Multiscale DenseNet Meets With Bi-RNN for Hyperspectral Image Classification
Convolutional neural network (CNN) has been successfully introduced to hyperspectral image (HSI) classification and achieved effective performance. With the depth of the CNN increases, it may cause the gradient to become zero, and the structure lacks the utilization of the correlated spatial feature...
Saved in:
| Published in | IEEE journal of selected topics in applied earth observations and remote sensing Vol. 15; pp. 5401 - 5415 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1939-1404 2151-1535 2151-1535 |
| DOI | 10.1109/JSTARS.2022.3187009 |
Cover
| Abstract | Convolutional neural network (CNN) has been successfully introduced to hyperspectral image (HSI) classification and achieved effective performance. With the depth of the CNN increases, it may cause the gradient to become zero, and the structure lacks the utilization of the correlated spatial feature information between different convolutional layers. At the same time, this single-scale convolution kernel is insufficient in expressing the complex spatial structure information of HSI. In addition, the CNN-based methods treat the HSIs spectral band data as a disordered vector in the process of feature extraction, which abandons the exploitation of its internal spectral correlations. To address these issues, we propose a novel spectral-spatial network classification framework based on multiscale dense connected convolutional network (DenseNet) and bidirection recurrent neural network (Bi-RNN) with attention mechanism network (MDRN). For the proposed MDRN, in terms of spatial feature extraction, a multiscale DenseNet is exploited to combine shallow and deep convolution features to extract the multiscale and complex spatial structure features at each layer. In the aspects of spectral feature extraction, Bi-RNN with attention mechanism is used to capture the inner spectral correlations within a continuous spectrum. Three standard real hyperspectral datasets were used to verify the effectiveness of the proposed MDRN approach. Experimental results indicate that the proposed MDRN method can make full use of the spectral and spatial information of the image, and it has better performance than some advanced algorithms in HSI classification. Finally, in the application of hyperspectral data captured by Gaofen-5 satellite, the practicability of the proposed MDRN method is also superior to other methods. |
|---|---|
| AbstractList | Convolutional neural network (CNN) has been successfully introduced to hyperspectral image (HSI) classification and achieved effective performance. With the depth of the CNN increases, it may cause the gradient to become zero, and the structure lacks the utilization of the correlated spatial feature information between different convolutional layers. At the same time, this single-scale convolution kernel is insufficient in expressing the complex spatial structure information of HSI. In addition, the CNN-based