Prediction of effective stimulated reservoir volume after hydraulic fracturing utilizing deep learning
It is very important to utilize hydraulic fracturing for unconventional reservoir development. Accurate prediction of effective stimulated reservoir volume (SRV) after fracturing facilitates production evaluation. However, the traditional methods to predict SRV are time consuming and the precision c...
Saved in:
Published in | Petroleum science and technology Vol. 41; no. 20; pp. 1934 - 1956 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Taylor & Francis
18.10.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1091-6466 1532-2459 |
DOI | 10.1080/10916466.2022.2096635 |
Cover
Abstract | It is very important to utilize hydraulic fracturing for unconventional reservoir development. Accurate prediction of effective stimulated reservoir volume (SRV) after fracturing facilitates production evaluation. However, the traditional methods to predict SRV are time consuming and the precision cannot fully meet the requirements. To overcome the shortcomings, a new approach was presented using deep learning which includes four procedures. Firstly, the datasets were collected by numerical simulation considering non-Darcy flow characteristics. Additionally, the Branched Deep Neural Network model (B-DNN) was established after data fusion through adding a branch neural network. Then the optimal hyperparameters were obtained after adjusting to satisfy model accuracy and reliability. Finally, the prediction results of B-DNN and convolutional neural network (CNN) and recurrent neural network (RNN) were compared. The results show that the model with Softplus activation function, four hidden layers, and 250 neurons in each layer would have the best calculation results. The proposed model has good agreement with actual field data which can reach 97%. Furthermore, compared with the CNN and RNN models, it is shown that the B-DNN model has considerable prediction accuracy and is less time-consuming. This deep learning model provides new insight for production evaluation in the fractured tight oil reservoir. |
---|---|
AbstractList | It is very important to utilize hydraulic fracturing for unconventional reservoir development. Accurate prediction of effective stimulated reservoir volume (SRV) after fracturing facilitates production evaluation. However, the traditional methods to predict SRV are time consuming and the precision cannot fully meet the requirements. To overcome the shortcomings, a new approach was presented using deep learning which includes four procedures. Firstly, the datasets were collected by numerical simulation considering non-Darcy flow characteristics. Additionally, the Branched Deep Neural Network model (B-DNN) was established after data fusion through adding a branch neural network. Then the optimal hyperparameters were obtained after adjusting to satisfy model accuracy and reliability. Finally, the prediction results of B-DNN and convolutional neural network (CNN) and recurrent neural network (RNN) were compared. The results show that the model with Softplus activation function, four hidden layers, and 250 neurons in each layer would have the best calculation results. The proposed model has good agreement with actual field data which can reach 97%. Furthermore, compared with the CNN and RNN models, it is shown that the B-DNN model has considerable prediction accuracy and is less time-consuming. This deep learning model provides new insight for production evaluation in the fractured tight oil reservoir. |
