Multiscale DenseNet Meets With Bi-RNN for Hyperspectral Image Classification

Convolutional neural network (CNN) has been successfully introduced to hyperspectral image (HSI) classification and achieved effective performance. With the depth of the CNN increases, it may cause the gradient to become zero, and the structure lacks the utilization of the correlated spatial feature...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing Vol. 15; pp. 5401 - 5415
Main Authors Liang, Lianhui, Zhang, Shaoquan, Li, Jun
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1939-1404
2151-1535
2151-1535
DOI10.1109/JSTARS.2022.3187009

Cover

Abstract Convolutional neural network (CNN) has been successfully introduced to hyperspectral image (HSI) classification and achieved effective performance. With the depth of the CNN increases, it may cause the gradient to become zero, and the structure lacks the utilization of the correlated spatial feature information between different convolutional layers. At the same time, this single-scale convolution kernel is insufficient in expressing the complex spatial structure information of HSI. In addition, the CNN-based methods treat the HSIs spectral band data as a disordered vector in the process of feature extraction, which abandons the exploitation of its internal spectral correlations. To address these issues, we propose a novel spectral-spatial network classification framework based on multiscale dense connected convolutional network (DenseNet) and bidirection recurrent neural network (Bi-RNN) with attention mechanism network (MDRN). For the proposed MDRN, in terms of spatial feature extraction, a multiscale DenseNet is exploited to combine shallow and deep convolution features to extract the multiscale and complex spatial structure features at each layer. In the aspects of spectral feature extraction, Bi-RNN with attention mechanism is used to capture the inner spectral correlations within a continuous spectrum. Three standard real hyperspectral datasets were used to verify the effectiveness of the proposed MDRN approach. Experimental results indicate that the proposed MDRN method can make full use of the spectral and spatial information of the image, and it has better performance than some advanced algorithms in HSI classification. Finally, in the application of hyperspectral data captured by Gaofen-5 satellite, the practicability of the proposed MDRN method is also superior to other methods.
AbstractList Convolutional neural network (CNN) has been successfully introduced to hyperspectral image (HSI) classification and achieved effective performance. With the depth of the CNN increases, it may cause the gradient to become zero, and the structure lacks the utilization of the correlated spatial feature information between different convolutional layers. At the same time, this single-scale convolution kernel is insufficient in expressing the complex spatial structure information of HSI. In addition, the CNN-based methods treat the HSIs spectral band data as a disordered vector in the process of feature extraction, which abandons the exploitation of its internal spectral correlations. To address these issues, we propose a novel spectral-spatial network classification framework based on multiscale dense connected convolutional network (DenseNet) and bidirection recurrent neural network (Bi-RNN) with attention mechanism network (MDRN). For the proposed MDRN, in terms of spatial feature extraction, a multiscale DenseNet is exploited to combine shallow and deep convolution features to extract the multiscale and complex spatial structure features at each layer. In the aspects of spectral feature extraction, Bi-RNN with attention mechanism is used to capture the inner spectral correlations within a continuous spectrum. Three standard real hyperspectral datasets were used to verify the effectiveness of the proposed MDRN approach. Experimental results indicate that the proposed MDRN method can make full use of the spectral and spatial information of the image, and it has better performance than some advanced algorithms in HSI classification. Finally, in the application of hyperspectral data captured by Gaofen-5 satellite, the practicability of the proposed MDRN method is also superior to other methods.
Author Li, Jun
Liang, Lianhui
Zhang, Shaoquan
Author_xml – sequence: 1
  givenname: Lianhui
  orcidid: 0000-0001-6958-0443
  surname: Liang
  fullname: Liang, Lianhui
  email: lianglh@hnu.edu.cn
  organization: College of Electrical and Information Engineering, Hunan University, Changsha, China
– sequence: 2
  givenname: Shaoquan
  orcidid: 0000-0002-1454-9665
  surname: Zhang
  fullname: Zhang, Shaoquan
  email: zhangshaoquan1@163.com
  organization: Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing, School of Information Engineering, Nanchang Institute of Technology, Nanchang, China
– sequence: 3
  givenname: Jun
  orcidid: 0000-0003-1613-9448
  surname: Li
  fullname: Li, Jun
  email: lijuncug@cug.edu.cn
  organization: Hubei Key Laboratory of Intelligent Geo-Information Processing, School of Computer Science, China University of Geosciences, Wuhan, China
BookMark eNqFkU1P3DAQhi1EJRbKL-ASqeds_RHH9pFuP9hqWSSg6tGaOBPqVYhT26tq_30DQRzooSdL9jyPZ945JcdDGJCQC0aXjFHz8fvd_eXt3ZJTzpeCaUWpOSILziQrmRTymCyYEaZkFa1OyGlKO0prroxYkM31vs8-Oeix-IxDwi3m4hoxp-Knz7-KT7683W6LLsTi6jBiTCO6HKEv1o_wgMWqh5R85x1kH4b35F0HfcLzl_OM_Pj65X51VW5uvq1Xl5vSCaFzqRTXwGXdOYGtroTjjDWUQQdatY2UdaNbDtJg20zdA3RcyK5iYnrgkmMtzsh69rYBdnaM_hHiwQbw9vkixAcLMXvXo9WmoQ3W0oFpK2wVqMYAb2mtGEVD1eSqZtd-GOHwB_r-VciofUrX7lKGmOxTuvYl3Qn7MGNjDL_3mLLdhX0cpqktrw3TdaWEnKrEXOViSCli94973txbt3lDOZ-fA56S9_1_2IuZ9Yj4-pvR1GhWib8IL6a-
CODEN IJSTHZ
CitedBy_id crossref_primary_10_3390_rs15071869
crossref_primary_10_1109_TGRS_2023_3263362
crossref_primary_10_1016_j_compbiomed_2024_109577
crossref_primary_10_1109_TGRS_2023_3309245
crossref_primary_10_1109_TGRS_2024_3520639
crossref_primary_10_3390_s24237695
crossref_primary_10_1109_ACCESS_2023_3255164
crossref_primary_10_1016_j_isprsjprs_2023_01_024
crossref_primary_10_1109_TGRS_2024_3431517
crossref_primary_10_1016_j_infrared_2023_105092
crossref_primary_10_1109_TGRS_2024_3384403
crossref_primary_10_3390_rs16152775
crossref_primary_10_1016_j_eswa_2024_124583
crossref_primary_10_1109_JSTARS_2023_3341338
crossref_primary_10_1016_j_infrared_2024_105401
crossref_primary_10_3390_rs15071758
crossref_primary_10_3390_rs15174235
crossref_primary_10_1109_TGRS_2024_3482848
crossref_primary_10_1016_j_asr_2024_08_049
crossref_primary_10_1038_s41598_025_92629_x
crossref_primary_10_1088_1742_6596_2552_1_012005
crossref_primary_10_1016_j_infrared_2024_105265
crossref_primary_10_1016_j_inffus_2024_102383
crossref_primary_10_3390_rs16112029
crossref_primary_10_1016_j_compeleceng_2024_109269
crossref_primary_10_1016_j_infrared_2023_104706
crossref_primary_10_1109_JSTARS_2024_3369413
crossref_primary_10_1109_TGRS_2024_3476116
crossref_primary_10_1109_TGRS_2024_3353383
crossref_primary_10_3390_rs16020325