methods treat the HSIs spectral band data as a disordered vector in the process of feature extraction, which abandons the exploitation of its internal spectral correlations. To address these issues, we propose a novel spectral-spatial network classification framework based on multiscale dense connected convolutional network (DenseNet) and bidirection recurrent neural network (Bi-RNN) with attention mechanism network (MDRN). For the proposed MDRN, in terms of spatial feature extraction, a multiscale DenseNet is exploited to combine shallow and deep convolution features to extract the multiscale and complex spatial structure features at each layer. In the aspects of spectral feature extraction, Bi-RNN with attention mechanism is used to capture the inner spectral correlations within a continuous spectrum. Three standard real hyperspectral datasets were used to verify the effectiveness of the proposed MDRN approach. Experimental results indicate that the proposed MDRN method can make full use of the spectral and spatial information of the image, and it has better performance than some advanced algorithms in HSI classification. Finally, in the application of hyperspectral data captured by Gaofen-5 satellite, the practicability of the proposed MDRN method is also superior to other methods. |
| Author | Li, Jun Liang, Lianhui Zhang, Shaoquan |
| Author_xml | – sequence: 1 givenname: Lianhui orcidid: 0000-0001-6958-0443 surname: Liang fullname: Liang, Lianhui email: lianglh@hnu.edu.cn organization: College of Electrical and Information Engineering, Hunan University, Changsha, China – sequence: 2 givenname: Shaoquan orcidid: 0000-0002-1454-9665 surname: Zhang fullname: Zhang, Shaoquan email: zhangshaoquan1@163.com organization: Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, School of Information Engineering, Nanchang Institute of Technology, Nanchang, China – sequence: 3 givenname: Jun orcidid: 0000-0003-1613-9448 surname: Li fullname: Li, Jun email: lijuncug@cug.edu.cn organization: Hubei Key Laboratory of Intelligent Geo-Information Processing, School of Computer Science, China University of Geosciences, Wuhan, China |
| BookMark | eNqFkU1P3DAQhi1EJRbKL-ASqeds_RHH9pFuP9hqWSSg6tGaOBPqVYhT26tq_30DQRzooSdL9jyPZ945JcdDGJCQC0aXjFHz8fvd_eXt3ZJTzpeCaUWpOSILziQrmRTymCyYEaZkFa1OyGlKO0prroxYkM31vs8-Oeix-IxDwi3m4hoxp-Knz7-KT7683W6LLsTi6jBiTCO6HKEv1o_wgMWqh5R85x1kH4b35F0HfcLzl_OM_Pj65X51VW5uvq1Xl5vSCaFzqRTXwGXdOYGtroTjjDWUQQdatY2UdaNbDtJg20zdA3RcyK5iYnrgkmMtzsh69rYBdnaM_hHiwQbw9vkixAcLMXvXo9WmoQ3W0oFpK2wVqMYAb2mtGEVD1eSqZtd-GOHwB_r-VciofUrX7lKGmOxTuvYl3Qn7MGNjDL_3mLLdhX0cpqktrw3TdaWEnKrEXOViSCli94973txbt3lDOZ-fA56S9_1_2IuZ9Yj4-pvR1GhWib8IL6a- |
| CODEN | IJSTHZ |
