Short term solar insolation prediction: P-ELM approach
The accurate forecasting of solar irradiance with hybrid machine learning algorithm is presented in this paper. A novel Persistence-Extreme Learning Machine (P-ELM) algorithm is used for training of the system. The Clearness Index (CI) value of the 22 districts of Andhra Pradesh (India) is calculate...
        Saved in:
      
    
          | Published in | International journal of parallel, emergent and distributed systems Vol. 33; no. 6; pp. 663 - 674 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Abingdon
          Taylor & Francis
    
        02.11.2018
     Taylor & Francis Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1744-5760 1744-5779  | 
| DOI | 10.1080/17445760.2017.1404601 | 
Cover
| Abstract | The accurate forecasting of solar irradiance with hybrid machine learning algorithm is presented in this paper. A novel Persistence-Extreme Learning Machine (P-ELM) algorithm is used for training of the system. The Clearness Index (CI) value of the 22 districts of Andhra Pradesh (India) is calculated and out of which four areas are identified with highest CI values. The Global Horizontal Irradiance (GHI) is forecasted for the selected areas with different weather conditions such as winter, summer and rainfall seasons using a P-ELM algorithm. The input parameters are Temperature, Diffuse horizontal irradiance, pressure and past GHI and GHI for the next instant as the output is considered. The real time data is obtained for every one hour interval for a period of one month. The performance of the P-ELM algorithm is evaluated in terms of Mean Absolute Error and Root Mean Square Error. From the obtained results, it is observed that P-ELM algorithm offers better performance over the fundamental P-ELMs. The P-ELM algorithm gives good forecasting accuracy with minimum simulation time. The simulation of P-ELM algorithm is carried out using MATLAB 2013a environment. The P-ELM algorithm is very much beneficial for accurate and reliable real time solar forecasting.
To forecast solar insolation Persistent - Extreme Learning Machine algorithm was used. | 
    
|---|---|
| AbstractList | The accurate forecasting of solar irradiance with hybrid machine learning algorithm is presented in this paper. A novel Persistence-Extreme Learning Machine (P-ELM) algorithm is used for training of the system. The Clearness Index (CI) value of the 22 districts of Andhra Pradesh (India) is calculated and out of which four areas are identified with highest CI values. The Global Horizontal Irradiance (GHI) is forecasted for the selected areas with different weather conditions such as winter, summer and rainfall seasons using a P-ELM algorithm. The input parameters are Temperature, Diffuse horizontal irradiance, pressure and past GHI and GHI for the next instant as the output is considered. The real time data is obtained for every one hour interval for a period of one month. The performance of the P-ELM algorithm is evaluated in terms of Mean Absolute Error and Root Mean Square Error. From the obtained results, it is observed that P-ELM algorithm offers better performance over the fundamental P-ELMs. The P-ELM algorithm gives good forecasting accuracy with minimum simulation time. The simulation of P-ELM algorithm is carried out using MATLAB 2013a environment. The P-ELM algorithm is very much beneficial for accurate and reliable real time solar forecasting. The accurate forecasting of solar irradiance with hybrid machine learning algorithm is presented in this paper. A novel Persistence-Extreme Learning Machine (P-ELM) algorithm is used for training of the system. The Clearness Index (CI) value of the 22 districts of Andhra Pradesh (India) is calculated and out of which four areas are identified with highest CI values. The Global Horizontal Irradiance (GHI) is forecasted for the selected areas with different weather conditions such as winter, summer and rainfall seasons using a P-ELM algorithm. The input parameters are Temperature, Diffuse horizontal irradiance, pressure and past GHI and GHI for the next instant as the output is considered. The real time data is obtained for every one hour interval for a period of one month. The performance of the P-ELM algorithm is evaluated in terms of Mean Absolute Error and Root Mean Square Error. From the obtained results, it is observed that P-ELM algorithm offers better performance over the fundamental P-ELMs. The P-ELM algorithm gives good forecasting accuracy with minimum simulation time. The simulation of P-ELM algorithm is carried out using MATLAB 2013a environment. The P-ELM algorithm is very much beneficial for accurate and reliable real time solar forecasting. To forecast solar insolation Persistent - Extreme Learning Machine algorithm was used.  | 
    
| Author | Suresh, C. V. Sivanagaraju, S. Syed, Mahaboob Shareef  | 
    
| Author_xml | – sequence: 1 givenname: Mahaboob Shareef orcidid: 0000-0003-0526-8316 surname: Syed fullname: Syed, Mahaboob Shareef email: alif.shareef@gmail.com organization: Department of EEE, UCEK, JNTUK – sequence: 2 givenname: C. V. orcidid: 0000-0002-9155-9664 surname: Suresh fullname: Suresh, C. V. organization: Department of EEE, VVIT – sequence: 3 givenname: S. surname: Sivanagaraju fullname: Sivanagaraju, S. organization: Department of EEE, UCEK, JNTUK  | 
    
| BookMark | eNqFUF1LwzAUDTLBOf0JQsHnziRNk1ZflDE_YKKgPoc0TVhG19SbDNm_t3XTBx_06Rwu54N7jtGo9a1B6IzgKcEFviCCsVxwPKWYiClhmHFMDtB4uKe5EOXoh3N8hI5DWGHMKONijPjL0kNMooF1EnyjIHHtgNH5NunA1E4P9DJ5TueLx0R1HXillyfo0KommNM9TtDb7fx1dp8unu4eZjeLVGdZEdNKacMJ0zivmCFC69oWORe0P1NtjOW6YoRVtqQsy6rSFphVeS2UzQvCqMXZBJ3vcvva940JUa78Btq-UlJCmCCkZLRX5TuVBh8CGCs7cGsFW0mwHCaS3xPJYSK5n6j3Xf3yaRe_Xo-gXPOv-3rndq31sFYfHppaRrVtPFhQrXZBZn9HfAIcn4Bg | 
    
| CitedBy_id | crossref_primary_10_1007_s40998_020_00339_z crossref_primary_10_26634_jps_6_1_14043 crossref_primary_10_1016_j_apenergy_2021_117912 crossref_primary_10_32604_cmc_2023_038564 crossref_primary_10_1016_j_renene_2021_08_094 crossref_primary_10_1080_17445760_2018_1489538 crossref_primary_10_1016_j_renene_2023_119434 crossref_primary_10_1016_j_apenergy_2022_119277 crossref_primary_10_1080_02286203_2020_1767840  | 
    
| Cites_doi | 10.4236/sgre.2013.46A004 10.1109/PVSC.2008.4922587 10.1016/j.solener.2016.04.011 10.17485/ijst/2015/v8iS1/60527 10.3384/ecp110572869 10.1109/SmartGridComm.2012.6486039 10.1109/TSMCB.2011.2168604 10.1016/S0038-092X(00)00038-4 10.1016/j.solener.2014.04.009 10.4236/jpee.2014.24023 10.3390/en6020733 10.1109/UPEC.2013.6714975 10.1016/j.energy.2015.02.100 10.1016/j.solener.2012.07.029 10.1007/978-3-319-19222-2_26 10.1016/j.solener.2009.05.016  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 2017 Informa UK Limited, trading as Taylor & Francis Group  | 
    
| Copyright_xml | – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group 2017 – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group  | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1080/17445760.2017.1404601 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1744-5779 | 
    
| EndPage | 674 | 
    
| ExternalDocumentID | 10_1080_17445760_2017_1404601 1404601  | 
    
| Genre | Article | 
    
| GroupedDBID | .7F .QJ 0BK 0R~ 29J 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AQTUD AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NX~ O9- PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SC 8FD ADYSH JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c338t-bace614c05b4e17ccdf85672ace2ceef6cb414bf92433b9f804b5d7af58142f03 | 
    
| ISSN | 1744-5760 | 
    
| IngestDate | Mon Jul 14 09:09:16 EDT 2025 Thu Apr 24 23:01:54 EDT 2025 Wed Oct 01 01:59:50 EDT 2025 Mon Oct 20 23:49:08 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c338t-bace614c05b4e17ccdf85672ace2ceef6cb414bf92433b9f804b5d7af58142f03 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-9155-9664 0000-0003-0526-8316  | 
    
| PQID | 2114711942 | 
    
| PQPubID | 176139 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | informaworld_taylorfrancis_310_1080_17445760_2017_1404601 proquest_journals_2114711942 crossref_primary_10_1080_17445760_2017_1404601 crossref_citationtrail_10_1080_17445760_2017_1404601  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-11-02 | 
    
| PublicationDateYYYYMMDD | 2018-11-02 | 
    
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-02 day: 02  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Abingdon | 
    
| PublicationPlace_xml | – name: Abingdon | 
    
| PublicationTitle | International journal of parallel, emergent and distributed systems | 
    
| PublicationYear | 2018 | 
    
| Publisher | Taylor & Francis Taylor & Francis Ltd  | 
    
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd  | 
    
| References | CIT0020 Page JK (CIT0024) 1961; 4 CIT0001 CIT0012 CIT0023 CIT0011 CIT0022 Chaouachi A (CIT0009) 2009; 3 Burianek T (CIT0019) 2016 Wu YK (CIT0010) 2014; 2014 Huang GB (CIT0021) 2006; 70 Boland J (CIT0013) 2012; 87 CIT0003 CIT0014 CIT0002 CIT0005 CIT0016 CIT0004 CIT0007 CIT0018 CIT0006 Zeng J (CIT0015) 2011 Fernandez-Jimenez LA (CIT0017) 2012 CIT0008  | 
    
| References_xml | – ident: CIT0011 doi: 10.4236/sgre.2013.46A004 – ident: CIT0001 doi: 10.1109/PVSC.2008.4922587 – ident: CIT0014 doi: 10.1016/j.solener.2016.04.011 – ident: CIT0012 doi: 10.17485/ijst/2015/v8iS1/60527 – ident: CIT0006 doi: 10.3384/ecp110572869 – start-page: 62 year: 2012 ident: CIT0017 publication-title: 2012 Proceedings of the 12th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines (POWER ‘12) – volume: 3 start-page: 1258 issue: 6 year: 2009 ident: CIT0009 publication-title: Int J Electr, Comput, Energetic, Electron Commun Eng – ident: CIT0002 doi: 10.1109/SmartGridComm.2012.6486039 – ident: CIT0022 doi: 10.1109/TSMCB.2011.2168604 – ident: CIT0005 doi: 10.1016/S0038-092X(00)00038-4 – volume: 87 start-page: 136 year: 2012 ident: CIT0013 publication-title: Solar Energy – year: 2011 ident: CIT0015 publication-title: Power and Energy Society General Meeting – ident: CIT0020 doi: 10.1016/j.solener.2014.04.009 – volume: 4 start-page: 378 year: 1961 ident: CIT0024 publication-title: Int Proc UN-Conf New Sources Energy – ident: CIT0023 doi: 10.4236/jpee.2014.24023 – year: 2016 ident: CIT0019 publication-title: International Conference on Environment and Electrical Engineering (EEEIC) – ident: CIT0016 doi: 10.3390/en6020733 – ident: CIT0007 doi: 10.1109/UPEC.2013.6714975 – ident: CIT0018 doi: 10.1016/j.energy.2015.02.100 – ident: CIT0003 doi: 10.1016/j.solener.2012.07.029 – volume: 70 start-page: 489 year: 2006 ident: CIT0021 publication-title: Neuro Comput – ident: CIT0008 doi: 10.1007/978-3-319-19222-2_26 – volume: 2014 start-page: 1 year: 2014 ident: CIT0010 publication-title: Int J Photo Energy – ident: CIT0004 doi: 10.1016/j.solener.2009.05.016  | 
    
| SSID | ssj0042467 | 
    
| Score | 2.1398277 | 
    
| Snippet | The accurate forecasting of solar irradiance with hybrid machine learning algorithm is presented in this paper. A novel Persistence-Extreme Learning Machine... The accurate forecasting of solar irradiance with hybrid machine learning algorithm is presented in this paper. A novel Persistence-Extreme Learning Machine...  | 
    
| SourceID | proquest crossref informaworld  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 663 | 
    
| SubjectTerms | Algorithms ANFIS: Artificial Neural Fuzzy Inference System ANN: Artificial neural networks AR: Autoregressive ARIMA: Autoregressive integrated moving average ARMA: Auto regressive moving average ARX: autoregressive model with exogenous input CI: Clearness Index clearness index Computer simulation CRO: Coral reefs optimization DHI: Diffuse horizontal irradiance DNI: Direct normal irradiance ELM: Extreme learning machine algorithms FNN: feed-forward neural network Forecasting GA: Genetic algorithm GHI: Global horizontal irradiance Irradiance ISFOC: Spanish Institute for Concentration Photo Voltaic Systems LLR: Local linear regression Machine learning MAE: Mean absolute error mean absolute error MLP: Multilayer perceptron algorithm MLPNN: Multi-layered perceptron neural network NARX: Nonlinear autoregressive models with exogenous Neural networks NN: Neural network NNE: Neural network ensemble NRMSE: Normalized root means square error NSRDB: National solar radiation database NWP: Numeric weather prediction P-ELM: Persistent extreme learning machine persistence-extreme learning machine PV: Photo voltaic Rainfall RBF: Radial basis function RBFNN: Radial basis function neural network Real time RMSE: Root mean square error RNMSE: Rooted normalized mean square error RNN: Recurrent neural network root mean square error SVD: Singular value decomposition SVM: Support vector machine Weather  | 
    
| Title | Short term solar insolation prediction: P-ELM approach | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/17445760.2017.1404601 https://www.proquest.com/docview/2114711942  | 
    
| Volume | 33 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1744-5779 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0042467 issn: 1744-5760 databaseCode: AHDZW dateStart: 20050101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1744-5779 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0042467 issn: 1744-5760 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK98IL34jBQHlgT1NK4jgf5W1irSrUDqS1ouLFsh17E5rasqYP8D_wP3NnO02qTgyQqjRyFUf1_Xw-351_R8hbk5YRfPJQaiTVLmGmiyKLQmqyWKQFVUyhv2Nyno1m7OM8nXc6v1pZS5tK9tTPW8-V_I9UoQ3kiqdk_0Gy206hAe5BvnAFCcP1r2R8cQXG8wkq15P10qaTLvDbinR1gyGYOnXjczgYT7YE4m2LdNcl2CKSQFLwax_E1-6QpstGL5FrF8tkga26bhGeo5_mh_OdTsQVgGspLR-01qYJPcHu3gV1muzaCwxGiUt43bdN44z1noi4sEfymn3rdK8oSCszCXVrzlgI2xsXhtHtNldPplbIjhnDA6-tXTOnC_e0vkuTxL6we8zXy3tIG5R5P8kOy_b5Jz6cjcd8OphPj5Ph6nuIJcgwVH-cnDmM3CMHFBaJqEsOTkdnX7_USzujzJYk3v6T-khYEb279e07xs4OFe7e0m_tmekj8sBvRIJTh6rHpKMXT8jDushH4HX-U5JZkAUIssCCLGhAFjQgex9YiAU1xJ6R2XAw_TAKfbGNUCVJUYVSKA2mmopSyXScK1WaIs1yCs0UDCmTKcliJg3s15NE9k0RMZmWuTBpETNqouQ56S6WC_2CBIyJrB-ZPFdMsFKVQkZUShHTUhsjEnZIWD0qXHkmeiyIcs1jT1hbDybHweR-MA9Jb_vYylGx3PVAvz3kvLIANQ6bPLnj2aNaPtxPvTWncQy2XNxn9OWff35F7jcT5Ih0q5uNfg3GayXfeEj9BoIclb8 | 
    
| linkProvider | Library Specific Holdings | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kHvRifWK16h68piab2ST1JtJStS2CLfS27G6yCEotbXrx17uTZKVVxEMhh5AwSzKZnVdmviHk2vDUt0fsqQxBtVO702US-R4zUSB5wjRozHcMhlFvDI8TPlnphcGySoyhTQkUUehq3NyYjHYlcTfWiwbrJ_tYmRW3ECAmwhaubW6dfZxiEPpDp42BQTFFFkk8pHFdPH8ts2af1tBLf2nrwgR160S7hy8rT95ay1y19OcPXMfN3m6f7FUeKr0rReqAbGXTQ1J30x9opQyOSPTyal13iqqdLjBApthIVpbW0dkcfwDh6S199jr9AXXg5cdk3O2M7nteNYXB0zZ8zT0ldWZtuPa5giyItU5NwqOY2cvMWlgTaQUBKGMDuTBUbZP4oHgaS8OTAJjxwxNSm35Ms1NCAaQNxk0ca5CQ6lQqnyklA5ZmxsgQGgQc74WuIMpxUsa7CCokU8cbgbwRFW8apPVNNisxOv4jaK9-WJEXyRFTTjIR4T-0TScFotruC2GjaGvkgzawsw2WviI7vdGgL_oPw6dzsmtvJUXXI2uSWj5fZhfW_cnVZSHfX9Nz9MY | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kgnixPrFadQ9eU5PN5FFvoi1V21LQgrdlH1kEpZY2vfjr3UmyYhXpoZBDSJglO5mdx-7MN4Rcmkj79ko8mSGotrYrXaSx7zETByJKmQKF-x2DYdwbw8NL5LIJ51VaJcbQpgSKKHQ1Lu6pNi4j7so60WDdZB8Ts5IW4sPEWMG1GeOpGFZx-EOnjIFB0UQWSTykcUU8_w2zZJ6WwEv_KOvCAnXrRLpvLxNP3lqLXLbU5y9Yx7Umt0t2Kv-U3pQCtUc2ssk-qbveD7RSBQckfnq1jjtFxU7nGB5TLCMrE-vodIbHP3h7TUdepz-gDrr8kIy7nefbnlf1YPCUDV5zTwqVWQuu_EhCFiRKaZNGccLsY2btq4mVhACksWFcGMq2SX2QkU6EidIAmPHDI1KbfEyyY0IBhA3FTZIoEKCVFtJnUoqA6cwYEUKDgGM9VxVAOfbJeOdBhWPqeMORN7ziTYO0vsmmJULHKoL2z__K82JrxJR9THi4grbphIBXi33ObQxtTXzQBnayxtAXZGt01-X9--HjKdm2b9Ki5JE1SS2fLbIz6_vk8ryQ7i_LVvNq | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short+term+solar+insolation+prediction%3A+P-ELM+approach&rft.jtitle=International+journal+of+parallel%2C+emergent+and+distributed+systems&rft.au=Syed%2C+Mahaboob+Shareef&rft.au=Suresh%2C+C+V&rft.au=Sivanagaraju%2C+S&rft.date=2018-11-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1744-5760&rft.eissn=1744-5779&rft.volume=33&rft.issue=6&rft.spage=663&rft_id=info:doi/10.1080%2F17445760.2017.1404601&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-5760&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-5760&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-5760&client=summon |