An Intelligent BMS with Probabilistic MO-GSA based CDMAS Integrating Edge Controller Analytics
One of the most challenging facets of any Battery Management System is scheduling the charging and discharging cycles of each battery without compromising the uninterruptible power supplies to meet demand. A battery-powered system may include several batteries of varying sorts, models, makes, sizes,...
Saved in:
| Published in | IEEE access Vol. 10; p. 1 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2169-3536 2169-3536 |
| DOI | 10.1109/ACCESS.2022.3218683 |
Cover
| Abstract | One of the most challenging facets of any Battery Management System is scheduling the charging and discharging cycles of each battery without compromising the uninterruptible power supplies to meet demand. A battery-powered system may include several batteries of varying sorts, models, makes, sizes, and lifespans, etc which employs a diversity of charging techniques. Subsequently, each battery would have its own charging-discharging path. Even when a battery of the same capacity and make is used with the same load profile, the charging curves differ. This is because batteries have differential electrochemical characteristics and deteriorate to some extent with each use. Accordingly, the Battery Management System should schedule the batteries so that degradation and usage are kept to a minimum. This paper developed an adaptive Intelligent Battery Management System that can schedule batteries with minimal power loss, increased battery life, and higher financial benefit, even when batteries of various sizes, capacities, production types, lifespans, charge cycle models etc are incorporated. Multi-zonal approaches are used, combining the benefits of edge analytics and Centralized Data Management and Analytics System. Every millisecond, the battery parameters will be monitored using an energy monitoring circuit integrated with an edge controller. However, the edge controller alone will not be able to process such a vast volume of data on its own, the data will be divided into two categories and analyzed in two phases. All of the big data is delivered to a Centralized Data Management and Analytics System using Low-power wide-area network, and this data is labeled as primary data. A second set of data is extracted from big data within the edge controller via metadata processing before it is transmitted to Centralized Data Management and Analytics System. This secondary data is processed against safety standards stored in read only memory and rapid judgments are performed using edge analytics if necessary. The Centralized Data Management and Analytics System employs a number of analytics techniques. An Auto-Regressive Integrated Moving Average method will be used to forecast the State of Charge of batteries. With the help of this forecasted data, the Multi-Objective Gravitational Search Algorithm is then used to schedule the best battery allocation based on a number of objectives such as battery temperature runaway, unit cost of consumption including span of service, last used time period, State of Charge (%), State of Charge (WH), and so on. Between Auto-Regressive Integrated Moving Average and Gravitational Search Algorithm, a Naive Bayes probabilistic estimator is encased to identify the best general population for Gravitational Search Algorithm, avoiding repeated battery swapping and improving power efficiency. The whole device is evaluated in Hardware in a Loop model. When comparing the performance of the developed model to that of other optimization models, it is evident that Gravitational Search Algorithm outperforms other methods when population is constrained. |
