Mapping and dynamic monitoring of military training-induced vegetation cover loss using Sentinel-2 images and method comparison
Sustainable management of the US Army installations is critical for military training and readiness of forces. However, monitoring military training-induced vegetation cover disturbances using remote sensing data is challenging due to the lack of methodology for optimizing the selection of spectral...
Saved in:
| Published in | Environmental monitoring and assessment Vol. 195; no. 2; p. 320 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.02.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0167-6369 1573-2959 1573-2959 |
| DOI | 10.1007/s10661-023-10918-2 |
Cover
| Abstract | Sustainable management of the US Army installations is critical for military training and readiness of forces. However, monitoring military training-induced vegetation cover disturbances using remote sensing data is challenging due to the lack of methodology for optimizing the selection of spectral variables or predictors and spatial modeling methods. This study aimed to propose and demonstrate a methodological solution for this purpose. The study was conducted in the Fort Riley installation in which three training areas were selected to map and monitor the training-induced vegetation cover loss. Sentinel-2 images and field observations of percentage vegetation cover (PVC) were combined at a spatial resolution of 10 m by 10 m to map PVC and its dynamics by comparison of two predictor selection methods and five spatial modeling algorithms based on a total of 304 spectral variables from the images before and after the training. Results showed that overall, the correlation-based predictor selection method reduced the relative root mean square error (RRMSE) of PVC predictions by 4.44% than the random forest (RF)-based predictor selection. Machine learning methods including RF, neural network, and support vector machine overall reduced the RRMSE of PVC predictions by 42.83% compared with multiple linear regression and k-nearest neighbors. Combining correlation-based predictor selection and RF modeling, coupled with leave one out cross validation, provided the greatest potential of increasing the accuracy of monitoring the vegetation cover loss. The findings provided useful implications to develop a near real-time system of monitoring military training-induced vegetation cover loss. |
|---|---|
| AbstractList | Sustainable management of the US Army installations is critical for military training and readiness of forces. However, monitoring military training-induced vegetation cover disturbances using remote sensing data is challenging due to the lack of methodology for optimizing the selection of spectral variables or predictors and spatial modeling methods. This study aimed to propose and demonstrate a methodological solution for this purpose. The study was conducted in the Fort Riley installation in which three training areas were selected to map and monitor the training-induced vegetation cover loss. Sentinel-2 images and field observations of percentage vegetation cover (PVC) were combined at a spatial resolution of 10 m by 10 m to map PVC and its dynamics by comparison of two predictor selection methods and five spatial modeling algorithms based on a total of 304 spectral variables from the images before and after the training. Results showed that overall, the correlation-based predictor selection method reduced the relative root mean square error (RRMSE) of PVC predictions by 4.44% than the random forest (RF)-based predictor selection. Machine learning methods including RF, neural network, and support vector machine overall reduced the RRMSE of PVC predictions by 42.83% compared with multiple linear regression and k-nearest neighbors. Combining correlation-based predictor selection and RF modeling, coupled with leave one out cross validation, provided the greatest potential of increasing the accuracy of monitoring the vegetation cover loss. The findings provided useful implications to develop a near real-time system of monitoring military training-induced vegetation cover loss. Sustainable management of the US Army installations is critical for military training and readiness of forces. However, monitoring military training-induced vegetation cover disturbances using remote sensing data is challenging due to the lack of methodology for optimizing the selection of spectral variables or predictors and spatial modeling methods. This study aimed to propose and demonstrate a methodological solution for this purpose. The study was conducted in the Fort Riley installation in which three training areas were selected to map and monitor the training-induced vegetation cover loss. Sentinel-2 images and field observations of percentage vegetation cover (PVC) were combined at a spatial resolution of 10 m by 10 m to map PVC and its dynamics by comparison of two predictor selection methods and five spatial modeling algorithms based on a total of 304 spectral variables from the images before and after the training. Results showed that overall, the correlation-based predictor selection method reduced the relative root mean square error (RRMSE) of PVC predictions by 4.44% than the random forest (RF)-based predictor selection. Machine learning methods including RF, neural network, and support vector machine overall reduced the RRMSE of PVC predictions by 42.83% compared with multiple linear regression and k-nearest neighbors. Combining correlation-based predictor selection and RF modeling, coupled with leave one out cross validation, provided the greatest potential of increasing the accuracy of monitoring the vegetation cover loss. The findings provided useful implications to develop a near real-time system of monitoring military training-induced vegetation cover loss.Sustainable management of the US Army installations is critical for military training and readiness of forces. However, monitoring military training-induced vegetation cover disturbances using remote sensing data is challenging due to the lack of methodology for optimizing the selection of spectral variables or predictors and spatial modeling methods. This study aimed to propose and demonstrate a methodological solution for this purpose. The study was conducted in the Fort Riley installation in which three training areas were selected to map and monitor the training-induced vegetation cover loss. Sentinel-2 images and field observations of percentage vegetation cover (PVC) were combined at a spatial resolution of 10 m by 10 m to map PVC and its dynamics by comparison of two predictor selection methods and five spatial modeling algorithms based on a total of 304 spectral variables from the images before and after the training. Results showed that overall, the