Metamodel-based dynamic algorithm configuration using artificial neural networks

We consider the problem of configuring algorithms dynamically by selecting algorithm parameter values adaptively. The research is motivated by the time dependency of system parameters throughout algorithm runtime in servicing systems: Depending on the customer arrival rate, switching algorithm param...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of general systems Vol. 53; no. 1; pp. 41 - 71
Main Authors Dunke, Fabian, Nickel, Stefan
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 02.01.2024
Taylor & Francis LLC
Subjects
Online AccessGet full text
ISSN0308-1079
1563-5104
DOI10.1080/03081079.2023.2245124

Cover

Abstract We consider the problem of configuring algorithms dynamically by selecting algorithm parameter values adaptively. The research is motivated by the time dependency of system parameters throughout algorithm runtime in servicing systems: Depending on the customer arrival rate, switching algorithm parameters may be advisable to maintain quality of service. To this end, we develop a metamodel-based methodology for dynamic algorithm configuration: We first record algorithm performance under static system parameters. This knowledge is then translated into an artificial neural network (ANN) predicting performance for given system and algorithm parameters. The ANN finally serves as a metamodel determining optimal algorithm parameters dynamically when there is system parameter variation. Overall, the developed generic methodology for dynamic algorithm control facilitates a structured model-based approach to suitably respond to changing system conditions. The outline is adept to practical instantiation as demonstrated in two service systems where control parameters are adjusted adaptively to customer arrival rates.
AbstractList We consider the problem of configuring algorithms dynamically by selecting algorithm parameter values adaptively. The research is motivated by the time dependency of system parameters throughout algorithm runtime in servicing systems: Depending on the customer arrival rate, switching algorithm parameters may be advisable to maintain quality of service. To this end, we develop a metamodel-based methodology for dynamic algorithm configuration: We first record algorithm performance under static system parameters. This knowledge is then translated into an artificial neural network (ANN) predicting performance for given system and algorithm parameters. The ANN finally serves as a metamodel determining optimal algorithm parameters dynamically when there is system parameter variation. Overall, the developed generic methodology for dynamic algorithm control facilitates a structured model-based approach to suitably respond to changing system conditions. The outline is adept to practical instantiation as demonstrated in two service systems where control parameters are adjusted adaptively to customer arrival rates.
Author Dunke, Fabian
Nickel, Stefan
Author_xml – sequence: 1
  givenname: Fabian
  surname: Dunke
  fullname: Dunke, Fabian
  email: fabian.dunke@kit.edu
  organization: Karlsruhe Institute of Technology
– sequence: 2
  givenname: Stefan
  surname: Nickel
  fullname: Nickel, Stefan
  organization: Karlsruhe Institute of Technology
BookMark eNqFkMtKAzEUhoNUsFYfQRhwPTWXyUyCG6V4g4oudB3SXGrqTFKTFOnbO2PrxoWuzuL833843zEY-eANAGcIThFk8AISyBBs-BRDTKYYVxTh6gCMEa1JSRGsRmA8ZMohdASOU1pBiAhl1Rg8P5osu6BNWy5kMrrQWy87pwrZLkN0-a0rVPDWLTdRZhd8sUnOLwsZs7NOOdkW3vSrYeTPEN_TCTi0sk3mdD8n4PX25mV2X86f7h5m1_NSEcJySWXDlNGqphzCupawwkrVRKKq5rWmjdUL1hDLbKW1NYbrhjCoOMac24YzTSbgfNe7juFjY1IWq7CJvj8pMCeYIM4I71OXu5SKIaVorFAufz-So3StQFAMCsWPQjEoFHuFPU1_0evoOhm3_3JXO855G2InezGtFllu2xBtlF65JMjfFV-2LYqz
CitedBy_id crossref_primary_10_1080_03081079_2024_2326424
Cites_doi 10.1016/j.tre.2005.01.003
10.1145/318371.318705
10.3390/en12061003
10.1109/Access.6287639
10.1287/moor.1120.0548
10.1016/S0967-0661(02)00186-7
10.1007/s11837-016-1916-z
10.1016/j.trb.2003.09.002
10.1016/0893-6080(91)90009-T
10.1007/s12599-017-0468-2
10.1109/CDC40024.2019.9029197
10.1016/j.advengsoft.2018.02.006
10.1016/0005-1098(89)90002-2
10.1007/978-3-642-21434-9_1
10.1016/S1474-0346(03)00005-3
10.1111/deci.1977.8.issue-1
10.1007/978-3-319-91086-4_15
10.1016/j.ins.2015.05.010
10.1007/978-3-642-55309-7_4
10.1007/s00291-019-00552-1
10.3390/a13040097
10.1287/mnsc.34.9.1096
10.1061/(ASCE)WR.1943-5452.0000663
10.1613/jair.1.11420
10.1109/CIM.1992.639120
10.1080/00207543.2013.775523
10.1016/S0065-2458(08)60520-3
10.1016/j.envsoft.2015.11.023
10.1002/net.v73.3
10.1287/trsc.1060.0183
10.1016/j.trb.2003.09.001
10.1016/j.amc.2005.01.024
10.1016/j.renene.2009.11.030
10.1016/j.jmsy.2013.12.007
10.1002/net.v64.3
10.1109/CCA.2012.6402735
10.1007/BF02283607
10.1016/S0952-1976(03)00043-5
10.1016/j.advengsoft.2017.08.001
10.1142/S0217595915500190
10.1016/S0927-0507(06)13018-2
10.1016/j.apenergy.2015.05.090
10.1007/978-3-319-99259-4_22
10.1007/978-3-319-26024-2_2
10.1007/BFb0029561
10.1017/9781009089517
10.1162/evco_a_00242
10.1016/j.simpat.2019.102016
10.1016/S0927-0507(05)80107-0
10.1080/00207543.2015.1043403
10.1016/j.omega.2019.01.001
10.1080/07408170208928869
10.1016/j.ejor.2013.08.028
10.1007/s10479-015-2019-x
10.1007/978-3-319-50137-6_7
10.1016/j.cie.2009.03.008
10.1287/moor.13.2.295
10.1016/0305-0483(87)90041-7
10.1080/00207540210135596
10.1016/j.simpat.2014.10.004
10.1016/j.knosys.2020.105479
ContentType Journal Article
Copyright 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
2023 Informa UK Limited, trading as Taylor & Francis Group
Copyright_xml – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023
– notice: 2023 Informa UK Limited, trading as Taylor & Francis Group
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/03081079.2023.2245124
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1563-5104
EndPage 71
ExternalDocumentID 10_1080_03081079_2023_2245124
2245124
Genre Research Article
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
29J
30N
3R3
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACTIO
ACUHS
ADCVX
ADGTB
ADMLS
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMVHM
AQRUH
AQTUD
ARCSS
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EDO
EMK
EPL
EST
ESX
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
I-F
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NX~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TAJZE
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TUS
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c338t-5a78cedc6590066a042cc63a14696d57fdb873f8f4ddfee9d7380c92299f798d3
ISSN 0308-1079
IngestDate Tue Aug 12 09:41:26 EDT 2025
Thu Apr 24 22:58:29 EDT 2025
Wed Oct 01 02:24:37 EDT 2025
Mon Oct 20 23:48:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c338t-5a78cedc6590066a042cc63a14696d57fdb873f8f4ddfee9d7380c92299f798d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2932319839
PQPubID 53024
PageCount 31
ParticipantIDs crossref_citationtrail_10_1080_03081079_2023_2245124
crossref_primary_10_1080_03081079_2023_2245124
proquest_journals_2932319839
informaworld_taylorfrancis_310_1080_03081079_2023_2245124
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-02
PublicationDateYYYYMMDD 2024-01-02
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-02
  day: 02
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle International journal of general systems
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis LLC
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis LLC
References e_1_3_2_28_1
e_1_3_2_49_1
e_1_3_2_20_1
e_1_3_2_41_1
e_1_3_2_66_1
e_1_3_2_22_1
e_1_3_2_43_1
e_1_3_2_64_1
e_1_3_2_24_1
e_1_3_2_45_1
e_1_3_2_26_1
e_1_3_2_47_1
e_1_3_2_68_1
Battiti Roberto (e_1_3_2_10_1) 2008
e_1_3_2_60_1
e_1_3_2_16_1
e_1_3_2_39_1
e_1_3_2_9_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_31_1
e_1_3_2_54_1
e_1_3_2_33_1
e_1_3_2_52_1
e_1_3_2_12_1
e_1_3_2_35_1
e_1_3_2_58_1
e_1_3_2_5_1
e_1_3_2_37_1
e_1_3_2_56_1
e_1_3_2_3_1
Borodin Alan (e_1_3_2_14_1) 2005
e_1_3_2_50_1
e_1_3_2_71_1
e_1_3_2_27_1
e_1_3_2_29_1
e_1_3_2_42_1
Raúl Rojas. (e_1_3_2_59_1) 2013
e_1_3_2_65_1
e_1_3_2_21_1
e_1_3_2_44_1
e_1_3_2_63_1
e_1_3_2_23_1
e_1_3_2_46_1
e_1_3_2_69_1
e_1_3_2_25_1
e_1_3_2_48_1
e_1_3_2_67_1
Schwarz Hannes (e_1_3_2_62_1) 2019
e_1_3_2_61_1
e_1_3_2_40_1
e_1_3_2_17_1
e_1_3_2_38_1
e_1_3_2_8_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_30_1
e_1_3_2_55_1
e_1_3_2_11_1
e_1_3_2_32_1
e_1_3_2_53_1
e_1_3_2_6_1
e_1_3_2_13_1
e_1_3_2_34_1
e_1_3_2_4_1
e_1_3_2_15_1
e_1_3_2_36_1
e_1_3_2_57_1
e_1_3_2_51_1
e_1_3_2_70_1
References_xml – ident: e_1_3_2_16_1
  doi: 10.1016/j.tre.2005.01.003
– ident: e_1_3_2_5_1
  doi: 10.1145/318371.318705
– ident: e_1_3_2_24_1
  doi: 10.3390/en12061003
– ident: e_1_3_2_52_1
  doi: 10.1109/Access.6287639
– volume-title: Neural Networks: A Systematic Introduction
  year: 2013
  ident: e_1_3_2_59_1
– ident: e_1_3_2_19_1
  doi: 10.1287/moor.1120.0548
– ident: e_1_3_2_56_1
  doi: 10.1016/S0967-0661(02)00186-7
– ident: e_1_3_2_37_1
  doi: 10.1007/s11837-016-1916-z
– ident: e_1_3_2_2_1
  doi: 10.1109/Access.6287639
– ident: e_1_3_2_47_1
  doi: 10.1016/j.trb.2003.09.002
– volume-title: Online Computation and Competitive Analysis
  year: 2005
  ident: e_1_3_2_14_1
– ident: e_1_3_2_35_1
  doi: 10.1016/0893-6080(91)90009-T
– ident: e_1_3_2_68_1
  doi: 10.1007/s12599-017-0468-2
– ident: e_1_3_2_32_1
  doi: 10.1109/CDC40024.2019.9029197
– ident: e_1_3_2_33_1
  doi: 10.1016/j.advengsoft.2018.02.006
– ident: e_1_3_2_31_1
  doi: 10.1016/0005-1098(89)90002-2
– ident: e_1_3_2_34_1
  doi: 10.1007/978-3-642-21434-9_1
– ident: e_1_3_2_28_1
  doi: 10.1016/S1474-0346(03)00005-3
– ident: e_1_3_2_6_1
  doi: 10.1111/deci.1977.8.issue-1
– ident: e_1_3_2_9_1
  doi: 10.1007/978-3-319-91086-4_15
– ident: e_1_3_2_49_1
  doi: 10.1016/j.ins.2015.05.010
– ident: e_1_3_2_27_1
  doi: 10.1007/978-3-642-55309-7_4
– ident: e_1_3_2_12_1
– ident: e_1_3_2_65_1
  doi: 10.1007/s00291-019-00552-1
– ident: e_1_3_2_20_1
  doi: 10.3390/a13040097
– ident: e_1_3_2_13_1
  doi: 10.1287/mnsc.34.9.1096
– ident: e_1_3_2_4_1
  doi: 10.1061/(ASCE)WR.1943-5452.0000663
– ident: e_1_3_2_22_1
  doi: 10.1613/jair.1.11420
– ident: e_1_3_2_53_1
  doi: 10.1109/CIM.1992.639120
– start-page: 1
  year: 2019
  ident: e_1_3_2_62_1
  article-title: Improving the Computational Efficiency of Stochastic Programs Using Automated Algorithm Configuration: An Application to Decentralized Energy Systems
  publication-title: Annals of Operations Research
– ident: e_1_3_2_61_1
  doi: 10.1080/00207543.2013.775523
– ident: e_1_3_2_45_1
– volume-title: Reactive Search and Intelligent Optimization
  year: 2008
  ident: e_1_3_2_10_1
– ident: e_1_3_2_57_1
  doi: 10.1016/S0065-2458(08)60520-3
– ident: e_1_3_2_26_1
  doi: 10.1016/j.envsoft.2015.11.023
– ident: e_1_3_2_67_1
  doi: 10.1002/net.v73.3
– ident: e_1_3_2_66_1
  doi: 10.1287/trsc.1060.0183
– ident: e_1_3_2_46_1
  doi: 10.1016/j.trb.2003.09.001
– ident: e_1_3_2_70_1
  doi: 10.1016/j.amc.2005.01.024
– ident: e_1_3_2_39_1
  doi: 10.1016/j.renene.2009.11.030
– ident: e_1_3_2_50_1
  doi: 10.1016/j.jmsy.2013.12.007
– ident: e_1_3_2_51_1
  doi: 10.1002/net.v64.3
– ident: e_1_3_2_36_1
  doi: 10.1109/CCA.2012.6402735
– ident: e_1_3_2_63_1
  doi: 10.1007/BF02283607
– ident: e_1_3_2_29_1
  doi: 10.1016/S0952-1976(03)00043-5
– ident: e_1_3_2_42_1
  doi: 10.1016/j.advengsoft.2017.08.001
– ident: e_1_3_2_71_1
  doi: 10.1142/S0217595915500190
– ident: e_1_3_2_7_1
  doi: 10.1016/S0927-0507(06)13018-2
– ident: e_1_3_2_64_1
  doi: 10.1016/j.apenergy.2015.05.090
– ident: e_1_3_2_55_1
  doi: 10.1007/978-3-319-99259-4_22
– ident: e_1_3_2_44_1
  doi: 10.1007/978-3-319-26024-2_2
– ident: e_1_3_2_25_1
  doi: 10.1007/BFb0029561
– ident: e_1_3_2_8_1
  doi: 10.1016/S0927-0507(06)13018-2
– ident: e_1_3_2_15_1
  doi: 10.1017/9781009089517
– ident: e_1_3_2_38_1
  doi: 10.1162/evco_a_00242
– ident: e_1_3_2_21_1
  doi: 10.1016/j.simpat.2019.102016
– ident: e_1_3_2_54_1
  doi: 10.1016/S0927-0507(05)80107-0
– ident: e_1_3_2_58_1
  doi: 10.1080/00207543.2015.1043403
– ident: e_1_3_2_40_1
  doi: 10.1016/j.omega.2019.01.001
– ident: e_1_3_2_43_1
  doi: 10.1080/07408170208928869
– ident: e_1_3_2_23_1
  doi: 10.1016/j.ejor.2013.08.028
– ident: e_1_3_2_3_1
  doi: 10.1007/s10479-015-2019-x
– ident: e_1_3_2_41_1
  doi: 10.1007/978-3-319-50137-6_7
– ident: e_1_3_2_48_1
  doi: 10.1016/j.cie.2009.03.008
– ident: e_1_3_2_11_1
  doi: 10.1287/moor.13.2.295
– ident: e_1_3_2_18_1
  doi: 10.1016/0305-0483(87)90041-7
– ident: e_1_3_2_60_1
  doi: 10.1080/00207540210135596
– ident: e_1_3_2_69_1
  doi: 10.1016/j.simpat.2014.10.004
– ident: e_1_3_2_17_1
  doi: 10.1016/j.knosys.2020.105479
– ident: e_1_3_2_30_1
  doi: 10.1016/S0952-1976(03)00043-5
SSID ssj0013584
Score 2.3483648
Snippet We consider the problem of configuring algorithms dynamically by selecting algorithm parameter values adaptively. The research is motivated by the time...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 41
SubjectTerms Algorithm configuration
Algorithms
artificial neural network
Artificial neural networks
Configurations
Customer services
Customers
dynamic decision making
Metamodels
Parameters
Performance prediction
simulation metamodeling
Switching theory
Title Metamodel-based dynamic algorithm configuration using artificial neural networks
URI https://www.tandfonline.com/doi/abs/10.1080/03081079.2023.2245124
https://www.proquest.com/docview/2932319839
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1563-5104
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0013584
  issn: 0308-1079
  databaseCode: ABDBF
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1563-5104
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0013584
  issn: 0308-1079
  databaseCode: AMVHM
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1563-5104
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0013584
  issn: 0308-1079
  databaseCode: ADMLS
  dateStart: 19740101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1563-5104
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013584
  issn: 0308-1079
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1563-5104
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013584
  issn: 0308-1079
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbocqGHqqWg0lLkAzfkaInz8hG1RSskEBIgUC-Rn0tVWBBkL_31HduTTQKoQC_ZlSVPsjtfZsbj8TeEbGdCGjCOKeNWCZblpWUytYYptWvGFkymcz7fcXhUTM6yg4v8okvoh9MljUr0nyfPlfyPVmEM9OpPyb5CswuhMADfQb9wBQ3D9UU6PrSNDK1smHdGZsfE9vI78mp6A4v-y2tfVO5-Teeo5nlIDHhByBvh2SzDR6gFv-9HqsNUYY9gYhqJqpEDuutLP5_FOp99qXqQA6T9joUAJ411OI5ZhjQLWYZ-4pEHGtjY-CWxaCwLznJsH9xa00j9O0BNNI2R3wqdbGy78sh8Y70j3MvfKvGt3ROIMSAoyTp_1e7RP3Bji-LC3Zb1FMXUXkyNYt6Q5RTs_3hElvcm33-edztOeRWpxvB3tqe9PA_7U88ziGMGLLePvHoIVU7fk3e4xqB7ETAfyJKdrZK3PebJj-T4AXQoQocuoEMH0KEBOrSDDo3QoS101sjZ_o_TbxOGzTWY5rxqWC7LSlujC982tigkGG-tCy7Bc4rC5KUzqiq5q1xmjLNWmJJXYy1SCF9cKSrD18lodjOznwjNeJprIbR13G9iq0pBGAmRqDVc5sqVGyRr_6paI_O8b4ByVf9TVRskWUy7jdQrz00QfT3UTch5udigpubPzN1slVbjK3VfQygMyx8Ba4jPr32WL2Sle402yai5m9uvEL42aguR9xfrvJMd
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4UD-rBtxFF3YPXImz31aMxElQgHiDh1mxfSEQwsFz89U7bXQWN4cBpD5s2u-105pvpzDcI3QQ0laAcfUwUpzgIY4VTX0nMeV3WFKhMrU28o92Jmr3gqR_2F2phTFql8aG1I4qwutocbhOMLlLibg3HCrgtps7EJ1UwQmC1gk20FQLYN10MSK3zc5MQJo5CytKYxrSo4vlvmiX7tMRe-kdbWxPU2Eei-HiXefJWnWe8Kj5_8Tqu93cHaC9HqN6dE6lDtKHGR2h3gbfwGL20VZbaHjrYWEHpSdfX3ktHg8l0mL2-e-Bm6-Fg7uTLM9n1A89IqSOs8AyNpn3YJPTZCeo1Hrr3TZy3ZsACfNoMh2mcCCVFZJqORlEKR1-IiKSgd2kkw1hLnsREJzqQUitFZUySmqA-GD8d00SSU1QaT8bqDHkB8UNBqVCamCtQnnAAIYBjlCRpyHVcRkGxIUzkvOWmfcaI1Qt603zBmFkwli9YGVW_h3044o5VA-jibrPMRky0a2_CyIqxlUI0WK4DZgyAFIBnCgj0fI2pr9F2s9tusdZj5_kC7cCrwEaA_AoqZdO5ugRMlPErK_RfYRH83w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgG3ohCgQysKW2cxPGIgKo8WnWgEpsVv0pFaas2Xfj1nO0EWhDq0ClDdFZin---O5-_Q-gqpKkE4xj4WHHqhxFRfhoo6XNelzUFJlNrk-9oteNmN3x8jYpqwmleVmliaO2IIqytNpt7LHVREXdtKFYgajHXTAJcBR8ETitcRxuxORUztzhq7Z-DhChxDFKWxZTQ4hLPf8MsuKcF8tI_xtp6oMYu4sW3u8KT9-os41Xx-YvWcaWf20M7OT71bpxC7aM1NTxA23OshYeo01JZajvo-MYHSk-6rvZeOuiNJv3s7cODIFv3ezOnXZ6pre95RkcdXYVnSDTtw5agT49Qt3H_ctv088YMvoCINvOjlCRCSRGblqNxnMLGFyLGKVhdGsuIaMkTgnWiQym1UlQSnNQEDcD1aUITiY9RaTgaqhPkhTiIBKVCaWwOQHnCAYIAilESpxHXpIzCYj2YyFnLTfOMAasX5Kb5hDEzYSyfsDKqfouNHW3HMgE6v9gss_kS7ZqbMLxEtlJoBsstwJQBjALoTAF_nq4w9CXa7Nw12PND--kMbcGb0KZ_ggoqZZOZOgdAlPELq_JfOsv7gw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metamodel-based+dynamic+algorithm+configuration+using+artificial+neural+networks&rft.jtitle=International+journal+of+general+systems&rft.au=Dunke%2C+Fabian&rft.au=Nickel%2C+Stefan&rft.date=2024-01-02&rft.issn=0308-1079&rft.eissn=1563-5104&rft.volume=53&rft.issue=1&rft.spage=41&rft.epage=71&rft_id=info:doi/10.1080%2F03081079.2023.2245124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03081079_2023_2245124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-1079&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-1079&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-1079&client=summon