Author | Yue, Ming Chen, Qiang Wang, Jiulong Song, Hongqing Yu, Mingxu Wang, Yuhe Du, Shuyi Song, Tianru |
Author_xml | – sequence: 1 givenname: Ming surname: Yue fullname: Yue, Ming organization: School of Civil and Resources Engineering, University of Science and Technology Beijing – sequence: 2 givenname: Tianru surname: Song fullname: Song, Tianru organization: School of Civil and Resources Engineering, University of Science and Technology Beijing – sequence: 3 givenname: Qiang surname: Chen fullname: Chen, Qiang organization: Research and Development Department, Oil and Gas Technology Research Institute, Changqing Oilfield Company of PetroChina – sequence: 4 givenname: Mingxu surname: Yu fullname: Yu, Mingxu organization: Azureland Energy Technology Co. Ltd – sequence: 5 givenname: Yuhe surname: Wang fullname: Wang, Yuhe organization: School of Petroleum Engineering, China University of Petroleum – sequence: 6 givenname: Jiulong surname: Wang fullname: Wang, Jiulong organization: Oil & Gas Data Science Division, National & Local Joint Engineering Lab for Big Data Analysis and Computer Technology – sequence: 7 givenname: Shuyi surname: Du fullname: Du, Shuyi organization: Oil & Gas Data Science Division, National & Local Joint Engineering Lab for Big Data Analysis and Computer Technology – sequence: 8 givenname: Hongqing orcidid: 0000-0002-6642-3773 surname: Song fullname: Song, Hongqing organization: Oil & Gas Data Science Division, National & Local Joint Engineering Lab for Big Data Analysis and Computer Technology |
BookMark | eNqFkE1r3DAQhkVJoPnoTygIcnaiD9trkUtCaJtCoD0kZyHJo1aL1tqO5C2bXx-ZTS89JJeZeeF9Z5jnlBxNaQJCPnN2ydnArjhTvG_7_lIwIWpRfS-7D-SEd1I0ou3UUZ2rp1lMH8lpzmvGuFrx_oT4nwhjcCWkiSZPwXuoYgc0l7CZoykwUoQMuEsB6S7FeQPU-AJIf-9HNHMMjno0rswYpl90LiGG52UaAbY0gsGpqnNy7E3M8Om1n5Gnr18e7-6bhx_fvt_dPjROyqE0A_Q9MOWtWrlBKt_ZzrZO2bEdAJSFTjljlfD1Ry9kx7ljzkphRcusk6OUZ-TisHeL6c8Mueh1mnGqJ7UYWlZpCSGqqzu4HKacEbzeYtgY3GvO9IJU_0OqF6T6FWnNXf-Xc6GYhV1BE-K76ZtDOkw-4cb8TRhHXcw-JqwEJxeylm-veAFy25Pf |
CitedBy_id | crossref_primary_10_1021_acsomega_3c09229 crossref_primary_10_1080_10916466_2024_2429452 crossref_primary_10_1063_5_0225637 crossref_primary_10_1007_s10973_024_13066_y crossref_primary_10_1155_2023_6101374 crossref_primary_10_1016_j_marpetgeo_2024_107010 crossref_primary_10_1080_10916466_2024_2401513 crossref_primary_10_1016_j_ijhydene_2025_01_198 crossref_primary_10_1016_j_geoen_2025_213706 crossref_primary_10_1016_j_geoen_2024_213448 crossref_primary_10_3390_en17061303 crossref_primary_10_1080_10916466_2024_2310091 crossref_primary_10_1080_10916466_2024_2390482 crossref_primary_10_1080_10916466_2024_2417739 crossref_primary_10_2139_ssrn_5073392 |
Cites_doi | 10.1016/S1876-3804(20)60057-X 10.1016/S1876-3804(19)60263-6 10.1016/j.petrol.2019.106816 10.1016/S1876-3804(20)60119-7 10.1016/S1876-3804(20)60061-1 10.1016/j.fuel.2017.11.110 10.1016/j.petrol.2019.04.016 10.2118/189969-PA 10.2118/49193-MS 10.1007/s13202-021-01253-8 10.1016/j.fuel.2018.12.009 10.1007/s11242-020-01519-5 10.1109/78.650093 10.1109/ACCESS.2020.2976910 10.1007/s40808-021-01111-w 10.1109/TPAMI.2008.137 10.1190/IGC2018-436 10.4043/27577-MS 10.2118/39919-MS 10.1038/aps.2011.203 10.1016/j.fuel.2022.123370 10.1016/j.petrol.2019.106529 10.1016/j.petlm.2020.08.003 10.1016/S1876-3804(13)60019-1 10.1115/1.4045957 10.1016/j.fuel.2016.11.040 10.2118/191714-18RPTC-MS 10.1016/j.apenergy.2021.117016 10.1007/s12517-017-2840-4 10.1016/S1876-3804(20)60079-9 10.1016/j.petrol.2021.110091 |
ContentType | Journal Article |
Copyright | 2022 Taylor & Francis Group, LLC 2022 2022 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2022 Taylor & Francis Group, LLC 2022 – notice: 2022 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 8FD FR3 KR7 |
DOI | 10.1080/10916466.2022.2096635 |
DatabaseName | CrossRef Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1532-2459 |
EndPage | 1956 |
ExternalDocumentID | 10_1080_10916466_2022_2096635 2096635 |
Genre | Research Article |
GroupedDBID | .7F .QJ 0BK 0R~ 123 29O 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AHDZW AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ O9- RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEN TFL TFT TFW TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~02 ~S~ AAGDL AAHIA AAYXX AFRVT AIYEW CITATION TASJS 8FD ADYSH FR3 KR7 |
ID | FETCH-LOGICAL-c338t-8e66e09fb97c839f5b5b4c9bd48ee9be59cab92f209f23511c0cb32b240bc3d33 |
ISSN | 1091-6466 |
IngestDate | Fri Jul 25 08:08:22 EDT 2025 Wed Oct 01 05:09:48 EDT 2025 Thu Apr 24 22:59:00 EDT 2025 Wed Dec 25 09:03:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c338t-8e66e09fb97c839f5b5b4c9bd48ee9be59cab92f209f23511c0cb32b240bc3d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6642-3773 |
PQID | 2840080222 |
PQPubID | 2045233 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2840080222 crossref_primary_10_1080_10916466_2022_2096635 crossref_citationtrail_10_1080_10916466_2022_2096635 informaworld_taylorfrancis_310_1080_10916466_2022_2096635 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-18 |
PublicationDateYYYYMMDD | 2023-10-18 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Petroleum science and technology |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0030 CIT0010 CIT0032 Kim P. (CIT0012) 2017; 130 CIT0031 Srivastava N. (CIT0022) 2014; 15 Wu X. (CIT0037) 2018 Wang Y. (CIT0034) 2017; 13 An P. (CIT0002) 2018; 33 CIT0014 CIT0036 CIT0035 CIT0016 CIT0038 CIT0015 CIT0018 CIT0017 CIT0039 CIT0019 CIT0041 CIT0040 CIT0021 CIT0043 Krizhevsky A. (CIT0013) 2012; 25 CIT0020 CIT0042 CIT0001 CIT0045 CIT0044 Duchi J. (CIT0006) 2011; 12 Su Y. (CIT0023) 2014; 35 An P. (CIT0004) 2019; 34 Fan J. (CIT0007) 2015; 39 Syed F. I. (CIT0024) 2020 CIT0003 CIT0025 CIT0046 CIT0005 CIT0027 CIT0026 CIT0029 Jiang L. (CIT0011) 2015; 22 CIT0028 CIT0009 CIT0008 Wang Y. (CIT0033) 2012; 33 |
References_xml | – ident: CIT0020 doi: 10.1016/S1876-3804(20)60057-X – ident: CIT0045 doi: 10.1016/S1876-3804(19)60263-6 – ident: CIT0040 doi: 10.1016/j.petrol.2019.106816 – volume: 33 start-page: 1029 issue: 3 year: 2018 ident: CIT0002 publication-title: Progress in Geophysics (in Chinese) – volume: 22 start-page: 82 issue: 1 year: 2015 ident: CIT0011 publication-title: Fault-Block Oil & Gas Field – start-page: 2405 year: 2020 ident: CIT0024 publication-title: Petroleum – volume: 35 start-page: 504 issue: 3 year: 2014 ident: CIT0023 publication-title: ACTA Petrolei Sinica – ident: CIT0029 doi: 10.1016/S1876-3804(20)60119-7 – ident: CIT0041 doi: 10.1016/S1876-3804(20)60061-1 – ident: CIT0001 doi: 10.1016/j.fuel.2017.11.110 – volume: 12 start-page: 2121 issue: 7 year: 2011 ident: CIT0006 publication-title: Journal of Machine Learning Research – volume: 130 issue: 21 year: 2017 ident: CIT0012 publication-title: . Neural networks and artificial intelligence – ident: CIT0031 doi: 10.1016/j.petrol.2019.04.016 – ident: CIT0019 doi: 10.2118/189969-PA – volume: 13 start-page: 36 issue: 1 year: 2017 ident: CIT0034 publication-title: Advances in Petroleum Exploration and Development – ident: CIT0036 doi: 10.2118/49193-MS – volume: 39 start-page: 103 issue: 4 year: 2015 ident: CIT0007 publication-title: Journal of China University of Petroleum (Natural Science Edition) – ident: CIT0026 doi: 10.1007/s13202-021-01253-8 – ident: CIT0038 doi: 10.1016/j.fuel.2018.12.009 – ident: CIT0042 doi: 10.1007/s11242-020-01519-5 – volume: 25 year: 2012 ident: CIT0013 publication-title: Advances in Neural Information Processing Systems – ident: CIT0018 doi: 10.1109/78.650093 – ident: CIT0005 doi: 10.1109/ACCESS.2020.2976910 – ident: CIT0043 – ident: CIT0021 doi: 10.1007/s40808-021-01111-w – ident: CIT0008 doi: 10.1109/TPAMI.2008.137 – ident: CIT0010 – ident: CIT0003 doi: 10.1190/IGC2018-436 – ident: CIT0017 doi: 10.4043/27577-MS – start-page: 369 volume-title: International Field Exploration and Development Conference year: 2018 ident: CIT0037 – volume: 15 start-page: 1929 year: 2014 ident: CIT0022 publication-title: J. Mach. Learn. Res – ident: CIT0035 doi: 10.2118/39919-MS – ident: CIT0046 doi: 10.1038/aps.2011.203 – ident: CIT0027 doi: 10.1016/j.fuel.2022.123370 – volume: 33 start-page: 149 year: 2012 ident: CIT0033 publication-title: Acta Petrolei Sinica – ident: CIT0015 doi: 10.1016/j.petrol.2019.106529 – ident: CIT0025 doi: 10.1016/j.petlm.2020.08.003 – ident: CIT0039 doi: 10.1016/S1876-3804(13)60019-1 – volume: 34 start-page: 1849 issue: 5 year: 2019 ident: CIT0004 publication-title: Progress in Geophysics – ident: CIT0009 doi: 10.1115/1.4045957 – ident: CIT0032 doi: 10.1016/j.fuel.2016.11.040 – ident: CIT0028 doi: 10.2118/191714-18RPTC-MS – ident: CIT0030 doi: 10.1016/j.apenergy.2021.117016 – ident: CIT0014 doi: 10.1007/s12517-017-2840-4 – ident: CIT0016 doi: 10.1016/S1876-3804(20)60079-9 – ident: CIT0044 doi: 10.1016/j.petrol.2021.110091 |
SSID | ssj0019716 |
Score | 2.4060879 |
Snippet | It is very important to utilize hydraulic fracturing for unconventional reservoir development. Accurate prediction of effective stimulated reservoir volume... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1934 |
SubjectTerms | Artificial neural networks Data integration Deep learning effective stimulated reservoir volume Flow characteristics Hydraulic fracturing hyperparameter evaluation Machine learning Mathematical models Model accuracy Neural networks Recurrent neural networks Reservoirs tight oil |
Title | Prediction of effective stimulated reservoir volume after hydraulic fracturing utilizing deep learning |
URI | https://www.tandfonline.com/doi/abs/10.1080/10916466.2022.2096635 https://www.proquest.com/docview/2840080222 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1532-2459 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019716 issn: 1091-6466 databaseCode: AHDZW dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1532-2459 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019716 issn: 1091-6466 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcoED4ikKBfnArUrJ2o43PiIEqpCoQNpK5RTZjl0qbXerbSJBfwy_lZnYTrJ0RSmXKLJkx_F8GX8Zz4OQN7BjaCNMntVaq0x4oTMljMxcXbhpWesp0xgo_PlIHh6LTyfFyWTya-S11DbmwF5tjSv5H6lCG8gVo2RvIdl-UGiAe5AvXEHCcP0nGX9Z4zFL4nzBNQM9geCzPceyXA5DU9Dsujpb7wc9FIuCf_9Zr3WLCa49hkmFWEWY6eLsCu9q5y5SQYnTMX_FAlyrhWvP91M8UOeBec0-_60NFu_UHW040fl3jimG2sGtIOi9r9B6OvROnX-0Y7ME6xzcNjQpEJFMChnzXCftyjImYgrwqH5D3qsIM5aPlClwSzHamDGycavSD16S-EB8HvzzM4ywU8ilhl0unez_sfn1LonTmCs1DVPhMFUc5g65y2ZSYoUMnh_1p1SYfqs7TY-vmiLEyvzt1tlscJ-NzLjXmEBHb-YPyYP4X0LfBZA9IhO3fEzuj7JVPiF-gBtdedrDjQ5woz3caFh32sGN9nCjA9xoDzeKcKMJbk_J8ccP8_eHWSzTkVnOyyYrnZQuV96omQW67QtTGGGVqUXpnDKuUFYbxTwsgmd4bm1zazgzwCWN5TXnz8jOcrV0zwnlpZkJ7XLDcgubCTOFdEYZWU85DCj0LhFpASsbc9hjKZVF9Vfx7ZKDvttFSOJyUwc1lk7VdNYzH0rdVPyGvntJlFXUFZcVkMAQ1c5e3HYuL8m94fvaIzvNunWvgAg35nWHxt8kt62u |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54HIADb8SbHLh29JGW5ogQ04Bt4sCk3aI4D5gYGyodEvx64j6mAUIcuFWqHDWJYzu1v8-EnDqPIYGB72kpuccskx5nkHhGxyZItQxCiUDhTjdp9dhNP-7PYGGwrBLv0LYkiihsNR5u_Bldl8SdIZllwhKsMAgRTMXRbc6TxRiZRhDG4XenmQSkSCoynjzwUKZG8fw2zBf_9IW99Ie1LlxQc42o-uPLypOnxiSHhvr4xuv4v9mtk9UqQqUXpUptkDkz2iQrM7yFW8TeZZjfwT2lY0vLmhBnNqmzF8_YD8xoirCm7G08yGhpAGnRjZw-vutMToYDRS3iswqQJHXKPxx84JM25oVWnSwetkmveXV_2fKqhg2ecjfd3EtNkhifW-DnygVeNoYYmOKgWWoMBxNzJYGH1s3JhpjBVL6CKAQXVYCKdBTtkIXReGR2CY1SOGfS-BD6ypmVEOLEAIdEB5EbkMk9wuptEqpiM8emGkMRVKSn9TIKXEZRLeMeaUzFXko6j78E-KwOiLz4j2LLpici-kP2sFYYUVmGV-HCgRLfHO7_Y-gTstS677RF-7p7e0CW3auiwjBID8lCnk3MkYuUcjgujsInaRkG5Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSgQxEA0uIHpwF3dz8NpjL-nYOYo6uA4eFLyFVBYdHGeGnh5Bv95UL-KCePDW0FToJJWqSle9V4Tse4-hgEEYGKVEwBxTgWDAA2tSG2VGRbFCoPB1h5_dsYv7tKkmHNVllXiHdhVRRGmr8XAPjWsq4g6Qy5IzjgUGMWKpBHrNSTLNEWeKKI6w85FIQIakMuEpogBlGhDPb8N8cU9fyEt_GOvSA7UXCDTfXhWePLXGBbT02zdax39NbpHM1_EpPaoUaolM2P4ymfvEWrhC3E2O2R3cUTpwtKoI8UaTemvxjN3ArKEIaspfBt2cVuaPlr3I6eOrydW419XUITqrhEhSr_q97hs-GWuHtO5j8bBK7tqnt8dnQd2uIdD-nlsEmeXchsKBONQ-7HIppMC0AMMyawXYVGgFInZ-Ti7G_KUONSQx-JgCdGKSZI1M9Qd9u05oksEhUzaEONTeqMSQcgsCuIkSPyBTG4Q1uyR1zWWOLTV6MqopT5tllLiMsl7GDdL6EBtWZB5_CYjPKiCL8i-Kq1qeyOQP2e1GX2RtF0bSBwMVujne_MfQe2Tm5qQtr847l1tk1r8pywujbJtMFfnY7vgwqYDd8iC8Az2rBZI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+effective+stimulated+reservoir+volume+after+hydraulic+fracturing+utilizing+deep+learning&rft.jtitle=Petroleum+science+and+technology&rft.au=Yue%2C+Ming&rft.au=Song%2C+Tianru&rft.au=Chen%2C+Qiang&rft.au=Yu%2C+Mingxu&rft.date=2023-10-18&rft.issn=1091-6466&rft.eissn=1532-2459&rft.volume=41&rft.issue=20&rft.spage=1934&rft.epage=1956&rft_id=info:doi/10.1080%2F10916466.2022.2096635&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_10916466_2022_2096635 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1091-6466&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1091-6466&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1091-6466&client=summon |