Mapping and dynamic monitoring of military training-induced vegetation cover loss using Sentinel-2 images and method comparison

Sustainable management of the US Army installations is critical for military training and readiness of forces. However, monitoring military training-induced vegetation cover disturbances using remote sensing data is challenging due to the lack of methodology for optimizing the selection of spectral...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental monitoring and assessment Vol. 195; no. 2; p. 320
Main Authors Xu, Xiaoyu, Ban, Bibek, Howard, Heidi R., Chen, Shu, Wang, Guangxing
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0167-6369
1573-2959
1573-2959
DOI10.1007/s10661-023-10918-2

Cover

Abstract Sustainable management of the US Army installations is critical for military training and readiness of forces. However, monitoring military training-induced vegetation cover disturbances using remote sensing data is challenging due to the lack of methodology for optimizing the selection of spectral variables or predictors and spatial modeling methods. This study aimed to propose and demonstrate a methodological solution for this purpose. The study was conducted in the Fort Riley installation in which three training areas were selected to map and monitor the training-induced vegetation cover loss. Sentinel-2 images and field observations of percentage vegetation cover (PVC) were combined at a spatial resolution of 10 m by 10 m to map PVC and its dynamics by comparison of two predictor selection methods and five spatial modeling algorithms based on a total of 304 spectral variables from the images before and after the training. Results showed that overall, the correlation-based predictor selection method reduced the relative root mean square error (RRMSE) of PVC predictions by 4.44% than the random forest (RF)-based predictor selection. Machine learning methods including RF, neural network, and support vector machine overall reduced the RRMSE of PVC predictions by 42.83% compared with multiple linear regression and k-nearest neighbors. Combining correlation-based predictor selection and RF modeling, coupled with leave one out cross validation, provided the greatest potential of increasing the accuracy of monitoring the vegetation cover loss. The findings provided useful implications to develop a near real-time system of monitoring military training-induced vegetation cover loss.
AbstractList Sustainable management of the US Army installations is critical for military training and readiness of forces. However, monitoring military training-induced vegetation cover disturbances using remote sensing data is challenging due to the lack of methodology for optimizing the selection of spectral variables or predictors and spatial modeling methods. This study aimed to propose and demonstrate a methodological solution for this purpose. The study was conducted in the Fort Riley installation in which three training areas were selected to map and monitor the training-induced vegetation cover loss. Sentinel-2 images and field observations of percentage vegetation cover (PVC) were combined at a spatial resolution of 10 m by 10 m to map PVC and its dynamics by comparison of two predictor selection methods and five spatial modeling algorithms based on a total of 304 spectral variables from the images before and after the training. Results showed that overall, the correlation-based predictor selection method reduced the relative root mean square error (RRMSE) of PVC predictions by 4.44% than the random forest (RF)-based predictor selection. Machine learning methods including RF, neural network, and support vector machine overall reduced the RRMSE of PVC predictions by 42.83% compared with multiple linear regression and k-nearest neighbors. Combining correlation-based predictor selection and RF modeling, coupled with leave one out cross validation, provided the greatest potential of increasing the accuracy of monitoring the vegetation cover loss. The findings provided useful implications to develop a near real-time system of monitoring military training-induced vegetation cover loss.
Sustainable management of the US Army installations is critical for military training and readiness of forces. However, monitoring military training-induced vegetation cover disturbances using remote sensing data is challenging due to the lack of methodology for optimizing the selection of spectral variables or predictors and spatial modeling methods. This study aimed to propose and demonstrate a methodological solution for this purpose. The study was conducted in the Fort Riley installation in which three training areas were selected to map and monitor the training-induced vegetation cover loss. Sentinel-2 images and field observations of percentage vegetation cover (PVC) were combined at a spatial resolution of 10 m by 10 m to map PVC and its dynamics by comparison of two predictor selection methods and five spatial modeling algorithms based on a total of 304 spectral variables from the images before and after the training. Results showed that overall, the correlation-based predictor selection method reduced the relative root mean square error (RRMSE) of PVC predictions by 4.44% than the random forest (RF)-based predictor selection. Machine learning methods including RF, neural network, and support vector machine overall reduced the RRMSE of PVC predictions by 42.83% compared with multiple linear regression and k-nearest neighbors. Combining correlation-based predictor selection and RF modeling, coupled with leave one out cross validation, provided the greatest potential of increasing the accuracy of monitoring the vegetation cover loss. The findings provided useful implications to develop a near real-time system of monitoring military training-induced vegetation cover loss.Sustainable management of the US Army installations is critical for military training and readiness of forces. However, monitoring military training-induced vegetation cover disturbances using remote sensing data is challenging due to the lack of methodology for optimizing the selection of spectral variables or predictors and spatial modeling methods. This study aimed to propose and demonstrate a methodological solution for this purpose. The study was conducted in the Fort Riley installation in which three training areas were selected to map and monitor the training-induced vegetation cover loss. Sentinel-2 images and field observations of percentage vegetation cover (PVC) were combined at a spatial resolution of 10 m by 10 m to map PVC and its dynamics by comparison of two predictor selection methods and five spatial modeling algorithms based on a total of 304 spectral variables from the images before and after the training. Results showed that overall, the correlation-based predictor selection method reduced the relative root mean square error (RRMSE) of PVC predictions by 4.44% than the random forest (RF)-based predictor selection. Machine learning methods including RF, neural network, and support vector machine overall reduced the RRMSE of PVC predictions by 42.83% compared with multiple linear regression and k-nearest neighbors. Combining correlation-based predictor selection and RF modeling, coupled with leave one out cross validation, provided the greatest potential of increasing the accuracy of monitoring the vegetation cover loss. The findings provided useful implications to develop a near real-time system of monitoring military training-induced vegetation cover loss.
Sustainable management of the US Army installations is critical for military training and readiness of forces. However, monitoring military training-induced vegetation cover disturbances using remote sensing data is challenging due to the lack of methodology for optimizing the selection of spectral variables or predictors and spatial modeling methods. This study aimed to propose and demonstrate a methodological solution for this purpose. The study was conducted in the Fort Riley installation in which three training areas were selected to map and monitor the training-induced vegetation cover loss. Sentinel-2 images and field observations of percentage vegetation cover (PVC) were combined at a spatial resolution of 10 m by 10 m to map PVC and its dynamics by comparison of two predictor selection methods and five spatial modeling algorithms based on a total of 304 spectral variables from the images before and after the training. Results showed that overall, the correlation-based predictor selection method reduced the relative root mean square error (RRMSE) of PVC predictions by 4.44% than the random forest (RF)-based predictor selection. Machine learning methods including RF, neural network, and support vector machine overall reduced the RRMSE of PVC predictions by 42.83% compared with multiple linear regression and k-nearest neighbors. Combining correlation-based predictor selection and RF modeling, coupled with leave one out cross validation, provided the greatest potential of increasing the accuracy of monitoring the vegetation cover loss. The findings provided useful implications to develop a near real-time system of monitoring military training-induced vegetation cover loss.
ArticleNumber 320
Author Wang, Guangxing
Ban, Bibek
Xu, Xiaoyu
Howard, Heidi R.
Chen, Shu
Author_xml – sequence: 1
  givenname: Xiaoyu
  surname: Xu
  fullname: Xu, Xiaoyu
  organization: School of Earth Systems and Sustainability, Southern Illinois University Carbondale, Environmental Resources and Policy, Southern Illinois University Carbondale
– sequence: 2
  givenname: Bibek
  surname: Ban
  fullname: Ban, Bibek
  organization: School of Earth Systems and Sustainability, Southern Illinois University Carbondale, Environmental Resources and Policy, Southern Illinois University Carbondale
– sequence: 3
  givenname: Heidi R.
  surname: Howard
  fullname: Howard, Heidi R.
  organization: US Army Construction Engineering Research Laboratory (USA-CERL)
– sequence: 4
  givenname: Shu
  surname: Chen
  fullname: Chen, Shu
  organization: School of Earth Systems and Sustainability, Southern Illinois University Carbondale, Environmental Resources and Policy, Southern Illinois University Carbondale
– sequence: 5
  givenname: Guangxing
  surname: Wang
  fullname: Wang, Guangxing
  email: gxwang@siu.edu
  organization: School of Earth Systems and Sustainability, Southern Illinois University Carbondale
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36689091$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1vFSEUhompsbfVP-DCkLhxg8Iww8fSNFZN2nShrgkXzr3SzMAIM03uyr9e5k4bky7qioQ8z4HzvmfoJKYICL1l9COjVH4qjArBCG04YVQzRZoXaMM6yUmjO32CNpQJSQQX-hSdlXJLKdWy1a_QKRdC6aps0N9rO44h7rGNHvtDtENweEgxTCkv12mHh9CHyeYDnrINsV6SEP3swOM72MNkp5AidukOMu5TKXgui_gD4hQi9KTBYbB7KMcXBph-J1_pYbQ5lBRfo5c72xd483Ceo1-XX35efCNXN1-_X3y-Io5zNREuQUjRgdBda6XvfCs1txQ0CFv3595pq6RT2gklZNNQ12ohtoJurfLOU36OPqxzx5z-zFAmM4TioO9thDQX06hWK9XyVv0flUIpxqTqKvr-CXqb5hzrIkeqU0yzhXr3QM3bAbwZc00kH8xjCxVQK-ByDTDDzriw5rpE3htGzVK4WQs3dWFzLNw0VW2eqI_Tn5X4KpVxKRnyv28_Y90D50G9gQ
CitedBy_id crossref_primary_10_1007_s11356_023_27702_x
crossref_primary_10_1109_JSTARS_2024_3355071
crossref_primary_10_1016_j_mtener_2024_101502
Cites_doi 10.1007/s12524-014-0423-3
10.3390/rs10081248
10.1016/j.rse.2019.111606
10.1139/er-2015-0039
10.1109/TGRS.2019.2938017
10.1016/j.jterra.2005.01.001
10.1016/j.rse.2018.12.032
10.1016/j.coldregions.2022.103510
10.1016/S0034-4257(02)00064-0
10.1080/01431160310001654923
10.1002/ldr.794
10.1007/s10342-014-0838-y
10.1016/j.rse.2011.07.002
10.1007/s00267-004-0373-6
10.3390/rs11243038
10.1155/2012/436537
10.1007/s00267-012-9873-y
10.1007/s11676-020-01155-1
10.1016/j.jterra.2018.02.001
10.1016/S0034-4257(96)00067-3
10.1162/EVCO_r_00180
10.13031/2013.42683
10.1016/j.chemolab.2004.01.002
10.1016/j.landusepol.2017.01.025
10.3390/rs12182884
10.3390/rs71115114
10.1186/s12880-015-0068-x
10.1007/s00267-014-0284-0
10.1023/A:1010933404324
10.1016/j.jterra.2003.09.004
10.1016/j.jenvman.2014.08.002
10.1016/j.rse.2007.03.032
10.1117/1.JRS.9.097695
10.1111/wej.12681
10.1007/BF02400080
10.1080/01431169608948714
10.1080/02757259509532298
10.1016/j.rse.2014.10.004
10.1080/17538947.2014.990526
10.1007/s12524-021-01475-7
10.1007/s00267-009-9363-z
10.3390/rs12111884
10.1080/01621459.2012.695654
10.3390/rs10010050
10.1007/s00267-007-9064-4
10.5787/42-2-1097
10.1155/2017/1353691
10.1016/0034-4257(88)90106-X
10.1016/j.foreco.2009.06.056
10.1016/j.agwat.2020.106081
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
– notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QH
7QL
7SN
7ST
7T7
7TG
7TN
7U7
7UA
7WY
7WZ
7X7
7XB
87Z
88E
88I
8AO
8C1
8FD
8FI
8FJ
8FK
8FL
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BEZIV
BHPHI
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
FYUFA
F~G
GHDGH
GNUQQ
H97
HCIFZ
K60
K6~
K9.
KL.
L.-
L.G
M0C
M0S
M1P
M2P
M7N
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
SOI
7X8
7S9
L.6
DOI 10.1007/s10661-023-10918-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aqualine
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Toxicology Abstracts
Water Resources Abstracts
ProQuest ABI/INFORM Collection
ABI/INFORM Global (PDF only)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest : Agricultural & Environmental Science Collection [unlimited simultaneous users]
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
Health Research Premium Collection
ABI/INFORM Global (Corporate)
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
Meteorological & Geoastrophysical Abstracts - Academic
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest ABI/INFORM Global
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Sustainability
Health Research Premium Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
Health & Medical Research Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Business Premium Collection
ABI/INFORM Global
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Business Collection
Ecology Abstracts
Aqualine
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Health & Medical Research Collection
Oceanic Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
ProQuest Public Health
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
Toxicology Abstracts
ProQuest Science Journals
ProQuest Medical Library
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Business Collection (Alumni Edition)
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Ecology
Environmental Sciences
EISSN 1573-2959
EndPage 320
ExternalDocumentID 36689091
10_1007_s10661_023_10918_2
Genre Journal Article
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-XX
-Y2
-~C
..I
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5QI
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
EMB
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L8X
LAK
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZCA
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ESTFP
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7QL
7SN
7ST
7T7
7TG
7TN
7U7
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
K9.
KL.
L.-
L.G
M7N
P64
PKEHL
PQEST
PQUKI
Q9U
SOI
7X8
7S9
L.6
ID FETCH-LOGICAL-c338t-37e6765e6954a7d5d4793a0e9e6a0233dc9a87c89c6867220c4966b60ba8dcd03
IEDL.DBID U2A
ISSN 0167-6369
1573-2959
IngestDate Mon Sep 29 05:46:55 EDT 2025
Sun Sep 28 07:08:52 EDT 2025
Tue Oct 07 06:16:54 EDT 2025
Wed Feb 19 02:26:09 EST 2025
Wed Oct 01 03:32:38 EDT 2025
Thu Apr 24 23:11:09 EDT 2025
Fri Feb 21 02:43:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Sentinel-2 imagery
Installation
Spectral variable selection
Military training-induced disturbance
Percentage vegetation cover
Spatial modeling
Language English
License 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c338t-37e6765e6954a7d5d4793a0e9e6a0233dc9a87c89c6867220c4966b60ba8dcd03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 36689091
PQID 2768581915
PQPubID 54151
PageCount 1
ParticipantIDs proquest_miscellaneous_2849884348
proquest_miscellaneous_2768811785
proquest_journals_2768581915
pubmed_primary_36689091
crossref_citationtrail_10_1007_s10661_023_10918_2
crossref_primary_10_1007_s10661_023_10918_2
springer_journals_10_1007_s10661_023_10918_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Netherlands
– name: Dordrecht
PublicationSubtitle An International Journal Devoted to Progress in the Use of Monitoring Data in Assessing Environmental Risks to Humans and the Environment
PublicationTitle Environmental monitoring and assessment
PublicationTitleAbbrev Environ Monit Assess
PublicationTitleAlternate Environ Monit Assess
PublicationYear 2023
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References TomppoEOlssonHStahlGNilssonMHagnerOKatilaMCombining national forest inventory field plots and remote sensing data for forest databasesRemote Sensing of Environment20081121982199910.1016/j.rse.2007.03.032
XueJSuBSignificant remote sensing vegetation indices: a review of developments and applicationsJournal of Sensors2017201713536911:CAS:528:DC%2BC1cXit1ShsrfK10.1155/2017/1353691
ThissenUPeppersMÜstünBMelssenWJBuydensMCComparing support vector machines to PLS for spectral regression applicationsChemometrics and Intelligent Laborary Systems20047321691791:CAS:528:DC%2BD2cXnvFGmu7Y%3D10.1016/j.chemolab.2004.01.002
CuiYSunHWangGLiCXuXA probability-based spectral unmixing analysis for mapping percentage vegetation cover of arid and semi-arid areasRemote Sensing201911303810.3390/rs11243038
LiRZhongWZhuLFeature screening via distance correlation learningJournal of American Statistical Association2012107499112911391:CAS:528:DC%2BC1cXptVClu7k%3D10.1080/01621459.2012.695654
GaoBCNDWI—A normalized difference water index for remote sensing of vegetation liquid water from spaceRemote Sensing of Environment199658325726610.1016/S0034-4257(96)00067-3
Braaten, J., Schwehr, K., & Hyushchenko, S. (2020). More accurate and flexible cloud masking for Sentinel-2 images. Retrieved July 31, 2020, from https://medium.com/google-earth/more-accurate-and-flexible-cloud-masking-for-sentinel-2-images-766897a9ba5f
HowardHRManandharSWangQMcmillanJMQieGLiuXThapaKWangGSpatially characterizing land surface deformation and permafrost active layer thickness for Donnelly installation of Alaska using DInSAR and MODIS dataGold Regions Science and Technology202210.1016/j.coldregions.2022.103510
WangGOyanaTZhangMAdu-PrahSZengSLinHSeJMapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite imagesForest Ecology and Management200925871275128310.1016/j.foreco.2009.06.056
MagagulaBThe environmental management system of the South African National Defence Force at The Grahamstown Military InstallationScientia Militaria: South African Journal of Military Studies201442214316310.5787/42-2-1097
BreimanLRandom forestsMachine Learning200145153210.1023/A:1010933404324
SunHQieGWangGTanYLiJPengYMaZLuoCIncreasing the accuracy of mapping urban forest carbon density by combining spatial modeling and spectral unmixing analysisRemote Sensing20157151141513910.3390/rs71115114
SongRLinHWangGYanEYeZImproving selection of spectral variables for vegetation classification of east Dongting Lake, China, using a Gaofen-1 imageRemote Sensing20181015010.3390/rs10010050
LeisSAEngleDMLeslieDLFehmiJSEffects of short- and long-term disturbance resulting from military maneuvers on vegetation and soils in a mixed prairie areaEnvironmental Management200536684986110.1007/s00267-004-0373-6
Baez-VillanuevaOMZambrano-BigiariniMBeckHEMcNamaraIRibbeLNaudittABirkelCVerbistKGiraldo-OsorioJDThinhNXRF-MEP: A novel random forest method for merging gridded precipitation products and ground-based measurementsRemote Sensing of Environment2020239202011160610.1016/j.rse.2019.111606
LawrenceMJStembergerHLJZolderdoAJStruthersDPCookeSJThe effects of modern war and military activities on biodiversity and the environmentEnvironmental Reviews201523444346010.1139/er-2015-0039
LiuQFuLWangGLiSLiZChenEPangYHuKImproving estimation of forest canopy cover by introducing loss ratio of laser pulses using airborne LiDARIEEE Transactions on Geoscience and Remote Sensing201958156758510.1109/TGRS.2019.2938017
Lyon, J. G. (1998). A change detection experiment using vegetation indices. Photogrammetric Engineering and Remote Sensing, 64(2), 143–150. CiteSeerX 10.1.1.462.2056.
Guretzky, J., Anderson, A. B., & Fehmi, J. (2006). Grazing and military vehicle effects on grassland soils and vegetation. Great Plains Research, 51–61. Retrieved August 15, 2021, from https://www.jstor.org/stable/23779725
McRobertsRENelsonMDWendtDGStratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors techniqueRemote Sensing of Environment20028245746810.1016/S0034-4257(02)00064-0
JiangFSmithARKutiaMWangGLiuHSunHA modified KNN method for mapping the leaf area index in arid and semi-arid areas of ChinaRemote Sensing20201211188410.3390/rs12111884
DiersingVEShawRBTazikDJUS Army land condition-trend analysis (LCTA) programEnvironmental Management199216340541410.1007/BF02400080
HowardHRWangGSingerSAndersonABModeling and prediction of land condition for Fort Riley military installationTransactions of the ASABE201356264365210.13031/2013.42683
Rijal, S. (2017). Monitoring and assessment of military installation land condition under training disturbance using remote sensing. Dissertations, Southern Illinois of University. Retrieved August 15, 2021, from http://opensiuc.lib.siu.edu/dissertations/1399
RijalSWangGWoodfordPBHowardHRHutchinsonJMSHutchinsonSSchoofJOyanaTJLiRParkLODetection of gullies in Fort Riley military installation using LiDAR derived high resolution DEMJournal of Terramechanics201877152210.1016/j.jterra.2018.02.001
HueteARA soil-adjusted vegetation index (SAVI)Remote Sensing of Environment198825329530910.1016/0034-4257(88)90106-X
Aziz TahaAMetrics for evaluating 3D medical image segmentation: Analysis, selection, and toolBMC Medical Imaging2015152912810.1186/s12880-015-0068-x
PôçasICaleraACamposICunhaMRemote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approachesAgricultural Water Management202023310608110.1016/j.agwat.2020.106081
McFeetersSKThe use of the Normalized Difference Water Index (NDWI) in the delineation of open water featuresInternational Journal of Remote Sensing19961771425143210.1080/01431169608948714
McRobertsREMagnussenSTomppoEOChiriciGParametric, bootstrap, and jackknife variance estimators for the k-Nearest Neighbors technique with illustrations using forest inventory and satellite image dataRemote Sensing of Environment20111153165317410.1016/j.rse.2011.07.002
BouvierMDurrieuSFournierRARenaudJPGeneralizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR dataRemote Sensing of Environment201515632233410.1016/j.rse.2014.10.004
HaugenLBAyersPDAndersonABVehicle movement patterns and vegetative impacts during military training exercisesJournal of Terramechanics2003402839510.1016/j.jterra.2003.09.004
Wald, M. M. (2010). Assessing military use of training areas using a geographic information system. Retrieved August 15, 2021, from https://apps.dtic.mil/sti/pdfs/ADA567038.pdf
US Army. (1994). Integrated natural resource management plan for Fort Riley, Kansas. Directorate of Engineering and Housing, Environmental and Natural Resources Division. Berger and Associates, Chicago, Illinois, USA.
DongTLiuJShangJQianBMaBKovacsJMShiYAssessment of red-edge vegetation indices for crop leaf area index estimationRemote Sensing of Environment201922213314310.1016/j.rse.2018.12.032
HuangSTangLHupyJPWangYShaoGA commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensingJournal of Forest Research2021321610.1007/s11676-020-01155-1
BonyadiMRMichalewiczZParticle swarm optimization for single objective continuous space problems: A reviewEvolutionary Computation201725115410.1162/EVCO_r_00180
HutchinsonJMSJacquinAHutchinsonSLVerbesseltJMonitoring vegetation change and dynamics on U.S. Army training lands using satellite image time series analysisJournal of Environmental Management20151503553661:STN:280:DC%2BC2MzitVKmsw%3D%3D10.1016/j.jenvman.2014.08.002
SunHWangQWangGLinHLuoPLiJZengSXuXRenLOptimizing kNN for mapping vegetation cover of arid and semi-arid areas using Landsat imageRemote Sensing2018108124810.3390/rs10081248
WangGGertnerGZAndersonABHowardHRGebhartDAlthoffDDavisTWoodfordPSpatial variability and temporal dynamics analysis of soil erosion due to military land use activities: Uncertainty and implications for land managementLand Degradation and Development20071851954210.1002/ldr.794
LuDChenQWangGLiuLMoranEA survey of remote sensing-based aboveground biomass estimation methodsInternational Journal of Digital Earth2016916310510.1080/17538947.2014.990526
SNAP (version 6.0.4). (2014). Windows. European Space Agency.
DicksonTLWilseyBJBusbyRRGebhartDLGrassland plant composition alters vehicular disturbance effects in Kansas, USAEnvironmental Management200841567668410.1007/s00267-007-9064-4
SingerSWangGHowardHRAndersonABEnvironmental condition assessment of US military installations using GIS based spatial multi-criteria decision analysisEnvironmental Management201250232934010.1007/s00267-012-9873-y
SharifiADevelopment of a method for flood detection based on Sentinel-1 images and classifier algorithmsJournal of the Chartered Institution of Water and Environmental Management202135392492910.1111/wej.12681
WangGMurphyDOllerAHowardHRAndersonABRijalSMyersNRWoodfordPSpatial and temporal assessment of cumulative disturbance impacts due to military training, burning, haying, and their interactions on land condition of fort rileyEnvironmental Management201454151661:CAS:528:DC%2BC2MXhslShs77O10.1007/s00267-014-0284-0
Agisoft LLC. (2016). Agisoft PhotoScan User Manual. Pp. 1–37.
Micasense. (2017). MicaSense RedEdge TM 3 Multispectral Camera User Manual. Pp. 1–27.
SharifiAAminiJSri SumantyoJTTateishiRSpeckle reduction of PolSAR images in forest regions using fast ICA algorithmJournal of the Indian Society of Remote Sensing201443233934610.1007/s12524-014-0423-3
FlemingAWangGMcRobertsRComparison of methods toward multi-scale forest carbon mapping and spatial uncertainty analysis: Combining national forest inventory plot data and Landsat TM imagesEuropean Journal of Forest Research2014134112513710.1007/s10342-014-0838-y
LuDChenQWangGMoranEBatistellaMZhangMLaurinGVSaahDEstimation and uncertainty analysis of aboveground forest biomass with Landsat and LiDAR data: Brief overview and case studiesInternational Journal of Forestry Research20121
TL Dickson (10918_CR11) 2008; 41
Q Liu (10918_CR29) 2020; 12
Y Cui (10918_CR10) 2019; 11
AR Huete (10918_CR22) 1988; 25
10918_CR41
B Magagula (10918_CR34) 2014; 42
A Bannari (10918_CR5) 1995; 13
10918_CR48
G Wang (10918_CR58) 2014; 54
A Sharifi (10918_CR46) 2022; 50
U Thissen (10918_CR52) 2004; 73
M Bouvier (10918_CR7) 2015; 156
AB Anderson (10918_CR2) 2005; 42
VE Diersing (10918_CR12) 1992; 16
A Sharifi (10918_CR44) 2015; 9
A Sharifi (10918_CR45) 2014; 43
SK McFeeters (10918_CR35) 1996; 17
G Wang (10918_CR56) 2009; 44
MJ Lawrence (10918_CR26) 2015; 23
R Zentelis (10918_CR62) 2017; 63
G Wang (10918_CR59) 2009; 258
A Fleming (10918_CR14) 2014; 134
LB Haugen (10918_CR18) 2003; 40
10918_CR55
J Xue (10918_CR61) 2017; 2017
RE McRoberts (10918_CR36) 2011; 115
10918_CR54
JMS Hutchinson (10918_CR23) 2015; 150
10918_CR17
10918_CR16
HR Howard (10918_CR19) 2022
H Sun (10918_CR50) 2015; 7
RE McRoberts (10918_CR37) 2002; 82
O Mutanga (10918_CR39) 2004; 25
D Lu (10918_CR31) 2016; 9
H Sun (10918_CR51) 2018; 10
MR Bonyadi (10918_CR6) 2017; 25
L Breiman (10918_CR9) 2001; 45
10918_CR60
SA Leis (10918_CR27) 2005; 36
S Rijal (10918_CR42) 2018; 77
S Huang (10918_CR21) 2021; 32
10918_CR63
10918_CR24
A Sharifi (10918_CR43) 2021; 35
I Pôças (10918_CR40) 2020; 233
BC Gao (10918_CR15) 1996; 58
A Aziz Taha (10918_CR3) 2015; 15
D Lu (10918_CR32) 2012; 1
HR Howard (10918_CR20) 2013; 56
G Wang (10918_CR57) 2007; 18
R Li (10918_CR28) 2012; 107
10918_CR33
OM Baez-Villanueva (10918_CR4) 2020; 239
Q Liu (10918_CR30) 2019; 58
10918_CR38
10918_CR1
10918_CR8
R Song (10918_CR49) 2018; 10
T Dong (10918_CR13) 2019; 222
F Jiang (10918_CR25) 2020; 12
S Singer (10918_CR47) 2012; 50
E Tomppo (10918_CR53) 2008; 112
References_xml – reference: Aziz TahaAMetrics for evaluating 3D medical image segmentation: Analysis, selection, and toolBMC Medical Imaging2015152912810.1186/s12880-015-0068-x
– reference: BouvierMDurrieuSFournierRARenaudJPGeneralizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR dataRemote Sensing of Environment201515632233410.1016/j.rse.2014.10.004
– reference: Lyon, J. G. (1998). A change detection experiment using vegetation indices. Photogrammetric Engineering and Remote Sensing, 64(2), 143–150. CiteSeerX 10.1.1.462.2056.
– reference: HueteARA soil-adjusted vegetation index (SAVI)Remote Sensing of Environment198825329530910.1016/0034-4257(88)90106-X
– reference: Jensen, J. R. (2016). Introductory digital image processing: A remote sensing perspective. Pearson Education, Inc., Glenview, IL 60025, USA.
– reference: TomppoEOlssonHStahlGNilssonMHagnerOKatilaMCombining national forest inventory field plots and remote sensing data for forest databasesRemote Sensing of Environment20081121982199910.1016/j.rse.2007.03.032
– reference: LuDChenQWangGMoranEBatistellaMZhangMLaurinGVSaahDEstimation and uncertainty analysis of aboveground forest biomass with Landsat and LiDAR data: Brief overview and case studiesInternational Journal of Forestry Research2012111610.1155/2012/436537
– reference: McRobertsRENelsonMDWendtDGStratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors techniqueRemote Sensing of Environment20028245746810.1016/S0034-4257(02)00064-0
– reference: SingerSWangGHowardHRAndersonABEnvironmental condition assessment of US military installations using GIS based spatial multi-criteria decision analysisEnvironmental Management201250232934010.1007/s00267-012-9873-y
– reference: MutangaOSkidmoreAKNarrow band vegetation indices overcome the saturation problem in biomass estimationInternational Journal of Remote Sensing200425193999401410.1080/01431160310001654923
– reference: RijalSWangGWoodfordPBHowardHRHutchinsonJMSHutchinsonSSchoofJOyanaTJLiRParkLODetection of gullies in Fort Riley military installation using LiDAR derived high resolution DEMJournal of Terramechanics201877152210.1016/j.jterra.2018.02.001
– reference: SharifiAAminiJSri SumantyoJTTateishiRSpeckle reduction of PolSAR images in forest regions using fast ICA algorithmJournal of the Indian Society of Remote Sensing201443233934610.1007/s12524-014-0423-3
– reference: CuiYSunHWangGLiCXuXA probability-based spectral unmixing analysis for mapping percentage vegetation cover of arid and semi-arid areasRemote Sensing201911303810.3390/rs11243038
– reference: SharifiAMahdipourHMoradiETariqAAgricultural field extraction with deep learning algorithm and satellite imageryJournal of the Indian Society of Remote Sensing202250241742310.1007/s12524-021-01475-7
– reference: LawrenceMJStembergerHLJZolderdoAJStruthersDPCookeSJThe effects of modern war and military activities on biodiversity and the environmentEnvironmental Reviews201523444346010.1139/er-2015-0039
– reference: Zhang, H., Nettleton, D., & Zhu, Z. (2019). Regression-enhanced random forests. Retrieved May 10, 2022, from arXiv preprint arXiv:1904.10416. https://arxiv.org/pdf/1904.10416.pdf
– reference: BonyadiMRMichalewiczZParticle swarm optimization for single objective continuous space problems: A reviewEvolutionary Computation201725115410.1162/EVCO_r_00180
– reference: GaoBCNDWI—A normalized difference water index for remote sensing of vegetation liquid water from spaceRemote Sensing of Environment199658325726610.1016/S0034-4257(96)00067-3
– reference: ZentelisRLindenmayerDRobertsJDDoversSPrinciples for integrated environmental management of military training areasLand Use Policy20176318619510.1016/j.landusepol.2017.01.025
– reference: JiangFSmithARKutiaMWangGLiuHSunHA modified KNN method for mapping the leaf area index in arid and semi-arid areas of ChinaRemote Sensing20201211188410.3390/rs12111884
– reference: SharifiAAminiJForest biomass estimation using synthetic aperture radar polarimetric featuresJournal of Applied Remote Sensing20159109769510.1117/1.JRS.9.097695
– reference: Rijal, S. (2017). Monitoring and assessment of military installation land condition under training disturbance using remote sensing. Dissertations, Southern Illinois of University. Retrieved August 15, 2021, from http://opensiuc.lib.siu.edu/dissertations/1399
– reference: SunHQieGWangGTanYLiJPengYMaZLuoCIncreasing the accuracy of mapping urban forest carbon density by combining spatial modeling and spectral unmixing analysisRemote Sensing20157151141513910.3390/rs71115114
– reference: FlemingAWangGMcRobertsRComparison of methods toward multi-scale forest carbon mapping and spatial uncertainty analysis: Combining national forest inventory plot data and Landsat TM imagesEuropean Journal of Forest Research2014134112513710.1007/s10342-014-0838-y
– reference: HowardHRManandharSWangQMcmillanJMQieGLiuXThapaKWangGSpatially characterizing land surface deformation and permafrost active layer thickness for Donnelly installation of Alaska using DInSAR and MODIS dataGold Regions Science and Technology202210.1016/j.coldregions.2022.103510
– reference: LeisSAEngleDMLeslieDLFehmiJSEffects of short- and long-term disturbance resulting from military maneuvers on vegetation and soils in a mixed prairie areaEnvironmental Management200536684986110.1007/s00267-004-0373-6
– reference: HuangSTangLHupyJPWangYShaoGA commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensingJournal of Forest Research2021321610.1007/s11676-020-01155-1
– reference: SNAP (version 6.0.4). (2014). Windows. European Space Agency.
– reference: SongRLinHWangGYanEYeZImproving selection of spectral variables for vegetation classification of east Dongting Lake, China, using a Gaofen-1 imageRemote Sensing20181015010.3390/rs10010050
– reference: Baez-VillanuevaOMZambrano-BigiariniMBeckHEMcNamaraIRibbeLNaudittABirkelCVerbistKGiraldo-OsorioJDThinhNXRF-MEP: A novel random forest method for merging gridded precipitation products and ground-based measurementsRemote Sensing of Environment2020239202011160610.1016/j.rse.2019.111606
– reference: SunHWangQWangGLinHLuoPLiJZengSXuXRenLOptimizing kNN for mapping vegetation cover of arid and semi-arid areas using Landsat imageRemote Sensing2018108124810.3390/rs10081248
– reference: WangGOyanaTZhangMAdu-PrahSZengSLinHSeJMapping and spatial uncertainty analysis of forest vegetation carbon by combining national forest inventory data and satellite imagesForest Ecology and Management200925871275128310.1016/j.foreco.2009.06.056
– reference: XueJSuBSignificant remote sensing vegetation indices: a review of developments and applicationsJournal of Sensors2017201713536911:CAS:528:DC%2BC1cXit1ShsrfK10.1155/2017/1353691
– reference: DongTLiuJShangJQianBMaBKovacsJMShiYAssessment of red-edge vegetation indices for crop leaf area index estimationRemote Sensing of Environment201922213314310.1016/j.rse.2018.12.032
– reference: US Army. (1994). Integrated natural resource management plan for Fort Riley, Kansas. Directorate of Engineering and Housing, Environmental and Natural Resources Division. Berger and Associates, Chicago, Illinois, USA.
– reference: LiRZhongWZhuLFeature screening via distance correlation learningJournal of American Statistical Association2012107499112911391:CAS:528:DC%2BC1cXptVClu7k%3D10.1080/01621459.2012.695654
– reference: WCFR. (2022). Weather and climate at Fort Riley Army Base in Riley, KS. Retrieved November 21, 2022, from https://www.milbases.com/kansas/fort-riley-army-base/weather
– reference: SharifiADevelopment of a method for flood detection based on Sentinel-1 images and classifier algorithmsJournal of the Chartered Institution of Water and Environmental Management202135392492910.1111/wej.12681
– reference: Wald, M. M. (2010). Assessing military use of training areas using a geographic information system. Retrieved August 15, 2021, from https://apps.dtic.mil/sti/pdfs/ADA567038.pdf
– reference: McFeetersSKThe use of the Normalized Difference Water Index (NDWI) in the delineation of open water featuresInternational Journal of Remote Sensing19961771425143210.1080/01431169608948714
– reference: AndersonABPalazzoAJAyersPDFehmiJShoopSSullivanPAssessing the impacts of military vehicle traffic on natural areas. Introduction to the special issue and review of the relevant military vehicle impact literatureJournal of Terramechanics2005423–414315810.1016/j.jterra.2005.01.001
– reference: Micasense. (2017). MicaSense RedEdge TM 3 Multispectral Camera User Manual. Pp. 1–27.
– reference: ThissenUPeppersMÜstünBMelssenWJBuydensMCComparing support vector machines to PLS for spectral regression applicationsChemometrics and Intelligent Laborary Systems20047321691791:CAS:528:DC%2BD2cXnvFGmu7Y%3D10.1016/j.chemolab.2004.01.002
– reference: Braaten, J., Schwehr, K., & Hyushchenko, S. (2020). More accurate and flexible cloud masking for Sentinel-2 images. Retrieved July 31, 2020, from https://medium.com/google-earth/more-accurate-and-flexible-cloud-masking-for-sentinel-2-images-766897a9ba5f
– reference: DiersingVEShawRBTazikDJUS Army land condition-trend analysis (LCTA) programEnvironmental Management199216340541410.1007/BF02400080
– reference: BreimanLRandom forestsMachine Learning200145153210.1023/A:1010933404324
– reference: HowardHRWangGSingerSAndersonABModeling and prediction of land condition for Fort Riley military installationTransactions of the ASABE201356264365210.13031/2013.42683
– reference: HutchinsonJMSJacquinAHutchinsonSLVerbesseltJMonitoring vegetation change and dynamics on U.S. Army training lands using satellite image time series analysisJournal of Environmental Management20151503553661:STN:280:DC%2BC2MzitVKmsw%3D%3D10.1016/j.jenvman.2014.08.002
– reference: Google Earth. (2020). More accurate and flexible cloud masking for Sentinel-2 images. Retrieved November 9, 2020, from https://medium.com/google-earth/more-accurate-and-flexible-cloud-masking-for-sentinel-2-images-766897a9ba5f
– reference: MagagulaBThe environmental management system of the South African National Defence Force at The Grahamstown Military InstallationScientia Militaria: South African Journal of Military Studies201442214316310.5787/42-2-1097
– reference: WangGGertnerGZAndersonABHowardHRGebhartDAlthoffDDavisTWoodfordPSpatial variability and temporal dynamics analysis of soil erosion due to military land use activities: Uncertainty and implications for land managementLand Degradation and Development20071851954210.1002/ldr.794
– reference: McRobertsREMagnussenSTomppoEOChiriciGParametric, bootstrap, and jackknife variance estimators for the k-Nearest Neighbors technique with illustrations using forest inventory and satellite image dataRemote Sensing of Environment20111153165317410.1016/j.rse.2011.07.002
– reference: HaugenLBAyersPDAndersonABVehicle movement patterns and vegetative impacts during military training exercisesJournal of Terramechanics2003402839510.1016/j.jterra.2003.09.004
– reference: PôçasICaleraACamposICunhaMRemote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approachesAgricultural Water Management202023310608110.1016/j.agwat.2020.106081
– reference: WangGMurphyDOllerAHowardHRAndersonABRijalSMyersNRWoodfordPSpatial and temporal assessment of cumulative disturbance impacts due to military training, burning, haying, and their interactions on land condition of fort rileyEnvironmental Management201454151661:CAS:528:DC%2BC2MXhslShs77O10.1007/s00267-014-0284-0
– reference: DicksonTLWilseyBJBusbyRRGebhartDLGrassland plant composition alters vehicular disturbance effects in Kansas, USAEnvironmental Management200841567668410.1007/s00267-007-9064-4
– reference: LuDChenQWangGLiuLMoranEA survey of remote sensing-based aboveground biomass estimation methodsInternational Journal of Digital Earth2016916310510.1080/17538947.2014.990526
– reference: Guretzky, J., Anderson, A. B., & Fehmi, J. (2006). Grazing and military vehicle effects on grassland soils and vegetation. Great Plains Research, 51–61. Retrieved August 15, 2021, from https://www.jstor.org/stable/23779725
– reference: LiuQFuLWangGLiSLiZChenEPangYHuKImproving estimation of forest canopy cover by introducing loss ratio of laser pulses using airborne LiDARIEEE Transactions on Geoscience and Remote Sensing201958156758510.1109/TGRS.2019.2938017
– reference: Agisoft LLC. (2016). Agisoft PhotoScan User Manual. Pp. 1–37.
– reference: LiuQFuLChenQWangGLuoPSharmaRPHePLiMWangMDuanGAnalysis of the spatial differences in canopy height models from UAV LiDAR and photogrammetryRemote Sensing202012288410.3390/rs12182884
– reference: WangGGertnerGZAndersonABHowardHRSimulating spatial pattern and dynamics of military training impacts for allocation of land repair using imagesEnvironmental Management20094481082310.1007/s00267-009-9363-z
– reference: BannariAMorinDBonnFHueteARA review of vegetation indicesRemote Sensing Reviews1995131–29512010.1080/02757259509532298
– volume: 43
  start-page: 339
  issue: 2
  year: 2014
  ident: 10918_CR45
  publication-title: Journal of the Indian Society of Remote Sensing
  doi: 10.1007/s12524-014-0423-3
– ident: 10918_CR1
– volume: 10
  start-page: 1248
  issue: 8
  year: 2018
  ident: 10918_CR51
  publication-title: Remote Sensing
  doi: 10.3390/rs10081248
– volume: 239
  start-page: 111606
  issue: 2020
  year: 2020
  ident: 10918_CR4
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2019.111606
– volume: 23
  start-page: 443
  issue: 4
  year: 2015
  ident: 10918_CR26
  publication-title: Environmental Reviews
  doi: 10.1139/er-2015-0039
– volume: 58
  start-page: 567
  issue: 1
  year: 2019
  ident: 10918_CR30
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
  doi: 10.1109/TGRS.2019.2938017
– volume: 42
  start-page: 143
  issue: 3–4
  year: 2005
  ident: 10918_CR2
  publication-title: Journal of Terramechanics
  doi: 10.1016/j.jterra.2005.01.001
– volume: 222
  start-page: 133
  year: 2019
  ident: 10918_CR13
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2018.12.032
– year: 2022
  ident: 10918_CR19
  publication-title: Gold Regions Science and Technology
  doi: 10.1016/j.coldregions.2022.103510
– volume: 82
  start-page: 457
  year: 2002
  ident: 10918_CR37
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(02)00064-0
– volume: 25
  start-page: 3999
  issue: 19
  year: 2004
  ident: 10918_CR39
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431160310001654923
– volume: 18
  start-page: 542
  issue: 519
  year: 2007
  ident: 10918_CR57
  publication-title: Land Degradation and Development
  doi: 10.1002/ldr.794
– volume: 134
  start-page: 125
  issue: 1
  year: 2014
  ident: 10918_CR14
  publication-title: European Journal of Forest Research
  doi: 10.1007/s10342-014-0838-y
– volume: 115
  start-page: 3165
  year: 2011
  ident: 10918_CR36
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2011.07.002
– volume: 36
  start-page: 849
  issue: 6
  year: 2005
  ident: 10918_CR27
  publication-title: Environmental Management
  doi: 10.1007/s00267-004-0373-6
– volume: 11
  start-page: 3038
  year: 2019
  ident: 10918_CR10
  publication-title: Remote Sensing
  doi: 10.3390/rs11243038
– volume: 1
  start-page: 1
  year: 2012
  ident: 10918_CR32
  publication-title: International Journal of Forestry Research
  doi: 10.1155/2012/436537
– volume: 50
  start-page: 329
  issue: 2
  year: 2012
  ident: 10918_CR47
  publication-title: Environmental Management
  doi: 10.1007/s00267-012-9873-y
– volume: 32
  start-page: 1
  year: 2021
  ident: 10918_CR21
  publication-title: Journal of Forest Research
  doi: 10.1007/s11676-020-01155-1
– volume: 77
  start-page: 15
  year: 2018
  ident: 10918_CR42
  publication-title: Journal of Terramechanics
  doi: 10.1016/j.jterra.2018.02.001
– ident: 10918_CR54
– volume: 58
  start-page: 257
  issue: 3
  year: 1996
  ident: 10918_CR15
  publication-title: Remote Sensing of Environment
  doi: 10.1016/S0034-4257(96)00067-3
– ident: 10918_CR33
– volume: 25
  start-page: 1
  issue: 1
  year: 2017
  ident: 10918_CR6
  publication-title: Evolutionary Computation
  doi: 10.1162/EVCO_r_00180
– volume: 56
  start-page: 643
  issue: 2
  year: 2013
  ident: 10918_CR20
  publication-title: Transactions of the ASABE
  doi: 10.13031/2013.42683
– volume: 73
  start-page: 169
  issue: 2
  year: 2004
  ident: 10918_CR52
  publication-title: Chemometrics and Intelligent Laborary Systems
  doi: 10.1016/j.chemolab.2004.01.002
– volume: 63
  start-page: 186
  year: 2017
  ident: 10918_CR62
  publication-title: Land Use Policy
  doi: 10.1016/j.landusepol.2017.01.025
– volume: 12
  start-page: 2884
  year: 2020
  ident: 10918_CR29
  publication-title: Remote Sensing
  doi: 10.3390/rs12182884
– volume: 7
  start-page: 15114
  year: 2015
  ident: 10918_CR50
  publication-title: Remote Sensing
  doi: 10.3390/rs71115114
– volume: 15
  start-page: 1
  issue: 29
  year: 2015
  ident: 10918_CR3
  publication-title: BMC Medical Imaging
  doi: 10.1186/s12880-015-0068-x
– volume: 54
  start-page: 51
  issue: 1
  year: 2014
  ident: 10918_CR58
  publication-title: Environmental Management
  doi: 10.1007/s00267-014-0284-0
– ident: 10918_CR16
– ident: 10918_CR41
– ident: 10918_CR60
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10918_CR9
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 40
  start-page: 83
  issue: 2
  year: 2003
  ident: 10918_CR18
  publication-title: Journal of Terramechanics
  doi: 10.1016/j.jterra.2003.09.004
– ident: 10918_CR48
– ident: 10918_CR55
– volume: 150
  start-page: 355
  year: 2015
  ident: 10918_CR23
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2014.08.002
– volume: 112
  start-page: 1982
  year: 2008
  ident: 10918_CR53
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2007.03.032
– volume: 9
  start-page: 097695
  issue: 1
  year: 2015
  ident: 10918_CR44
  publication-title: Journal of Applied Remote Sensing
  doi: 10.1117/1.JRS.9.097695
– volume: 35
  start-page: 924
  issue: 3
  year: 2021
  ident: 10918_CR43
  publication-title: Journal of the Chartered Institution of Water and Environmental Management
  doi: 10.1111/wej.12681
– volume: 16
  start-page: 405
  issue: 3
  year: 1992
  ident: 10918_CR12
  publication-title: Environmental Management
  doi: 10.1007/BF02400080
– volume: 17
  start-page: 1425
  issue: 7
  year: 1996
  ident: 10918_CR35
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431169608948714
– ident: 10918_CR38
– ident: 10918_CR63
– volume: 13
  start-page: 95
  issue: 1–2
  year: 1995
  ident: 10918_CR5
  publication-title: Remote Sensing Reviews
  doi: 10.1080/02757259509532298
– volume: 156
  start-page: 322
  year: 2015
  ident: 10918_CR7
  publication-title: Remote Sensing of Environment
  doi: 10.1016/j.rse.2014.10.004
– ident: 10918_CR17
– volume: 9
  start-page: 63
  issue: 1
  year: 2016
  ident: 10918_CR31
  publication-title: International Journal of Digital Earth
  doi: 10.1080/17538947.2014.990526
– volume: 50
  start-page: 417
  issue: 2
  year: 2022
  ident: 10918_CR46
  publication-title: Journal of the Indian Society of Remote Sensing
  doi: 10.1007/s12524-021-01475-7
– volume: 44
  start-page: 810
  year: 2009
  ident: 10918_CR56
  publication-title: Environmental Management
  doi: 10.1007/s00267-009-9363-z
– volume: 12
  start-page: 1884
  issue: 11
  year: 2020
  ident: 10918_CR25
  publication-title: Remote Sensing
  doi: 10.3390/rs12111884
– volume: 107
  start-page: 1129
  issue: 499
  year: 2012
  ident: 10918_CR28
  publication-title: Journal of American Statistical Association
  doi: 10.1080/01621459.2012.695654
– volume: 10
  start-page: 50
  issue: 1
  year: 2018
  ident: 10918_CR49
  publication-title: Remote Sensing
  doi: 10.3390/rs10010050
– ident: 10918_CR8
– volume: 41
  start-page: 676
  issue: 5
  year: 2008
  ident: 10918_CR11
  publication-title: Environmental Management
  doi: 10.1007/s00267-007-9064-4
– volume: 42
  start-page: 143
  issue: 2
  year: 2014
  ident: 10918_CR34
  publication-title: Scientia Militaria: South African Journal of Military Studies
  doi: 10.5787/42-2-1097
– ident: 10918_CR24
– volume: 2017
  start-page: 1353691
  year: 2017
  ident: 10918_CR61
  publication-title: Journal of Sensors
  doi: 10.1155/2017/1353691
– volume: 25
  start-page: 295
  issue: 3
  year: 1988
  ident: 10918_CR22
  publication-title: Remote Sensing of Environment
  doi: 10.1016/0034-4257(88)90106-X
– volume: 258
  start-page: 1275
  issue: 7
  year: 2009
  ident: 10918_CR59
  publication-title: Forest Ecology and Management
  doi: 10.1016/j.foreco.2009.06.056
– volume: 233
  start-page: 106081
  year: 2020
  ident: 10918_CR40
  publication-title: Agricultural Water Management
  doi: 10.1016/j.agwat.2020.106081
SSID ssj0009749
Score 2.3817725
Snippet Sustainable management of the US Army installations is critical for military training and readiness of forces. However, monitoring military training-induced...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 320
SubjectTerms Algorithms
Atmospheric Protection/Air Quality Control/Air Pollution
Correlation
Earth and Environmental Science
Ecology
Ecotoxicology
Environment
Environmental Management
Environmental monitoring
Environmental Monitoring - methods
Environmental science
Humans
Machine learning
Methods
Military
Military Personnel
Military preparedness
Military training
Modelling
Monitoring
Monitoring systems
Monitoring/Environmental Analysis
Neural networks
Plant cover
regression analysis
Remote sensing
Remote Sensing Technology - methods
Satellite Imagery
Spatial discrimination
Spatial resolution
Support vector machines
Sustainability management
Training
Vegetation
Vegetation cover
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RbxMxDLZG9wIP0xgMOgYKEm8Q0eZySe5hQoA6TUirEDBpb6dckquQ2uu2dpN44q9j53I90ESfL6c4sR3bif0Z4M24EhFmnGe1clyGouZVlgfUK3Sera7GSlG98_lUnV3IL5f55Q5Mu1oYSqvszsR4UPulozvy90ITUjpGF_mHq2tOXaPodbVroWFTawV_EiHGHsCuIGSsAex-mky_futheHXrEBPat8pUkcpoUjEd2iqONowTWCbKz7-m6p7_ee_tNJqk033YS74k-9gy_zHshOYAHv2FMHgAh5O-kA2HJk1ePYHf55aQGWbMNp75ti09W0QFpz_ZsmaLCOB984t1bSQ4xu8oCZ7dhVnKUmSOUkDZHOlnlEI_Y98p_agJcy7YzwUeVqs4Q9uomrlN18OncHE6-fH5jKdmDNxhFLvGgygorfKgilxa7XNPV3J2FIqgLO5Z5l1hjXamcMooLcTISYykKjWqrPHOj7JDGDTLJjwHZtBlyJCfrjZC1mNtrayEQ1dKakGlr0MYd_teuoRUTiudlz3GMvGqxHnLyKtSDOHt5p-rFqdj6-jjjp1l0tlV2UvYEF5vPqO20ROKbcLyth1Dpblm2xgjC2NkJnEhz1pR2ZCUKWUKpGEI7zrZ6Qn4P71H2-l9AQ8FyW1MJj-GwfrmNrxEX2ldvUoK8AeF9g7e
  priority: 102
  providerName: ProQuest
Title Mapping and dynamic monitoring of military training-induced vegetation cover loss using Sentinel-2 images and method comparison
URI https://link.springer.com/article/10.1007/s10661-023-10918-2
https://www.ncbi.nlm.nih.gov/pubmed/36689091
https://www.proquest.com/docview/2768581915
https://www.proquest.com/docview/2768811785
https://www.proquest.com/docview/2849884348
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 1573-2959
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0009749
  issn: 0167-6369
  databaseCode: A8Z
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-2959
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009749
  issn: 0167-6369
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1573-2959
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0009749
  issn: 0167-6369
  databaseCode: 8C1
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-2959
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009749
  issn: 0167-6369
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-2959
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009749
  issn: 0167-6369
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0jwgLbCoDAqI_EGlhrHsZ3HMmVMmzYhoFJ5ihzHqZDaFK0d0p7417lzknbT2KS9JA-x43PuzneO734H8CEqRIAZ53GlHJc-rXgRJx71Cp1nq4tIKcp3Pr9QJ2N5OkkmbVLYsot2744kw0p9I9kNbQlHG8MJzBL5uw27CcF5oRSPxWgDtasbp5cQvVWs0jZV5v_vuG2O7viYd85Hg9k53oPnrb_IRg2D92HL1z14kgWs6esePLuBJ9iDg2yTtoadWr1dvoC_55ZwGKbM1iUrmyL0bB7UmXqyRcXmAa778pp1RSM47taR7yX746dtTCJzFPDJZjgTRgHzU_adgo1qP-OC_Zrj0rQMIzRlqZlb1zh8CePj7MfRCW9LL3CHe9YVLjteaZV4lSbS6jIp6QecHfrUK4tfLy5dao12JnXKKC3E0EncNxVqWFhTunIYH8BOvaj9a2AGHYRYaOUqI2QVaWtlIRw6TlILSnTtQ9RxIHctLjnNdJZvEJWJazmOmweu5aIPH9d9fjeoHA-2PuwYm7causyRIpPQbjXpw_v1Y9QtOjCxtV9cNW0oEdc81MbI1BgZS5zIq0Zo1iTFSpkUaejDp06KNgTcT--bxzV_C08FSXQIJT-EndXllX-HntKqGMC2nmi8mqNoALujLz_PMrx_zi6-fhsEpfkHaCYM8g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VcgAOCAqFhQJGghNY3XUc2zkghEqrLe32Qiv1FhzbWVXazZbuFtQTb8QzMuMkG1DF3nrOJB5nfjy2Z74BeDMoRIQZ50mpHJchK3mRpAHtCoNnq4uBUlTvPDpSwxP55TQ9XYPfbS0MpVW2PjE6aj9zdEa-LTQhpePuIv14_p1T1yi6XW1baNRqcRCufuKWbf5h_zPK960Qe7vHO0PedBXgDrdjC7SooLRKg8pSabVPPZ0t2X7IgrK4gCXeZdZoZzKnjNJC9J3ELUGh-oU13vl-gt-9BbdlIjQ5ArPTpZRgbJ61WOIqUVlTpNOU6uFKyHEATlCcqJ3_LoTXottrN7Nxwdt7APebSJV9qlXrIayFagPu_YVfuAGbu12ZHJI2fmL-CH6NLOE-jJmtPPN103s2je6D3mSzkk0jPPjFFWubVPCzyqOeefYjjJscSOYowZRNkH9GCfpj9pWSm6ow4YKdTdEVzuMIdRts5pY9FR_DyY0IZRPWq1kVngIzGJCgbJQrjZDlQFsrC-EwUJNaUGFtDwbtf89dg4NOM53kHYIzySrHcfMoq1z04N3ynfMaBWQl9VYrzrzxCPO8098evF4-RlumCxpbhdllTUOFv2YVjZGZMTKROJEntaosWUqUMhny0IP3re50DPyf32er-X0Fd4bHo8P8cP_o4DncFaTDMW19C9YXF5fhBUZli-JlNAUG327a9v4ApJdD5w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NISF4QDDYKAwwEjyBtdZ2bOcBIcRWbYxNSDCpb8GxnapSm461A_WJ_4u_jrv8aEETfdtznPiS--58ju--A3jZy0VFM85loT1XMS14LpOIdoXBszN5T2uqdz451Ydn6uMgGWzA77YWhtIqW59YOeow9fSPfE8YYkrH3UWyVzRpEZ_3--_Ov3PqIEUnrW07jRoix3HxE7dvs7dH-6jrV0L0D75-OORNhwHucWs2R-uK2ugk6jRRzoQk0H8m141p1A4XMxl86qzxNvXaaiNE1yvcHuS6mzsbfOhKfO4NuGmkTCmd0AzMivDX1KE38YprqdOmYKcp28NVkeMEnGg5Ean_LopXIt0rp7TV4te_B3ebqJW9r2F2HzZiuQV3_uIy3ILtg1XJHA5tfMbsAfw6ccQBMWSuDCwsSjcZeTapXAndyaYFm1RU4RcL1jas4KMyIOYC-xGHTT4k85RsysYoP6Nk_SH7QolOZRxzwUYTdIuzaoa6JTbzy_6KD-HsWpSyDZvltIyPgFkMTiQixxdWqKJnnFO58Bi0KSOoyLYDvfa7Z77hRKc3HWcrNmfSVYbzZpWuMtGB18t7zmtGkLWjd1t1Zo13mGUrLHfgxfIy2jUd1rgyTi_rMVQEbNeNsSq1VkmFL7JTQ2UpktTapihDB9602FkJ8H95H6-X9zncQqvLPh2dHj-B24IgXGWw78Lm_OIyPsUAbZ4_qyyBwbfrNr0_bM5IVg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+and+dynamic+monitoring+of+military+training-induced+vegetation+cover+loss+using+Sentinel-2+images+and+method+comparison&rft.jtitle=Environmental+monitoring+and+assessment&rft.au=Xu%2C+Xiaoyu&rft.au=Ban%2C+Bibek&rft.au=Howard%2C+Heidi+R.&rft.au=Chen%2C+Shu&rft.date=2023-02-01&rft.pub=Springer+International+Publishing&rft.issn=0167-6369&rft.eissn=1573-2959&rft.volume=195&rft.issue=2&rft_id=info:doi/10.1007%2Fs10661-023-10918-2&rft.externalDocID=10_1007_s10661_023_10918_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-6369&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-6369&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-6369&client=summon