_GveDzBP-ub1rk5FLXJ-r9ADyRmQzXStAFfXtTrsrm8GqLKKnB7oGxdCXD-HWTfz9htympne3fXT2hVl2hnWa2lrhhuIpnhDZcmnXO7pdG6YH9cSnSHbsN-Sk3d1NelRczq4TgzKrS_66ysPsMV2y0RMJOf1wFpdqdDiBWmhIKWU-4GkW6ONJIWLfZ2pLOuDtmh0LdkrR_rJihGb4NkCfbqBB1EiQ_H-UbYLx7D30F5s60S7Db-p9_S8XwySWcni9kxHa-uXWxQhhv5x_SrRtAD8jAAFYJ9Qqg37dR-BKLfhDDoF-vSxRLv4965dwyhnTK5d8yC1taZPSVPzE-K80kj7hkZyOo5eWyVrnxBzi3sOYgKB5DgaOw5PfacHntOiz0HSB32HAt7L8l8fDL7cuqa1hyuoDRp3DwXQSIjITNKaSZyJUIuQj9WyhNeKITMIxANqmChn3HFwKr1wlB4iUqSIguijL4iB1VdydfEif0iKqhginPBfAUKJRQ-mPVCMCrDKD4krFunVJi69dg-ZZn6prxtt7wpLm9qlveQjPphK1245b4B3GZC2rQIVhq8Kb1n7FHHsdR8kzgkoDHWNIvf_PnyW_Jo-wUdkYNmvZHvwNRt8vctxH4DfkmmPA
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1EokIHVJYkfiUeEqAq0nYpUpig526WipKhKQfDrsfNABYQ6dIuSnJPY58_ny913CF2ERDMZCg8HylWYCuJioXWIQcmAUhJTKWy-c7fH2w_0bsAGc7kwNqzS7qF1QRSRY7Wd3NYZXYXEXRqjQ_hc2DwTn9hQZgPEdBWtMWPs2yoGxO1VaMzNjCz_LAtsZaosnv-a-bE-_WAv_YPW-RLU2kZQvXwRefLcnGVJEz5_8Tou93U7aKu0UJ2rQqV20YpK99DmHG_hPup27Jb-PfeqOjAxd5unOUPr-lSOVFke3pU68Xg4mY6ypxfHrpXSMadGuQ_DHD8a0H0LcDZKPw7QQ-umf93GZV0GDGZDm-EkAT9UHFRMCIkh0cAEMC_Q2gWXAaiEG73QkjIvFpoak8ZlDNxQh6GMfR6TQ1RLJ6k6Qk7gSS4JUC0EUE8bNGHgGZsOgBLFeFBHtBqNCErScls7Yxx5Jbdp1VuR7a2o7K06an6LvRasHYsExPxQR1nuLtFFbZOILJBtVHoRlQBgRXwSWEKr4HiJps_Rervf7USd2979Cdowl2iRB9lAtWw6U6fGIMqSs1zjvwD5J_wK
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54SAgOvBHj2QPXjLZ5tDkiYBqPTRyYBKeqdZIxMbppFBD8epI-0AZCO-xWtXWaJrbjOPZnhE5CopkMhYcD5SpMBXGx0DrEoGRAKYmpFDbfudXmzQ69fmBVNOFrGVZp99C6AIrIdbUV7qHUVUTcqbE5hM-FTTPxiY1kNnqYzqNFbk_FbBaH266UMTcCWR4sC2xpqiSe_5qZWJ4mwEv_KOt8BWqsoaTqexF48lx_y5I6fP2CdZzp59bRammfOmcFQ22gOZVuopUx1MIt1Lq1G_qP3KfqwMC8bT7mdK3jUzlSZXlwV-rE_e5g1MueXhy7UkrH3OrlHgxz_WhU7nuAs176uY06jcv78yYuqzJgMNvZDCcJ-KHioGJCSAyJBiaAeYHWLrgMQCXccIWWlHmx0NQYNC5j4IY6DGXs85jsoIV0kKpd5ASe5JIA1UIA9bTRJQw8Y9EBUKIYD2qIVpMRQQlZbitn9COvRDatRiuyoxWVo1VD9R-yYYHZMY1AjM90lOXOEl1UNonIFNqDii2iUvwtiU8CC2cV7M3Q9DFaurtoRLdX7Zt9tGye0CIJ8gAtZKM3dWisoSw5yvn9G9b_-q4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lightweight+coal+and+gangue+detection+algorithm+based+on+improved+Yolov7-tiny&rft.jtitle=International+journal+of+coal+preparation+and+utilization&rft.au=Cao%2C+Zhenguan&rft.au=Li%2C+Zhuoqin&rft.au=Liao+Fang&rft.au=Li%2C+JinBiao&rft.date=2024-11-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1939-2699&rft.eissn=1939-2702&rft.volume=44&rft.issue=11&rft.spage=1773&rft.epage=1792&rft_id=info:doi/10.1080%2F19392699.2023.2301304&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-2699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-2699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-2699&client=summon