| CitedBy_id | crossref_primary_10_3390_rs15071869 crossref_primary_10_1109_TGRS_2023_3263362 crossref_primary_10_1016_j_compbiomed_2024_109577 crossref_primary_10_1109_TGRS_2023_3309245 crossref_primary_10_1109_TGRS_2024_3520639 crossref_primary_10_3390_s24237695 crossref_primary_10_1109_ACCESS_2023_3255164 crossref_primary_10_1016_j_isprsjprs_2023_01_024 crossref_primary_10_1109_TGRS_2024_3431517 crossref_primary_10_1016_j_infrared_2023_105092 crossref_primary_10_1109_TGRS_2024_3384403 crossref_primary_10_3390_rs16152775 crossref_primary_10_1016_j_eswa_2024_124583 crossref_primary_10_1109_JSTARS_2023_3341338 crossref_primary_10_1016_j_infrared_2024_105401 crossref_primary_10_3390_rs15071758 crossref_primary_10_3390_rs15174235 crossref_primary_10_1109_TGRS_2024_3482848 crossref_primary_10_1016_j_asr_2024_08_049 crossref_primary_10_1038_s41598_025_92629_x crossref_primary_10_1088_1742_6596_2552_1_012005 crossref_primary_10_1016_j_infrared_2024_105265 crossref_primary_10_1016_j_inffus_2024_102383 crossref_primary_10_3390_rs16112029 crossref_primary_10_1016_j_compeleceng_2024_109269 crossref_primary_10_1016_j_infrared_2023_104706 crossref_primary_10_1109_JSTARS_2024_3369413 crossref_primary_10_1109_TGRS_2024_3476116 crossref_primary_10_1109_TGRS_2024_3353383 crossref_primary_10_3390_rs16020325 crossref_primary_10_1109_ACCESS_2024_3416684 crossref_primary_10_1109_JSTARS_2024_3385541 crossref_primary_10_1109_JSTARS_2024_3402540 crossref_primary_10_3390_machines11121049 |
| Cites_doi | 10.1109/TGRS.2020.3005431 10.1007/s11042-021-11422-w 10.1109/TGRS.2012.2230268 10.1109/CVPR.2017.243 10.1109/TGRS.2013.2286195 10.1109/IGARSS.2016.7729622 10.1109/TGRS.2017.2755542 10.1109/TGRS.2020.2998729 10.1109/JSTARS.2020.2983224 10.3390/rs9121330 10.3390/rs9030298 10.3390/rs12010125 10.1109/TGRS.2017.2776321 10.3390/rs11111307 10.1109/TGRS.2019.2907932 10.1109/TGRS.2014.2318058 10.1109/JSTARS.2020.3024841 10.1109/MGRS.2018.2867592 10.1109/TGRS.2016.2584107 10.1016/j.patcog.2021.108224 10.1016/j.rse.2007.07.028 10.1109/TGRS.2018.2872850 10.1109/CVPR.2016.90 10.1109/TGRS.2004.831865 10.3390/rs10071068 10.1109/TCSVT.2020.2975566 10.1109/MGRS.2013.2244672 10.1109/TGRS.2017.2758804 10.1109/TGRS.2016.2636241 10.1109/TGRS.2020.3037361 10.1109/JSTARS.2015.2388577 10.1016/j.isprsjprs.2017.11.021 10.1109/TGRS.2017.2698503 10.1109/JSTARS.2020.2982614 10.1109/TGRS.2016.2646420 10.1109/TGRS.2019.2899129 10.1109/TGRS.2017.2765364 10.1109/JSTARS.2014.2329330 10.1109/TGRS.2019.2925615 10.1109/MGRS.2022.3145854 10.3390/rs12030582 10.1109/TGRS.2020.3007921 10.1109/TPAMI.2016.2577031 10.1109/MGRS.2017.2762307 10.3390/rs11080963 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M ADTOC UNPAY DOA |
| DOI | 10.1109/JSTARS.2022.3187009 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 5415 |
| ExternalDocumentID | oai_doaj_org_article_89b0be65ca9d4ed7a7b9a2d06710e907 10.1109/jstars.2022.3187009 10_1109_JSTARS_2022_3187009 9809814 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61901208; 61771496; 62141105 funderid: 10.13039/501100001809 – fundername: Key Research and Development Program of Hunan Province grantid: 2019SK2102 – fundername: China Postdoctoral Science Foundation grantid: 2020M672483 funderid: 10.13039/501100002858 |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AETIX AFPKN AFRAH AGSQL ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS EJD ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF M43 O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M ADTOC UNPAY |
| ID | FETCH-LOGICAL-c338t-7728a256fc3ed843c211b01afa87db556b8d2a59edb153aaf235f41356b252e63 |
| IEDL.DBID | DOA |
| ISSN | 1939-1404 2151-1535 |
| IngestDate | Fri Oct 03 12:44:50 EDT 2025 Tue Aug 19 15:12:38 EDT 2025 Mon Jul 28 14:11:26 EDT 2025 Thu Apr 24 22:54:14 EDT 2025 Wed Oct 01 03:51:28 EDT 2025 Wed Aug 27 02:25:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-7728a256fc3ed843c211b01afa87db556b8d2a59edb153aaf235f41356b252e63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1454-9665 0000-0003-1613-9448 0000-0001-6958-0443 |
| OpenAccessLink | https://doaj.org/article/89b0be65ca9d4ed7a7b9a2d06710e907 |
| PQID | 2691864735 |
| PQPubID | 75722 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_JSTARS_2022_3187009 ieee_primary_9809814 crossref_citationtrail_10_1109_JSTARS_2022_3187009 doaj_primary_oai_doaj_org_article_89b0be65ca9d4ed7a7b9a2d06710e907 unpaywall_primary_10_1109_jstars_2022_3187009 proquest_journals_2691864735 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 20220101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 Kipf (ref46) 2016 ref24 ref23 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 Misra (ref39) 2019 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref38 doi: 10.1109/TGRS.2020.3005431 – ident: ref13 doi: 10.1007/s11042-021-11422-w – ident: ref15 doi: 10.1109/TGRS.2012.2230268 – ident: ref24 doi: 10.1109/CVPR.2017.243 – ident: ref4 doi: 10.1109/TGRS.2013.2286195 – ident: ref16 doi: 10.1109/IGARSS.2016.7729622 – ident: ref41 doi: 10.1109/TGRS.2017.2755542 – ident: ref45 doi: 10.1109/TGRS.2020.2998729 – ident: ref23 doi: 10.1109/JSTARS.2020.2983224 – ident: ref31 doi: 10.3390/rs9121330 – ident: ref32 doi: 10.3390/rs9030298 – ident: ref27 doi: 10.3390/rs12010125 – ident: ref12 doi: 10.1109/TGRS.2017.2776321 – ident: ref35 doi: 10.3390/rs11111307 – ident: ref8 doi: 10.1109/TGRS.2019.2907932 – ident: ref43 doi: 10.1109/TGRS.2014.2318058 – ident: ref40 doi: 10.1109/JSTARS.2020.3024841 – ident: ref6 doi: 10.1109/MGRS.2018.2867592 – ident: ref20 doi: 10.1109/TGRS.2016.2584107 – ident: ref22 doi: 10.1016/j.patcog.2021.108224 – ident: ref42 doi: 10.1016/j.rse.2007.07.028 – ident: ref2 doi: 10.1109/TGRS.2018.2872850 – ident: ref10 doi: 10.1109/CVPR.2016.90 – ident: ref14 doi: 10.1109/TGRS.2004.831865 – ident: ref26 doi: 10.3390/rs10071068 – ident: ref29 doi: 10.1109/TCSVT.2020.2975566 – year: 2016 ident: ref46 article-title: Semi-supervised classification with graph convolutional networks – ident: ref3 doi: 10.1109/MGRS.2013.2244672 – ident: ref44 doi: 10.1109/TGRS.2017.2758804 – ident: ref30 doi: 10.1109/TGRS.2016.2636241 – year: 2019 ident: ref39 article-title: Mish: A self regularized non-monotonic neural activation function – ident: ref47 doi: 10.1109/TGRS.2020.3037361 – ident: ref19 doi: 10.1109/JSTARS.2015.2388577 – ident: ref1 doi: 10.1016/j.isprsjprs.2017.11.021 – ident: ref21 doi: 10.1109/TGRS.2017.2698503 – ident: ref25 doi: 10.1109/JSTARS.2020.2982614 – ident: ref5 doi: 10.1109/TGRS.2016.2646420 – ident: ref33 doi: 10.1109/TGRS.2019.2899129 – ident: ref7 doi: 10.1109/TGRS.2017.2765364 – ident: ref18 doi: 10.1109/JSTARS.2014.2329330 – ident: ref28 doi: 10.1109/TGRS.2019.2925615 – ident: ref9 doi: 10.1109/MGRS.2022.3145854 – ident: ref36 doi: 10.3390/rs12030582 – ident: ref37 doi: 10.1109/TGRS.2020.3007921 – ident: ref11 doi: 10.1109/TPAMI.2016.2577031 – ident: ref17 doi: 10.1109/MGRS.2017.2762307 – ident: ref34 doi: 10.3390/rs11080963 |
| SSID | ssj0062793 |
| Score | 2.4868882 |
| Snippet | Convolutional neural network (CNN) has been successfully introduced to hyperspectral image (HSI) classification and achieved effective performance. With the... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5401 |
| SubjectTerms | Algorithms Artificial neural networks Attention mechanism bidirection recurrent neural network (Bi-RNN) Classification Convolution convolutional neural network (CNN) Convolutional neural networks Correlation Data mining dense connected convolutional network (DenseNet) Exploitation Feature extraction hyperspectral image (HSI) classification Hyperspectral imaging Image classification Kernel Methods Neural networks Recurrent neural networks Spacecraft recovery Spatial data Three-dimensional displays |
| SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKJQQXXgU1UJAPHOtt4sSJfWyBsiB2D4WK3iw_JmrLsq12s0Ll1zN2vFELVcUtShzHyTf2fOPMg5C3tmxRKzvBSicMq6D0THLDWZsD5FBWvpUh3nkyrcfH1ecTcbJBdodYGACIzmcwCofxX76_cKuwVbanZK5kqFp9r5F1H6u1XnVr3sQEu8hHFAspY1KGoSJXeyji-0df0RbkHE1UFNDgfXhNC8Vk_am6yg2i-WA1vzRXv8xsdk3nHD4mk_Voe1eTH6NVZ0fu91-JHP_3dZ6QR4l80v1eWp6SDZg_I_c_xuK-V1vkS4zGXSJqQN-jeQtT6OgEoFvS72fdKT04Y0fTKUWaS8dovvZRmgvs8NNPXJVorK8ZPI8i2M_J8eGHb-_GLFVbYA7N1C7QbGmQALWuBC-r0qFpaPPCtEY23gpRW-m5EQq8xVXSmJaXokUViBe44FCXL8jm_GIO24RWqimUx5ltC4-EoZUmGE7SNYXlUvo2I3z99bVLqchDRYyZjiZJrnQPmQ6Q6QRZRnaHmy77TBx3Nz8IsA5NQxrteAIh0GlWaqlsbqEWzihfgW9MY5XhHjV4kYPKm4xsBdiGThJiGdlZC4lOU36pea0KWYdKzhlhg-D8M9RzJP2L5Y2hvrz9Ka_Iw9Cq3-_ZIZvdYgWvkQF19k0U_T9kUP8u priority: 102 providerName: IEEE – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegE4IXvsZEYKA88IjbxLET-7EDRkEsQoOK8WTZ8VkUSqnaVDD-es6JW20gIYEUKV-OZefOd7-zfXeEPLGFR63cCFo0wlAOhaOSGUZ9BpBBwZ2Xwd_5pC4nU_76TJzFCbfOFwYAus1nMAyX3Vr-DOY_qhEv0RLhRTzzUaYkHjkfLp2_SvZKgVh8QPam9dvxx34pWdEQOyZkl0O1RnFoixh2KM_U6DOCr1WI180Y2q3ItWFL4gXV1EXwjylXLqHP65vF0px_N_P5BUV0fIvobRf6_SdfhpvWDpufv0V3_P8-3iY3I0ZNxz1T3SFXYHGXXHvZ5QA-3ydvOqfdNRIX0udoBUMNbXoC0K7TD7P2U3o0o6d1nSIaTido5fbOnCus8NVXFF5pl4YzbFDqeOIemR6_eP9sQmNSBtqgNdsGNC4N4iTfFOAkLxq0IG2WG29k5awQpZWOGaHAWfzjxnhWCI-aEl8wwaAsDshg8W0B90nKVZUrhwLA5g5xhZcm2FeyqXLLpHQ-IWxLD93EiOUhccZcd5ZLpjQKr_HpOx2IqCMRE_J099GyD9jx9-JHgdC7oiHadvcAiaLj4NVS2cxCKRqjHAdXmcoqwxwq-jwDlVUJ2Q-E3FUSqZaQwy3b6CgZ1pqVKpdlSPicELpjpT-a2rPnpaY--MfyD8mNcNvPFx2SQbvawCNEUK19HIfJL3MGEAE priority: 102 providerName: Unpaywall |
| Title | Multiscale DenseNet Meets With Bi-RNN for Hyperspectral Image Classification |
| URI | https://ieeexplore.ieee.org/document/9809814 https://www.proquest.com/docview/2691864735 https://ieeexplore.ieee.org/ielx7/4609443/4609444/09809814.pdf https://doaj.org/article/89b0be65ca9d4ed7a7b9a2d06710e907 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062793 issn: 2151-1535 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 2151-1535 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwELbQ0AQviG0gAqPyA49Ec5w4sR87YCuIRWis2niy7PisberK1GZC-_ec7bTqhAQvvCaOdbr7fHdf5Lsj5J0tPUblTuRlJ0xeQelyyQ3PPQNgUFbOy1DvfNLWk2n15UJcbIz6CnfCUnvgpLgDqSyzUIvOKFeBa0xjleEOnWzBQKU6cibVikwlH1xzhN3QY6hg6gBBPj79jmyQcySpCNFw_3AjDsV2_cN8lQep5pO7-a25_2Vms42oc_ScPBvSRTpOYu6QRzDfJdvHcRzv_R75Gutnl6hnoB-RkEILPT0B6Jf0_Kq_pIdX-WnbUkxM6QQJZ6qrXOCGn2_Qj9A4ETPcFYrmeUGmR5_OPkzyYT5C3iGx7ENiLA2mLL4rwcmq7JDMWVYYb2TjrBC1lY4bocBZ9GvGeF4Kj0ELX3DBoS5fkq35zzm8IrRSTaEcnkVbOAzxXppAdWTXFJZL6XxG-Epbuhuah4cZFjMdSQRTOqlYBxXrQcUZeb_-6Db1zvj78sNghvXS0Pg6PkA46AEO-l9wyMheMOJ6EyWZkkWVkf2VUfVwSJea16qQdZi9nJF8beg_RL3GNH2xfCDq6_8h6hvyNOyZ_ufsk61-cQdvMcPp7SiCeRSLEUfk8bT9Nv7xGxzQ9vs |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRahceBVEoEAOHJtt4sSJfWyBsoXdHEorerP8mKiFZVvtZoXKr2fsZKMWEOIWJXbi5Bt7vnHmAfDG5A1pZcuT3HKdFJi7RDDNkiZFTDEvXCN8vPO0LsenxcczfrYBu0MsDCIG5zMc-cPwL99d2pXfKtuTIpXCV62-w4ui4F201nrdLVkVUuwSI5GJTxrT5xjKUrlHQr5__JmsQcbISCUR9f6HN_RQSNff11e5RTW3VvMrff1Dz2Y3tM7hA5iux9s5m3wbrVozsj9_S-X4vy_0EO739DPe7-TlEWzg_DHc_RDK-15vwyTE4y4JN4zfkYGLNbbxFLFdxl8u2vP44CI5ruuYiG48JgO2i9Nc0A2PvtO6FIcKm973KMD9BE4P35-8HSd9vYXEkqHaeqItNFGgxuboRJFbMg5NmulGi8oZzksjHNNcojO0TmrdsJw3pATpAuMMy_wpbM4v5_gM4kJWmXQ0t03miDI0QnvTSdgqM0wI10TA1l9f2T4Zua-JMVPBKEml6iBTHjLVQxbB7tDpqsvF8e_mBx7WoalPpB1OEASqn5dKSJMaLLnV0hXoKl0ZqZkjHZ6lKNMqgm0P23CTHrEIdtZCovpJv1SslJkofS3nCJJBcP4Y6lei_YvlraE-__tTXsPW-GQ6UZOj-tMLuOd7dLs_O7DZLlb4kvhQa16FafAL5VcCig |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegE4IXvsZEYKA88IjbxLET-7EDRkEsQoOK8WTZ8VkUSqnaVDD-es6JW20gIYEUKV-OZefOd7-zfXeEPLGFR63cCFo0wlAOhaOSGUZ9BpBBwZ2Xwd_5pC4nU_76TJzFCbfOFwYAus1nMAyX3Vr-DOY_qhEv0RLhRTzzUaYkHjkfLp2_SvZKgVh8QPam9dvxx34pWdEQOyZkl0O1RnFoixh2KM_U6DOCr1WI180Y2q3ItWFL4gXV1EXwjylXLqHP65vF0px_N_P5BUV0fIvobRf6_SdfhpvWDpufv0V3_P8-3iY3I0ZNxz1T3SFXYHGXXHvZ5QA-3ydvOqfdNRIX0udoBUMNbXoC0K7TD7P2U3o0o6d1nSIaTido5fbOnCus8NVXFF5pl4YzbFDqeOIemR6_eP9sQmNSBtqgNdsGNC4N4iTfFOAkLxq0IG2WG29k5awQpZWOGaHAWfzjxnhWCI-aEl8wwaAsDshg8W0B90nKVZUrhwLA5g5xhZcm2FeyqXLLpHQ-IWxLD93EiOUhccZcd5ZLpjQKr_HpOx2IqCMRE_J099GyD9jx9-JHgdC7oiHadvcAiaLj4NVS2cxCKRqjHAdXmcoqwxwq-jwDlVUJ2Q-E3FUSqZaQwy3b6CgZ1pqVKpdlSPicELpjpT-a2rPnpaY--MfyD8mNcNvPFx2SQbvawCNEUK19HIfJL3MGEAE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+DenseNet+Meets+With+Bi-RNN+for+Hyperspectral+Image+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Liang%2C+Lianhui&rft.au=Zhang%2C+Shaoquan&rft.au=Li%2C+Jun&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=15&rft.spage=5401&rft_id=info:doi/10.1109%2FJSTARS.2022.3187009&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |