Prediction of effective stimulated reservoir volume after hydraulic fracturing utilizing deep learning

It is very important to utilize hydraulic fracturing for unconventional reservoir development. Accurate prediction of effective stimulated reservoir volume (SRV) after fracturing facilitates production evaluation. However, the traditional methods to predict SRV are time consuming and the precision c...

Full description

Saved in:
Bibliographic Details
Published inPetroleum science and technology Vol. 41; no. 20; pp. 1934 - 1956
Main Authors Yue, Ming, Song, Tianru, Chen, Qiang, Yu, Mingxu, Wang, Yuhe, Wang, Jiulong, Du, Shuyi, Song, Hongqing
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 18.10.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1091-6466
1532-2459
DOI10.1080/10916466.2022.2096635

Cover

Abstract It is very important to utilize hydraulic fracturing for unconventional reservoir development. Accurate prediction of effective stimulated reservoir volume (SRV) after fracturing facilitates production evaluation. However, the traditional methods to predict SRV are time consuming and the precision cannot fully meet the requirements. To overcome the shortcomings, a new approach was presented using deep learning which includes four procedures. Firstly, the datasets were collected by numerical simulation considering non-Darcy flow characteristics. Additionally, the Branched Deep Neural Network model (B-DNN) was established after data fusion through adding a branch neural network. Then the optimal hyperparameters were obtained after adjusting to satisfy model accuracy and reliability. Finally, the prediction results of B-DNN and convolutional neural network (CNN) and recurrent neural network (RNN) were compared. The results show that the model with Softplus activation function, four hidden layers, and 250 neurons in each layer would have the best calculation results. The proposed model has good agreement with actual field data which can reach 97%. Furthermore, compared with the CNN and RNN models, it is shown that the B-DNN model has considerable prediction accuracy and is less time-consuming. This deep learning model provides new insight for production evaluation in the fractured tight oil reservoir.
AbstractList It is very important to utilize hydraulic fracturing for unconventional reservoir development. Accurate prediction of effective stimulated reservoir volume (SRV) after fracturing facilitates production evaluation. However, the traditional methods to predict SRV are time consuming and the precision cannot fully meet the requirements. To overcome the shortcomings, a new approach was presented using deep learning which includes four procedures. Firstly, the datasets were collected by numerical simulation considering non-Darcy flow characteristics. Additionally, the Branched Deep Neural Network model (B-DNN) was established after data fusion through adding a branch neural network. Then the optimal hyperparameters were obtained after adjusting to satisfy model accuracy and reliability. Finally, the prediction results of B-DNN and convolutional neural network (CNN) and recurrent neural network (RNN) were compared. The results show that the model with Softplus activation function, four hidden layers, and 250 neurons in each layer would have the best calculation results. The proposed model has good agreement with actual field data which can reach 97%. Furthermore, compared with the CNN and RNN models, it is shown that the B-DNN model has considerable prediction accuracy and is less time-consuming. This deep learning model provides new insight for production evaluation in the fractured tight oil reservoir.
Author Yue, Ming
Chen, Qiang
Wang, Jiulong
Song, Hongqing
Yu, Mingxu
Wang, Yuhe
Du, Shuyi
Song, Tianru
Author_xml – sequence: 1
  givenname: Ming
  surname: Yue
  fullname: Yue, Ming
  organization: School of Civil and Resources Engineering, University of Science and Technology Beijing
– sequence: 2
  givenname: Tianru
  surname: Song
  fullname: Song, Tianru
  organization: School of Civil and Resources Engineering, University of Science and Technology Beijing
– sequence: 3
  givenname: Qiang
  surname: Chen
  fullname: Chen, Qiang
  organization: Research and Development Department, Oil and Gas Technology Research Institute, Changqing Oilfield Company of PetroChina
– sequence: 4
  givenname: Mingxu
  surname: Yu
  fullname: Yu, Mingxu
  organization: Azureland Energy Technology Co. Ltd
– sequence: 5
  givenname: Yuhe
  surname: Wang
  fullname: Wang, Yuhe
  organization: School of Petroleum Engineering, China University of Petroleum
– sequence: 6
  givenname: Jiulong
  surname: Wang
  fullname: Wang, Jiulong
  organization: Oil & Gas Data Science Division, National & Local Joint Engineering Lab for Big Data Analysis and Computer Technology
– sequence: 7
  givenname: Shuyi
  surname: Du
  fullname: Du, Shuyi
  organization: Oil & Gas Data Science Division, National & Local Joint Engineering Lab for Big Data Analysis and Computer Technology
– sequence: 8
  givenname: Hongqing
  orcidid: 0000-0002-6642-3773
  surname: Song
  fullname: Song, Hongqing
  organization: Oil & Gas Data Science Division, National & Local Joint Engineering Lab for Big Data Analysis and Computer Technology
BookMark eNqFkE1r3DAQhkVJoPnoTygIcnaiD9trkUtCaJtCoD0kZyHJo1aL1tqO5C2bXx-ZTS89JJeZeeF9Z5jnlBxNaQJCPnN2ydnArjhTvG_7_lIwIWpRfS-7D-SEd1I0ou3UUZ2rp1lMH8lpzmvGuFrx_oT4nwhjcCWkiSZPwXuoYgc0l7CZoykwUoQMuEsB6S7FeQPU-AJIf-9HNHMMjno0rswYpl90LiGG52UaAbY0gsGpqnNy7E3M8Om1n5Gnr18e7-6bhx_fvt_dPjROyqE0A_Q9MOWtWrlBKt_ZzrZO2bEdAJSFTjljlfD1Ry9kx7ljzkphRcusk6OUZ-TisHeL6c8Mueh1mnGqJ7UYWlZpCSGqqzu4HKacEbzeYtgY3GvO9IJU_0OqF6T6FWnNXf-Xc6GYhV1BE-K76ZtDOkw-4cb8TRhHXcw-JqwEJxeylm-veAFy25Pf
CitedBy_id crossref_primary_10_1021_acsomega_3c09229
crossref_primary_10_1080_10916466_2024_2429452
crossref_primary_10_1063_5_0225637
crossref_primary_10_1007_s10973_024_13066_y
crossref_primary_10_1155_2023_6101374
crossref_primary_10_1016_j_marpetgeo_2024_107010
crossref_primary_10_1080_10916466_2024_2401513
crossref_primary_10_1016_j_ijhydene_2025_01_198
crossref_primary_10_1016_j_geoen_2025_213706
crossref_primary_10_1016_j_geoen_2024_213448
crossref_primary_10_3390_en17061303
crossref_primary_10_1080_10916466_2024_2310091
crossref_primary_10_1080_10916466_2024_2390482
crossref_primary_10_1080_10916466_2024_2417739
crossref_primary_10_2139_ssrn_5073392
Cites_doi 10.1016/S1876-3804(20)60057-X
10.1016/S1876-3804(19)60263-6
10.1016/j.petrol.2019.106816
10.1016/S1876-3804(20)60119-7
10.1016/S1876-3804(20)60061-1
10.1016/j.fuel.2017.11.110
10.1016/j.petrol.2019.04.016
10.2118/189969-PA
10.2118/49193-MS
10.1007/s13202-021-01253-8
10.1016/j.fuel.2018.12.009
10.1007/s11242-020-01519-5
10.1109/78.650093
10.1109/ACCESS.2020.2976910
10.1007/s40808-021-01111-w
10.1109/TPAMI.2008.137
10.1190/IGC2018-436
10.4043/27577-MS
10.2118/39919-MS
10.1038/aps.2011.203
10.1016/j.fuel.2022.123370
10.1016/j.petrol.2019.106529
10.1016/j.petlm.2020.08.003
10.1016/S1876-3804(13)60019-1
10.1115/1.4045957
10.1016/j.fuel.2016.11.040
10.2118/191714-18RPTC-MS
10.1016/j.apenergy.2021.117016
10.1007/s12517-017-2840-4
10.1016/S1876-3804(20)60079-9
10.1016/j.petrol.2021.110091
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2022
2022 Taylor & Francis Group, LLC
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2022
– notice: 2022 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
8FD
FR3
KR7
DOI 10.1080/10916466.2022.2096635
DatabaseName CrossRef
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1532-2459
EndPage 1956
ExternalDocumentID 10_1080_10916466_2022_2096635
2096635
Genre Research Article
GroupedDBID .7F
.QJ
0BK
0R~
123
29O
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~02
~S~
AAGDL
AAHIA
AAYXX
AFRVT
AIYEW
CITATION
TASJS
8FD
ADYSH
FR3
KR7
ID FETCH-LOGICAL-c338t-8e66e09fb97c839f5b5b4c9bd48ee9be59cab92f209f23511c0cb32b240bc3d33
ISSN 1091-6466
IngestDate Fri Jul 25 08:08:22 EDT 2025
Wed Oct 01 05:09:48 EDT 2025
Thu Apr 24 22:59:00 EDT 2025
Wed Dec 25 09:03:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-8e66e09fb97c839f5b5b4c9bd48ee9be59cab92f209f23511c0cb32b240bc3d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6642-3773
PQID 2840080222
PQPubID 2045233
PageCount 23
ParticipantIDs proquest_journals_2840080222
crossref_primary_10_1080_10916466_2022_2096635
crossref_citationtrail_10_1080_10916466_2022_2096635
informaworld_taylorfrancis_310_1080_10916466_2022_2096635
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-18
PublicationDateYYYYMMDD 2023-10-18
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-18
  day: 18
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Petroleum science and technology
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
Kim P. (CIT0012) 2017; 130
CIT0031
Srivastava N. (CIT0022) 2014; 15
Wu X. (CIT0037) 2018
Wang Y. (CIT0034) 2017; 13
An P. (CIT0002) 2018; 33
CIT0014
CIT0036
CIT0035
CIT0016
CIT0038
CIT0015
CIT0018
CIT0017
CIT0039
CIT0019
CIT0041
CIT0040
CIT0021
CIT0043
Krizhevsky A. (CIT0013) 2012; 25
CIT0020
CIT0042
CIT0001
CIT0045
CIT0044
Duchi J. (CIT0006) 2011; 12
Su Y. (CIT0023) 2014; 35
An P. (CIT0004) 2019; 34
Fan J. (CIT0007) 2015; 39
Syed F. I. (CIT0024) 2020
CIT0003
CIT0025
CIT0046
CIT0005
CIT0027
CIT0026
CIT0029
Jiang L. (CIT0011) 2015; 22
CIT0028
CIT0009
CIT0008
Wang Y. (CIT0033) 2012; 33
References_xml – ident: CIT0020
  doi: 10.1016/S1876-3804(20)60057-X
– ident: CIT0045
  doi: 10.1016/S1876-3804(19)60263-6
– ident: CIT0040
  doi: 10.1016/j.petrol.2019.106816
– volume: 33
  start-page: 1029
  issue: 3
  year: 2018
  ident: CIT0002
  publication-title: Progress in Geophysics (in Chinese)
– volume: 22
  start-page: 82
  issue: 1
  year: 2015
  ident: CIT0011
  publication-title: Fault-Block Oil & Gas Field
– start-page: 2405
  year: 2020
  ident: CIT0024
  publication-title: Petroleum
– volume: 35
  start-page: 504
  issue: 3
  year: 2014
  ident: CIT0023
  publication-title: ACTA Petrolei Sinica
– ident: CIT0029
  doi: 10.1016/S1876-3804(20)60119-7
– ident: CIT0041
  doi: 10.1016/S1876-3804(20)60061-1
– ident: CIT0001
  doi: 10.1016/j.fuel.2017.11.110
– volume: 12
  start-page: 2121
  issue: 7
  year: 2011
  ident: CIT0006
  publication-title: Journal of Machine Learning Research
– volume: 130
  issue: 21
  year: 2017
  ident: CIT0012
  publication-title: . Neural networks and artificial intelligence
– ident: CIT0031
  doi: 10.1016/j.petrol.2019.04.016
– ident: CIT0019
  doi: 10.2118/189969-PA
– volume: 13
  start-page: 36
  issue: 1
  year: 2017
  ident: CIT0034
  publication-title: Advances in Petroleum Exploration and Development
– ident: CIT0036
  doi: 10.2118/49193-MS
– volume: 39
  start-page: 103
  issue: 4
  year: 2015
  ident: CIT0007
  publication-title: Journal of China University of Petroleum (Natural Science Edition)
– ident: CIT0026
  doi: 10.1007/s13202-021-01253-8
– ident: CIT0038
  doi: 10.1016/j.fuel.2018.12.009
– ident: CIT0042
  doi: 10.1007/s11242-020-01519-5
– volume: 25
  year: 2012
  ident: CIT0013
  publication-title: Advances in Neural Information Processing Systems
– ident: CIT0018
  doi: 10.1109/78.650093
– ident: CIT0005
  doi: 10.1109/ACCESS.2020.2976910
– ident: CIT0043
– ident: CIT0021
  doi: 10.1007/s40808-021-01111-w
– ident: CIT0008
  doi: 10.1109/TPAMI.2008.137
– ident: CIT0010
– ident: CIT0003
  doi: 10.1190/IGC2018-436
– ident: CIT0017
  doi: 10.4043/27577-MS
– start-page: 369
  volume-title: International Field Exploration and Development Conference
  year: 2018
  ident: CIT0037
– volume: 15
  start-page: 1929
  year: 2014
  ident: CIT0022
  publication-title: J. Mach. Learn. Res
– ident: CIT0035
  doi: 10.2118/39919-MS
– ident: CIT0046
  doi: 10.1038/aps.2011.203
– ident: CIT0027
  doi: 10.1016/j.fuel.2022.123370
– volume: 33
  start-page: 149
  year: 2012
  ident: CIT0033
  publication-title: Acta Petrolei Sinica
– ident: CIT0015
  doi: 10.1016/j.petrol.2019.106529
– ident: CIT0025
  doi: 10.1016/j.petlm.2020.08.003
– ident: CIT0039
  doi: 10.1016/S1876-3804(13)60019-1
– volume: 34
  start-page: 1849
  issue: 5
  year: 2019
  ident: CIT0004
  publication-title: Progress in Geophysics
– ident: CIT0009
  doi: 10.1115/1.4045957
– ident: CIT0032
  doi: 10.1016/j.fuel.2016.11.040
– ident: CIT0028
  doi: 10.2118/191714-18RPTC-MS
– ident: CIT0030
  doi: 10.1016/j.apenergy.2021.117016
– ident: CIT0014
  doi: 10.1007/s12517-017-2840-4
– ident: CIT0016
  doi: 10.1016/S1876-3804(20)60079-9
– ident: CIT0044
  doi: 10.1016/j.petrol.2021.110091
SSID ssj0019716
Score 2.4060879
Snippet It is very important to utilize hydraulic fracturing for unconventional reservoir development. Accurate prediction of effective stimulated reservoir volume...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1934
SubjectTerms Artificial neural networks
Data integration
Deep learning
effective stimulated reservoir volume
Flow characteristics
Hydraulic fracturing
hyperparameter evaluation
Machine learning
Mathematical models
Model accuracy
Neural networks
Recurrent neural networks
Reservoirs
tight oil
Title Prediction of effective stimulated reservoir volume after hydraulic fracturing utilizing deep learning
URI https://www.tandfonline.com/doi/abs/10.1080/10916466.2022.2096635
https://www.proquest.com/docview/2840080222
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1532-2459
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019716
  issn: 1091-6466
  databaseCode: AHDZW
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1532-2459
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019716
  issn: 1091-6466
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcoED4ikKBfnArUrJ2o43PiIEqpCoQNpK5RTZjl0qbXerbSJBfwy_lZnYTrJ0RSmXKLJkx_F8GX8Zz4OQN7BjaCNMntVaq0x4oTMljMxcXbhpWesp0xgo_PlIHh6LTyfFyWTya-S11DbmwF5tjSv5H6lCG8gVo2RvIdl-UGiAe5AvXEHCcP0nGX9Z4zFL4nzBNQM9geCzPceyXA5DU9Dsujpb7wc9FIuCf_9Zr3WLCa49hkmFWEWY6eLsCu9q5y5SQYnTMX_FAlyrhWvP91M8UOeBec0-_60NFu_UHW040fl3jimG2sGtIOi9r9B6OvROnX-0Y7ME6xzcNjQpEJFMChnzXCftyjImYgrwqH5D3qsIM5aPlClwSzHamDGycavSD16S-EB8HvzzM4ywU8ilhl0unez_sfn1LonTmCs1DVPhMFUc5g65y2ZSYoUMnh_1p1SYfqs7TY-vmiLEyvzt1tlscJ-NzLjXmEBHb-YPyYP4X0LfBZA9IhO3fEzuj7JVPiF-gBtdedrDjQ5woz3caFh32sGN9nCjA9xoDzeKcKMJbk_J8ccP8_eHWSzTkVnOyyYrnZQuV96omQW67QtTGGGVqUXpnDKuUFYbxTwsgmd4bm1zazgzwCWN5TXnz8jOcrV0zwnlpZkJ7XLDcgubCTOFdEYZWU85DCj0LhFpASsbc9hjKZVF9Vfx7ZKDvttFSOJyUwc1lk7VdNYzH0rdVPyGvntJlFXUFZcVkMAQ1c5e3HYuL8m94fvaIzvNunWvgAg35nWHxt8kt62u
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54HIADb8SbHLh29JGW5ogQ04Bt4sCk3aI4D5gYGyodEvx64j6mAUIcuFWqHDWJYzu1v8-EnDqPIYGB72kpuccskx5nkHhGxyZItQxCiUDhTjdp9dhNP-7PYGGwrBLv0LYkiihsNR5u_Bldl8SdIZllwhKsMAgRTMXRbc6TxRiZRhDG4XenmQSkSCoynjzwUKZG8fw2zBf_9IW99Ie1LlxQc42o-uPLypOnxiSHhvr4xuv4v9mtk9UqQqUXpUptkDkz2iQrM7yFW8TeZZjfwT2lY0vLmhBnNqmzF8_YD8xoirCm7G08yGhpAGnRjZw-vutMToYDRS3iswqQJHXKPxx84JM25oVWnSwetkmveXV_2fKqhg2ecjfd3EtNkhifW-DnygVeNoYYmOKgWWoMBxNzJYGH1s3JhpjBVL6CKAQXVYCKdBTtkIXReGR2CY1SOGfS-BD6ypmVEOLEAIdEB5EbkMk9wuptEqpiM8emGkMRVKSn9TIKXEZRLeMeaUzFXko6j78E-KwOiLz4j2LLpici-kP2sFYYUVmGV-HCgRLfHO7_Y-gTstS677RF-7p7e0CW3auiwjBID8lCnk3MkYuUcjgujsInaRkG5Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSgQxEA0uIHpwF3dz8NpjL-nYOYo6uA4eFLyFVBYdHGeGnh5Bv95UL-KCePDW0FToJJWqSle9V4Tse4-hgEEYGKVEwBxTgWDAA2tSG2VGRbFCoPB1h5_dsYv7tKkmHNVllXiHdhVRRGmr8XAPjWsq4g6Qy5IzjgUGMWKpBHrNSTLNEWeKKI6w85FIQIakMuEpogBlGhDPb8N8cU9fyEt_GOvSA7UXCDTfXhWePLXGBbT02zdax39NbpHM1_EpPaoUaolM2P4ymfvEWrhC3E2O2R3cUTpwtKoI8UaTemvxjN3ArKEIaspfBt2cVuaPlr3I6eOrydW419XUITqrhEhSr_q97hs-GWuHtO5j8bBK7tqnt8dnQd2uIdD-nlsEmeXchsKBONQ-7HIppMC0AMMyawXYVGgFInZ-Ti7G_KUONSQx-JgCdGKSZI1M9Qd9u05oksEhUzaEONTeqMSQcgsCuIkSPyBTG4Q1uyR1zWWOLTV6MqopT5tllLiMsl7GDdL6EBtWZB5_CYjPKiCL8i-Kq1qeyOQP2e1GX2RtF0bSBwMVujne_MfQe2Tm5qQtr847l1tk1r8pywujbJtMFfnY7vgwqYDd8iC8Az2rBZI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+effective+stimulated+reservoir+volume+after+hydraulic+fracturing+utilizing+deep+learning&rft.jtitle=Petroleum+science+and+technology&rft.au=Yue%2C+Ming&rft.au=Song%2C+Tianru&rft.au=Chen%2C+Qiang&rft.au=Yu%2C+Mingxu&rft.date=2023-10-18&rft.issn=1091-6466&rft.eissn=1532-2459&rft.volume=41&rft.issue=20&rft.spage=1934&rft.epage=1956&rft_id=info:doi/10.1080%2F10916466.2022.2096635&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10916466_2022_2096635
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6466&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6466&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6466&client=summon