crossref_primary_10_1109_ACCESS_2024_3416684
crossref_primary_10_1109_JSTARS_2024_3385541
crossref_primary_10_1109_JSTARS_2024_3402540
crossref_primary_10_3390_machines11121049
Cites_doi 10.1109/TGRS.2020.3005431
10.1007/s11042-021-11422-w
10.1109/TGRS.2012.2230268
10.1109/CVPR.2017.243
10.1109/TGRS.2013.2286195
10.1109/IGARSS.2016.7729622
10.1109/TGRS.2017.2755542
10.1109/TGRS.2020.2998729
10.1109/JSTARS.2020.2983224
10.3390/rs9121330
10.3390/rs9030298
10.3390/rs12010125
10.1109/TGRS.2017.2776321
10.3390/rs11111307
10.1109/TGRS.2019.2907932
10.1109/TGRS.2014.2318058
10.1109/JSTARS.2020.3024841
10.1109/MGRS.2018.2867592
10.1109/TGRS.2016.2584107
10.1016/j.patcog.2021.108224
10.1016/j.rse.2007.07.028
10.1109/TGRS.2018.2872850
10.1109/CVPR.2016.90
10.1109/TGRS.2004.831865
10.3390/rs10071068
10.1109/TCSVT.2020.2975566
10.1109/MGRS.2013.2244672
10.1109/TGRS.2017.2758804
10.1109/TGRS.2016.2636241
10.1109/TGRS.2020.3037361
10.1109/JSTARS.2015.2388577
10.1016/j.isprsjprs.2017.11.021
10.1109/TGRS.2017.2698503
10.1109/JSTARS.2020.2982614
10.1109/TGRS.2016.2646420
10.1109/TGRS.2019.2899129
10.1109/TGRS.2017.2765364
10.1109/JSTARS.2014.2329330
10.1109/TGRS.2019.2925615
10.1109/MGRS.2022.3145854
10.3390/rs12030582
10.1109/TGRS.2020.3007921
10.1109/TPAMI.2016.2577031
10.1109/MGRS.2017.2762307
10.3390/rs11080963
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ADTOC
UNPAY
DOA
DOI 10.1109/JSTARS.2022.3187009
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 5415
ExternalDocumentID oai_doaj_org_article_89b0be65ca9d4ed7a7b9a2d06710e907
10.1109/jstars.2022.3187009
10_1109_JSTARS_2022_3187009
9809814
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61901208; 61771496; 62141105
  funderid: 10.13039/501100001809
– fundername: Key Research and Development Program of Hunan Province
  grantid: 2019SK2102
– fundername: China Postdoctoral Science Foundation
  grantid: 2020M672483
  funderid: 10.13039/501100002858
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
EJD
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ADTOC
UNPAY
ID FETCH-LOGICAL-c338t-7728a256fc3ed843c211b01afa87db556b8d2a59edb153aaf235f41356b252e63
IEDL.DBID DOA
ISSN 1939-1404
2151-1535
IngestDate Fri Oct 03 12:44:50 EDT 2025
Tue Aug 19 15:12:38 EDT 2025
Mon Jul 28 14:11:26 EDT 2025
Thu Apr 24 22:54:14 EDT 2025
Wed Oct 01 03:51:28 EDT 2025
Wed Aug 27 02:25:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-7728a256fc3ed843c211b01afa87db556b8d2a59edb153aaf235f41356b252e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1454-9665
0000-0003-1613-9448
0000-0001-6958-0443
OpenAccessLink https://doaj.org/article/89b0be65ca9d4ed7a7b9a2d06710e907
PQID 2691864735
PQPubID 75722
PageCount 15
ParticipantIDs crossref_primary_10_1109_JSTARS_2022_3187009
ieee_primary_9809814
crossref_citationtrail_10_1109_JSTARS_2022_3187009
doaj_primary_oai_doaj_org_article_89b0be65ca9d4ed7a7b9a2d06710e907
unpaywall_primary_10_1109_jstars_2022_3187009
proquest_journals_2691864735
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 20220101
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
Kipf (ref46) 2016
ref24
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
Misra (ref39) 2019
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref38
  doi: 10.1109/TGRS.2020.3005431
– ident: ref13
  doi: 10.1007/s11042-021-11422-w
– ident: ref15
  doi: 10.1109/TGRS.2012.2230268
– ident: ref24
  doi: 10.1109/CVPR.2017.243
– ident: ref4
  doi: 10.1109/TGRS.2013.2286195
– ident: ref16
  doi: 10.1109/IGARSS.2016.7729622
– ident: ref41
  doi: 10.1109/TGRS.2017.2755542
– ident: ref45
  doi: 10.1109/TGRS.2020.2998729
– ident: ref23
  doi: 10.1109/JSTARS.2020.2983224
– ident: ref31
  doi: 10.3390/rs9121330
– ident: ref32
  doi: 10.3390/rs9030298
– ident: ref27
  doi: 10.3390/rs12010125
– ident: ref12
  doi: 10.1109/TGRS.2017.2776321
– ident: ref35
  doi: 10.3390/rs11111307
– ident: ref8
  doi: 10.1109/TGRS.2019.2907932
– ident: ref43
  doi: 10.1109/TGRS.2014.2318058
– ident: ref40
  doi: 10.1109/JSTARS.2020.3024841
– ident: ref6
  doi: 10.1109/MGRS.2018.2867592
– ident: ref20
  doi: 10.1109/TGRS.2016.2584107
– ident: ref22
  doi: 10.1016/j.patcog.2021.108224
– ident: ref42
  doi: 10.1016/j.rse.2007.07.028
– ident: ref2
  doi: 10.1109/TGRS.2018.2872850
– ident: ref10
  doi: 10.1109/CVPR.2016.90
– ident: ref14
  doi: 10.1109/TGRS.2004.831865
– ident: ref26
  doi: 10.3390/rs10071068
– ident: ref29
  doi: 10.1109/TCSVT.2020.2975566
– year: 2016
  ident: ref46
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref3
  doi: 10.1109/MGRS.2013.2244672
– ident: ref44
  doi: 10.1109/TGRS.2017.2758804
– ident: ref30
  doi: 10.1109/TGRS.2016.2636241
– year: 2019
  ident: ref39
  article-title: Mish: A self regularized non-monotonic neural activation function
– ident: ref47
  doi: 10.1109/TGRS.2020.3037361
– ident: ref19
  doi: 10.1109/JSTARS.2015.2388577
– ident: ref1
  doi: 10.1016/j.isprsjprs.2017.11.021
– ident: ref21
  doi: 10.1109/TGRS.2017.2698503
– ident: ref25
  doi: 10.1109/JSTARS.2020.2982614
– ident: ref5
  doi: 10.1109/TGRS.2016.2646420
– ident: ref33
  doi: 10.1109/TGRS.2019.2899129
– ident: ref7
  doi: 10.1109/TGRS.2017.2765364
– ident: ref18
  doi: 10.1109/JSTARS.2014.2329330
– ident: ref28
  doi: 10.1109/TGRS.2019.2925615
– ident: ref9
  doi: 10.1109/MGRS.2022.3145854
– ident: ref36
  doi: 10.3390/rs12030582
– ident: ref37
  doi: 10.1109/TGRS.2020.3007921
– ident: ref11
  doi: 10.1109/TPAMI.2016.2577031
– ident: ref17
  doi: 10.1109/MGRS.2017.2762307
– ident: ref34
  doi: 10.3390/rs11080963
SSID ssj0062793
Score 2.4868882
Snippet Convolutional neural network (CNN) has been successfully introduced to hyperspectral image (HSI) classification and achieved effective performance. With the...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5401
SubjectTerms Algorithms
Artificial neural networks
Attention mechanism
bidirection recurrent neural network (Bi-RNN)
Classification
Convolution
convolutional neural network (CNN)
Convolutional neural networks
Correlation
Data mining
dense connected convolutional network (DenseNet)
Exploitation
Feature extraction
hyperspectral image (HSI) classification
Hyperspectral imaging
Image classification
Kernel
Methods
Neural networks
Recurrent neural networks
Spacecraft recovery
Spatial data
Three-dimensional displays
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKJQQXXgU1UJAPHOtt4sSJfWyBsiB2D4WK3iw_JmrLsq12s0Ll1zN2vFELVcUtShzHyTf2fOPMg5C3tmxRKzvBSicMq6D0THLDWZsD5FBWvpUh3nkyrcfH1ecTcbJBdodYGACIzmcwCofxX76_cKuwVbanZK5kqFp9r5F1H6u1XnVr3sQEu8hHFAspY1KGoSJXeyji-0df0RbkHE1UFNDgfXhNC8Vk_am6yg2i-WA1vzRXv8xsdk3nHD4mk_Voe1eTH6NVZ0fu91-JHP_3dZ6QR4l80v1eWp6SDZg_I_c_xuK-V1vkS4zGXSJqQN-jeQtT6OgEoFvS72fdKT04Y0fTKUWaS8dovvZRmgvs8NNPXJVorK8ZPI8i2M_J8eGHb-_GLFVbYA7N1C7QbGmQALWuBC-r0qFpaPPCtEY23gpRW-m5EQq8xVXSmJaXokUViBe44FCXL8jm_GIO24RWqimUx5ltC4-EoZUmGE7SNYXlUvo2I3z99bVLqchDRYyZjiZJrnQPmQ6Q6QRZRnaHmy77TBx3Nz8IsA5NQxrteAIh0GlWaqlsbqEWzihfgW9MY5XhHjV4kYPKm4xsBdiGThJiGdlZC4lOU36pea0KWYdKzhlhg-D8M9RzJP2L5Y2hvrz9Ka_Iw9Cq3-_ZIZvdYgWvkQF19k0U_T9kUP8u
  priority: 102
  providerName: IEEE
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegE4IXvsZEYKA88IjbxLET-7EDRkEsQoOK8WTZ8VkUSqnaVDD-es6JW20gIYEUKV-OZefOd7-zfXeEPLGFR63cCFo0wlAOhaOSGUZ9BpBBwZ2Xwd_5pC4nU_76TJzFCbfOFwYAus1nMAyX3Vr-DOY_qhEv0RLhRTzzUaYkHjkfLp2_SvZKgVh8QPam9dvxx34pWdEQOyZkl0O1RnFoixh2KM_U6DOCr1WI180Y2q3ItWFL4gXV1EXwjylXLqHP65vF0px_N_P5BUV0fIvobRf6_SdfhpvWDpufv0V3_P8-3iY3I0ZNxz1T3SFXYHGXXHvZ5QA-3ydvOqfdNRIX0udoBUMNbXoC0K7TD7P2U3o0o6d1nSIaTido5fbOnCus8NVXFF5pl4YzbFDqeOIemR6_eP9sQmNSBtqgNdsGNC4N4iTfFOAkLxq0IG2WG29k5awQpZWOGaHAWfzjxnhWCI-aEl8wwaAsDshg8W0B90nKVZUrhwLA5g5xhZcm2FeyqXLLpHQ-IWxLD93EiOUhccZcd5ZLpjQKr_HpOx2IqCMRE_J099GyD9jx9-JHgdC7oiHadvcAiaLj4NVS2cxCKRqjHAdXmcoqwxwq-jwDlVUJ2Q-E3FUSqZaQwy3b6CgZ1pqVKpdlSPicELpjpT-a2rPnpaY--MfyD8mNcNvPFx2SQbvawCNEUK19HIfJL3MGEAE
  priority: 102
  providerName: Unpaywall
Title Multiscale DenseNet Meets With Bi-RNN for Hyperspectral Image Classification
URI https://ieeexplore.ieee.org/document/9809814
https://www.proquest.com/docview/2691864735
https://ieeexplore.ieee.org/ielx7/4609443/4609444/09809814.pdf
https://doaj.org/article/89b0be65ca9d4ed7a7b9a2d06710e907
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062793
  issn: 2151-1535
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 2151-1535
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwELbQ0AQviG0gAqPyA49Ec5w4sR87YCuIRWis2niy7PisberK1GZC-_ec7bTqhAQvvCaOdbr7fHdf5Lsj5J0tPUblTuRlJ0xeQelyyQ3PPQNgUFbOy1DvfNLWk2n15UJcbIz6CnfCUnvgpLgDqSyzUIvOKFeBa0xjleEOnWzBQKU6cibVikwlH1xzhN3QY6hg6gBBPj79jmyQcySpCNFw_3AjDsV2_cN8lQep5pO7-a25_2Vms42oc_ScPBvSRTpOYu6QRzDfJdvHcRzv_R75Gutnl6hnoB-RkEILPT0B6Jf0_Kq_pIdX-WnbUkxM6QQJZ6qrXOCGn2_Qj9A4ETPcFYrmeUGmR5_OPkzyYT5C3iGx7ENiLA2mLL4rwcmq7JDMWVYYb2TjrBC1lY4bocBZ9GvGeF4Kj0ELX3DBoS5fkq35zzm8IrRSTaEcnkVbOAzxXppAdWTXFJZL6XxG-Epbuhuah4cZFjMdSQRTOqlYBxXrQcUZeb_-6Db1zvj78sNghvXS0Pg6PkA46AEO-l9wyMheMOJ6EyWZkkWVkf2VUfVwSJea16qQdZi9nJF8beg_RL3GNH2xfCDq6_8h6hvyNOyZ_ufsk61-cQdvMcPp7SiCeRSLEUfk8bT9Nv7xGxzQ9vs
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5VRahceBVEoEAOHJtt4sSJfWyBsoXdHEorerP8mKiFZVvtZoXKr2fsZKMWEOIWJXbi5Bt7vnHmAfDG5A1pZcuT3HKdFJi7RDDNkiZFTDEvXCN8vPO0LsenxcczfrYBu0MsDCIG5zMc-cPwL99d2pXfKtuTIpXCV62-w4ui4F201nrdLVkVUuwSI5GJTxrT5xjKUrlHQr5__JmsQcbISCUR9f6HN_RQSNff11e5RTW3VvMrff1Dz2Y3tM7hA5iux9s5m3wbrVozsj9_S-X4vy_0EO739DPe7-TlEWzg_DHc_RDK-15vwyTE4y4JN4zfkYGLNbbxFLFdxl8u2vP44CI5ruuYiG48JgO2i9Nc0A2PvtO6FIcKm973KMD9BE4P35-8HSd9vYXEkqHaeqItNFGgxuboRJFbMg5NmulGi8oZzksjHNNcojO0TmrdsJw3pATpAuMMy_wpbM4v5_gM4kJWmXQ0t03miDI0QnvTSdgqM0wI10TA1l9f2T4Zua-JMVPBKEml6iBTHjLVQxbB7tDpqsvF8e_mBx7WoalPpB1OEASqn5dKSJMaLLnV0hXoKl0ZqZkjHZ6lKNMqgm0P23CTHrEIdtZCovpJv1SslJkofS3nCJJBcP4Y6lei_YvlraE-__tTXsPW-GQ6UZOj-tMLuOd7dLs_O7DZLlb4kvhQa16FafAL5VcCig
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegE4IXvsZEYKA88IjbxLET-7EDRkEsQoOK8WTZ8VkUSqnaVDD-es6JW20gIYEUKV-OZefOd7-zfXeEPLGFR63cCFo0wlAOhaOSGUZ9BpBBwZ2Xwd_5pC4nU_76TJzFCbfOFwYAus1nMAyX3Vr-DOY_qhEv0RLhRTzzUaYkHjkfLp2_SvZKgVh8QPam9dvxx34pWdEQOyZkl0O1RnFoixh2KM_U6DOCr1WI180Y2q3ItWFL4gXV1EXwjylXLqHP65vF0px_N_P5BUV0fIvobRf6_SdfhpvWDpufv0V3_P8-3iY3I0ZNxz1T3SFXYHGXXHvZ5QA-3ydvOqfdNRIX0udoBUMNbXoC0K7TD7P2U3o0o6d1nSIaTido5fbOnCus8NVXFF5pl4YzbFDqeOIemR6_eP9sQmNSBtqgNdsGNC4N4iTfFOAkLxq0IG2WG29k5awQpZWOGaHAWfzjxnhWCI-aEl8wwaAsDshg8W0B90nKVZUrhwLA5g5xhZcm2FeyqXLLpHQ-IWxLD93EiOUhccZcd5ZLpjQKr_HpOx2IqCMRE_J099GyD9jx9-JHgdC7oiHadvcAiaLj4NVS2cxCKRqjHAdXmcoqwxwq-jwDlVUJ2Q-E3FUSqZaQwy3b6CgZ1pqVKpdlSPicELpjpT-a2rPnpaY--MfyD8mNcNvPFx2SQbvawCNEUK19HIfJL3MGEAE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+DenseNet+Meets+With+Bi-RNN+for+Hyperspectral+Image+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Liang%2C+Lianhui&rft.au=Zhang%2C+Shaoquan&rft.au=Li%2C+Jun&rft.date=2022-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1939-1404&rft.eissn=2151-1535&rft.volume=15&rft.spage=5401&rft_id=info:doi/10.1109%2FJSTARS.2022.3187009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon