Short term solar insolation prediction: P-ELM approach

The accurate forecasting of solar irradiance with hybrid machine learning algorithm is presented in this paper. A novel Persistence-Extreme Learning Machine (P-ELM) algorithm is used for training of the system. The Clearness Index (CI) value of the 22 districts of Andhra Pradesh (India) is calculate...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of parallel, emergent and distributed systems Vol. 33; no. 6; pp. 663 - 674
Main Authors Syed, Mahaboob Shareef, Suresh, C. V., Sivanagaraju, S.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.11.2018
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1744-5760
1744-5779
DOI10.1080/17445760.2017.1404601

Cover

Abstract The accurate forecasting of solar irradiance with hybrid machine learning algorithm is presented in this paper. A novel Persistence-Extreme Learning Machine (P-ELM) algorithm is used for training of the system. The Clearness Index (CI) value of the 22 districts of Andhra Pradesh (India) is calculated and out of which four areas are identified with highest CI values. The Global Horizontal Irradiance (GHI) is forecasted for the selected areas with different weather conditions such as winter, summer and rainfall seasons using a P-ELM algorithm. The input parameters are Temperature, Diffuse horizontal irradiance, pressure and past GHI and GHI for the next instant as the output is considered. The real time data is obtained for every one hour interval for a period of one month. The performance of the P-ELM algorithm is evaluated in terms of Mean Absolute Error and Root Mean Square Error. From the obtained results, it is observed that P-ELM algorithm offers better performance over the fundamental P-ELMs. The P-ELM algorithm gives good forecasting accuracy with minimum simulation time. The simulation of P-ELM algorithm is carried out using MATLAB 2013a environment. The P-ELM algorithm is very much beneficial for accurate and reliable real time solar forecasting. To forecast solar insolation Persistent - Extreme Learning Machine algorithm was used.
AbstractList The accurate forecasting of solar irradiance with hybrid machine learning algorithm is presented in this paper. A novel Persistence-Extreme Learning Machine (P-ELM) algorithm is used for training of the system. The Clearness Index (CI) value of the 22 districts of Andhra Pradesh (India) is calculated and out of which four areas are identified with highest CI values. The Global Horizontal Irradiance (GHI) is forecasted for the selected areas with different weather conditions such as winter, summer and rainfall seasons using a P-ELM algorithm. The input parameters are Temperature, Diffuse horizontal irradiance, pressure and past GHI and GHI for the next instant as the output is considered. The real time data is obtained for every one hour interval for a period of one month. The performance of the P-ELM algorithm is evaluated in terms of Mean Absolute Error and Root Mean Square Error. From the obtained results, it is observed that P-ELM algorithm offers better performance over the fundamental P-ELMs. The P-ELM algorithm gives good forecasting accuracy with minimum simulation time. The simulation of P-ELM algorithm is carried out using MATLAB 2013a environment. The P-ELM algorithm is very much beneficial for accurate and reliable real time solar forecasting.
The accurate forecasting of solar irradiance with hybrid machine learning algorithm is presented in this paper. A novel Persistence-Extreme Learning Machine (P-ELM) algorithm is used for training of the system. The Clearness Index (CI) value of the 22 districts of Andhra Pradesh (India) is calculated and out of which four areas are identified with highest CI values. The Global Horizontal Irradiance (GHI) is forecasted for the selected areas with different weather conditions such as winter, summer and rainfall seasons using a P-ELM algorithm. The input parameters are Temperature, Diffuse horizontal irradiance, pressure and past GHI and GHI for the next instant as the output is considered. The real time data is obtained for every one hour interval for a period of one month. The performance of the P-ELM algorithm is evaluated in terms of Mean Absolute Error and Root Mean Square Error. From the obtained results, it is observed that P-ELM algorithm offers better performance over the fundamental P-ELMs. The P-ELM algorithm gives good forecasting accuracy with minimum simulation time. The simulation of P-ELM algorithm is carried out using MATLAB 2013a environment. The P-ELM algorithm is very much beneficial for accurate and reliable real time solar forecasting. To forecast solar insolation Persistent - Extreme Learning Machine algorithm was used.
Author Suresh, C. V.
Sivanagaraju, S.
