Route planning for autonomous vessels based on improved artificial fish swarm algorithm

Path planning is one of the key technologies in the research of autonomous surface vessels (ASVs). In this paper, an improved artificial fish swarm algorithm (IAFSA) is proposed. The algorithm is modified from four perspectives: (1) A directional operator is introduced to improve the efficiency. (2)...

Full description

Saved in:
Bibliographic Details
Published inShips and offshore structures Vol. 18; no. 6; pp. 897 - 906
Main Authors Zhao, Liang, Wang, Fang, Bai, Yong
Format Journal Article
LanguageEnglish
Published Cambridge Taylor & Francis 03.06.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1744-5302
1754-212X
DOI10.1080/17445302.2022.2081423

Cover

Abstract Path planning is one of the key technologies in the research of autonomous surface vessels (ASVs). In this paper, an improved artificial fish swarm algorithm (IAFSA) is proposed. The algorithm is modified from four perspectives: (1) A directional operator is introduced to improve the efficiency. (2) To avoid local optimum, a probability weight factor is proposed to adjust the frequency of executing random behaviour. (3) An adaptive operator has been applied aims at better convergence performance. (4) The waypoint modifying path smoother is used to improve the path quality. A comparative study has been carried out between IAFSA and the other state-of-the-art algorithms, and the results indicate that the proposed algorithm outperforms the others in both efficiency and path quality. Finally, IAFSA is integrated into the GNC system in a model ship. A computer-based sea trial around the Nan Hai area has been conducted, and environmental disturbances including wind, waves, and currents are considered. The results have shown that IAFSA is suitable for practical application.
AbstractList Path planning is one of the key technologies in the research of autonomous surface vessels (ASVs). In this paper, an improved artificial fish swarm algorithm (IAFSA) is proposed. The algorithm is modified from four perspectives: (1) A directional operator is introduced to improve the efficiency. (2) To avoid local optimum, a probability weight factor is proposed to adjust the frequency of executing random behaviour. (3) An adaptive operator has been applied aims at better convergence performance. (4) The waypoint modifying path smoother is used to improve the path quality. A comparative study has been carried out between IAFSA and the other state-of-the-art algorithms, and the results indicate that the proposed algorithm outperforms the others in both efficiency and path quality. Finally, IAFSA is integrated into the GNC system in a model ship. A computer-based sea trial around the Nan Hai area has been conducted, and environmental disturbances including wind, waves, and currents are considered. The results have shown that IAFSA is suitable for practical application.
Author Bai, Yong
Zhao, Liang
Wang, Fang
Author_xml – sequence: 1
  givenname: Liang
  surname: Zhao
  fullname: Zhao, Liang
  organization: Zhejiang University
– sequence: 2
  givenname: Fang
  surname: Wang
  fullname: Wang, Fang
  organization: Zhejiang University City College
– sequence: 3
  givenname: Yong
  surname: Bai
  fullname: Bai, Yong
  email: baiyong@zju.edu.cn
  organization: Zhejiang University
BookMark eNqFkEtLAzEUhYMoWB8_QQi4Hs2zSXGjiC8QBCnoLtzOJDUyk9Qko_TfO0PrxoVu7j2Lc869fAdoN8RgETqh5IwSTc6pEkJyws4YYePQVDC-gyZUSVExyl53Ry1ENZr20UHO74RIpbWYoJfn2BeLVy2E4MMSu5gw9CWG2MU-40-bs20zXkC2DY4B-26V4uegIRXvfO2hxc7nN5y_IHUY2mVMvrx1R2jPQZvt8XYfovntzfz6vnp8unu4vnqsas51qYADmSouhYRmNl3UlCvHLFcLKzUQ2wgYJnAJzLpZw5y0vCG8cUwxO5UNP0Snm9rhq4_e5mLeY5_CcNEwTZVWTEs9uC42rjrFnJN1pvYFio-hJPCtocSMIM0PSDOCNFuQQ1r-Sq-S7yCt_81dbnI-DFQ7-IqpbUyBdRuTSxBqnw3_u-IbTGWNgw
CitedBy_id crossref_primary_10_1007_s12239_024_00149_w
crossref_primary_10_3390_drones7100636
crossref_primary_10_3390_machines11100980
crossref_primary_10_3390_jmse12050833
crossref_primary_10_3934_math_20241679
crossref_primary_10_1080_17445302_2025_2477926
crossref_primary_10_1080_17445302_2022_2126115
crossref_primary_10_1080_17445302_2024_2335445
crossref_primary_10_1080_17445302_2024_2397929
crossref_primary_10_1080_20464177_2024_2441595
crossref_primary_10_1080_17445302_2024_2356468
crossref_primary_10_1080_17445302_2024_2373561
crossref_primary_10_1016_j_oceaneng_2024_118646
crossref_primary_10_1007_s12518_024_00587_2
crossref_primary_10_54939_1859_1043_j_mst_FEE_2024_191_197
crossref_primary_10_1016_j_oceaneng_2024_116921
crossref_primary_10_1080_17445302_2024_2386883
crossref_primary_10_1109_ACCESS_2023_3243810
crossref_primary_10_1080_17445302_2024_2335457
crossref_primary_10_1080_17445302_2024_2356479
crossref_primary_10_3390_jmse11061164
crossref_primary_10_1080_17445302_2025_2453194
crossref_primary_10_3390_jmse11040687
crossref_primary_10_1080_17445302_2024_2329011
crossref_primary_10_1007_s00607_024_01293_y
crossref_primary_10_3390_jmse12010126
crossref_primary_10_1155_2022_1283374
crossref_primary_10_1080_17445302_2022_2116765
crossref_primary_10_3390_fishes10020081
crossref_primary_10_1080_17445302_2023_2282301
Cites_doi 10.1017/S0373463319000791
10.1002/rob.20353
10.1109/SSRR.2018.8468608
10.1016/j.oceaneng.2021.108709
10.1109/OCEANS.2016.7761505
10.1126/scirobotics.aar3449
10.1016/j.ssci.2019.09.018
10.1017/S0373463319000468
10.12011/1000-6788(2002)11-32
10.1002/9781119994138
10.1016/j.oceaneng.2020.107043
10.1017/S0373463314000708
10.1016/j.apor.2021.102658
10.1109/UT.2015.7108314
10.1016/j.oceaneng.2019.04.055
10.1016/j.ins.2019.05.029
10.1109/TRO.2004.838026
10.1049/PBCE069E
10.1007/s00773-020-00790-x
10.1109/TASE.2020.3010887
10.1155/2016/3297585
10.1016/j.oceaneng.2019.05.017
10.1109/ICASI.2018.8394316
10.1016/j.apor.2020.102239
10.1016/j.oceaneng.2020.107693
10.1016/j.oceaneng.2021.109890
10.1109/OCEANS.2008.5152100
ContentType Journal Article
Copyright 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
2022 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2022 Informa UK Limited, trading as Taylor & Francis Group 2022
– notice: 2022 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7TN
F1W
H96
L.G
DOI 10.1080/17445302.2022.2081423
DatabaseName CrossRef
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Military & Naval Science
EISSN 1754-212X
EndPage 906
ExternalDocumentID 10_1080_17445302_2022_2081423
2081423
Genre Research Article
GroupedDBID .7F
.DC
.QJ
0BK
0R~
123
30N
4.4
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMPAP
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
KYCEM
LJTGL
M4Z
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TTHFI
TUROJ
TWF
TWQ
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7TN
F1W
H96
L.G
ID FETCH-LOGICAL-c338t-a3a0673545ad96bc137f2e37be58a0ed4aa0ea35a2ef9d2f5e3d03df272e65d3
ISSN 1744-5302
IngestDate Wed Aug 13 05:57:17 EDT 2025
Wed Oct 01 02:21:01 EDT 2025
Thu Apr 24 23:07:46 EDT 2025
Mon Oct 20 23:48:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-a3a0673545ad96bc137f2e37be58a0ed4aa0ea35a2ef9d2f5e3d03df272e65d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2817872858
PQPubID 28076
PageCount 10
ParticipantIDs informaworld_taylorfrancis_310_1080_17445302_2022_2081423
proquest_journals_2817872858
crossref_citationtrail_10_1080_17445302_2022_2081423
crossref_primary_10_1080_17445302_2022_2081423
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-03
PublicationDateYYYYMMDD 2023-06-03
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-03
  day: 03
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Ships and offshore structures
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0010
CIT0012
CIT0011
Zhao S. (CIT0026) 2018; 37
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0001
CIT0023
CIT0022
CIT0003
CIT0025
CIT0002
CIT0024
CIT0005
CIT0027
CIT0004
CIT0007
CIT0029
CIT0006
CIT0028
CIT0009
CIT0008
References_xml – ident: CIT0021
  doi: 10.1017/S0373463319000791
– ident: CIT0013
  doi: 10.1002/rob.20353
– ident: CIT0022
  doi: 10.1109/SSRR.2018.8468608
– ident: CIT0016
  doi: 10.1016/j.oceaneng.2021.108709
– ident: CIT0002
  doi: 10.1109/OCEANS.2016.7761505
– ident: CIT0006
  doi: 10.1126/scirobotics.aar3449
– ident: CIT0005
  doi: 10.1016/j.ssci.2019.09.018
– ident: CIT0009
  doi: 10.1017/S0373463319000468
– ident: CIT0014
  doi: 10.12011/1000-6788(2002)11-32
– ident: CIT0003
  doi: 10.1002/9781119994138
– ident: CIT0028
  doi: 10.1016/j.oceaneng.2020.107043
– ident: CIT0008
  doi: 10.1017/S0373463314000708
– ident: CIT0027
  doi: 10.1016/j.apor.2021.102658
– ident: CIT0017
  doi: 10.1109/UT.2015.7108314
– ident: CIT0023
  doi: 10.1016/j.oceaneng.2019.04.055
– ident: CIT0011
  doi: 10.1016/j.ins.2019.05.029
– ident: CIT0007
  doi: 10.1109/TRO.2004.838026
– ident: CIT0015
  doi: 10.1049/PBCE069E
– ident: CIT0019
  doi: 10.1007/s00773-020-00790-x
– ident: CIT0029
  doi: 10.1109/TASE.2020.3010887
– ident: CIT0025
  doi: 10.1155/2016/3297585
– ident: CIT0020
  doi: 10.1016/j.oceaneng.2019.05.017
– volume: 37
  start-page: 32
  issue: 3
  year: 2018
  ident: CIT0026
  publication-title: Ordnance Ind Autom
– ident: CIT0024
  doi: 10.1109/ICASI.2018.8394316
– ident: CIT0010
  doi: 10.1016/j.apor.2020.102239
– ident: CIT0001
– ident: CIT0004
  doi: 10.1016/j.oceaneng.2020.107693
– ident: CIT0012
  doi: 10.1016/j.oceaneng.2021.109890
– ident: CIT0018
  doi: 10.1109/OCEANS.2008.5152100
SSID ssj0057884
Score 2.467775
Snippet Path planning is one of the key technologies in the research of autonomous surface vessels (ASVs). In this paper, an improved artificial fish swarm algorithm...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 897
SubjectTerms AFSA
Algorithms
ASV
Comparative analysis
Comparative studies
Ecosystem disturbance
GNC system
GNC systems
Path planning
Probability theory
Route planning
Sea trials
Surface craft
Title Route planning for autonomous vessels based on improved artificial fish swarm algorithm
URI https://www.tandfonline.com/doi/abs/10.1080/17445302.2022.2081423
https://www.proquest.com/docview/2817872858
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1754-212X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057884
  issn: 1744-5302
  databaseCode: AHDZW
  dateStart: 20060101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1754-212X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057884
  issn: 1744-5302
  databaseCode: 30N
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgvPCC-KltDOQHxMuUkdhO4jwCYpqQ1heKKLxETmzTSl0ztRlo--u5s52k3SrGeLEiS7bT3ue7s3P3HSFv8NOUtJJHWVzpSNSZjoocTilFoeqKKy2Mxdzh01F28lV8nqST4VbJZZe01VF9tTWv5H-kCn0gV8ySvYNk-0mhA55BvtCChKH9JxljOI_BQtCu7pAPiLxoMU0BA1t_IS34fHWIhkrjR4GZu0CAZ5wqMEdYZDRa_VbLs0M1_9ksZ-30bN1h_TKdnXsa58ba1bRZIiMtUs5eLIfowx9T1fgDvgqG0F3RezVyvNb3wRe__t6ErnDdwLgLi-JrGjIXIsJSQ96AhL5URGADJ9vV6jUdKX1AbjC3hSMcuKnJfegjroaLwUGeYSMT4dOTN5mzr1m0Ps4wCQSo3TQlTlOGae6TBwxMAdb74PGoM9-gwVyZ6v53dmlfMn639W02HJoNutsb5t35LOPH5FE4bND3HjlPyD2zeEp2Tx0x-_KSvqUjBXCkQb8_I98coGgHKAqL0AFQNACKOkDRZkE7QNEBUBQBRR2gaA-o52R8_Gn88SQKlTeimnPZRoorLGAE3rXSRVbVCc8tMzyvTCpVbLRQ0CqeKmZsoZlNDdcx15blzGSp5i_IzqJZmF1CC_BBNdew8zke5ROF9QHgEJ0K8IqsKvaI6P69sg6s9FgcZV7-VXZ75Kgfdu5pWW4bUKyLpmzdfZj1xWtKfsvYg06OZdj9q5LJBGwdk6ncv-u7vCQPh511QHZg15pX4Nq21WsHxT8PmJnu
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oHvTi24Ci7sF4K9JuW9qjMRJU4ISR22bb3RUiFEKLRn-9M30Y0BgOXDZNmtm029l5bGe-j5Ar_DXlaY8Zbj2Qhh260vAbkKX4vggDJqStNPYOd7pu69l-7Dv9hV4YLKvEHFpnQBGprcbNjYfRRUncDUTRNrLdQHpn4eCZEBRski0Hgn1kMWD1bmGNQSFT1mEUMVCm6OL5b5ol_7SEXvrHWqcuqLlHwuLhs8qTt9o8CWrh1y9cx_Xebp_s5hEqvc1U6oBsqOiQlDspmvfsk17TrgDtpLlROCIvWFSk6DRnP6LwKlTME2yWmMxj-o7g5KOYoruUdBLRYXqMAdeotBl-BdXDeEDjDzEbUzF6ncyGyWB8THrN-95dy8jpGowQ8tzEEEwg6w2EZEL6bhCarKEtxRqBcjxRV9IWMArmCEtpX1raUUzWmdRWw1KuI9kJKUWTSJUJ9SFwkUyCujDM_0yBoPKQeTk2uFIt_Aqxi2_EwxzKHBk1RtzMEU-LNeS4hjxfwwqp_YhNMyyPVQL-ogLwJD1E0RnjCWcrZKuFtvDcLMTc8kwwkJbneKdrTH1Jtlu9Tpu3H7pPZ2QHbrG0eI1VSSmZzdU5hElJcJHug2_lCwK-
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSGy8UQsFPCC2lCZO0mREQFUerRiKYLOc2KYVfalJQfDruUscREGoQxcry1mxfb6X774j5BSfpgIdMMuvR9JyY19aYQO8lDAUccSEdJXG2uF2x289urfPXpFNmJi0SvShdQ4UkclqvNwTqYuMuHMwol1sdgPenYNDYINNsErWfHwVwyqOeqcQxsCPWdNhJLGQpiji-W-aOfU0B176R1hnGqi5SaLi3_PEk9faLI1q8ecvWMelFrdFNox9Si9yhtomK2q0Q8rtDMt7-kHPaEcAb1IjEnbJE6YUKToxvY8orISKWYqlEuNZQt8QmnyQUFSWko5HtJ8FMeAbWTZHr6C6n_Ro8i6mQyoGL-NpP-0N90i3ed29bFmmWYMVg5ebWoIJ7HkDBpmQoR_FNmtoR7FGpLxA1JV0BYyCecJROpSO9hSTdSa103CU70m2T0qj8UiVCQ3BbJFMArMw9P5sgZDy4Hd5LihSLcIKcYsj4rEBMsd-GgNuG7zTYg857iE3e1ghtW-ySY7ksYgg_Hn-PM1CKDrvd8LZAtpqwSzcCIWEO4EN4tEJvOBgialPyPrDVZPf33TuDjHKgO_wGBGqklI6nakjsJHS6Di7BV-l0gFd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Route+planning+for+autonomous+vessels+based+on+improved+artificial+fish+swarm+algorithm&rft.jtitle=Ships+and+offshore+structures&rft.au=Zhao%2C+Liang&rft.au=Wang%2C+Fang&rft.au=Bai%2C+Yong&rft.date=2023-06-03&rft.issn=1744-5302&rft.eissn=1754-212X&rft.volume=18&rft.issue=6&rft.spage=897&rft.epage=906&rft_id=info:doi/10.1080%2F17445302.2022.2081423&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_17445302_2022_2081423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-5302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-5302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-5302&client=summon