correlation-based predictor selection method reduced the relative root mean square error (RRMSE) of PVC predictions by 4.44% than the random forest (RF)-based predictor selection. Machine learning methods including RF, neural network, and support vector machine overall reduced the RRMSE of PVC predictions by 42.83% compared with multiple linear regression and k-nearest neighbors. Combining correlation-based predictor selection and RF modeling, coupled with leave one out cross validation, provided the greatest potential of increasing the accuracy of monitoring the vegetation cover loss. The findings provided useful implications to develop a near real-time system of monitoring military training-induced vegetation cover loss. Sustainable management of the US Army installations is critical for military training and readiness of forces. However, monitoring military training-induced vegetation cover disturbances using remote sensing data is challenging due to the lack of methodology for optimizing the selection of spectral variables or predictors and spatial modeling methods. This study aimed to propose and demonstrate a methodological solution for this purpose. The study was conducted in the Fort Riley installation in which three training areas were selected to map and monitor the training-induced vegetation cover loss. Sentinel-2 images and field observations of percentage vegetation cover (PVC) were combined at a spatial resolution of 10 m by 10 m to map PVC and its dynamics by comparison of two predictor selection methods and five spatial modeling algorithms based on a total of 304 spectral variables from the images before and after the training. Results showed that overall, the correlation-based predictor selection method reduced the relative root mean square error (RRMSE) of PVC predictions by 4.44% than the random forest (RF)-based predictor selection. Machine learning methods including RF, neural network, and support vector machine overall reduced the RRMSE of PVC predictions by 42.83% compared with multiple linear regression and k-nearest neighbors. Combining correlation-based predictor selection and RF modeling, coupled with leave one out cross validation, provided the greatest potential of increasing the accuracy of monitoring the vegetation cover loss. The findings provided useful implications to develop a near real-time system of monitoring military training-induced vegetation cover loss. |
| ArticleNumber | 320 |
| Author | Wang, Guangxing Ban, Bibek Xu, Xiaoyu Howard, Heidi R. Chen, Shu |
| Author_xml | – sequence: 1 givenname: Xiaoyu surname: Xu fullname: Xu, Xiaoyu organization: School of Earth Systems and Sustainability, Southern Illinois University Carbondale, Environmental Resources and Policy, Southern Illinois University Carbondale – sequence: 2 givenname: Bibek surname: Ban fullname: Ban, Bibek organization: School of Earth Systems and Sustainability, Southern Illinois University Carbondale, Environmental Resources and Policy, Southern Illinois University Carbondale – sequence: 3 givenname: Heidi R. surname: Howard fullname: Howard, Heidi R. organization: US Army Construction Engineering Research Laboratory (USA-CERL) – sequence: 4 givenname: Shu surname: Chen fullname: Chen, Shu organization: School of Earth Systems and Sustainability, Southern Illinois University Carbondale, Environmental Resources and Policy, Southern Illinois University Carbondale – sequence: 5 givenname: Guangxing surname: Wang fullname: Wang, Guangxing email: gxwang@siu.edu organization: School of Earth Systems and Sustainability, Southern Illinois University Carbondale |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36689091$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkU1vFSEUhompsbfVP-DCkLhxg8Iww8fSNFZN2nShrgkXzr3SzMAIM03uyr9e5k4bky7qioQ8z4HzvmfoJKYICL1l9COjVH4qjArBCG04YVQzRZoXaMM6yUmjO32CNpQJSQQX-hSdlXJLKdWy1a_QKRdC6aps0N9rO44h7rGNHvtDtENweEgxTCkv12mHh9CHyeYDnrINsV6SEP3swOM72MNkp5AidukOMu5TKXgui_gD4hQi9KTBYbB7KMcXBph-J1_pYbQ5lBRfo5c72xd483Ceo1-XX35efCNXN1-_X3y-Io5zNREuQUjRgdBda6XvfCs1txQ0CFv3595pq6RT2gklZNNQ12ohtoJurfLOU36OPqxzx5z-zFAmM4TioO9thDQX06hWK9XyVv0flUIpxqTqKvr-CXqb5hzrIkeqU0yzhXr3QM3bAbwZc00kH8xjCxVQK-ByDTDDzriw5rpE3htGzVK4WQs3dWFzLNw0VW2eqI_Tn5X4KpVxKRnyv28_Y90D50G9gQ |
| CitedBy_id | crossref_primary_10_1007_s11356_023_27702_x crossref_primary_10_1109_JSTARS_2024_3355071 crossref_primary_10_1016_j_mtener_2024_101502 |
| Cites_doi | 10.1007/s12524-014-0423-3 10.3390/rs10081248 10.1016/j.rse.2019.111606 10.1139/er-2015-0039 10.1109/TGRS.2019.2938017 10.1016/j.jterra.2005.01.001 10.1016/j.rse.2018.12.032 10.1016/j.coldregions.2022.103510 10.1016/S0034-4257(02)00064-0 10.1080/01431160310001654923 10.1002/ldr.794 10.1007/s10342-014-0838-y 10.1016/j.rse.2011.07.002 10.1007/s00267-004-0373-6 10.3390/rs11243038 10.1155/2012/436537 10.1007/s00267-012-9873-y 10.1007/s11676-020-01155-1 10.1016/j.jterra.2018.02.001 10.1016/S0034-4257(96)00067-3 10.1162/EVCO_r_00180 10.13031/2013.42683 10.1016/j.chemolab.2004.01.002 10.1016/j.landusepol.2017.01.025 10.3390/rs12182884 10.3390/rs71115114 10.1186/s12880-015-0068-x 10.1007/s00267-014-0284-0 10.1023/A:1010933404324 10.1016/j.jterra.2003.09.004 10.1016/j.jenvman.2014.08.002 10.1016/j.rse.2007.03.032 10.1117/1.JRS.9.097695 10.1111/wej.12681 10.1007/BF02400080 10.1080/01431169608948714 10.1080/02757259509532298 10.1016/j.rse.2014.10.004 10.1080/17538947.2014.990526 10.1007/s12524-021-01475-7 10.1007/s00267-009-9363-z 10.3390/rs12111884 10.1080/01621459.2012.695654 10.3390/rs10010050 10.1007/s00267-007-9064-4 10.5787/42-2-1097 10.1155/2017/1353691 10.1016/0034-4257(88)90106-X 10.1016/j.foreco.2009.06.056 10.1016/j.agwat.2020.106081 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG. The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG. – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QH 7QL 7SN 7ST 7T7 7TG 7TN 7U7 7UA 7WY 7WZ 7X7 7XB 87Z 88E 88I 8AO 8C1 8FD 8FI 8FJ 8FK 8FL ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BEZIV BHPHI C1K CCPQU DWQXO F1W FR3 FRNLG FYUFA F~G GHDGH GNUQQ H97 HCIFZ K60 K6~ K9. KL. L.- L.G M0C M0S M1P M2P M7N P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQBIZ PQBZA PQEST PQQKQ PQUKI PYCSY Q9U SOI 7X8 7S9 L.6 |
| DOI | 10.1007/s10661-023-10918-2 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aqualine Bacteriology Abstracts (Microbiology B) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Toxicology Abstracts Water Resources Abstracts ProQuest ABI/INFORM Collection ABI/INFORM Global (PDF only) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest : Agricultural & Environmental Science Collection [unlimited simultaneous users] ProQuest Central Essentials ProQuest Central Business Premium Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) Health Research Premium Collection ABI/INFORM Global (Corporate) Health Research Premium Collection (Alumni) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) Meteorological & Geoastrophysical Abstracts - Academic ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest ABI/INFORM Global Health & Medical Collection (Alumni Edition) Medical Database Science Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Sustainability Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Health & Medical Research Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Business Premium Collection ABI/INFORM Global ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Business Collection Ecology Abstracts Aqualine ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Health & Medical Research Collection Oceanic Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) ProQuest Public Health ABI/INFORM Global (Alumni Edition) ProQuest Central Basic Toxicology Abstracts ProQuest Science Journals ProQuest Medical Library ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Business Collection (Alumni Edition) MEDLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Ecology Environmental Sciences |
| EISSN | 1573-2959 |
| EndPage | 320 |
| ExternalDocumentID | 36689091 10_1007_s10661_023_10918_2 |
| Genre | Journal Article |
| GroupedDBID | --- -5A -5G -5~ -BR -EM -XX -Y2 -~C ..I .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5QI 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD EMB EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L8X LAK LLZTM M0C M1P M2P M4Y MA- ML. N2Q NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM OVD P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z8M Z8N Z8O Z8P Z8Q Z8S Z8T Z8U Z8W Z8Z Z92 ZCA ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ESTFP PHGZM PHGZT PJZUB PPXIY PUEGO CGR CUY CVF ECM EIF NPM 7QH 7QL 7SN 7ST 7T7 7TG 7TN 7U7 7UA 7XB 8FD 8FK C1K F1W FR3 H97 K9. KL. L.- L.G M7N P64 PKEHL PQEST PQUKI Q9U SOI 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c338t-37e6765e6954a7d5d4793a0e9e6a0233dc9a87c89c6867220c4966b60ba8dcd03 |
| IEDL.DBID | U2A |
| ISSN | 0167-6369 1573-2959 |
| IngestDate | Mon Sep 29 05:46:55 EDT 2025 Sun Sep 28 07:08:52 EDT 2025 Tue Oct 07 06:16:54 EDT 2025 Wed Feb 19 02:26:09 EST 2025 Wed Oct 01 03:32:38 EDT 2025 Thu Apr 24 23:11:09 EDT 2025 Fri Feb 21 02:43:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Sentinel-2 imagery Installation Spectral variable selection Military training-induced disturbance Percentage vegetation cover Spatial modeling |
| Language | English |
| License | 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c338t-37e6765e6954a7d5d4793a0e9e6a0233dc9a87c89c6867220c4966b60ba8dcd03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 36689091 |
| PQID | 2768581915 |
| PQPubID | 54151 |
| PageCount | 1 |
| ParticipantIDs | proquest_miscellaneous_2849884348 proquest_miscellaneous_2768811785 proquest_journals_2768581915 pubmed_primary_36689091 crossref_citationtrail_10_1007_s10661_023_10918_2 crossref_primary_10_1007_s10661_023_10918_2 springer_journals_10_1007_s10661_023_10918_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Netherlands – name: Dordrecht |
| PublicationSubtitle | An International Journal Devoted to Progress in the Use of Monitoring Data in Assessing Environmental Risks to Humans and the Environment |
| PublicationTitle | Environmental monitoring and assessment |
| PublicationTitleAbbrev | Environ Monit Assess |
| PublicationTitleAlternate | Environ Monit Assess |
| PublicationYear | 2023 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | TomppoEOlssonHStahlGNilssonMHagnerOKatilaMCombining national forest inventory field plots and remote sensing data for forest databasesRemote Sensing of Environment20081121982199910.1016/j.rse.2007.03.032 XueJSuBSignificant remote sensing vegetation indices: a review of developments and applicationsJournal of Sensors2017201713536911:CAS:528:DC%2BC1cXit1ShsrfK10.1155/2017/1353691 ThissenUPeppersMÜstünBMelssenWJBuydensMCComparing support vector machines to PLS for spectral regression applicationsChemometrics and Intelligent Laborary Systems20047321691791:CAS:528:DC%2BD2cXnvFGmu7Y%3D10.1016/j.chemolab.2004.01.002 CuiYSunHWangGLiCXuXA probability-based spectral unmixing analysis for mapping percentage vegetation cover of arid and semi-arid areasRemote Sensing201911303810.3390/rs11243038 LiRZhongWZhuLFeature screening via distance correlation learningJournal of American Statistical Association2012107499112911391:CAS:528:DC%2BC1cXptVClu7k%3D10.1080/01621459.2012.695654 GaoBCNDWI—A normalized difference water index for remote sensing of vegetation liquid water from spaceRemote Sensing of Environment199658325726610.1016/S0034-4257(96)00067-3 Braaten, J., Schwehr, K., & Hyushchenko, S. (2020). More accurate and flexible cloud masking for Sentinel-2 images. Retrieved July 31, 2020, from https://medium.com/google-earth/more-accurate-and-flexible-cloud-masking-for-sentinel-2-images-766897a9ba5f HowardHRManandharSWangQMcmillanJMQieGLiuXThapaKWangGSpatially characterizing land surface deformation and permafrost active layer thickness for Donnelly installation of Alaska using DInSAR and MODIS dataGold Regions Science and Technology202210.1016/j.coldregions.2022.103510 WangGOyanaTZhangMAdu-PrahSZengSLinHSeJMapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite imagesForest Ecology and Management200925871275128310.1016/j.foreco.2009.06.056 MagagulaBThe environmental management system of the South African National Defence Force at The Grahamstown Military InstallationScientia Militaria: South African Journal of Military Studies201442214316310.5787/42-2-1097 BreimanLRandom forestsMachine Learning200145153210.1023/A:1010933404324 SunHQieGWangGTanYLiJPengYMaZLuoCIncreasing the accuracy of mapping urban forest carbon density by combining spatial modeling and spectral unmixing analysisRemote Sensing20157151141513910.3390/rs71115114 SongRLinHWangGYanEYeZImproving selection of spectral variables for vegetation classification of east Dongting Lake, China, using a Gaofen-1 imageRemote Sensing20181015010.3390/rs10010050 LeisSAEngleDMLeslieDLFehmiJSEffects of short- and long-term disturbance resulting from military maneuvers on vegetation and soils in a mixed prairie areaEnvironmental Management200536684986110.1007/s00267-004-0373-6 Baez-VillanuevaOMZambrano-BigiariniMBeckHEMcNamaraIRibbeLNaudittABirkelCVerbistKGiraldo-OsorioJDThinhNXRF-MEP: A novel random forest method for merging gridded precipitation products and ground-based measurementsRemote Sensing of Environment2020239202011160610.1016/j.rse.2019.111606 LawrenceMJStembergerHLJZolderdoAJStruthersDPCookeSJThe effects of modern war and military activities on biodiversity and the environmentEnvironmental Reviews201523444346010.1139/er-2015-0039 LiuQFuLWangGLiSLiZChenEPangYHuKImproving estimation of forest canopy cover by introducing loss ratio of laser pulses using airborne LiDARIEEE Transactions on Geoscience and Remote Sensing201958156758510.1109/TGRS.2019.2938017 Lyon, J. G. (1998). A change detection experiment using vegetation indices. Photogrammetric Engineering and Remote Sensing, 64(2), 143–150. CiteSeerX 10.1.1.462.2056. Guretzky, J., Anderson, A. B., & Fehmi, J. (2006). Grazing and military vehicle effects on grassland soils and vegetation. Great Plains Research, 51–61. Retrieved August 15, 2021, from https://www.jstor.org/stable/23779725 McRobertsRENelsonMDWendtDGStratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors techniqueRemote Sensing of Environment20028245746810.1016/S0034-4257(02)00064-0 JiangFSmithARKutiaMWangGLiuHSunHA modified KNN method for mapping the leaf area index in arid and semi-arid areas of ChinaRemote Sensing20201211188410.3390/rs12111884 DiersingVEShawRBTazikDJUS Army land condition-trend analysis (LCTA) programEnvironmental Management199216340541410.1007/BF02400080 HowardHRWangGSingerSAndersonABModeling and prediction of land condition for Fort Riley military installationTransactions of the ASABE201356264365210.13031/2013.42683 Rijal, S. (2017). Monitoring and assessment of military installation land condition under training disturbance using remote sensing. Dissertations, Southern Illinois of University. Retrieved August 15, 2021, from http://opensiuc.lib.siu.edu/dissertations/1399 RijalSWangGWoodfordPBHowardHRHutchinsonJMSHutchinsonSSchoofJOyanaTJLiRParkLODetection of gullies in Fort Riley military installation using LiDAR derived high resolution DEMJournal of Terramechanics201877152210.1016/j.jterra.2018.02.001 HueteARA soil-adjusted vegetation index (SAVI)Remote Sensing of Environment198825329530910.1016/0034-4257(88)90106-X Aziz TahaAMetrics for evaluating 3D medical image segmentation: Analysis, selection, and toolBMC Medical Imaging2015152912810.1186/s12880-015-0068-x PôçasICaleraACamposICunhaMRemote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approachesAgricultural Water Management202023310608110.1016/j.agwat.2020.106081 McFeetersSKThe use of the Normalized Difference Water Index (NDWI) in the delineation of open water featuresInternational Journal of Remote Sensing19961771425143210.1080/01431169608948714 McRobertsREMagnussenSTomppoEOChiriciGParametric, bootstrap, and jackknife variance estimators for the k-Nearest Neighbors technique with illustrations using forest inventory and satellite image dataRemote Sensing of Environment20111153165317410.1016/j.rse.2011.07.002 BouvierMDurrieuSFournierRARenaudJPGeneralizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR dataRemote Sensing of Environment201515632233410.1016/j.rse.2014.10.004 HaugenLBAyersPDAndersonABVehicle movement patterns and vegetative impacts during military training exercisesJournal of Terramechanics2003402839510.1016/j.jterra.2003.09.004 Wald, M. M. (2010). Assessing military use of training areas using a geographic information system. Retrieved August 15, 2021, from https://apps.dtic.mil/sti/pdfs/ADA567038.pdf US Army. (1994). Integrated natural resource management plan for Fort Riley, Kansas. Directorate of Engineering and Housing, Environmental and Natural Resources Division. Berger and Associates, Chicago, Illinois, USA. DongTLiuJShangJQianBMaBKovacsJMShiYAssessment of red-edge vegetation indices for crop leaf area index estimationRemote Sensing of Environment201922213314310.1016/j.rse.2018.12.032 HuangSTangLHupyJPWangYShaoGA commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensingJournal of Forest Research2021321610.1007/s11676-020-01155-1 BonyadiMRMichalewiczZParticle swarm optimization for single objective continuous space problems: A reviewEvolutionary Computation201725115410.1162/EVCO_r_00180 HutchinsonJMSJacquinAHutchinsonSLVerbesseltJMonitoring vegetation change and dynamics on U.S. Army training lands using satellite image time series analysisJournal of Environmental Management20151503553661:STN:280:DC%2BC2MzitVKmsw%3D%3D10.1016/j.jenvman.2014.08.002 SunHWangQWangGLinHLuoPLiJZengSXuXRenLOptimizing kNN for mapping vegetation cover of arid and semi-arid areas using Landsat imageRemote Sensing2018108124810.3390/rs10081248 WangGGertnerGZAndersonABHowardHRGebhartDAlthoffDDavisTWoodfordPSpatial variability and temporal dynamics analysis of soil erosion due to military land use activities: Uncertainty and implications for land managementLand Degradation and Development20071851954210.1002/ldr.794 LuDChenQWangGLiuLMoranEA survey of remote sensing-based aboveground biomass estimation methodsInternational Journal of Digital Earth2016916310510.1080/17538947.2014.990526 SNAP (version 6.0.4). (2014). Windows. European Space Agency. DicksonTLWilseyBJBusbyRRGebhartDLGrassland plant composition alters vehicular disturbance effects in Kansas, USAEnvironmental Management200841567668410.1007/s00267-007-9064-4 SingerSWangGHowardHRAndersonABEnvironmental condition assessment of US military installations using GIS based spatial multi-criteria decision analysisEnvironmental Management201250232934010.1007/s00267-012-9873-y SharifiADevelopment of a method for flood detection based on Sentinel-1 images and classifier algorithmsJournal of the Chartered Institution of Water and Environmental Management202135392492910.1111/wej.12681 WangGMurphyDOllerAHowardHRAndersonABRijalSMyersNRWoodfordPSpatial and temporal assessment of cumulative disturbance impacts due to military training, burning, haying, and their interactions on land condition of fort rileyEnvironmental Management201454151661:CAS:528:DC%2BC2MXhslShs77O10.1007/s00267-014-0284-0 Agisoft LLC. (2016). Agisoft PhotoScan User Manual. Pp. 1–37. Micasense. (2017). MicaSense RedEdge TM 3 Multispectral Camera User Manual. Pp. 1–27. SharifiAAminiJSri SumantyoJTTateishiRSpeckle reduction of PolSAR images in forest regions using fast ICA algorithmJournal of the Indian Society of Remote Sensing201443233934610.1007/s12524-014-0423-3 FlemingAWangGMcRobertsRComparison of methods toward multi-scale forest carbon mapping and spatial uncertainty analysis: Combining national forest inventory plot data and Landsat TM imagesEuropean Journal of Forest Research2014134112513710.1007/s10342-014-0838-y LuDChenQWangGMoranEBatistellaMZhangMLaurinGVSaahDEstimation and uncertainty analysis of aboveground forest biomass with Landsat and LiDAR data: Brief overview and case studiesInternational Journal of Forestry Research20121 TL Dickson (10918_CR11) 2008; 41 Q Liu (10918_CR29) 2020; 12 Y Cui (10918_CR10) 2019; 11 AR Huete (10918_CR22) 1988; 25 10918_CR41 B Magagula (10918_CR34) 2014; 42 A Bannari (10918_CR5) 1995; 13 10918_CR48 G Wang (10918_CR58) 2014; 54 A Sharifi (10918_CR46) 2022; 50 U Thissen (10918_CR52) 2004; 73 M Bouvier (10918_CR7) 2015; 156 AB Anderson (10918_CR2) 2005; 42 VE Diersing (10918_CR12) 1992; 16 A Sharifi (10918_CR44) 2015; 9 A Sharifi (10918_CR45) 2014; 43 SK McFeeters (10918_CR35) 1996; 17 G Wang (10918_CR56) 2009; 44 MJ Lawrence (10918_CR26) 2015; 23 R Zentelis (10918_CR62) 2017; 63 G Wang (10918_CR59) 2009; 258 A Fleming (10918_CR14) 2014; 134 LB Haugen (10918_CR18) 2003; 40 10918_CR55 J Xue (10918_CR61) 2017; 2017 RE McRoberts (10918_CR36) 2011; 115 10918_CR54 JMS Hutchinson (10918_CR23) 2015; 150 10918_CR17 10918_CR16 HR Howard (10918_CR19) 2022 H Sun (10918_CR50) 2015; 7 RE McRoberts (10918_CR37) 2002; 82 O Mutanga (10918_CR39) 2004; 25 D Lu (10918_CR31) 2016; 9 H Sun (10918_CR51) 2018; 10 MR Bonyadi (10918_CR6) 2017; 25 L Breiman (10918_CR9) 2001; 45 10918_CR60 SA Leis (10918_CR27) 2005; 36 S Rijal (10918_CR42) 2018; 77 S Huang (10918_CR21) 2021; 32 10918_CR63 10918_CR24 A Sharifi (10918_CR43) 2021; 35 I Pôças (10918_CR40) 2020; 233 BC Gao (10918_CR15) 1996; 58 A Aziz Taha (10918_CR3) 2015; 15 D Lu (10918_CR32) 2012; 1 HR Howard (10918_CR20) 2013; 56 G Wang (10918_CR57) 2007; 18 R Li (10918_CR28) 2012; 107 10918_CR33 OM Baez-Villanueva (10918_CR4) 2020; 239 Q Liu (10918_CR30) 2019; 58 10918_CR38 10918_CR1 10918_CR8 R Song (10918_CR49) 2018; 10 T Dong (10918_CR13) 2019; 222 F Jiang (10918_CR25) 2020; 12 S Singer (10918_CR47) 2012; 50 E Tomppo (10918_CR53) 2008; 112 |
| References_xml | – reference: Aziz TahaAMetrics for evaluating 3D medical image segmentation: Analysis, selection, and toolBMC Medical Imaging2015152912810.1186/s12880-015-0068-x – reference: BouvierMDurrieuSFournierRARenaudJPGeneralizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR dataRemote Sensing of Environment201515632233410.1016/j.rse.2014.10.004 – reference: Lyon, J. G. (1998). A change detection experiment using vegetation indices. Photogrammetric Engineering and Remote Sensing, 64(2), 143–150. CiteSeerX 10.1.1.462.2056. – reference: HueteARA soil-adjusted vegetation index (SAVI)Remote Sensing of Environment198825329530910.1016/0034-4257(88)90106-X – reference: Jensen, J. R. (2016). Introductory digital image processing: A remote sensing perspective. Pearson Education, Inc., Glenview, IL 60025, USA. – reference: TomppoEOlssonHStahlGNilssonMHagnerOKatilaMCombining national forest inventory field plots and remote sensing data for forest databasesRemote Sensing of Environment20081121982199910.1016/j.rse.2007.03.032 – reference: LuDChenQWangGMoranEBatistellaMZhangMLaurinGVSaahDEstimation and uncertainty analysis of aboveground forest biomass with Landsat and LiDAR data: Brief overview and case studiesInternational Journal of Forestry Research2012111610.1155/2012/436537 – reference: McRobertsRENelsonMDWendtDGStratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors techniqueRemote Sensing of Environment20028245746810.1016/S0034-4257(02)00064-0 – reference: SingerSWangGHowardHRAndersonABEnvironmental condition assessment of US military installations using GIS based spatial multi-criteria decision analysisEnvironmental Management201250232934010.1007/s00267-012-9873-y – reference: MutangaOSkidmoreAKNarrow band vegetation indices overcome the saturation problem in biomass estimationInternational Journal of Remote Sensing200425193999401410.1080/01431160310001654923 – reference: RijalSWangGWoodfordPBHowardHRHutchinsonJMSHutchinsonSSchoofJOyanaTJLiRParkLODetection of gullies in Fort Riley military installation using LiDAR derived high resolution DEMJournal of Terramechanics201877152210.1016/j.jterra.2018.02.001 – reference: SharifiAAminiJSri SumantyoJTTateishiRSpeckle reduction of PolSAR images in forest regions using fast ICA algorithmJournal of the Indian Society of Remote Sensing201443233934610.1007/s12524-014-0423-3 – reference: CuiYSunHWangGLiCXuXA probability-based spectral unmixing analysis for mapping percentage vegetation cover of arid and semi-arid areasRemote Sensing201911303810.3390/rs11243038 – reference: SharifiAMahdipourHMoradiETariqAAgricultural field extraction with deep learning algorithm and satellite imageryJournal of the Indian Society of Remote Sensing202250241742310.1007/s12524-021-01475-7 – reference: LawrenceMJStembergerHLJZolderdoAJStruthersDPCookeSJThe effects of modern war and military activities on biodiversity and the environmentEnvironmental Reviews201523444346010.1139/er-2015-0039 – reference: Zhang, H., Nettleton, D., & Zhu, Z. (2019). Regression-enhanced random forests. Retrieved May 10, 2022, from arXiv preprint arXiv:1904.10416. https://arxiv.org/pdf/1904.10416.pdf – reference: BonyadiMRMichalewiczZParticle swarm optimization for single objective continuous space problems: A reviewEvolutionary Computation201725115410.1162/EVCO_r_00180 – reference: GaoBCNDWI—A normalized difference water index for remote sensing of vegetation liquid water from spaceRemote Sensing of Environment199658325726610.1016/S0034-4257(96)00067-3 – reference: ZentelisRLindenmayerDRobertsJDDoversSPrinciples for integrated environmental management of military training areasLand Use Policy20176318619510.1016/j.landusepol.2017.01.025 – reference: JiangFSmithARKutiaMWangGLiuHSunHA modified KNN method for mapping the leaf area index in arid and semi-arid areas of ChinaRemote Sensing20201211188410.3390/rs12111884 – reference: SharifiAAminiJForest biomass estimation using synthetic aperture radar polarimetric featuresJournal of Applied Remote Sensing20159109769510.1117/1.JRS.9.097695 – reference: Rijal, S. (2017). Monitoring and assessment of military installation land condition under training disturbance using remote sensing. Dissertations, Southern Illinois of University. Retrieved August 15, 2021, from http://opensiuc.lib.siu.edu/dissertations/1399 – reference: SunHQieGWangGTanYLiJPengYMaZLuoCIncreasing the accuracy of mapping urban forest carbon density by combining spatial modeling and spectral unmixing analysisRemote Sensing20157151141513910.3390/rs71115114 – reference: FlemingAWangGMcRobertsRComparison of methods toward multi-scale forest carbon mapping and spatial uncertainty analysis: Combining national forest inventory plot data and Landsat TM imagesEuropean Journal of Forest Research2014134112513710.1007/s10342-014-0838-y – reference: HowardHRManandharSWangQMcmillanJMQieGLiuXThapaKWangGSpatially characterizing land surface deformation and permafrost active layer thickness for Donnelly installation of Alaska using DInSAR and MODIS dataGold Regions Science and Technology202210.1016/j.coldregions.2022.103510 – reference: LeisSAEngleDMLeslieDLFehmiJSEffects of short- and long-term disturbance resulting from military maneuvers on vegetation and soils in a mixed prairie areaEnvironmental Management200536684986110.1007/s00267-004-0373-6 – reference: HuangSTangLHupyJPWangYShaoGA commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensingJournal of Forest Research2021321610.1007/s11676-020-01155-1 – reference: SNAP (version 6.0.4). (2014). Windows. European Space Agency. – reference: SongRLinHWangGYanEYeZImproving selection of spectral variables for vegetation classification of east Dongting Lake, China, using a Gaofen-1 imageRemote Sensing20181015010.3390/rs10010050 – reference: Baez-VillanuevaOMZambrano-BigiariniMBeckHEMcNamaraIRibbeLNaudittABirkelCVerbistKGiraldo-OsorioJDThinhNXRF-MEP: A novel random forest method for merging gridded precipitation products and ground-based measurementsRemote Sensing of Environment2020239202011160610.1016/j.rse.2019.111606 – reference: SunHWangQWangGLinHLuoPLiJZengSXuXRenLOptimizing kNN for mapping vegetation cover of arid and semi-arid areas using Landsat imageRemote Sensing2018108124810.3390/rs10081248 – reference: WangGOyanaTZhangMAdu-PrahSZengSLinHSeJMapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite imagesForest Ecology and Management200925871275128310.1016/j.foreco.2009.06.056 – reference: XueJSuBSignificant remote sensing vegetation indices: a review of developments and applicationsJournal of Sensors2017201713536911:CAS:528:DC%2BC1cXit1ShsrfK10.1155/2017/1353691 – reference: DongTLiuJShangJQianBMaBKovacsJMShiYAssessment of red-edge vegetation indices for crop leaf area index estimationRemote Sensing of Environment201922213314310.1016/j.rse.2018.12.032 – reference: US Army. (1994). Integrated natural resource management plan for Fort Riley, Kansas. Directorate of Engineering and Housing, Environmental and Natural Resources Division. Berger and Associates, Chicago, Illinois, USA. – reference: LiRZhongWZhuLFeature screening via distance correlation learningJournal of American Statistical Association2012107499112911391:CAS:528:DC%2BC1cXptVClu7k%3D10.1080/01621459.2012.695654 – reference: WCFR. (2022). Weather and climate at Fort Riley Army Base in Riley, KS. Retrieved November 21, 2022, from https://www.milbases.com/kansas/fort-riley-army-base/weather – reference: SharifiADevelopment of a method for flood detection based on Sentinel-1 images and classifier algorithmsJournal of the Chartered Institution of Water and Environmental Management202135392492910.1111/wej.12681 – reference: Wald, M. M. (2010). Assessing military use of training areas using a geographic information system. Retrieved August 15, 2021, from https://apps.dtic.mil/sti/pdfs/ADA567038.pdf – reference: McFeetersSKThe use of the Normalized Difference Water Index (NDWI) in the delineation of open water featuresInternational Journal of Remote Sensing19961771425143210.1080/01431169608948714 – reference: AndersonABPalazzoAJAyersPDFehmiJShoopSSullivanPAssessing the impacts of military vehicle traffic on natural areas. Introduction to the special issue and review of the relevant military vehicle impact literatureJournal of Terramechanics2005423–414315810.1016/j.jterra.2005.01.001 – reference: Micasense. (2017). MicaSense RedEdge TM 3 Multispectral Camera User Manual. Pp. 1–27. – reference: ThissenUPeppersMÜstünBMelssenWJBuydensMCComparing support vector machines to PLS for spectral regression applicationsChemometrics and Intelligent Laborary Systems20047321691791:CAS:528:DC%2BD2cXnvFGmu7Y%3D10.1016/j.chemolab.2004.01.002 – reference: Braaten, J., Schwehr, K., & Hyushchenko, S. (2020). More accurate and flexible cloud masking for Sentinel-2 images. Retrieved July 31, 2020, from https://medium.com/google-earth/more-accurate-and-flexible-cloud-masking-for-sentinel-2-images-766897a9ba5f – reference: DiersingVEShawRBTazikDJUS Army land condition-trend analysis (LCTA) programEnvironmental Management199216340541410.1007/BF02400080 – reference: BreimanLRandom forestsMachine Learning200145153210.1023/A:1010933404324 – reference: HowardHRWangGSingerSAndersonABModeling and prediction of land condition for Fort Riley military installationTransactions of the ASABE201356264365210.13031/2013.42683 – reference: HutchinsonJMSJacquinAHutchinsonSLVerbesseltJMonitoring vegetation change and dynamics on U.S. Army training lands using satellite image time series analysisJournal of Environmental Management20151503553661:STN:280:DC%2BC2MzitVKmsw%3D%3D10.1016/j.jenvman.2014.08.002 – reference: Google Earth. (2020). More accurate and flexible cloud masking for Sentinel-2 images. Retrieved November 9, 2020, from https://medium.com/google-earth/more-accurate-and-flexible-cloud-masking-for-sentinel-2-images-766897a9ba5f – reference: MagagulaBThe environmental management system of the South African National Defence Force at The Grahamstown Military InstallationScientia Militaria: South African Journal of Military Studies201442214316310.5787/42-2-1097 – reference: WangGGertnerGZAndersonABHowardHRGebhartDAlthoffDDavisTWoodfordPSpatial variability and temporal dynamics analysis of soil erosion due to military land use activities: Uncertainty and implications for land managementLand Degradation and Development20071851954210.1002/ldr.794 – reference: McRobertsREMagnussenSTomppoEOChiriciGParametric, bootstrap, and jackknife variance estimators for the k-Nearest Neighbors technique with illustrations using forest inventory and satellite image dataRemote Sensing of Environment20111153165317410.1016/j.rse.2011.07.002 – reference: HaugenLBAyersPDAndersonABVehicle movement patterns and vegetative impacts during military training exercisesJournal of Terramechanics2003402839510.1016/j.jterra.2003.09.004 – reference: PôçasICaleraACamposICunhaMRemote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approachesAgricultural Water Management202023310608110.1016/j.agwat.2020.106081 – reference: WangGMurphyDOllerAHowardHRAndersonABRijalSMyersNRWoodfordPSpatial and temporal assessment of cumulative disturbance impacts due to military training, burning, haying, and their interactions on land condition of fort rileyEnvironmental Management201454151661:CAS:528:DC%2BC2MXhslShs77O10.1007/s00267-014-0284-0 – reference: DicksonTLWilseyBJBusbyRRGebhartDLGrassland plant composition alters vehicular disturbance effects in Kansas, USAEnvironmental Management200841567668410.1007/s00267-007-9064-4 – reference: LuDChenQWangGLiuLMoranEA survey of remote sensing-based aboveground biomass estimation methodsInternational Journal of Digital Earth2016916310510.1080/17538947.2014.990526 – reference: Guretzky, J., Anderson, A. B., & Fehmi, J. (2006). Grazing and military vehicle effects on grassland soils and vegetation. Great Plains Research, 51–61. Retrieved August 15, 2021, from https://www.jstor.org/stable/23779725 – reference: LiuQFuLWangGLiSLiZChenEPangYHuKImproving estimation of forest canopy cover by introducing loss ratio of laser pulses using airborne LiDARIEEE Transactions on Geoscience and Remote Sensing201958156758510.1109/TGRS.2019.2938017 – reference: Agisoft LLC. (2016). Agisoft PhotoScan User Manual. Pp. 1–37. – reference: LiuQFuLChenQWangGLuoPSharmaRPHePLiMWangMDuanGAnalysis of the spatial differences in canopy height models from UAV LiDAR and photogrammetryRemote Sensing202012288410.3390/rs12182884 – reference: WangGGertnerGZAndersonABHowardHRSimulating spatial pattern and dynamics of military training impacts for allocation of land repair using imagesEnvironmental Management20094481082310.1007/s00267-009-9363-z – reference: BannariAMorinDBonnFHueteARA review of vegetation indicesRemote Sensing Reviews1995131–29512010.1080/02757259509532298 – volume: 43 start-page: 339 issue: 2 year: 2014 ident: 10918_CR45 publication-title: Journal of the Indian Society of Remote Sensing doi: 10.1007/s12524-014-0423-3 – ident: 10918_CR1 – volume: 10 start-page: 1248 issue: 8 year: 2018 ident: 10918_CR51 publication-title: Remote Sensing doi: 10.3390/rs10081248 – volume: 239 start-page: 111606 issue: 2020 year: 2020 ident: 10918_CR4 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2019.111606 – volume: 23 start-page: 443 issue: 4 year: 2015 ident: 10918_CR26 publication-title: Environmental Reviews doi: 10.1139/er-2015-0039 – volume: 58 start-page: 567 issue: 1 year: 2019 ident: 10918_CR30 publication-title: IEEE Transactions on Geoscience and Remote Sensing doi: 10.1109/TGRS.2019.2938017 – volume: 42 start-page: 143 issue: 3–4 year: 2005 ident: 10918_CR2 publication-title: Journal of Terramechanics doi: 10.1016/j.jterra.2005.01.001 – volume: 222 start-page: 133 year: 2019 ident: 10918_CR13 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2018.12.032 – year: 2022 ident: 10918_CR19 publication-title: Gold Regions Science and Technology doi: 10.1016/j.coldregions.2022.103510 – volume: 82 start-page: 457 year: 2002 ident: 10918_CR37 publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(02)00064-0 – volume: 25 start-page: 3999 issue: 19 year: 2004 ident: 10918_CR39 publication-title: International Journal of Remote Sensing doi: 10.1080/01431160310001654923 – volume: 18 start-page: 542 issue: 519 year: 2007 ident: 10918_CR57 publication-title: Land Degradation and Development doi: 10.1002/ldr.794 – volume: 134 start-page: 125 issue: 1 year: 2014 ident: 10918_CR14 publication-title: European Journal of Forest Research doi: 10.1007/s10342-014-0838-y – volume: 115 start-page: 3165 year: 2011 ident: 10918_CR36 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2011.07.002 – volume: 36 start-page: 849 issue: 6 year: 2005 ident: 10918_CR27 publication-title: Environmental Management doi: 10.1007/s00267-004-0373-6 – volume: 11 start-page: 3038 year: 2019 ident: 10918_CR10 publication-title: Remote Sensing doi: 10.3390/rs11243038 – volume: 1 start-page: 1 year: 2012 ident: 10918_CR32 publication-title: International Journal of Forestry Research doi: 10.1155/2012/436537 – volume: 50 start-page: 329 issue: 2 year: 2012 ident: 10918_CR47 publication-title: Environmental Management doi: 10.1007/s00267-012-9873-y – volume: 32 start-page: 1 year: 2021 ident: 10918_CR21 publication-title: Journal of Forest Research doi: 10.1007/s11676-020-01155-1 – volume: 77 start-page: 15 year: 2018 ident: 10918_CR42 publication-title: Journal of Terramechanics doi: 10.1016/j.jterra.2018.02.001 – ident: 10918_CR54 – volume: 58 start-page: 257 issue: 3 year: 1996 ident: 10918_CR15 publication-title: Remote Sensing of Environment doi: 10.1016/S0034-4257(96)00067-3 – ident: 10918_CR33 – volume: 25 start-page: 1 issue: 1 year: 2017 ident: 10918_CR6 publication-title: Evolutionary Computation doi: 10.1162/EVCO_r_00180 – volume: 56 start-page: 643 issue: 2 year: 2013 ident: 10918_CR20 publication-title: Transactions of the ASABE doi: 10.13031/2013.42683 – volume: 73 start-page: 169 issue: 2 year: 2004 ident: 10918_CR52 publication-title: Chemometrics and Intelligent Laborary Systems doi: 10.1016/j.chemolab.2004.01.002 – volume: 63 start-page: 186 year: 2017 ident: 10918_CR62 publication-title: Land Use Policy doi: 10.1016/j.landusepol.2017.01.025 – volume: 12 start-page: 2884 year: 2020 ident: 10918_CR29 publication-title: Remote Sensing doi: 10.3390/rs12182884 – volume: 7 start-page: 15114 year: 2015 ident: 10918_CR50 publication-title: Remote Sensing doi: 10.3390/rs71115114 – volume: 15 start-page: 1 issue: 29 year: 2015 ident: 10918_CR3 publication-title: BMC Medical Imaging doi: 10.1186/s12880-015-0068-x – volume: 54 start-page: 51 issue: 1 year: 2014 ident: 10918_CR58 publication-title: Environmental Management doi: 10.1007/s00267-014-0284-0 – ident: 10918_CR16 – ident: 10918_CR41 – ident: 10918_CR60 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10918_CR9 publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 40 start-page: 83 issue: 2 year: 2003 ident: 10918_CR18 publication-title: Journal of Terramechanics doi: 10.1016/j.jterra.2003.09.004 – ident: 10918_CR48 – ident: 10918_CR55 – volume: 150 start-page: 355 year: 2015 ident: 10918_CR23 publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2014.08.002 – volume: 112 start-page: 1982 year: 2008 ident: 10918_CR53 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2007.03.032 – volume: 9 start-page: 097695 issue: 1 year: 2015 ident: 10918_CR44 publication-title: Journal of Applied Remote Sensing doi: 10.1117/1.JRS.9.097695 – volume: 35 start-page: 924 issue: 3 year: 2021 ident: 10918_CR43 publication-title: Journal of the Chartered Institution of Water and Environmental Management doi: 10.1111/wej.12681 – volume: 16 start-page: 405 issue: 3 year: 1992 ident: 10918_CR12 publication-title: Environmental Management doi: 10.1007/BF02400080 – volume: 17 start-page: 1425 issue: 7 year: 1996 ident: 10918_CR35 publication-title: International Journal of Remote Sensing doi: 10.1080/01431169608948714 – ident: 10918_CR38 – ident: 10918_CR63 – volume: 13 start-page: 95 issue: 1–2 year: 1995 ident: 10918_CR5 publication-title: Remote Sensing Reviews doi: 10.1080/02757259509532298 – volume: 156 start-page: 322 year: 2015 ident: 10918_CR7 publication-title: Remote Sensing of Environment doi: 10.1016/j.rse.2014.10.004 – ident: 10918_CR17 – volume: 9 start-page: 63 issue: 1 year: 2016 ident: 10918_CR31 publication-title: International Journal of Digital Earth doi: 10.1080/17538947.2014.990526 – volume: 50 start-page: 417 issue: 2 year: 2022 ident: 10918_CR46 publication-title: Journal of the Indian Society of Remote Sensing doi: 10.1007/s12524-021-01475-7 – volume: 44 start-page: 810 year: 2009 ident: 10918_CR56 publication-title: Environmental Management doi: 10.1007/s00267-009-9363-z – volume: 12 start-page: 1884 issue: 11 year: 2020 ident: 10918_CR25 publication-title: Remote Sensing doi: 10.3390/rs12111884 – volume: 107 start-page: 1129 issue: 499 year: 2012 ident: 10918_CR28 publication-title: Journal of American Statistical Association doi: 10.1080/01621459.2012.695654 – volume: 10 start-page: 50 issue: 1 year: 2018 ident: 10918_CR49 publication-title: Remote Sensing doi: 10.3390/rs10010050 – ident: 10918_CR8 – volume: 41 start-page: 676 issue: 5 year: 2008 ident: 10918_CR11 publication-title: Environmental Management doi: 10.1007/s00267-007-9064-4 – volume: 42 start-page: 143 issue: 2 year: 2014 ident: 10918_CR34 publication-title: Scientia Militaria: South African Journal of Military Studies doi: 10.5787/42-2-1097 – ident: 10918_CR24 – volume: 2017 start-page: 1353691 year: 2017 ident: 10918_CR61 publication-title: Journal of Sensors doi: 10.1155/2017/1353691 – volume: 25 start-page: 295 issue: 3 year: 1988 ident: 10918_CR22 publication-title: Remote Sensing of Environment doi: 10.1016/0034-4257(88)90106-X – volume: 258 start-page: 1275 issue: 7 year: 2009 ident: 10918_CR59 publication-title: Forest Ecology and Management doi: 10.1016/j.foreco.2009.06.056 – volume: 233 start-page: 106081 year: 2020 ident: 10918_CR40 publication-title: Agricultural Water Management doi: 10.1016/j.agwat.2020.106081 |
| SSID | ssj0009749 |
| Score | 2.3817725 |
| Snippet | Sustainable management of the US Army installations is critical for military training and readiness of forces. However, monitoring military training-induced... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 320 |
| SubjectTerms | Algorithms Atmospheric Protection/Air Quality Control/Air Pollution Correlation Earth and Environmental Science Ecology Ecotoxicology Environment Environmental Management Environmental monitoring Environmental Monitoring - methods Environmental science Humans Machine learning Methods Military Military Personnel Military preparedness Military training Modelling Monitoring Monitoring systems Monitoring/Environmental Analysis Neural networks Plant cover regression analysis Remote sensing Remote Sensing Technology - methods Satellite Imagery Spatial discrimination Spatial resolution Support vector machines Sustainability management Training Vegetation Vegetation cover |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RbxMxDLZG9wIP0xgMOgYKEm8Q0eZySe5hQoA6TUirEDBpb6dckquQ2uu2dpN44q9j53I90ESfL6c4sR3bif0Z4M24EhFmnGe1clyGouZVlgfUK3Sera7GSlG98_lUnV3IL5f55Q5Mu1oYSqvszsR4UPulozvy90ITUjpGF_mHq2tOXaPodbVroWFTawV_EiHGHsCuIGSsAex-mky_futheHXrEBPat8pUkcpoUjEd2iqONowTWCbKz7-m6p7_ee_tNJqk033YS74k-9gy_zHshOYAHv2FMHgAh5O-kA2HJk1ePYHf55aQGWbMNp75ti09W0QFpz_ZsmaLCOB984t1bSQ4xu8oCZ7dhVnKUmSOUkDZHOlnlEI_Y98p_agJcy7YzwUeVqs4Q9uomrlN18OncHE6-fH5jKdmDNxhFLvGgygorfKgilxa7XNPV3J2FIqgLO5Z5l1hjXamcMooLcTISYykKjWqrPHOj7JDGDTLJjwHZtBlyJCfrjZC1mNtrayEQ1dKakGlr0MYd_teuoRUTiudlz3GMvGqxHnLyKtSDOHt5p-rFqdj6-jjjp1l0tlV2UvYEF5vPqO20ROKbcLyth1Dpblm2xgjC2NkJnEhz1pR2ZCUKWUKpGEI7zrZ6Qn4P71H2-l9AQ8FyW1MJj-GwfrmNrxEX2ldvUoK8AeF9g7e priority: 102 providerName: ProQuest |
| Title | Mapping and dynamic monitoring of military training-induced vegetation cover loss using Sentinel-2 images and method comparison |
| URI | https://link.springer.com/article/10.1007/s10661-023-10918-2 https://www.ncbi.nlm.nih.gov/pubmed/36689091 https://www.proquest.com/docview/2768581915 https://www.proquest.com/docview/2768811785 https://www.proquest.com/docview/2849884348 |
| Volume | 195 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 1573-2959 dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0009749 issn: 0167-6369 databaseCode: A8Z dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-2959 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009749 issn: 0167-6369 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1573-2959 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0009749 issn: 0167-6369 databaseCode: 8C1 dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-2959 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009749 issn: 0167-6369 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-2959 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009749 issn: 0167-6369 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0jwgLbCoDAqI_EGlhrHsZ3HMmVMmzYhoFJ5ihzHqZDaFK0d0p7417lzknbT2KS9JA-x43PuzneO734H8CEqRIAZ53GlHJc-rXgRJx71Cp1nq4tIKcp3Pr9QJ2N5OkkmbVLYsot2744kw0p9I9kNbQlHG8MJzBL5uw27CcF5oRSPxWgDtasbp5cQvVWs0jZV5v_vuG2O7viYd85Hg9k53oPnrb_IRg2D92HL1z14kgWs6esePLuBJ9iDg2yTtoadWr1dvoC_55ZwGKbM1iUrmyL0bB7UmXqyRcXmAa778pp1RSM47taR7yX746dtTCJzFPDJZjgTRgHzU_adgo1qP-OC_Zrj0rQMIzRlqZlb1zh8CePj7MfRCW9LL3CHe9YVLjteaZV4lSbS6jIp6QecHfrUK4tfLy5dao12JnXKKC3E0EncNxVqWFhTunIYH8BOvaj9a2AGHYRYaOUqI2QVaWtlIRw6TlILSnTtQ9RxIHctLjnNdJZvEJWJazmOmweu5aIPH9d9fjeoHA-2PuwYm7causyRIpPQbjXpw_v1Y9QtOjCxtV9cNW0oEdc81MbI1BgZS5zIq0Zo1iTFSpkUaejDp06KNgTcT--bxzV_C08FSXQIJT-EndXllX-HntKqGMC2nmi8mqNoALujLz_PMrx_zi6-fhsEpfkHaCYM8g |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOCAqFhQJGghNY3XUc2zkghEqrLe32Qiv1FhzbWVXazZbuFtQTb8QzMuMkG1DF3nrOJB5nfjy2Z74BeDMoRIQZ50mpHJchK3mRpAHtCoNnq4uBUlTvPDpSwxP55TQ9XYPfbS0MpVW2PjE6aj9zdEa-LTQhpePuIv14_p1T1yi6XW1baNRqcRCufuKWbf5h_zPK960Qe7vHO0PedBXgDrdjC7SooLRKg8pSabVPPZ0t2X7IgrK4gCXeZdZoZzKnjNJC9J3ELUGh-oU13vl-gt-9BbdlIjQ5ArPTpZRgbJ61WOIqUVlTpNOU6uFKyHEATlCcqJ3_LoTXottrN7Nxwdt7APebSJV9qlXrIayFagPu_YVfuAGbu12ZHJI2fmL-CH6NLOE-jJmtPPN103s2je6D3mSzkk0jPPjFFWubVPCzyqOeefYjjJscSOYowZRNkH9GCfpj9pWSm6ow4YKdTdEVzuMIdRts5pY9FR_DyY0IZRPWq1kVngIzGJCgbJQrjZDlQFsrC-EwUJNaUGFtDwbtf89dg4NOM53kHYIzySrHcfMoq1z04N3ynfMaBWQl9VYrzrzxCPO8098evF4-RlumCxpbhdllTUOFv2YVjZGZMTKROJEntaosWUqUMhny0IP3re50DPyf32er-X0Fd4bHo8P8cP_o4DncFaTDMW19C9YXF5fhBUZli-JlNAUG327a9v4ApJdD5w |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NISF4QDDYKAwwEjyBtdZ2bOcBIcRWbYxNSDCpb8GxnapSm461A_WJ_4u_jrv8aEETfdtznPiS--58ju--A3jZy0VFM85loT1XMS14LpOIdoXBszN5T2uqdz451Ydn6uMgGWzA77YWhtIqW59YOeow9fSPfE8YYkrH3UWyVzRpEZ_3--_Ov3PqIEUnrW07jRoix3HxE7dvs7dH-6jrV0L0D75-OORNhwHucWs2R-uK2ugk6jRRzoQk0H8m141p1A4XMxl86qzxNvXaaiNE1yvcHuS6mzsbfOhKfO4NuGmkTCmd0AzMivDX1KE38YprqdOmYKcp28NVkeMEnGg5Ean_LopXIt0rp7TV4te_B3ebqJW9r2F2HzZiuQV3_uIy3ILtg1XJHA5tfMbsAfw6ccQBMWSuDCwsSjcZeTapXAndyaYFm1RU4RcL1jas4KMyIOYC-xGHTT4k85RsysYoP6Nk_SH7QolOZRxzwUYTdIuzaoa6JTbzy_6KD-HsWpSyDZvltIyPgFkMTiQixxdWqKJnnFO58Bi0KSOoyLYDvfa7Z77hRKc3HWcrNmfSVYbzZpWuMtGB18t7zmtGkLWjd1t1Zo13mGUrLHfgxfIy2jUd1rgyTi_rMVQEbNeNsSq1VkmFL7JTQ2UpktTapihDB9602FkJ8H95H6-X9zncQqvLPh2dHj-B24IgXGWw78Lm_OIyPsUAbZ4_qyyBwbfrNr0_bM5IVg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+and+dynamic+monitoring+of+military+training-induced+vegetation+cover+loss+using+Sentinel-2+images+and+method+comparison&rft.jtitle=Environmental+monitoring+and+assessment&rft.au=Xu%2C+Xiaoyu&rft.au=Ban%2C+Bibek&rft.au=Howard%2C+Heidi+R.&rft.au=Chen%2C+Shu&rft.date=2023-02-01&rft.pub=Springer+International+Publishing&rft.issn=0167-6369&rft.eissn=1573-2959&rft.volume=195&rft.issue=2&rft_id=info:doi/10.1007%2Fs10661-023-10918-2&rft.externalDocID=10_1007_s10661_023_10918_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6369&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6369&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6369&client=summon |