Syed, Mahaboob Shareef
Author_xml – sequence: 1
  givenname: Mahaboob Shareef
  orcidid: 0000-0003-0526-8316
  surname: Syed
  fullname: Syed, Mahaboob Shareef
  email: alif.shareef@gmail.com
  organization: Department of EEE, UCEK, JNTUK
– sequence: 2
  givenname: C. V.
  orcidid: 0000-0002-9155-9664
  surname: Suresh
  fullname: Suresh, C. V.
  organization: Department of EEE, VVIT
– sequence: 3
  givenname: S.
  surname: Sivanagaraju
  fullname: Sivanagaraju, S.
  organization: Department of EEE, UCEK, JNTUK
BookMark eNqFUF1LwzAUDTLBOf0JQsHnziRNk1ZflDE_YKKgPoc0TVhG19SbDNm_t3XTBx_06Rwu54N7jtGo9a1B6IzgKcEFviCCsVxwPKWYiClhmHFMDtB4uKe5EOXoh3N8hI5DWGHMKONijPjL0kNMooF1EnyjIHHtgNH5NunA1E4P9DJ5TueLx0R1HXillyfo0KommNM9TtDb7fx1dp8unu4eZjeLVGdZEdNKacMJ0zivmCFC69oWORe0P1NtjOW6YoRVtqQsy6rSFphVeS2UzQvCqMXZBJ3vcvva940JUa78Btq-UlJCmCCkZLRX5TuVBh8CGCs7cGsFW0mwHCaS3xPJYSK5n6j3Xf3yaRe_Xo-gXPOv-3rndq31sFYfHppaRrVtPFhQrXZBZn9HfAIcn4Bg
CitedBy_id crossref_primary_10_1007_s40998_020_00339_z
crossref_primary_10_26634_jps_6_1_14043
crossref_primary_10_1016_j_apenergy_2021_117912
crossref_primary_10_32604_cmc_2023_038564
crossref_primary_10_1016_j_renene_2021_08_094
crossref_primary_10_1080_17445760_2018_1489538
crossref_primary_10_1016_j_renene_2023_119434
crossref_primary_10_1016_j_apenergy_2022_119277
crossref_primary_10_1080_02286203_2020_1767840
Cites_doi 10.4236/sgre.2013.46A004
10.1109/PVSC.2008.4922587
10.1016/j.solener.2016.04.011
10.17485/ijst/2015/v8iS1/60527
10.3384/ecp110572869
10.1109/SmartGridComm.2012.6486039
10.1109/TSMCB.2011.2168604
10.1016/S0038-092X(00)00038-4
10.1016/j.solener.2014.04.009
10.4236/jpee.2014.24023
10.3390/en6020733
10.1109/UPEC.2013.6714975
10.1016/j.energy.2015.02.100
10.1016/j.solener.2012.07.029
10.1007/978-3-319-19222-2_26
10.1016/j.solener.2009.05.016
ContentType Journal Article
Copyright 2017 Informa UK Limited, trading as Taylor & Francis Group 2017
2017 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2017 Informa UK Limited, trading as Taylor & Francis Group 2017
– notice: 2017 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/17445760.2017.1404601
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1744-5779
EndPage 674
ExternalDocumentID 10_1080_17445760_2017_1404601
1404601
Genre Article
GroupedDBID .7F
.QJ
0BK
0R~
29J
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NX~
O9-
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
ADYSH
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-bace614c05b4e17ccdf85672ace2ceef6cb414bf92433b9f804b5d7af58142f03
ISSN 1744-5760
IngestDate Mon Jul 14 09:09:16 EDT 2025
Thu Apr 24 23:01:54 EDT 2025
Wed Oct 01 01:59:50 EDT 2025
Mon Oct 20 23:49:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-bace614c05b4e17ccdf85672ace2ceef6cb414bf92433b9f804b5d7af58142f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9155-9664
0000-0003-0526-8316
PQID 2114711942
PQPubID 176139
PageCount 12
ParticipantIDs informaworld_taylorfrancis_310_1080_17445760_2017_1404601
proquest_journals_2114711942
crossref_primary_10_1080_17445760_2017_1404601
crossref_citationtrail_10_1080_17445760_2017_1404601
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-11-02
PublicationDateYYYYMMDD 2018-11-02
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-02
  day: 02
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of parallel, emergent and distributed systems
PublicationYear 2018
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0020
Page JK (CIT0024) 1961; 4
CIT0001
CIT0012
CIT0023
CIT0011
CIT0022
Chaouachi A (CIT0009) 2009; 3
Burianek T (CIT0019) 2016
Wu YK (CIT0010) 2014; 2014
Huang GB (CIT0021) 2006; 70
Boland J (CIT0013) 2012; 87
CIT0003
CIT0014
CIT0002
CIT0005
CIT0016
CIT0004
CIT0007
CIT0018
CIT0006
Zeng J (CIT0015) 2011
Fernandez-Jimenez LA (CIT0017) 2012
CIT0008
References_xml – ident: CIT0011
  doi: 10.4236/sgre.2013.46A004
– ident: CIT0001
  doi: 10.1109/PVSC.2008.4922587
– ident: CIT0014
  doi: 10.1016/j.solener.2016.04.011
– ident: CIT0012
  doi: 10.17485/ijst/2015/v8iS1/60527
– ident: CIT0006
  doi: 10.3384/ecp110572869
– start-page: 62
  year: 2012
  ident: CIT0017
  publication-title: 2012 Proceedings of the 12th WSEAS International Conference on Electric Power Systems, High Voltages, Electric Machines (POWER ‘12)
– volume: 3
  start-page: 1258
  issue: 6
  year: 2009
  ident: CIT0009
  publication-title: Int J Electr, Comput, Energetic, Electron Commun Eng
– ident: CIT0002
  doi: 10.1109/SmartGridComm.2012.6486039
– ident: CIT0022
  doi: 10.1109/TSMCB.2011.2168604
– ident: CIT0005
  doi: 10.1016/S0038-092X(00)00038-4
– volume: 87
  start-page: 136
  year: 2012
  ident: CIT0013
  publication-title: Solar Energy
– year: 2011
  ident: CIT0015
  publication-title: Power and Energy Society General Meeting
– ident: CIT0020
  doi: 10.1016/j.solener.2014.04.009
– volume: 4
  start-page: 378
  year: 1961
  ident: CIT0024
  publication-title: Int Proc UN-Conf New Sources Energy
– ident: CIT0023
  doi: 10.4236/jpee.2014.24023
– year: 2016
  ident: CIT0019
  publication-title: International Conference on Environment and Electrical Engineering (EEEIC)
– ident: CIT0016
  doi: 10.3390/en6020733
– ident: CIT0007
  doi: 10.1109/UPEC.2013.6714975
– ident: CIT0018
  doi: 10.1016/j.energy.2015.02.100
– ident: CIT0003
  doi: 10.1016/j.solener.2012.07.029
– volume: 70
  start-page: 489
  year: 2006
  ident: CIT0021
  publication-title: Neuro Comput
– ident: CIT0008
  doi: 10.1007/978-3-319-19222-2_26
– volume: 2014
  start-page: 1
  year: 2014
  ident: CIT0010
  publication-title: Int J Photo Energy
– ident: CIT0004
  doi: 10.1016/j.solener.2009.05.016
SSID ssj0042467
Score 2.1398277
Snippet The accurate forecasting of solar irradiance with hybrid machine learning algorithm is presented in this paper. A novel Persistence-Extreme Learning Machine...
The accurate forecasting of solar irradiance with hybrid machine learning algorithm is presented in this paper. A novel Persistence-Extreme Learning Machine...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 663
SubjectTerms Algorithms
ANFIS: Artificial Neural Fuzzy Inference System
ANN: Artificial neural networks
AR: Autoregressive
ARIMA: Autoregressive integrated moving average
ARMA: Auto regressive moving average
ARX: autoregressive model with exogenous input
CI: Clearness Index
clearness index
Computer simulation
CRO: Coral reefs optimization
DHI: Diffuse horizontal irradiance
DNI: Direct normal irradiance
ELM: Extreme learning machine algorithms
FNN: feed-forward neural network
Forecasting
GA: Genetic algorithm
GHI: Global horizontal irradiance
Irradiance
ISFOC: Spanish Institute for Concentration Photo Voltaic Systems
LLR: Local linear regression
Machine learning
MAE: Mean absolute error
mean absolute error
MLP: Multilayer perceptron algorithm
MLPNN: Multi-layered perceptron neural network
NARX: Nonlinear autoregressive models with exogenous
Neural networks
NN: Neural network
NNE: Neural network ensemble
NRMSE: Normalized root means square error
NSRDB: National solar radiation database
NWP: Numeric weather prediction
P-ELM: Persistent extreme learning machine
persistence-extreme learning machine
PV: Photo voltaic
Rainfall
RBF: Radial basis function
RBFNN: Radial basis function neural network
Real time
RMSE: Root mean square error
RNMSE: Rooted normalized mean square error
RNN: Recurrent neural network
root mean square error
SVD: Singular value decomposition
SVM: Support vector machine
Weather
Title Short term solar insolation prediction: P-ELM approach
URI https://www.tandfonline.com/doi/abs/10.1080/17445760.2017.1404601
https://www.proquest.com/docview/2114711942
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1744-5779
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0042467
  issn: 1744-5760
  databaseCode: AHDZW
  dateStart: 20050101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1744-5779
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0042467
  issn: 1744-5760
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK98IL34jBQHlgT1NK4jgf5W1irSrUDqS1ouLFsh17E5rasqYP8D_wP3NnO02qTgyQqjRyFUf1_Xw-351_R8hbk5YRfPJQaiTVLmGmiyKLQmqyWKQFVUyhv2Nyno1m7OM8nXc6v1pZS5tK9tTPW8-V_I9UoQ3kiqdk_0Gy206hAe5BvnAFCcP1r2R8cQXG8wkq15P10qaTLvDbinR1gyGYOnXjczgYT7YE4m2LdNcl2CKSQFLwax_E1-6QpstGL5FrF8tkga26bhGeo5_mh_OdTsQVgGspLR-01qYJPcHu3gV1muzaCwxGiUt43bdN44z1noi4sEfymn3rdK8oSCszCXVrzlgI2xsXhtHtNldPplbIjhnDA6-tXTOnC_e0vkuTxL6we8zXy3tIG5R5P8kOy_b5Jz6cjcd8OphPj5Ph6nuIJcgwVH-cnDmM3CMHFBaJqEsOTkdnX7_USzujzJYk3v6T-khYEb279e07xs4OFe7e0m_tmekj8sBvRIJTh6rHpKMXT8jDushH4HX-U5JZkAUIssCCLGhAFjQgex9YiAU1xJ6R2XAw_TAKfbGNUCVJUYVSKA2mmopSyXScK1WaIs1yCs0UDCmTKcliJg3s15NE9k0RMZmWuTBpETNqouQ56S6WC_2CBIyJrB-ZPFdMsFKVQkZUShHTUhsjEnZIWD0qXHkmeiyIcs1jT1hbDybHweR-MA9Jb_vYylGx3PVAvz3kvLIANQ6bPLnj2aNaPtxPvTWncQy2XNxn9OWff35F7jcT5Ih0q5uNfg3GayXfeEj9BoIclb8
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kHvRifWK16h68piab2ST1JtJStS2CLfS27G6yCEotbXrx17uTZKVVxEMhh5AwSzKZnVdmviHk2vDUt0fsqQxBtVO702US-R4zUSB5wjRozHcMhlFvDI8TPlnphcGySoyhTQkUUehq3NyYjHYlcTfWiwbrJ_tYmRW3ECAmwhaubW6dfZxiEPpDp42BQTFFFkk8pHFdPH8ts2af1tBLf2nrwgR160S7hy8rT95ay1y19OcPXMfN3m6f7FUeKr0rReqAbGXTQ1J30x9opQyOSPTyal13iqqdLjBApthIVpbW0dkcfwDh6S199jr9AXXg5cdk3O2M7nteNYXB0zZ8zT0ldWZtuPa5giyItU5NwqOY2cvMWlgTaQUBKGMDuTBUbZP4oHgaS8OTAJjxwxNSm35Ms1NCAaQNxk0ca5CQ6lQqnyklA5ZmxsgQGgQc74WuIMpxUsa7CCokU8cbgbwRFW8apPVNNisxOv4jaK9-WJEXyRFTTjIR4T-0TScFotruC2GjaGvkgzawsw2WviI7vdGgL_oPw6dzsmtvJUXXI2uSWj5fZhfW_cnVZSHfX9Nz9MY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kgnixPrFadQ9eU5PN5FFvoi1V21LQgrdlH1kEpZY2vfjr3UmyYhXpoZBDSJglO5mdx-7MN4Rcmkj79ko8mSGotrYrXaSx7zETByJKmQKF-x2DYdwbw8NL5LIJ51VaJcbQpgSKKHQ1Lu6pNi4j7so60WDdZB8Ts5IW4sPEWMG1GeOpGFZx-EOnjIFB0UQWSTykcUU8_w2zZJ6WwEv_KOvCAnXrRLpvLxNP3lqLXLbU5y9Yx7Umt0t2Kv-U3pQCtUc2ssk-qbveD7RSBQckfnq1jjtFxU7nGB5TLCMrE-vodIbHP3h7TUdepz-gDrr8kIy7nefbnlf1YPCUDV5zTwqVWQuu_EhCFiRKaZNGccLsY2btq4mVhACksWFcGMq2SX2QkU6EidIAmPHDI1KbfEyyY0IBhA3FTZIoEKCVFtJnUoqA6cwYEUKDgGM9VxVAOfbJeOdBhWPqeMORN7ziTYO0vsmmJULHKoL2z__K82JrxJR9THi4grbphIBXi33ObQxtTXzQBnayxtAXZGt01-X9--HjKdm2b9Ki5JE1SS2fLbIz6_vk8ryQ7i_LVvNq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Short+term+solar+insolation+prediction%3A+P-ELM+approach&rft.jtitle=International+journal+of+parallel%2C+emergent+and+distributed+systems&rft.au=Syed%2C+Mahaboob+Shareef&rft.au=Suresh%2C+C+V&rft.au=Sivanagaraju%2C+S&rft.date=2018-11-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1744-5760&rft.eissn=1744-5779&rft.volume=33&rft.issue=6&rft.spage=663&rft_id=info:doi/10.1080%2F17445760.2017.1404601&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-5760&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-5760&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-5760&client=summon