Metamodel-based dynamic algorithm configuration using artificial neural networks
We consider the problem of configuring algorithms dynamically by selecting algorithm parameter values adaptively. The research is motivated by the time dependency of system parameters throughout algorithm runtime in servicing systems: Depending on the customer arrival rate, switching algorithm param...
        Saved in:
      
    
          | Published in | International journal of general systems Vol. 53; no. 1; pp. 41 - 71 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Abingdon
          Taylor & Francis
    
        02.01.2024
     Taylor & Francis LLC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0308-1079 1563-5104  | 
| DOI | 10.1080/03081079.2023.2245124 | 
Cover
| Abstract | We consider the problem of configuring algorithms dynamically by selecting algorithm parameter values adaptively. The research is motivated by the time dependency of system parameters throughout algorithm runtime in servicing systems: Depending on the customer arrival rate, switching algorithm parameters may be advisable to maintain quality of service. To this end, we develop a metamodel-based methodology for dynamic algorithm configuration: We first record algorithm performance under static system parameters. This knowledge is then translated into an artificial neural network (ANN) predicting performance for given system and algorithm parameters. The ANN finally serves as a metamodel determining optimal algorithm parameters dynamically when there is system parameter variation. Overall, the developed generic methodology for dynamic algorithm control facilitates a structured model-based approach to suitably respond to changing system conditions. The outline is adept to practical instantiation as demonstrated in two service systems where control parameters are adjusted adaptively to customer arrival rates. | 
    
|---|---|
| AbstractList | We consider the problem of configuring algorithms dynamically by selecting algorithm parameter values adaptively. The research is motivated by the time dependency of system parameters throughout algorithm runtime in servicing systems: Depending on the customer arrival rate, switching algorithm parameters may be advisable to maintain quality of service. To this end, we develop a metamodel-based methodology for dynamic algorithm configuration: We first record algorithm performance under static system parameters. This knowledge is then translated into an artificial neural network (ANN) predicting performance for given system and algorithm parameters. The ANN finally serves as a metamodel determining optimal algorithm parameters dynamically when there is system parameter variation. Overall, the developed generic methodology for dynamic algorithm control facilitates a structured model-based approach to suitably respond to changing system conditions. The outline is adept to practical instantiation as demonstrated in two service systems where control parameters are adjusted adaptively to customer arrival rates. | 
    
| Author | Dunke, Fabian Nickel, Stefan  | 
    
| Author_xml | – sequence: 1 givenname: Fabian surname: Dunke fullname: Dunke, Fabian email: fabian.dunke@kit.edu organization: Karlsruhe Institute of Technology – sequence: 2 givenname: Stefan surname: Nickel fullname: Nickel, Stefan organization: Karlsruhe Institute of Technology  | 
    
| BookMark | eNqFkMtKAzEUhoNUsFYfQRhwPTWXyUyCG6V4g4oudB3SXGrqTFKTFOnbO2PrxoWuzuL833843zEY-eANAGcIThFk8AISyBBs-BRDTKYYVxTh6gCMEa1JSRGsRmA8ZMohdASOU1pBiAhl1Rg8P5osu6BNWy5kMrrQWy87pwrZLkN0-a0rVPDWLTdRZhd8sUnOLwsZs7NOOdkW3vSrYeTPEN_TCTi0sk3mdD8n4PX25mV2X86f7h5m1_NSEcJySWXDlNGqphzCupawwkrVRKKq5rWmjdUL1hDLbKW1NYbrhjCoOMac24YzTSbgfNe7juFjY1IWq7CJvj8pMCeYIM4I71OXu5SKIaVorFAufz-So3StQFAMCsWPQjEoFHuFPU1_0evoOhm3_3JXO855G2InezGtFllu2xBtlF65JMjfFV-2LYqz | 
    
| CitedBy_id | crossref_primary_10_1080_03081079_2024_2326424 | 
    
| Cites_doi | 10.1016/j.tre.2005.01.003 10.1145/318371.318705 10.3390/en12061003 10.1109/Access.6287639 10.1287/moor.1120.0548 10.1016/S0967-0661(02)00186-7 10.1007/s11837-016-1916-z 10.1016/j.trb.2003.09.002 10.1016/0893-6080(91)90009-T 10.1007/s12599-017-0468-2 10.1109/CDC40024.2019.9029197 10.1016/j.advengsoft.2018.02.006 10.1016/0005-1098(89)90002-2 10.1007/978-3-642-21434-9_1 10.1016/S1474-0346(03)00005-3 10.1111/deci.1977.8.issue-1 10.1007/978-3-319-91086-4_15 10.1016/j.ins.2015.05.010 10.1007/978-3-642-55309-7_4 10.1007/s00291-019-00552-1 10.3390/a13040097 10.1287/mnsc.34.9.1096 10.1061/(ASCE)WR.1943-5452.0000663 10.1613/jair.1.11420 10.1109/CIM.1992.639120 10.1080/00207543.2013.775523 10.1016/S0065-2458(08)60520-3 10.1016/j.envsoft.2015.11.023 10.1002/net.v73.3 10.1287/trsc.1060.0183 10.1016/j.trb.2003.09.001 10.1016/j.amc.2005.01.024 10.1016/j.renene.2009.11.030 10.1016/j.jmsy.2013.12.007 10.1002/net.v64.3 10.1109/CCA.2012.6402735 10.1007/BF02283607 10.1016/S0952-1976(03)00043-5 10.1016/j.advengsoft.2017.08.001 10.1142/S0217595915500190 10.1016/S0927-0507(06)13018-2 10.1016/j.apenergy.2015.05.090 10.1007/978-3-319-99259-4_22 10.1007/978-3-319-26024-2_2 10.1007/BFb0029561 10.1017/9781009089517 10.1162/evco_a_00242 10.1016/j.simpat.2019.102016 10.1016/S0927-0507(05)80107-0 10.1080/00207543.2015.1043403 10.1016/j.omega.2019.01.001 10.1080/07408170208928869 10.1016/j.ejor.2013.08.028 10.1007/s10479-015-2019-x 10.1007/978-3-319-50137-6_7 10.1016/j.cie.2009.03.008 10.1287/moor.13.2.295 10.1016/0305-0483(87)90041-7 10.1080/00207540210135596 10.1016/j.simpat.2014.10.004 10.1016/j.knosys.2020.105479  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 2023 Informa UK Limited, trading as Taylor & Francis Group  | 
    
| Copyright_xml | – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group 2023 – notice: 2023 Informa UK Limited, trading as Taylor & Francis Group  | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1080/03081079.2023.2245124 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1563-5104 | 
    
| EndPage | 71 | 
    
| ExternalDocumentID | 10_1080_03081079_2023_2245124 2245124  | 
    
| Genre | Research Article | 
    
| GroupedDBID | .4S .7F .DC .QJ 0BK 0R~ 29J 30N 3R3 4.4 5GY 5VS AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACTIO ACUHS ADCVX ADGTB ADMLS ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AMVHM AQRUH AQTUD ARCSS AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EBS EDO EMK EPL EST ESX E~A E~B GTTXZ H13 HF~ HZ~ H~P I-F IPNFZ J.P KYCEM LJTGL M4Z NA5 NX~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TAJZE TASJS TBQAZ TDBHL TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TUS TWF UT5 UU3 ZGOLN ~S~ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c338t-5a78cedc6590066a042cc63a14696d57fdb873f8f4ddfee9d7380c92299f798d3 | 
    
| ISSN | 0308-1079 | 
    
| IngestDate | Tue Aug 12 09:41:26 EDT 2025 Thu Apr 24 22:58:29 EDT 2025 Wed Oct 01 02:24:37 EDT 2025 Mon Oct 20 23:48:33 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c338t-5a78cedc6590066a042cc63a14696d57fdb873f8f4ddfee9d7380c92299f798d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2932319839 | 
    
| PQPubID | 53024 | 
    
| PageCount | 31 | 
    
| ParticipantIDs | crossref_citationtrail_10_1080_03081079_2023_2245124 crossref_primary_10_1080_03081079_2023_2245124 proquest_journals_2932319839 informaworld_taylorfrancis_310_1080_03081079_2023_2245124  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-01-02 | 
    
| PublicationDateYYYYMMDD | 2024-01-02 | 
    
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-02 day: 02  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Abingdon | 
    
| PublicationPlace_xml | – name: Abingdon | 
    
| PublicationTitle | International journal of general systems | 
    
| PublicationYear | 2024 | 
    
| Publisher | Taylor & Francis Taylor & Francis LLC  | 
    
| Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis LLC  | 
    
| References | e_1_3_2_28_1 e_1_3_2_49_1 e_1_3_2_20_1 e_1_3_2_41_1 e_1_3_2_66_1 e_1_3_2_22_1 e_1_3_2_43_1 e_1_3_2_64_1 e_1_3_2_24_1 e_1_3_2_45_1 e_1_3_2_26_1 e_1_3_2_47_1 e_1_3_2_68_1 Battiti Roberto (e_1_3_2_10_1) 2008 e_1_3_2_60_1 e_1_3_2_16_1 e_1_3_2_39_1 e_1_3_2_9_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_31_1 e_1_3_2_54_1 e_1_3_2_33_1 e_1_3_2_52_1 e_1_3_2_12_1 e_1_3_2_35_1 e_1_3_2_58_1 e_1_3_2_5_1 e_1_3_2_37_1 e_1_3_2_56_1 e_1_3_2_3_1 Borodin Alan (e_1_3_2_14_1) 2005 e_1_3_2_50_1 e_1_3_2_71_1 e_1_3_2_27_1 e_1_3_2_29_1 e_1_3_2_42_1 Raúl Rojas. (e_1_3_2_59_1) 2013 e_1_3_2_65_1 e_1_3_2_21_1 e_1_3_2_44_1 e_1_3_2_63_1 e_1_3_2_23_1 e_1_3_2_46_1 e_1_3_2_69_1 e_1_3_2_25_1 e_1_3_2_48_1 e_1_3_2_67_1 Schwarz Hannes (e_1_3_2_62_1) 2019 e_1_3_2_61_1 e_1_3_2_40_1 e_1_3_2_17_1 e_1_3_2_38_1 e_1_3_2_8_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_30_1 e_1_3_2_55_1 e_1_3_2_11_1 e_1_3_2_32_1 e_1_3_2_53_1 e_1_3_2_6_1 e_1_3_2_13_1 e_1_3_2_34_1 e_1_3_2_4_1 e_1_3_2_15_1 e_1_3_2_36_1 e_1_3_2_57_1 e_1_3_2_51_1 e_1_3_2_70_1  | 
    
| References_xml | – ident: e_1_3_2_16_1 doi: 10.1016/j.tre.2005.01.003 – ident: e_1_3_2_5_1 doi: 10.1145/318371.318705 – ident: e_1_3_2_24_1 doi: 10.3390/en12061003 – ident: e_1_3_2_52_1 doi: 10.1109/Access.6287639 – volume-title: Neural Networks: A Systematic Introduction year: 2013 ident: e_1_3_2_59_1 – ident: e_1_3_2_19_1 doi: 10.1287/moor.1120.0548 – ident: e_1_3_2_56_1 doi: 10.1016/S0967-0661(02)00186-7 – ident: e_1_3_2_37_1 doi: 10.1007/s11837-016-1916-z – ident: e_1_3_2_2_1 doi: 10.1109/Access.6287639 – ident: e_1_3_2_47_1 doi: 10.1016/j.trb.2003.09.002 – volume-title: Online Computation and Competitive Analysis year: 2005 ident: e_1_3_2_14_1 – ident: e_1_3_2_35_1 doi: 10.1016/0893-6080(91)90009-T – ident: e_1_3_2_68_1 doi: 10.1007/s12599-017-0468-2 – ident: e_1_3_2_32_1 doi: 10.1109/CDC40024.2019.9029197 – ident: e_1_3_2_33_1 doi: 10.1016/j.advengsoft.2018.02.006 – ident: e_1_3_2_31_1 doi: 10.1016/0005-1098(89)90002-2 – ident: e_1_3_2_34_1 doi: 10.1007/978-3-642-21434-9_1 – ident: e_1_3_2_28_1 doi: 10.1016/S1474-0346(03)00005-3 – ident: e_1_3_2_6_1 doi: 10.1111/deci.1977.8.issue-1 – ident: e_1_3_2_9_1 doi: 10.1007/978-3-319-91086-4_15 – ident: e_1_3_2_49_1 doi: 10.1016/j.ins.2015.05.010 – ident: e_1_3_2_27_1 doi: 10.1007/978-3-642-55309-7_4 – ident: e_1_3_2_12_1 – ident: e_1_3_2_65_1 doi: 10.1007/s00291-019-00552-1 – ident: e_1_3_2_20_1 doi: 10.3390/a13040097 – ident: e_1_3_2_13_1 doi: 10.1287/mnsc.34.9.1096 – ident: e_1_3_2_4_1 doi: 10.1061/(ASCE)WR.1943-5452.0000663 – ident: e_1_3_2_22_1 doi: 10.1613/jair.1.11420 – ident: e_1_3_2_53_1 doi: 10.1109/CIM.1992.639120 – start-page: 1 year: 2019 ident: e_1_3_2_62_1 article-title: Improving the Computational Efficiency of Stochastic Programs Using Automated Algorithm Configuration: An Application to Decentralized Energy Systems publication-title: Annals of Operations Research – ident: e_1_3_2_61_1 doi: 10.1080/00207543.2013.775523 – ident: e_1_3_2_45_1 – volume-title: Reactive Search and Intelligent Optimization year: 2008 ident: e_1_3_2_10_1 – ident: e_1_3_2_57_1 doi: 10.1016/S0065-2458(08)60520-3 – ident: e_1_3_2_26_1 doi: 10.1016/j.envsoft.2015.11.023 – ident: e_1_3_2_67_1 doi: 10.1002/net.v73.3 – ident: e_1_3_2_66_1 doi: 10.1287/trsc.1060.0183 – ident: e_1_3_2_46_1 doi: 10.1016/j.trb.2003.09.001 – ident: e_1_3_2_70_1 doi: 10.1016/j.amc.2005.01.024 – ident: e_1_3_2_39_1 doi: 10.1016/j.renene.2009.11.030 – ident: e_1_3_2_50_1 doi: 10.1016/j.jmsy.2013.12.007 – ident: e_1_3_2_51_1 doi: 10.1002/net.v64.3 – ident: e_1_3_2_36_1 doi: 10.1109/CCA.2012.6402735 – ident: e_1_3_2_63_1 doi: 10.1007/BF02283607 – ident: e_1_3_2_29_1 doi: 10.1016/S0952-1976(03)00043-5 – ident: e_1_3_2_42_1 doi: 10.1016/j.advengsoft.2017.08.001 – ident: e_1_3_2_71_1 doi: 10.1142/S0217595915500190 – ident: e_1_3_2_7_1 doi: 10.1016/S0927-0507(06)13018-2 – ident: e_1_3_2_64_1 doi: 10.1016/j.apenergy.2015.05.090 – ident: e_1_3_2_55_1 doi: 10.1007/978-3-319-99259-4_22 – ident: e_1_3_2_44_1 doi: 10.1007/978-3-319-26024-2_2 – ident: e_1_3_2_25_1 doi: 10.1007/BFb0029561 – ident: e_1_3_2_8_1 doi: 10.1016/S0927-0507(06)13018-2 – ident: e_1_3_2_15_1 doi: 10.1017/9781009089517 – ident: e_1_3_2_38_1 doi: 10.1162/evco_a_00242 – ident: e_1_3_2_21_1 doi: 10.1016/j.simpat.2019.102016 – ident: e_1_3_2_54_1 doi: 10.1016/S0927-0507(05)80107-0 – ident: e_1_3_2_58_1 doi: 10.1080/00207543.2015.1043403 – ident: e_1_3_2_40_1 doi: 10.1016/j.omega.2019.01.001 – ident: e_1_3_2_43_1 doi: 10.1080/07408170208928869 – ident: e_1_3_2_23_1 doi: 10.1016/j.ejor.2013.08.028 – ident: e_1_3_2_3_1 doi: 10.1007/s10479-015-2019-x – ident: e_1_3_2_41_1 doi: 10.1007/978-3-319-50137-6_7 – ident: e_1_3_2_48_1 doi: 10.1016/j.cie.2009.03.008 – ident: e_1_3_2_11_1 doi: 10.1287/moor.13.2.295 – ident: e_1_3_2_18_1 doi: 10.1016/0305-0483(87)90041-7 – ident: e_1_3_2_60_1 doi: 10.1080/00207540210135596 – ident: e_1_3_2_69_1 doi: 10.1016/j.simpat.2014.10.004 – ident: e_1_3_2_17_1 doi: 10.1016/j.knosys.2020.105479 – ident: e_1_3_2_30_1 doi: 10.1016/S0952-1976(03)00043-5  | 
    
| SSID | ssj0013584 | 
    
| Score | 2.3483648 | 
    
| Snippet | We consider the problem of configuring algorithms dynamically by selecting algorithm parameter values adaptively. The research is motivated by the time... | 
    
| SourceID | proquest crossref informaworld  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 41 | 
    
| SubjectTerms | Algorithm configuration Algorithms artificial neural network Artificial neural networks Configurations Customer services Customers dynamic decision making Metamodels Parameters Performance prediction simulation metamodeling Switching theory  | 
    
| Title | Metamodel-based dynamic algorithm configuration using artificial neural networks | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/03081079.2023.2245124 https://www.proquest.com/docview/2932319839  | 
    
| Volume | 53 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1563-5104 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0013584 issn: 0308-1079 databaseCode: ABDBF dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1563-5104 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0013584 issn: 0308-1079 databaseCode: AMVHM dateStart: 19740101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1563-5104 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0013584 issn: 0308-1079 databaseCode: ADMLS dateStart: 19740101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1563-5104 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013584 issn: 0308-1079 databaseCode: AHDZW dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1563-5104 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013584 issn: 0308-1079 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELbocqGHqqWg0lLkAzfkaInz8hG1RSskEBIgUC-Rn0tVWBBkL_31HduTTQKoQC_ZlSVPsjtfZsbj8TeEbGdCGjCOKeNWCZblpWUytYYptWvGFkymcz7fcXhUTM6yg4v8okvoh9MljUr0nyfPlfyPVmEM9OpPyb5CswuhMADfQb9wBQ3D9UU6PrSNDK1smHdGZsfE9vI78mp6A4v-y2tfVO5-Teeo5nlIDHhByBvh2SzDR6gFv-9HqsNUYY9gYhqJqpEDuutLP5_FOp99qXqQA6T9joUAJ411OI5ZhjQLWYZ-4pEHGtjY-CWxaCwLznJsH9xa00j9O0BNNI2R3wqdbGy78sh8Y70j3MvfKvGt3ROIMSAoyTp_1e7RP3Bji-LC3Zb1FMXUXkyNYt6Q5RTs_3hElvcm33-edztOeRWpxvB3tqe9PA_7U88ziGMGLLePvHoIVU7fk3e4xqB7ETAfyJKdrZK3PebJj-T4AXQoQocuoEMH0KEBOrSDDo3QoS101sjZ_o_TbxOGzTWY5rxqWC7LSlujC982tigkGG-tCy7Bc4rC5KUzqiq5q1xmjLNWmJJXYy1SCF9cKSrD18lodjOznwjNeJprIbR13G9iq0pBGAmRqDVc5sqVGyRr_6paI_O8b4ByVf9TVRskWUy7jdQrz00QfT3UTch5udigpubPzN1slVbjK3VfQygMyx8Ba4jPr32WL2Sle402yai5m9uvEL42aguR9xfrvJMd | 
    
| linkProvider | Library Specific Holdings | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEG4UD-rBtxFF3YPXImz31aMxElQgHiDh1mxfSEQwsFz89U7bXQWN4cBpD5s2u-105pvpzDcI3QQ0laAcfUwUpzgIY4VTX0nMeV3WFKhMrU28o92Jmr3gqR_2F2phTFql8aG1I4qwutocbhOMLlLibg3HCrgtps7EJ1UwQmC1gk20FQLYN10MSK3zc5MQJo5CytKYxrSo4vlvmiX7tMRe-kdbWxPU2Eei-HiXefJWnWe8Kj5_8Tqu93cHaC9HqN6dE6lDtKHGR2h3gbfwGL20VZbaHjrYWEHpSdfX3ktHg8l0mL2-e-Bm6-Fg7uTLM9n1A89IqSOs8AyNpn3YJPTZCeo1Hrr3TZy3ZsACfNoMh2mcCCVFZJqORlEKR1-IiKSgd2kkw1hLnsREJzqQUitFZUySmqA-GD8d00SSU1QaT8bqDHkB8UNBqVCamCtQnnAAIYBjlCRpyHVcRkGxIUzkvOWmfcaI1Qt603zBmFkwli9YGVW_h3044o5VA-jibrPMRky0a2_CyIqxlUI0WK4DZgyAFIBnCgj0fI2pr9F2s9tusdZj5_kC7cCrwEaA_AoqZdO5ugRMlPErK_RfYRH83w | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagSAgG3ohCgQysKW2cxPGIgKo8WnWgEpsVv0pFaas2Xfj1nO0EWhDq0ClDdFZin---O5-_Q-gqpKkE4xj4WHHqhxFRfhoo6XNelzUFJlNrk-9oteNmN3x8jYpqwmleVmliaO2IIqytNpt7LHVREXdtKFYgajHXTAJcBR8ETitcRxuxORUztzhq7Z-DhChxDFKWxZTQ4hLPf8MsuKcF8tI_xtp6oMYu4sW3u8KT9-os41Xx-YvWcaWf20M7OT71bpxC7aM1NTxA23OshYeo01JZajvo-MYHSk-6rvZeOuiNJv3s7cODIFv3ezOnXZ6pre95RkcdXYVnSDTtw5agT49Qt3H_ctv088YMvoCINvOjlCRCSRGblqNxnMLGFyLGKVhdGsuIaMkTgnWiQym1UlQSnNQEDcD1aUITiY9RaTgaqhPkhTiIBKVCaWwOQHnCAYIAilESpxHXpIzCYj2YyFnLTfOMAasX5Kb5hDEzYSyfsDKqfouNHW3HMgE6v9gss_kS7ZqbMLxEtlJoBsstwJQBjALoTAF_nq4w9CXa7Nw12PND--kMbcGb0KZ_ggoqZZOZOgdAlPELq_JfOsv7gw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metamodel-based+dynamic+algorithm+configuration+using+artificial+neural+networks&rft.jtitle=International+journal+of+general+systems&rft.au=Dunke%2C+Fabian&rft.au=Nickel%2C+Stefan&rft.date=2024-01-02&rft.issn=0308-1079&rft.eissn=1563-5104&rft.volume=53&rft.issue=1&rft.spage=41&rft.epage=71&rft_id=info:doi/10.1080%2F03081079.2023.2245124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03081079_2023_2245124 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-1079&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-1079&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-1079&client=summon |