|---|---|
| AbstractList | One of the most challenging facets of any Battery Management System is scheduling the charging and discharging cycles of each battery without compromising the uninterruptible power supplies to meet demand. A battery-powered system may include several batteries of varying sorts, models, makes, sizes, and lifespans, etc which employs a diversity of charging techniques. Subsequently, each battery would have its own charging-discharging path. Even when a battery of the same capacity and make is used with the same load profile, the charging curves differ. This is because batteries have differential electrochemical characteristics and deteriorate to some extent with each use. Accordingly, the Battery Management System should schedule the batteries so that degradation and usage are kept to a minimum. This paper developed an adaptive Intelligent Battery Management System that can schedule batteries with minimal power loss, increased battery life, and higher financial benefit, even when batteries of various sizes, capacities, production types, lifespans, charge cycle models etc are incorporated. Multi-zonal approaches are used, combining the benefits of edge analytics and Centralized Data Management and Analytics System. Every millisecond, the battery parameters will be monitored using an energy monitoring circuit integrated with an edge controller. However, the edge controller alone will not be able to process such a vast volume of data on its own, the data will be divided into two categories and analyzed in two phases. All of the big data is delivered to a Centralized Data Management and Analytics System using Low-power wide-area network, and this data is labeled as primary data. A second set of data is extracted from big data within the edge controller via metadata processing before it is transmitted to Centralized Data Management and Analytics System. This secondary data is processed against safety standards stored in read only memory and rapid judgments are performed using edge analytics if necessary. The Centralized Data Management and Analytics System employs a number of analytics techniques. An Auto-Regressive Integrated Moving Average method will be used to forecast the State of Charge of batteries. With the help of this forecasted data, the Multi-Objective Gravitational Search Algorithm is then used to schedule the best battery allocation based on a number of objectives such as battery temperature runaway, unit cost of consumption including span of service, last used time period, State of Charge (%), State of Charge (WH), and so on. Between Auto-Regressive Integrated Moving Average and Gravitational Search Algorithm, a Naive Bayes probabilistic estimator is encased to identify the best general population for Gravitational Search Algorithm, avoiding repeated battery swapping and improving power efficiency. The whole device is evaluated in Hardware in a Loop model. When comparing the performance of the developed model to that of other optimization models, it is evident that Gravitational Search Algorithm outperforms other methods when population is constrained. |
| Author | Mani, Geetha Sarin, Cr |
| Author_xml | – sequence: 1 givenname: Cr surname: Sarin fullname: Sarin, Cr organization: Research Scholar, School of Electrical Engineering, VIT, Vellore, India – sequence: 2 givenname: Geetha orcidid: 0000-0002-8234-9294 surname: Mani fullname: Mani, Geetha organization: Associate Professor, School of Electrical Engineering, VIT, Vellore, India |
| BookMark | eNqFkV1vFCEUhiemJtbaX9AbEq9nBc58wOU4rnWTbmoyeith-FjZ4LDCbJr997KdpjH1Qm4gJ-d5Dzy8LS6mMJmiuCF4RQjmH7q-Xw_DimJKV0AJaxi8Ki4paXgJNTQXf53fFNcp7XFeLJfq9rL40U1oM83Ge7cz04w-bgf04Oaf6GsMoxydd2l2Cm3vy9uhQ6NMRqP-07YbHqldlLObdmitdwb1YZpj8N5E1E3SnzKX3hWvrfTJXD_tV8X3z-tv_Zfy7v5203d3pQJgcwmqaomssGYay9bUmtKGS9tasKRW-UnEtmCt0VTWoLFtaiCcNLrRGBSTAFfFZsnVQe7FIbpfMp5EkE48FkLcCRnzhbwRth5hrFhLoW0qahhrOcdGKsagqbQ1Oataso7TQZ4epPfPgQSLs3IhlTIpibNy8aQ8Y-8X7BDD76NJs9iHY8wicl8LFXBS8Tp3wdKlYkgpGvtP9vKdL7P5C0q5Oas_G5fO_4e9WVhnjHmexjlUDBj8AZ0eq_4 |
| CODEN | IAECCG |
| CitedBy_id | crossref_primary_10_1007_s11431_023_2566_1 |
| Cites_doi | 10.1016/j.ijepes.2019.105661 10.1016/j.egyr.2020.12.007 10.1016/j.est.2020.102122 10.1016/j.gloei.2020.11.004 10.1145/3396851.3402656 10.1016/j.segan.2020.100400 10.1016/j.est.2021.103884 10.1016/j.est.2020.101231 10.1016/j.apenergy.2020.114983 10.1016/j.rser.2020.110480 10.1109/ACCESS.2020.3007046 10.1016/j.est.2020.101814 10.1016/j.electacta.2021.138294 10.1016/j.energy.2020.118228 10.1016/j.ref.2021.07.005 10.1016/j.est.2021.102348 10.1109/JSYST.2021.3077213 10.1016/j.est.2020.101306 10.1016/j.adapen.2020.100006 10.1016/j.apenergy.2021.117022 10.1016/j.energy.2019.116467 10.1016/j.rser.2020.110015 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY DOA |
| DOI | 10.1109/ACCESS.2022.3218683 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Materials Research Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2169-3536 |
| EndPage | 1 |
| ExternalDocumentID | oai_doaj_org_article_f5b3b487237642e887990eac88364dfe 10.1109/access.2022.3218683 10_1109_ACCESS_2022_3218683 9934838 |
| Genre | orig-research |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D ADTOC UNPAY |
| ID | FETCH-LOGICAL-c338t-3c471a40d8d0a7e5d2269af7f3f15c1861f73ffed2a53d0f6531916d6d03c8a33 |
| IEDL.DBID | RIE |
| ISSN | 2169-3536 |
| IngestDate | Fri Oct 03 12:29:21 EDT 2025 Tue Aug 19 19:37:59 EDT 2025 Mon Jun 30 04:50:09 EDT 2025 Wed Oct 01 03:26:25 EDT 2025 Thu Apr 24 23:05:49 EDT 2025 Wed Aug 27 02:29:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-3c471a40d8d0a7e5d2269af7f3f15c1861f73ffed2a53d0f6531916d6d03c8a33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8234-9294 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9934838 |
| PQID | 2734391495 |
| PQPubID | 4845423 |
| PageCount | 1 |
| ParticipantIDs | proquest_journals_2734391495 unpaywall_primary_10_1109_access_2022_3218683 crossref_primary_10_1109_ACCESS_2022_3218683 doaj_primary_oai_doaj_org_article_f5b3b487237642e887990eac88364dfe crossref_citationtrail_10_1109_ACCESS_2022_3218683 ieee_primary_9934838 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE access |
| PublicationTitleAbbrev | Access |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref23 ref15 ref14 ref20 ref11 ref22 ref10 ref21 ref2 ref1 ref17 ref16 ref18 ref8 ref7 ref9 lipu (ref24) 2021; 292 ref4 ref3 preetha (ref19) 2022 ref6 ref5 |
| References_xml | – ident: ref16 doi: 10.1016/j.ijepes.2019.105661 – ident: ref13 doi: 10.1016/j.egyr.2020.12.007 – ident: ref11 doi: 10.1016/j.est.2020.102122 – ident: ref14 doi: 10.1016/j.gloei.2020.11.004 – ident: ref22 doi: 10.1145/3396851.3402656 – volume: 292 year: 2021 ident: ref24 article-title: Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook publication-title: J Cleaner Prod – ident: ref18 doi: 10.1016/j.segan.2020.100400 – ident: ref4 doi: 10.1016/j.est.2021.103884 – ident: ref7 doi: 10.1016/j.est.2020.101231 – year: 2022 ident: ref19 publication-title: Model-based hardware-in-the loop testing of battery management system – ident: ref17 doi: 10.1016/j.apenergy.2020.114983 – ident: ref10 doi: 10.1016/j.rser.2020.110480 – ident: ref21 doi: 10.1109/ACCESS.2020.3007046 – ident: ref5 doi: 10.1016/j.est.2020.101814 – ident: ref8 doi: 10.1016/j.electacta.2021.138294 – ident: ref15 doi: 10.1016/j.energy.2020.118228 – ident: ref6 doi: 10.1016/j.ref.2021.07.005 – ident: ref2 doi: 10.1016/j.est.2021.102348 – ident: ref1 doi: 10.1109/JSYST.2021.3077213 – ident: ref3 doi: 10.1016/j.est.2020.101306 – ident: ref20 doi: 10.1016/j.adapen.2020.100006 – ident: ref23 doi: 10.1016/j.apenergy.2021.117022 – ident: ref9 doi: 10.1016/j.energy.2019.116467 – ident: ref12 doi: 10.1016/j.rser.2020.110015 |
| SSID | ssj0000816957 |
| Score | 2.237957 |
| Snippet | One of the most challenging facets of any Battery Management System is scheduling the charging and discharging cycles of each battery without compromising the... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms ARIMA Batteries Battery cycles Battery management systems Big Data BMS Charging Circuits Controllers Data analysis Data management Discharge Edge Controller Energy consumption Hardware Microgrid Microgrids MOGSA Multiaccess communication Naive Bayes Estimator Optimization models Power efficiency Power management Read only memory Read-only memory devices ROM Schedules Scheduling Search algorithms State of charge Uninterruptible power supplies Wide area networks |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFLdQL4MDYrCJQEE-cFzAifPhHNNQViZ1Q-rQOGE5sb0hVaEqqab997znhKjVJLhwjWzLeZ-_F738HiFnOikjDWnHFzYtfcx4vhL4szuC_ZDpgFvXIPs9mdxG3-7iu7VRX9gT1tIDt4K7sHHJS0DV2L0RhQZ8AuInRAsheBJpazD6MpGtFVMuBosgyeK0oxkKWHaRFwW8ERSEYXjOcRCT4BupyDH2dyNWNtDmh1W9UP_-qvl8LfFc7ZHdDjHSvL3pR7Jl6n2ys8YjeEDu85pe99yaDR1NZ_TXQ_OH3izBXbH9FdmY6fSH_3WW0xEkLk2Ly2k-c7uQLQKOoWP929CibV2fmyV1fCXI4vyJ3F6NfxYTvxuc4FdQcTY-ryDlqIhpoZlKTQzKSDJlU8ttEFfw7oFNubVGhyrmmtkEHTFIdKIZr4Ti_DMZ1I-1OSQUSlhbAcqKYG-kBFOcVYASQxtYk5aCeyR8kaGsOlZxHG4xl666YJlsBS9R8LITvEe-9JsWLanG68tHqJx-KTJiuwdgJ7KzE_mWnXjkAFXbHwK4LBJceGT4omrZee-TRMofnmHt6BG_V_9_V1VupOXGVY_e46rHZBvPbD_0DMmgWa7MCUCfpjx1Vv4MQZv46A priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQgQX5wJGkSZw4zjENuyxIXVYqFcsFy4ltWBGFqqTi49cz47jVFiQkuEWRbTmZsd-bePKGkGeaN5kG2AmFLZoQES9UAn92R7Kfxjph1iXInvHTZfb6Ir_wH9zcvzDGGJd8ZiK8dGf5l6b7Xkx5iuJp5ZQDxMNoU6A2LBNMRCttr5MDngMXn5CD5dl59R4ryiW8DJk7m3zshTWnytUghKAwTSOGxZgE24Mjp9rvy6zsMc4bm36lfnxTXXcFfE5uE7md9phz8jnaDE3U_vxN0fH_n-sOueV5Ka1GR7pLrpn-Hrl5Ra3wkHyoevpqp-A50Nl8Qd9dDp_o-Ro2BUyyRc1nOn8TvlxUdAbwqGn9Yl4tXC_UpIBh6LH-aGg9Jsh3Zk2dKgpqRd8ny5Pjt_Vp6MszhC3EtUPIWgA2lcVa6FgVJgeT81LZwjKb5C283cQWzFqjU5UzHVuOyz3hmuuYtUIx9oBM-i-9eUgoBMq2BS6XQd9MiVixuAUumtrEmqIRLCDp1kqy9drlWEKjky6GiUtZ1TU4rETTSm_agDzfdVqN0h1_bz5D8--aou62uwGmkn4ZS5s3rIEYD3OJstTADg1oDtglBOOZtiYgh2je3SDelgE52jqT9HvEV4nCQqzECDUg4c7B_pjq6LR7U330j-2PyGRYb8wToE9D89SvkV_TuxEv priority: 102 providerName: Unpaywall |
| Title | An Intelligent BMS with Probabilistic MO-GSA based CDMAS Integrating Edge Controller Analytics |
| URI | https://ieeexplore.ieee.org/document/9934838 https://www.proquest.com/docview/2734391495 https://ieeexplore.ieee.org/ielx7/6287639/6514899/09934838.pdf https://doaj.org/article/f5b3b487237642e887990eac88364dfe |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2169-3536 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000816957 issn: 2169-3536 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB215QA98FUQgbLygWOzdeJ8OMc0tBSkLZWWlcqFyIltDqzSapsVgl_PjOONuoAQt1VkZ519nryZ2fEbgDc6axKNtBNKmzchMV6oJB12J2c_5joS1hXIXmTni-TDVXq1A0fjWRhjjCs-M1P66P7L19ftmlJlx8iliRRyF3ZzmQ1ntcZ8CjWQKNLcCwtFvDguqwqfAUPAOJ4Kar0kxRb5OI1-31Rly7-8v-5u1I_varm8QzVnj2C2WeRQYfJtuu6bafvzN_3G_32Kx_DQ-5ysHDbJE9gx3VPYv6NEeABfyo69H9U5e3YymzNK0bLLFRo8FdCSnjObfQzfzUtG1KdZ9XZWzt0s0pvA27BT_dWwaih-X5oVc4onpAP9DBZnp5-q89C3XghbjFn7ULRIWirhWmqucpMinFmhbG6FjdIWf8vI5sJao2OVCs1tRqYcZTrTXLRSCfEc9rrrzrwAhkGwbdFPS3BuoiRXgrfoZ8Y2siZvpAgg3mBSt16XnNpjLGsXn_CiHoCsCcjaAxnA0TjpZpDl-PfwEwJ7HEqa2u4CAlN7E61t2ogG4zeqE0pig29fZGrkJSlFlmhrAjggMMebeBwDONxsndrb_21NokGioOgzgHDcTn8sVbmmmFtLffn3b3kFD2jUkPw5hL1-tTav0R3qm4lLI0ycNUzg3uLisvz8C2pdBeI |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2Vcigc-CoVCwV84Nhsk9hJnGMaWrbQFKRtpZ6wnNjmwCqtlqwQ_HpmnGzUBYS4RVHs2Hm234wzfgPwxqS1MEg7gXRZHRDjBVrSYXcy9uPQRNz5ANnzdHYp3l8lV1twMJ6Fsdb64DM7pUv_L99cNyvaKjtELhWSyztwNxFCJP1prXFHhVJI5Ek2SAtFYX5YlCX2Ap3AOJ5ySr4k-Qb9eJX-Ia3KhoW5s2pv9I_verG4RTYnD6FaN7OPMfk6XXX1tPn5m4Lj__bjETwYrE5W9MPkMWzZ9gncv6VFuAufi5adjvqcHTuq5ow2admnJU55CqElRWdWfQzezQtG5GdY-bYq5r4UKU5gNezYfLGs7MPfF3bJvOYJKUE_hcuT44tyFgzJF4IGvdYu4A3SlhahkSbUmU0Q0DTXLnPcRUmD3zJyGXfOmlgn3IQupckcpSY1IW-k5nwPttvr1j4Dhm6wa9BSE1hWaBlqHjZoacYucjarJZ9AvMZENYMyOSXIWCjvoYS56oFUBKQagJzAwVjophfm-PfjRwT2-CipavsbCIwaJqlySc1r9OAoUkjEFtdf5GpkJil5KoyzE9glMMdKBhwnsL8eOmpYAb4pkg3iOfmfEwjG4fRHU7VPi7nR1Od_f8tr2JldVGfq7PT8wwu4RyX6raB92O6WK_sSjaOufuXnxC_hIAaK |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQgQX5wJGkSZw4zjENuyxIXVYqFcsFy4ltWBGFqqTi49cz47jVFiQkuEWRbTmZsd-bePKGkGeaN5kG2AmFLZoQES9UAn92R7Kfxjph1iXInvHTZfb6Ir_wH9zcvzDGGJd8ZiK8dGf5l6b7Xkx5iuJp5ZQDxMNoU6A2LBNMRCttr5MDngMXn5CD5dl59R4ryiW8DJk7m3zshTWnytUghKAwTSOGxZgE24Mjp9rvy6zsMc4bm36lfnxTXXcFfE5uE7md9phz8jnaDE3U_vxN0fH_n-sOueV5Ka1GR7pLrpn-Hrl5Ra3wkHyoevpqp-A50Nl8Qd9dDp_o-Ro2BUyyRc1nOn8TvlxUdAbwqGn9Yl4tXC_UpIBh6LH-aGg9Jsh3Zk2dKgpqRd8ny5Pjt_Vp6MszhC3EtUPIWgA2lcVa6FgVJgeT81LZwjKb5C283cQWzFqjU5UzHVuOyz3hmuuYtUIx9oBM-i-9eUgoBMq2BS6XQd9MiVixuAUumtrEmqIRLCDp1kqy9drlWEKjky6GiUtZ1TU4rETTSm_agDzfdVqN0h1_bz5D8--aou62uwGmkn4ZS5s3rIEYD3OJstTADg1oDtglBOOZtiYgh2je3SDelgE52jqT9HvEV4nCQqzECDUg4c7B_pjq6LR7U330j-2PyGRYb8wToE9D89SvkV_TuxEv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intelligent+BMS+with+Probabilistic+MO-GSA+based+CDMAS+Integrating+Edge+Controller+Analytics&rft.jtitle=IEEE+access&rft.au=Sarin%2C+Cr&rft.au=Mani%2C+Geetha&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2022.3218683&rft.externalDocID=9934838 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |