An Intelligent BMS with Probabilistic MO-GSA based CDMAS Integrating Edge Controller Analytics

One of the most challenging facets of any Battery Management System is scheduling the charging and discharging cycles of each battery without compromising the uninterruptible power supplies to meet demand. A battery-powered system may include several batteries of varying sorts, models, makes, sizes,...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; p. 1
Main Authors Sarin, Cr, Mani, Geetha
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2022.3218683

Cover

Abstract One of the most challenging facets of any Battery Management System is scheduling the charging and discharging cycles of each battery without compromising the uninterruptible power supplies to meet demand. A battery-powered system may include several batteries of varying sorts, models, makes, sizes, and lifespans, etc which employs a diversity of charging techniques. Subsequently, each battery would have its own charging-discharging path. Even when a battery of the same capacity and make is used with the same load profile, the charging curves differ. This is because batteries have differential electrochemical characteristics and deteriorate to some extent with each use. Accordingly, the Battery Management System should schedule the batteries so that degradation and usage are kept to a minimum. This paper developed an adaptive Intelligent Battery Management System that can schedule batteries with minimal power loss, increased battery life, and higher financial benefit, even when batteries of various sizes, capacities, production types, lifespans, charge cycle models etc are incorporated. Multi-zonal approaches are used, combining the benefits of edge analytics and Centralized Data Management and Analytics System. Every millisecond, the battery parameters will be monitored using an energy monitoring circuit integrated with an edge controller. However, the edge controller alone will not be able to process such a vast volume of data on its own, the data will be divided into two categories and analyzed in two phases. All of the big data is delivered to a Centralized Data Management and Analytics System using Low-power wide-area network, and this data is labeled as primary data. A second set of data is extracted from big data within the edge controller via metadata processing before it is transmitted to Centralized Data Management and Analytics System. This secondary data is processed against safety standards stored in read only memory and rapid judgments are performed using edge analytics if necessary. The Centralized Data Management and Analytics System employs a number of analytics techniques. An Auto-Regressive Integrated Moving Average method will be used to forecast the State of Charge of batteries. With the help of this forecasted data, the Multi-Objective Gravitational Search Algorithm is then used to schedule the best battery allocation based on a number of objectives such as battery temperature runaway, unit cost of consumption including span of service, last used time period, State of Charge (%), State of Charge (WH), and so on. Between Auto-Regressive Integrated Moving Average and Gravitational Search Algorithm, a Naive Bayes probabilistic estimator is encased to identify the best general population for Gravitational Search Algorithm, avoiding repeated battery swapping and improving power efficiency. The whole device is evaluated in Hardware in a Loop model. When comparing the performance of the developed model to that of other optimization models, it is evident that Gravitational Search Algorithm outperforms other methods when population is constrained.
AbstractList One of the most challenging facets of any Battery Management System is scheduling the charging and discharging cycles of each battery without compromising the uninterruptible power supplies to meet demand. A battery-powered system may include several batteries of varying sorts, models, makes, sizes, and lifespans, etc which employs a diversity of charging techniques. Subsequently, each battery would have its own charging-discharging path. Even when a battery of the same capacity and make is used with the same load profile, the charging curves differ. This is because batteries have differential electrochemical characteristics and deteriorate to some extent with each use. Accordingly, the Battery Management System should schedule the batteries so that degradation and usage are kept to a minimum. This paper developed an adaptive Intelligent Battery Management System that can schedule batteries with minimal power loss, increased battery life, and higher financial benefit, even when batteries of various sizes, capacities, production types, lifespans, charge cycle models etc are incorporated. Multi-zonal approaches are used, combining the benefits of edge analytics and Centralized Data Management and Analytics System. Every millisecond, the battery parameters will be monitored using an energy monitoring circuit integrated with an edge controller. However, the edge controller alone will not be able to process such a vast volume of data on its own, the data will be divided into two categories and analyzed in two phases. All of the big data is delivered to a Centralized Data Management and Analytics System using Low-power wide-area network, and this data is labeled as primary data. A second set of data is extracted from big data within the edge controller via metadata processing before it is transmitted to Centralized Data Management and Analytics System. This secondary data is processed against safety standards stored in read only memory and rapid judgments are performed using edge analytics if necessary. The Centralized Data Management and Analytics System employs a number of analytics techniques. An Auto-Regressive Integrated Moving Average method will be used to forecast the State of Charge of batteries. With the help of this forecasted data, the Multi-Objective Gravitational Search Algorithm is then used to schedule the best battery allocation based on a number of objectives such as battery temperature runaway, unit cost of consumption including span of service, last used time period, State of Charge (%), State of Charge (WH), and so on. Between Auto-Regressive Integrated Moving Average and Gravitational Search Algorithm, a Naive Bayes probabilistic estimator is encased to identify the best general population for Gravitational Search Algorithm, avoiding repeated battery swapping and improving power efficiency. The whole device is evaluated in Hardware in a Loop model. When comparing the performance of the developed model to that of other optimization models, it is evident that Gravitational Search Algorithm outperforms other methods when population is constrained.
Author Mani, Geetha
Sarin, Cr
Author_xml – sequence: 1
  givenname: Cr
  surname: Sarin
  fullname: Sarin, Cr
  organization: Research Scholar, School of Electrical Engineering, VIT, Vellore, India
– sequence: 2
  givenname: Geetha
  orcidid: 0000-0002-8234-9294
  surname: Mani
  fullname: Mani, Geetha
  organization: Associate Professor, School of Electrical Engineering, VIT, Vellore, India
BookMark eNqFkV1vFCEUhiemJtbaX9AbEq9nBc58wOU4rnWTbmoyeith-FjZ4LDCbJr997KdpjH1Qm4gJ-d5Dzy8LS6mMJmiuCF4RQjmH7q-Xw_DimJKV0AJaxi8Ki4paXgJNTQXf53fFNcp7XFeLJfq9rL40U1oM83Ge7cz04w-bgf04Oaf6GsMoxydd2l2Cm3vy9uhQ6NMRqP-07YbHqldlLObdmitdwb1YZpj8N5E1E3SnzKX3hWvrfTJXD_tV8X3z-tv_Zfy7v5203d3pQJgcwmqaomssGYay9bUmtKGS9tasKRW-UnEtmCt0VTWoLFtaiCcNLrRGBSTAFfFZsnVQe7FIbpfMp5EkE48FkLcCRnzhbwRth5hrFhLoW0qahhrOcdGKsagqbQ1Oataso7TQZ4epPfPgQSLs3IhlTIpibNy8aQ8Y-8X7BDD76NJs9iHY8wicl8LFXBS8Tp3wdKlYkgpGvtP9vKdL7P5C0q5Oas_G5fO_4e9WVhnjHmexjlUDBj8AZ0eq_4
CODEN IAECCG
CitedBy_id crossref_primary_10_1007_s11431_023_2566_1
Cites_doi 10.1016/j.ijepes.2019.105661
10.1016/j.egyr.2020.12.007
10.1016/j.est.2020.102122
10.1016/j.gloei.2020.11.004
10.1145/3396851.3402656
10.1016/j.segan.2020.100400
10.1016/j.est.2021.103884
10.1016/j.est.2020.101231
10.1016/j.apenergy.2020.114983
10.1016/j.rser.2020.110480
10.1109/ACCESS.2020.3007046
10.1016/j.est.2020.101814
10.1016/j.electacta.2021.138294
10.1016/j.energy.2020.118228
10.1016/j.ref.2021.07.005
10.1016/j.est.2021.102348
10.1109/JSYST.2021.3077213
10.1016/j.est.2020.101306
10.1016/j.adapen.2020.100006
10.1016/j.apenergy.2021.117022
10.1016/j.energy.2019.116467
10.1016/j.rser.2020.110015
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOA
DOI 10.1109/ACCESS.2022.3218683
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_f5b3b487237642e887990eac88364dfe
10.1109/access.2022.3218683
10_1109_ACCESS_2022_3218683
9934838
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
ID FETCH-LOGICAL-c338t-3c471a40d8d0a7e5d2269af7f3f15c1861f73ffed2a53d0f6531916d6d03c8a33
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Fri Oct 03 12:29:21 EDT 2025
Tue Aug 19 19:37:59 EDT 2025
Mon Jun 30 04:50:09 EDT 2025
Wed Oct 01 03:26:25 EDT 2025
Thu Apr 24 23:05:49 EDT 2025
Wed Aug 27 02:29:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-3c471a40d8d0a7e5d2269af7f3f15c1861f73ffed2a53d0f6531916d6d03c8a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8234-9294
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9934838
PQID 2734391495
PQPubID 4845423
PageCount 1
ParticipantIDs proquest_journals_2734391495
unpaywall_primary_10_1109_access_2022_3218683
crossref_primary_10_1109_ACCESS_2022_3218683
doaj_primary_oai_doaj_org_article_f5b3b487237642e887990eac88364dfe
crossref_citationtrail_10_1109_ACCESS_2022_3218683
ieee_primary_9934838
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref23
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref18
ref8
ref7
ref9
lipu (ref24) 2021; 292
ref4
ref3
preetha (ref19) 2022
ref6
ref5
References_xml – ident: ref16
  doi: 10.1016/j.ijepes.2019.105661
– ident: ref13
  doi: 10.1016/j.egyr.2020.12.007
– ident: ref11
  doi: 10.1016/j.est.2020.102122
– ident: ref14
  doi: 10.1016/j.gloei.2020.11.004
– ident: ref22
  doi: 10.1145/3396851.3402656
– volume: 292
  year: 2021
  ident: ref24
  article-title: Intelligent algorithms and control strategies for battery management system in electric vehicles: Progress, challenges and future outlook
  publication-title: J Cleaner Prod
– ident: ref18
  doi: 10.1016/j.segan.2020.100400
– ident: ref4
  doi: 10.1016/j.est.2021.103884
– ident: ref7
  doi: 10.1016/j.est.2020.101231
– year: 2022
  ident: ref19
  publication-title: Model-based hardware-in-the loop testing of battery management system
– ident: ref17
  doi: 10.1016/j.apenergy.2020.114983
– ident: ref10
  doi: 10.1016/j.rser.2020.110480
– ident: ref21
  doi: 10.1109/ACCESS.2020.3007046
– ident: ref5
  doi: 10.1016/j.est.2020.101814
– ident: ref8
  doi: 10.1016/j.electacta.2021.138294
– ident: ref15
  doi: 10.1016/j.energy.2020.118228
– ident: ref6
  doi: 10.1016/j.ref.2021.07.005
– ident: ref2
  doi: 10.1016/j.est.2021.102348
– ident: ref1
  doi: 10.1109/JSYST.2021.3077213
– ident: ref3
  doi: 10.1016/j.est.2020.101306
– ident: ref20
  doi: 10.1016/j.adapen.2020.100006
– ident: ref23
  doi: 10.1016/j.apenergy.2021.117022
– ident: ref9
  doi: 10.1016/j.energy.2019.116467
– ident: ref12
  doi: 10.1016/j.rser.2020.110015
SSID ssj0000816957
Score 2.237957
Snippet One of the most challenging facets of any Battery Management System is scheduling the charging and discharging cycles of each battery without compromising the...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
ARIMA
Batteries
Battery cycles
Battery management systems
Big Data
BMS
Charging
Circuits
Controllers
Data analysis
Data management
Discharge
Edge Controller
Energy consumption
Hardware
Microgrid
Microgrids
MOGSA
Multiaccess communication
Naive Bayes Estimator
Optimization models
Power efficiency
Power management
Read only memory
Read-only memory devices
ROM
Schedules
Scheduling
Search algorithms
State of charge
Uninterruptible power supplies
Wide area networks
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFLdQL4MDYrCJQEE-cFzAifPhHNNQViZ1Q-rQOGE5sb0hVaEqqab997znhKjVJLhwjWzLeZ-_F738HiFnOikjDWnHFzYtfcx4vhL4szuC_ZDpgFvXIPs9mdxG3-7iu7VRX9gT1tIDt4K7sHHJS0DV2L0RhQZ8AuInRAsheBJpazD6MpGtFVMuBosgyeK0oxkKWHaRFwW8ERSEYXjOcRCT4BupyDH2dyNWNtDmh1W9UP_-qvl8LfFc7ZHdDjHSvL3pR7Jl6n2ys8YjeEDu85pe99yaDR1NZ_TXQ_OH3izBXbH9FdmY6fSH_3WW0xEkLk2Ly2k-c7uQLQKOoWP929CibV2fmyV1fCXI4vyJ3F6NfxYTvxuc4FdQcTY-ryDlqIhpoZlKTQzKSDJlU8ttEFfw7oFNubVGhyrmmtkEHTFIdKIZr4Ti_DMZ1I-1OSQUSlhbAcqKYG-kBFOcVYASQxtYk5aCeyR8kaGsOlZxHG4xl666YJlsBS9R8LITvEe-9JsWLanG68tHqJx-KTJiuwdgJ7KzE_mWnXjkAFXbHwK4LBJceGT4omrZee-TRMofnmHt6BG_V_9_V1VupOXGVY_e46rHZBvPbD_0DMmgWa7MCUCfpjx1Vv4MQZv46A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQgQX5wJGkSZw4zjENuyxIXVYqFcsFy4ltWBGFqqTi49cz47jVFiQkuEWRbTmZsd-bePKGkGeaN5kG2AmFLZoQES9UAn92R7Kfxjph1iXInvHTZfb6Ir_wH9zcvzDGGJd8ZiK8dGf5l6b7Xkx5iuJp5ZQDxMNoU6A2LBNMRCttr5MDngMXn5CD5dl59R4ryiW8DJk7m3zshTWnytUghKAwTSOGxZgE24Mjp9rvy6zsMc4bm36lfnxTXXcFfE5uE7md9phz8jnaDE3U_vxN0fH_n-sOueV5Ka1GR7pLrpn-Hrl5Ra3wkHyoevpqp-A50Nl8Qd9dDp_o-Ro2BUyyRc1nOn8TvlxUdAbwqGn9Yl4tXC_UpIBh6LH-aGg9Jsh3Zk2dKgpqRd8ny5Pjt_Vp6MszhC3EtUPIWgA2lcVa6FgVJgeT81LZwjKb5C283cQWzFqjU5UzHVuOyz3hmuuYtUIx9oBM-i-9eUgoBMq2BS6XQd9MiVixuAUumtrEmqIRLCDp1kqy9drlWEKjky6GiUtZ1TU4rETTSm_agDzfdVqN0h1_bz5D8--aou62uwGmkn4ZS5s3rIEYD3OJstTADg1oDtglBOOZtiYgh2je3SDelgE52jqT9HvEV4nCQqzECDUg4c7B_pjq6LR7U330j-2PyGRYb8wToE9D89SvkV_TuxEv
  priority: 102
  providerName: Unpaywall
Title An Intelligent BMS with Probabilistic MO-GSA based CDMAS Integrating Edge Controller Analytics
URI https://ieeexplore.ieee.org/document/9934838
https://www.proquest.com/docview/2734391495
https://ieeexplore.ieee.org/ielx7/6287639/6514899/09934838.pdf
https://doaj.org/article/f5b3b487237642e887990eac88364dfe
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB215QA98FUQgbLygWOzdeJ8OMc0tBSkLZWWlcqFyIltDqzSapsVgl_PjOONuoAQt1VkZ519nryZ2fEbgDc6axKNtBNKmzchMV6oJB12J2c_5joS1hXIXmTni-TDVXq1A0fjWRhjjCs-M1P66P7L19ftmlJlx8iliRRyF3ZzmQ1ntcZ8CjWQKNLcCwtFvDguqwqfAUPAOJ4Kar0kxRb5OI1-31Rly7-8v-5u1I_varm8QzVnj2C2WeRQYfJtuu6bafvzN_3G_32Kx_DQ-5ysHDbJE9gx3VPYv6NEeABfyo69H9U5e3YymzNK0bLLFRo8FdCSnjObfQzfzUtG1KdZ9XZWzt0s0pvA27BT_dWwaih-X5oVc4onpAP9DBZnp5-q89C3XghbjFn7ULRIWirhWmqucpMinFmhbG6FjdIWf8vI5sJao2OVCs1tRqYcZTrTXLRSCfEc9rrrzrwAhkGwbdFPS3BuoiRXgrfoZ8Y2siZvpAgg3mBSt16XnNpjLGsXn_CiHoCsCcjaAxnA0TjpZpDl-PfwEwJ7HEqa2u4CAlN7E61t2ogG4zeqE0pig29fZGrkJSlFlmhrAjggMMebeBwDONxsndrb_21NokGioOgzgHDcTn8sVbmmmFtLffn3b3kFD2jUkPw5hL1-tTav0R3qm4lLI0ycNUzg3uLisvz8C2pdBeI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2Vcigc-CoVCwV84Nhsk9hJnGMaWrbQFKRtpZ6wnNjmwCqtlqwQ_HpmnGzUBYS4RVHs2Hm234wzfgPwxqS1MEg7gXRZHRDjBVrSYXcy9uPQRNz5ANnzdHYp3l8lV1twMJ6Fsdb64DM7pUv_L99cNyvaKjtELhWSyztwNxFCJP1prXFHhVJI5Ek2SAtFYX5YlCX2Ap3AOJ5ySr4k-Qb9eJX-Ia3KhoW5s2pv9I_verG4RTYnD6FaN7OPMfk6XXX1tPn5m4Lj__bjETwYrE5W9MPkMWzZ9gncv6VFuAufi5adjvqcHTuq5ow2admnJU55CqElRWdWfQzezQtG5GdY-bYq5r4UKU5gNezYfLGs7MPfF3bJvOYJKUE_hcuT44tyFgzJF4IGvdYu4A3SlhahkSbUmU0Q0DTXLnPcRUmD3zJyGXfOmlgn3IQupckcpSY1IW-k5nwPttvr1j4Dhm6wa9BSE1hWaBlqHjZoacYucjarJZ9AvMZENYMyOSXIWCjvoYS56oFUBKQagJzAwVjophfm-PfjRwT2-CipavsbCIwaJqlySc1r9OAoUkjEFtdf5GpkJil5KoyzE9glMMdKBhwnsL8eOmpYAb4pkg3iOfmfEwjG4fRHU7VPi7nR1Od_f8tr2JldVGfq7PT8wwu4RyX6raB92O6WK_sSjaOufuXnxC_hIAaK
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELWge0Ac-FoQgQX5wJGkSZw4zjENuyxIXVYqFcsFy4ltWBGFqqTi49cz47jVFiQkuEWRbTmZsd-bePKGkGeaN5kG2AmFLZoQES9UAn92R7Kfxjph1iXInvHTZfb6Ir_wH9zcvzDGGJd8ZiK8dGf5l6b7Xkx5iuJp5ZQDxMNoU6A2LBNMRCttr5MDngMXn5CD5dl59R4ryiW8DJk7m3zshTWnytUghKAwTSOGxZgE24Mjp9rvy6zsMc4bm36lfnxTXXcFfE5uE7md9phz8jnaDE3U_vxN0fH_n-sOueV5Ka1GR7pLrpn-Hrl5Ra3wkHyoevpqp-A50Nl8Qd9dDp_o-Ro2BUyyRc1nOn8TvlxUdAbwqGn9Yl4tXC_UpIBh6LH-aGg9Jsh3Zk2dKgpqRd8ny5Pjt_Vp6MszhC3EtUPIWgA2lcVa6FgVJgeT81LZwjKb5C283cQWzFqjU5UzHVuOyz3hmuuYtUIx9oBM-i-9eUgoBMq2BS6XQd9MiVixuAUumtrEmqIRLCDp1kqy9drlWEKjky6GiUtZ1TU4rETTSm_agDzfdVqN0h1_bz5D8--aou62uwGmkn4ZS5s3rIEYD3OJstTADg1oDtglBOOZtiYgh2je3SDelgE52jqT9HvEV4nCQqzECDUg4c7B_pjq6LR7U330j-2PyGRYb8wToE9D89SvkV_TuxEv
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Intelligent+BMS+with+Probabilistic+MO-GSA+based+CDMAS+Integrating+Edge+Controller+Analytics&rft.jtitle=IEEE+access&rft.au=Sarin%2C+Cr&rft.au=Mani%2C+Geetha&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FACCESS.2022.3218683&rft.externalDocID=9934838
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon